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For polynomial functors G, we show how to generalize the classical notion of regular expression
to G-coalgebras.
We introduce a language of expressions for describing elements of  the final G-coalgebra and,
analogously to Kleene's theorem, we show the correspondence between expressions and finite
G-coalgebras.





Regular expressions for polynomial coalgebras

Marcello Bonsangue Jan Rutten Alexandra Silva

Abstract

For polynomial functors G , we show how to generalize the classical notion of regu-
lar expression to G-coalgebras. We introduce a language of expressions for describing
elements of the final G-coalgebra and, analogously to Kleene’s theorem, we show the
correspondence between expressions and finite G-coalgebras.

1 Introduction

Regular expressions were first introduced by Kleene [Kle56] to study the properties of
neural networks. They are an algebraic description of languages, offering a declarative
way of specifying the strings to be recognized and they define exactly the same class of
languages accepted by deterministic (and non-deterministic) finite state automata: the
regular languages.

The correspondence between regular expressions and (non-)deterministic automata has
been widely studied and a translation between these two different formalisms is presented
in most books on automata and language theory [Koz97, HMU06]. For instance, state s0
of the automaton

?>=<89:;s0
a **

b
�� ?>=<89:;76540123s1

a
��

b

jj

accepts the same language as described by the expression b∗a(a + bb∗a)∗.
A deterministic automaton consists of a set of states S equipped with a transition

function δ : S → 2×SA determining for each state whether or not it is final and assigning
to each input symbol a next state.

Deterministic automata can be generalized to coalgebras for an endofunctor G on the
category Set. A coalgebra is a pair (S , g) consisting of a set of states S and a transition
function g : S → GS , where the functor G determines the type of the dynamic system
under consideration and is the base of the theory of universal coalgebra [Rut00]. The
central concepts in this theory are homomorphism of coalgebras, bisimulation equivalence
and final coalgebra. These can be seen, respectively, as generalizations of automata ho-
momorphism, language equivalence and the set of all languages. In fact, in the case of
deterministic automata, the functor G would be instantiated to 2 × IdA and the usual
notions would be recovered. In particular, note that the final coalgebra for this functor is
precisely the set 2A∗

of all languages over A [Rut98].
Given the fact that coalgebras can be seen as generalizations of deterministic automata,

it is natural to investigate whether there exists an appropriate notion of regular expression
in this setting. More precisely: is it possible to define a language of expressions that
represents precisely the behaviour of finite G-coalgebras, for a given functor G?

In this paper, we will show how to generalize the notion of regular expression for
G-transition systems. We introduce a language of expressions for describing elements of
the final G-coalgebra (Section 3). Analogously to Kleene’s theorem, we show the corre-
spondence between expressions and finite G-coalgebras. In particular, we show that every
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state of a finite G-coalgebra corresponds to an expression in the language (Section 4) and,
conversely, we give a compositional synthesis algorithm which transforms every expression
into a finite G-coalgebra (Section 5).

1.1 Related Work

Coalgebras of polynomial functors and the study of their specification languages has been
investigated by many authors [Gol02, Röß00, Jac01]. Our approach is similar in spirit to
that of Goldblatt [Gol02] in that we use the ingredients of a functor for typing expressions,
and differs from the other two works because we do not need an explicit ”next-state”
operator, as we can deduce it from the type information.

In the last few years several proposals of specification languages for coalgebras ap-
peared [Mos99, Röß00, Jac01, CP04, BK05, BK06, KV07]. Apart from [KV07], the logics
presented do not include fixpoint operators. Our language of regular expressions can be
seen as an extension with fixed point operators of the coalgebraic logic of [BK05] and
it is similar to a fragment of the logic presented in [KV07]. However, our goal is rather
different: we want a finitary language that characterize exactly all finite coalgebras. Our
language is minimal, as it contains only the operators necessary for this goal. This re-
striction does not decrease the expressiveness of the language with respect to bisimulation
and it allows for a simple and direct algorithm for the synthesis of a finite coalgebra.

Automata synthesis is a popular and very active research area [PR89, TMS04, KV00,
CGL+00, HCR06]. Most of the work done on synthesis has as main goal to find a proper
and sufficiently expressive type of automata to encode a specific type of logic (such as
LTL [TMS04] or µ-calculus [KV00]). Recently, this automata theoretical approach has
been generalized in [KV07] to coalgebras for endofunctors F over Set: the synthesis of a
F -coalgebra from a formula passes by the construction of an alternating parity automata
accepting F -coalgebra and then checking for non-emptiness. On this respect, our approach
is a novel and fully coalgebraic synthesis method: the set of expressions is a coalgebra,
and as such the synthesis of an expression is just a sub-coalgebra up to the application of
some equations to guarantee finiteness.

Regular expressions have been originally introduced by Kleene [Kle56] as a mathe-
matical notation for describing languages recognized by deterministic finite automata. In
[Rut98], deterministic automata, the sets of formal languages and regular expressions are
all presented as coalgebras of the functor 2× IdA (where A is the alphabet, and 2 is the
two elements set). It is then shown that the standard semantics of language acceptance
of automata and the assignment of languages to regular expressions both arise as the
unique homomorphism into the final coalgebra of formal languages. The coalgebra struc-
ture on the set of regular expressions is determined by their so-called Brzozowski deriva-
tives [Brz64]. In the present paper, the set of expressions for the functor F (S ) = 2× SA

differs from the classical definition in that we do not have Kleene star and full concate-
nation (sequential composition) but, instead, the least fixed point operator and action
prefixing. Modulo that difference, the definition of a coalgebra structure on the set of
expressions in both [Rut98] and the present paper is essentially the same. All in all, one
can therefore say that standard regular expressions and their treatment in [Rut98] can
be viewed as a special instance of the present approach. This is also the case for the
generalization of the results in [Rut98] to automata on guarded strings [Koz08].

The present paper can be seen as a generalization of [BRS08], where a sound and
complete specification language and a synthesis algorithm for Mealy machines is given.
Mealy machines are coalgebras of the functor (B×Id)A, where A is a finite input alphabet
and B a finite meet semilattice for the output alphabet.

Acknowledgements The authors are grateful to Clemens Kupke, Dave Clarke, Helle
Hansen and Yde Venema for useful comments. We are indebted to the two anonymous
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referees for pointing out some mistakes in an earlier version of this paper.

2 Preliminaries

We give the basic definitions on polynomial functors and coalgebras and introduce the
notion of bisimulation.

First we fix notation on sets and operations on them. Let Set be the category of sets
and functions. Sets are denoted by capital letters X ,Y , . . . and functions by lower case
f , g , . . .. The collection of functions from a set X to a set Y is denoted by Y X . Given
functions f : X → Y and g : Y → Z we write their composition as g ◦ f . The product of
two sets X ,Y is written as X ×Y , with projection functions

X X ×Y
π1oo π2 // Y

The set 1 is a singleton set typically written as 1 = {∗}. It can be regarded as the
empty product.

The coproduct, or disjoint union, of two sets X ,Y is usually written as X + Y with
injections

X
κ1 // X + Y Y

κ2oo

and described pointwise as the set

X + Y = {0} ×X ∪ {1} ×Y

We will use a extended notion of coproduct , which has two extra elements:

X+Y = (X + Y ) ∪ {⊥,>}

These extra elements will later be used to represent, respectively, underspecification and
inconsistency in the specification of some systems. The intuition behind the need of this
extra elements will be clear when we present our language of expressions and concrete
examples, in Section 5.3, of transition systems whose type involves coproduct. From
this point onwards, we will only consider extended coproducts and, without any risk of
confusion, we will refer to them simply as coproducts and denote them using +.

In our definition of polynomial functors we will use constant sets equipped with an in-
formation order. In particular, we will use join-semilattices. A (bounded) join-semilattice
is a set B equipped with a binary operation ∨B and a constant ⊥B ∈ B , such that ∨B

is commutative, associative and idempotent. The element ⊥B is neutral w.r.t. ∨B . As
usual, ∨B gives rise to a partial ordering ≤B on the elements of B :

b1 ≤B b2 ⇔ b1 ∨B b2 = b2

Every set S can be transformed into a join-semilattice by taking B to be the set of all
finite subsets of S with union as join.

We are now ready to define the class of polynomial functors. They are functors
G : Set → Set, built inductively from the identity and constants, using products, co-
products and exponents.

Definition 1 The class PF of polynomial functors on Set is inductively defined by
putting:

G :: = Id | B | G + G | G ×G | GA

where B is a finite join-semilattice and A is a set. ♦
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Typical examples of polynomial functors are D = 2× IdA and P = (1 + Id)A. These
functors, which we shall later use as our running examples, represent, respectively, the
type of deterministic automata and partial deterministic automata.

Our definition of polynomial functors slightly differs from the one used in [Röß00,
Jac01] in the use of a join-semilattice as constant functor. This small variation will play
an important role in giving a full coalgebraic treatment of the language of expressions we
shall later introduce. In fact, we will show that such a language (for this class of functors)
is a coalgebra. Also note that this is not a real restriction since every set can be lifted to
a join-semilattice.

Next, we give the definition of the ingredient relation, which relates a polynomial
functor G with its ingredients, i.e. the functors used in its inductive construction. We
shall use this relation later for typing our expressions.

Definition 2 (Ingredients) A polynomial functor F is said to be an ingredient of a
polynomial functor G , denoted by F C G , if they are part of the least reflexive and
transitive relation on polynomial functors such that

G1 C G1 ×G2

G2 C G1 ×G2

G1 C G1 + G2

G2 C G1 + G2

G C GA

♦

For example, 2, Id , 2 × Id , and D itself are all the ingredients of the deterministic
automata functor D .

Recall that for a functor G on Set, a G-coalgebra is a pair (S , f ) consisting of a set
of states S together with a function f : S → GS . The functor G , together with the
function f , determines the transition structure (or dynamics) of the G-coalgebra [Rut00].
Deterministic automata and partial automata are, respectively, coalgebras for the functors
D = 2× IdA and P = (1 + Id)A.

Definition 3 (G-homomorphism) A G-homomorphism from a G-coalgebra (S , f ) to
a G-coalgebra (T , g) is a function h:S → T preserving the transition structure, i.e., such
that the following diagram commutes.

S

f

��

h // T

g

��
GS

Gh
// GT

g ◦ h = Gh ◦ f

♦

This notion of homomorphism instantiates in the case of the functors D and P men-
tioned above to the classical notion of automata homomorphism (morphisms preserving
transitions and outputs).

Next, we define the notion of finality, which will play a key role later in providing a
semantics to expressions.

Definition 4 (Final coalgebra) A G-coalgebra (S , f ) is said to be final if for any G-
coalgebra (T , g) there exists a unique homomorphism h which makes the following dia-
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gram commute:

T
h //_____

g

��

S

f

��
GT

Gh
//____ GS

♦

For every polynomial functor G there exists a final G-coalgebra (ΩG , ωG) [Rut00]. For
instance, as we already mentioned in the introduction, the final coalgebra for the functor D
is the set of languages 2A∗

over A, together with a transition function π : 2A∗ → 2×(2A∗
)A

defined as π(φ) = 〈φ(ε), λaλw .φ(aw)〉. Here ε denotes the empty sequence and aw denotes
the word resulting from prefixing w with the letter a.

Next we define the lifting of a relation R with respect to a polynomial functor G . This
notion plays a crucial role in the definition of bisimulation.

Definition 5 Let G be a polynomial functor, and R ⊆ S × T a binary relation. We
define G(R) ⊆ G(S )×G(T ) by induction on the structure of the functor G as follows:

Id(R) = R
B(R) = {〈b, b〉 | b ∈ B}
G1 ×G2(R) = {〈〈u1, v1〉, 〈u2, v2〉〉 | 〈u1, u2〉 ∈ G1(R) and 〈v1, v2〉 ∈ G2(R)}
G1 + G2(R) = {〈κ1(u1), κ1(u2)〉 | 〈u1, u2〉 ∈ G1(R)} ∪

{〈κ2(u1), κ2(u2)〉 | 〈u1, u2〉 ∈ G2(R)} ∪ {〈⊥,⊥〉, 〈>,>〉}
GA(R) = {(f , g) | ∀a∈A〈f (a), g(a)〉 ∈ G(R)}

♦

We can now define bisimulation, which will play an important role in providing se-
mantics for our language of expressions.

Definition 6 (Bisimulation for G-coalgebras) Let (S , f ) and (T , g) be two G-coalgebras.
We call a relation R ⊆ S × T a bisimulation if for all (s, t) ∈ S × T :

(s, t) ∈ R ⇒ (f (s), g(t)) ∈ G(R)

♦

We write s ∼G t whenever there exists a bisimulation relation containing (s, t) and
we call ∼G the bisimilarity relation. We shall drop the subscript G whenever the functor
G is clear from the context.

Spelling out the definition of bisimulation for deterministic and partial automata one
recovers the expected notions.

3 A language of expressions for polynomial coalgebras

In this section we introduce a language of expressions for coalgebras, generalizing the
classical notion of regular expressions. We start by introducing an untyped language of
expressions and then we single out the well-typed ones via an appropriate typing system,
associating expressions to polynomial functors.
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Definition 7 (Expressions) Let A be a finite set and let B be a finite join-semilattice.
Furthermore, let X be a set of fixpoint variables. The set of all expressions is given by
the following grammar:

ε :: = ∅ | x | ε⊕ ε | µx .γ | b | l(ε) | r(ε) | l [ε] | r [ε] | a(ε)

where γ is a guarded expression given by:

γ :: = ∅ | γ ⊕ γ | µx .γ | b | l(ε) | r(ε) | l [ε] | r [ε] | a(ε)

♦

A closed expression is an expression without free occurrences of fixpoint variables x . We
denote the set of guarded and closed expressions by Exp.

Intuitively, expressions denote elements of the final coalgebra. If we think of the latter
as a collection of sets, then the expression ∅ denotes the empty set, while ε1 ⊕ ε2 denotes
the union of the sets denoted by ε1 and ε2. The expressions l(ε), r(ε), l [ε], r [ε] and
a(ε) refer to the left and right hand-side of products and sums, and function application,
respectively. Finally, the expression µx . ε denotes the least fixpoint and will play a similar
role to the Kleene star in classical regular expressions for deterministic automata. We shall
soon illustrate, by means of examples, the role of these expressions.

Our language does not have any operator denoting intersection or complement (it only
includes the sum operator ⊕). This is a natural restriction, very much in the spirit of
Kleene’s regular expressions for deterministic finite automata. We will prove that this
simple language is expressive enough to denote exactly all finite coalgebras.

Next, we present a typing assignment system for associating expressions to polyno-
mial functors. This will associate to each functor G the expressions ε ∈ Exp that are
valid specifications of G-coalgebras. The typing proceeds following the structure of the
expressions and the ingredients of the functors.

Definition 8 (Typed expressions) We type guarded expressions ε using the ingredient
relation, as follows:

` ∅ : F C G ` b : B C G ` x : G C G

` ε : G C G

` ε : Id C G

` ε1 : F C G ` ε2 : F C G

` ε1 ⊕ ε2 : F C G

` ε : G C G

` µx .ε : G C G

` ε : F1 C G

` l(ε) : F1 × F2 C G

` ε : F2 C G

` r(ε) : F1 × F2 C G

` ε : F C G

` a(ε) : FA C G

` ε : F1 C G

` l [ε] : F1 + F2 C G

` ε : F2 C G

` r [ε] : F1 + F2 C G

♦

Note that the presented type system is decidable (expressions are of finite length and
the system is recursive). Roughly, ε : F C G means that the set denoted by ε is an
element (up to bisimulation) of F (ΩG). There is a rule for each expression construct.
The extra rule involving Id C G reflects the isomorphism between the final coalgebra ΩG

and G(ΩG). Remark that the type system allows only fixpoints at the outermost level of
the functor. This does not mean however that we disallow nested fixpoints. For instance,
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µx . a(x ⊕ µy . a(y)) would be a well-typed expression for the functor D of deterministic
automata, as it will become clear below, when we will present more examples of well-
typed and non-well-typed expressions. Next we formally define the set of G-expressions:
well-typed expressions associated with a polynomial functor G .

Definition 9 (G-expressions) Let G be a polynomial functor and F an ingredient of
G . We denote by ExpFCG the following set:

ExpFCG = {ε ∈ Exp | ` ε : F C G} .

The set ExpG of (closed and guarded) well-typed G-expressions is ExpGCG . ♦

For the functor D , examples of well-typed expressions include r(a(0)), l(1)⊕r(a(l(0)))
and µx .r(a(x ))⊕ l(1). The expressions l [1], l(1)⊕ 1 and µx .1 are examples of non well-
typed expressions, because the functor D does not involve coproducts, the subexpressions
in the sum have different type, and recursion is not at the outermost level (1 has type
2 C D), respectively.

Let us instantiate the definition of expressions to the functors of deterministic au-
tomata D = 2× IdA and partial automata P = (1 + Id)A.

Example 10 (Deterministic expressions) Let A be a set of input actions and let X
be a set of (recursion or) fixpoint variables. The set of deterministic expressions is given
by the following BNF syntax. For a ∈ A and x ∈ X :

ε:: = ∅ | x | r(a(ε)) | l(1) | r(0) | ε⊕ ε | µx .ε

where occurrences of fixpoint variables in ε are within the scope of an input action in A.

It is easy to see that the closed (and guarded) expressions generated by the grammar
presented above are exactly the elements of ExpD . One can easily see that l(1) and l(0)
are well-typed expressions for D = 2× IdA because both 1 and 0 are of type 2 C D . For
the expression r(a(ε)) note that a(ε) has type IdA CD as long as ε has type Id CD . And
the crucial remark here is that, by definition of `, ExpIdCG = ExpG . Therefore, ε has
type Id C D if it is of type D C D , or more precisely, if ε ∈ ExpD , which explains why the
grammar above is correct.

Note that ExpIdCG = ExpG is a direct consequence of the isomorphism ΩG
∼= G(ΩG)

mentioned above. Intuitively, this can be explained by the fact that for a polynomial
functor G , if Id is one of the ingredients of G , then it is functioning as a pointer to the
functor being defined:

G = . . . Idff . . .

Below, we will simplify the notation for elements of ExpD . Without any risk of confu-
sion, 1 and 0 abbreviate, respectively, l(1) and l(0) and a(ε) is used instead of r(a(ε)).

Without additional explanation we present next the syntax for the expressions in
ExpP .

Example 11 (Partial automata expressions) Let A be a set of input actions and X
be a set of (recursion or) fixpoint variables. The set partial expressions is given by the
following BNF syntax. For a ∈ A and x ∈ X :

ε:: = ∅ | x | a(ε) | a↑ | ε⊕ ε | µx .ε

where occurrences of fixpoint variables in ε are within the scope of an input action in A.
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For simplicity, a↑ and a(ε) abbreviate a(l [∗]) and a(r [ε]).

We have now defined a language of expressions which gives us an algebraic description
of systems. In the remainder of the paper, we want to present a generalization of Kleene’s
theorem for polynomial coalgebras (Theorems 15 and 16). Recall that, for regular lan-
guages, the theorem states that a language is regular if and only if it is recognized by a
finite automaton.

3.1 Expressions are coalgebras

In this section, we show that the set of G-expressions for a given polynomial functor G
has a coalgebraic structure

λG : ExpG → G(ExpG) .

We proceed by induction on the ingredients of G . More precisely we are going to define
a function

λFCG : ExpFCG → F (ExpG)

and then set λG = λGCG . Our definition of the function λFCG will make use of the
following.

Definition 12 (i) We define a constant EmptyFCG ∈ F (ExpG) by induction on the
syntactic structure of F :

EmptyIdCG = ∅
EmptyBCG = ⊥B

EmptyF1×F2CG = 〈EmptyF1CG ,EmptyF2CG〉
EmptyF1+F2CG = ⊥
EmptyFACG = λa.EmptyFCG

(ii) We define PlusFCG : F (ExpG)×F (ExpG) → F (ExpG) by induction on the syntactic
structure of F :

PlusIdCG(ε1, ε2) = ε1 ⊕ ε2

PlusBCG(b1, b2) = b1 ∨B b2

PlusF1×F2CG(〈ε1, ε2〉, 〈ε3, ε4〉) = 〈PlusF1CG(ε1, ε3),PlusF2CG(ε2, ε4)〉
PlusF1+F2CG(κi(ε1), κi(ε2)) = κi(PlusFiCG(ε1, ε2)), i ∈ {1, 2}
PlusF1+F2CG(κi(ε1), κj (ε2)) = > i , j ∈ {1, 2} and i 6= j
PlusF1+F2CG(x ,>) = PlusF1+F2CG(>, x ) = >
PlusF1+F2CG(x ,⊥) = PlusF1+F2CG(⊥, x ) = x
PlusFACG(f , g) = λa. PlusFCG(f (a), g(a))

♦

Now we have all we need to define λFCG . This function will be defined by double
induction on the maximum number N (ε) of nested unguarded occurrences of µ-expressions
in ε and on the lenght of the proofs for typing expressions. We define N (ε) as follows:

N (∅) = N (b) = N (a(ε)) = N (l(ε)) = N (r(ε)) = N (l [ε]) = N (r [ε]) = 0
N (ε1 ⊕ ε2) = max{N (ε1), N (ε2)}
N (µx .ε) = 1 + N (ε)

8



Definition 13 For every ingredient F of a polynomial functor G and expression ε ∈
ExpFCG , we define λFCG(ε) as follows:

λFCG(∅) = EmptyFCG

λFCG(ε1 ⊕ ε2) = PlusFCG(λFCG(ε1), λFCG(ε2))
λGCG(µx .ε) = λGCG(ε[µx .ε/x ])
λIdCG(ε) = ε
λBCG(b) = b
λF1×F2CG(l(ε)) = 〈λF1CG(ε),EmptyF2CG〉
λF1×F2CG(r(ε)) = 〈EmptyF1CG , λF2CG(ε)〉
λF1+F2CG(l [ε]) = κ1(λF1CG(ε))
λF1+F2CG(r [ε]) = κ2(λF2CG(ε))

λFACG(a(ε)) = λa ′.
{

λFCG(ε) a = a ′

EmptyFCG otherwise

Here, ε[µx .ε/x ] denotes syntactic substitution, replacing every free occurrence of x in ε
by µx .ε. ♦

In order to see that the definition of λFCG is well-formed, note that in the case of
µx .ε, we have:

N (ε) = N (ε[µx .ε/x ])

This can easily be proved by (standard) induction on the syntactic structure of ε, since ε
is guarded (in x ).

Definition 14 We can now define, for each polynomial functor G , a G-coalgebra

λG : ExpG → G(ExpG)

by defining λG = λGCG . ♦

This means that we can define the subcoalgebra generated by an expression ε ∈ ExpG ,
by repeatedly applying λG , which seems to be the correspondent of half of Kleene’s the-
orem, which states that the language represented by a given regular expression can be
recognized by a finite state automaton.

However, it is important to remark that the subcoalgebra generated by an expres-
sion ε ∈ ExpG by repeatedly applying λG is, in general, infinite. Take for instance the
deterministic expression ε1 = µx . a(x ⊕ µy . a(y)) and observe that:

λD(ε1) = 〈∅, ε1 ⊕ µy . a(y)〉
λD(ε1 ⊕ µy . a(y)) = 〈∅, ε1 ⊕ µy . a(y)⊕ µy . a(y)〉
λD(ε1 ⊕ µy . a(y)⊕ µy . a(y)) = 〈∅, ε1 ⊕ µy . a(y)⊕ µy . a(y)⊕ µy . a(y)〉

...

As one would expect, all these states are bisimilar. However, the function λD does not
make any state identification and thus yields an infinite coalgebra.

The observation that the set of expressions has a coalgebra structure will be crucial
for the proof of the generalized Kleene theorem, as will be shown in the next two sections.

4 Expressions are expressive

Having a G-coalgebra structure on ExpG has two advantages. First, it provides us, by
finality, directly with a natural semantics because of the existence of a (unique) homo-
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morphism:

ExpG
[[ · ]] //

λG

��

ΩG

ωG

��
GExpG

G[[ · ]]
// GΩG

It assigns to every expression ε an element [[ ε ]] of the final coalgebra ΩG .
The second advantage of the coalgebra structure on ExpG is that it lets us use the

notion of G-bisimulation to relate G-coalgebras (S , g) and expressions ε ∈ ExpG . If one
can construct a bisimulation relation between an expression ε and a state s of a given
coalgebra, then the behaviour represented by ε is equal to the behaviour determined by
the transition structure of the coalgebra applied to the state s. This is the analogon of
computing the language L(r) represented by a given regular expression r and the language
L(s) accepted by a state s of finite state automaton and checking if L(r) = L(s).

The following theorem states that the behaviour of every state in a finite G-coalgebra
can be represented by an expression in our language. This generalizes half of Kleene’s
theorem for regular languages: if a language is accepted by a finite automaton then it is
regular. The generalization of the other half of the theorem (if a language is regular then
it is accepted by a finite automaton) will be presented in Section 5.

Theorem 15 Let G be a polynomial functor and (S , g) a G-coalgebra. If S is finite then
there exists for any s ∈ S an expression εs ∈ ExpG such that εs ∼ s.

Proof. We associate with every state s ∈ S a variable xs ∈ X and an expression
εs = µxs . ε

G
s defined by induction on the structure of G as follows.

εId
s = ∅

εB
s = g(s)

εG1×G2
s = l(εG1

π1◦g(s))⊕ r(εG2
π2◦g(s))

εG1+G2
s =


l [εG1

s′ ] g(s) = κ1(s ′)
r [εG2

s′ ] g(s) = κ2(s ′)
∅ g(s) = ⊥
l [∅]⊕ r [∅] g(s) = >

εGA

s =
⊕

a∈A a(εG
g(s)(a))

Note that the choice of l [∅]⊕ r [∅] to represent inconsistency is arbitrary but canonical, in
the sense that any other expression involving sum of l [ε1] and r [ε2] will be bisimilar.

In the above definition we encounter expressions εG
s′ where s ′ ∈ GS . We define these

expressions again by induction on the structure of G as follows:

εId
s = xs

εB
b = b

εG1×G2
〈s,s′〉 = l(εG1

s )⊕ r(εG2
s′ )

εG1+G2
κ1(s)

= l [εG1
s ]

εG1+G2
κ2(s)

= r [εG2
s ]

εG1+G2
⊥ = ∅

εG1+G2
> = l [∅]⊕ r [∅]

εGA

f =
⊕

a∈A a(εG
f (a))

Syntactically replacing free occurrences of xs′ in εG
s by εs′ ensures that all εs are in ExpG .

Moreover, s ∼ εs , because, for every functor G , the relation

RG = {〈εs , s〉 | s ∈ S}

10



is a bisimulation (for the proof see appendix A). �

Let us illustrate the construction above by some examples. Consider the following
deterministic automaton over a two letter alphabet A = {a, b}, whose transition function
is depicted in the following picture (?>=<89:;/.-,()*+s represents that the state s is final):

?>=<89:;s1 a //

b
�� ?>=<89:;76540123s2

a,b

��

Now define ε1 = µx1. ε and ε2 = µx2. ε
′ where

ε = 0⊕ b(x1)⊕ a(x2) ε′ = 1⊕ a(x2)⊕ b(x2)

Substituting x2 by ε2 in ε1 then yields

ε1 = µx1. 0⊕ b(x1)⊕ a(ε2) ε2 = µx2. 1⊕ a(x2)⊕ b(x2)

By construction we have s1 ∼ ε1 and s2 ∼ ε2.
As another example, take the following partial automaton, also over a two letter

alphabet A = {a, b}:

?>=<89:;q1
a // ?>=<89:;q2

a
��

In the graphical representation of a partial automaton (S , p) we omit transitions for which
p(s)(a) = κ1(∗). In this case, this happens for both states for the input letter b.

We define ε1 = µx1. ε and ε2 = µx2. ε
′ where

ε = ε′ = b↑ ⊕ a(x2)

Substituting x2 by ε2 in ε1 then yields

ε1 = µx1. b↑ ⊕ a(ε2) ε2 = µx2. b↑ ⊕ a(x2)

Again we have s1 ∼ ε1 and s2 ∼ ε2.

5 Finite systems for expressions

We now give a construction to prove the converse of Theorem 15, that is, we describe a syn-
thesis process that produces a finite G-coalgebra from an arbitrary regular G-expression
ε. The states of the resulting G-coalgebra will consist of a finite subset of expressions,
including an expression ε′ such that ε ∼G ε′.

5.1 Formula normalization

We saw in Section 3.1 that the set of expressions has a coalgebra structure. We observed
however that the subcoalgebra generated by an expression is in general infinite.

In order to guarantee the termination of the synthesis process we need to identify some
expressions. In fact, as we will formally show later, it is enough to identify expressions
that are provably equivalent using only the following axioms:

(Idempotency) ε⊕ ε = ε
(Commutativity) ε1 ⊕ ε2 = ε2 ⊕ ε1

(Associativity) ε1 ⊕ (ε2 ⊕ ε3) = (ε1 ⊕ ε2)⊕ ε3

(Empty) ∅ ⊕ ε = ε

11



This group of axioms gives to the set of expressions the structure of a join-semilattice.
One easily shows that if two expressions are provably equivalent using these axioms then
they are bisimilar (soundness).

For instance, it is easy to see that the expressions

a(∅)⊕ 1⊕ ∅ ⊕ 1 and a(∅)⊕ 1

are equivalent using the equations (Idempotency) and (Empty).
We thus work with normalized expressions in order to eliminate any syntactic re-

dundancy present in the expression: in a sum, ∅ can be eliminated and, by idempo-
tency, the sum of two syntactically equivalent expressions can be simplified. The function
normG : ExpG → ExpG encodes this procedure. We define it by induction on the expres-
sion structure as follows:

normG(∅) = ∅
normG(ε1 ⊕ ε2) = plus(rem(flatten(normG(ε1)⊕ normG(ε2))))
normG(µx .ε) = µx .ε
normB (b) = b
normG1×G2(l(ε)) = l(ε)
normG1×G2(r(ε)) = r(ε)
normG1+G2(l [ε]) = l [ε]
normG1+G2(r [ε]) = r [ε]
normGA(a(ε)) = a(ε)

Here, plus takes a list of expressions [ε1, . . . , εn ] and returns the expression ε1⊕. . .⊕εn

(plus applied to the empty list yields ∅), rem removes duplicates in a list and flatten takes
an expression ε and produces a list of expressions by omitting brackets and replacing
⊕-symbols by commas:

flatten(ε1 ⊕ ε2) = flatten(ε1) · flatten(ε2)
flatten(∅) = []
flatten(ε) = [ε], ε ∈ {b, a(ε1), l(ε1), r(ε1), l [ε1], r [ε1], µx .ε1}

In this definition, · denotes list concatenation and [ε] the singleton list containing ε. Note
that any occurrence of ∅ in a sum is eliminated because flatten(∅) = [].

For example, the normalization of the two deterministic expressions above results in
the same expression – a(∅)⊕ ↓b.

Note that normG only normalizes one level of the expression and still distinguishes
the expressions ε1 ⊕ ε2 and ε2 ⊕ ε1. To simplify the presentation of the normalization
algorithm, we decided not to identify these expressions, since this does not influence
termination. In the examples below this situation will never occur.

5.2 Synthesis procedure

Given an expression ε ∈ ExpG we will generate a finite G-coalgebra by applying repeatedly
λG : ExpG → ExpG and normalizing the expressions obtained at each step.

We will use the function ∆, which takes an expression ε ∈ ExpG and returns a G-
coalgebra, and which is defined as follows:

∆G(ε) = (dom(g), g) where g = DG({normG(ε)}, ∅)

Here, dom returns the domain of a finite function and DG applies λG , starting with state
normG(ε), to the new states (after normalization) generated at each step, repeatedly, until
all states in the coalgebra have their transition structure fully defined. The arguments
of DG are two sets of states: sts ⊆ ExpG , the states that still need to be processed and

12



vis ⊆ ExpG , the states that already have been visited (synthesized). For each ε ∈ sts,
DG computes λG(ε) and produces an intermediate transition function (possibly partial)
by taking the union of all those λG(ε). Then, it collects all new states appearing in this
step, normalizing them, and recursively computes the transition function for those.

DG(sts, vis) =
{
∅ sts = ∅
trans ∪DG(newsts, vis ′) otherwise

where trans = {〈ε, λG(ε)〉 | ε ∈ sts}
sts ′ = collectStatesG(π2(trans))
vis ′ = sts ∪ vis
newsts = sts ′ \ vis ′

Here, collectStatesG = collectStatesGCG , where collectStatesFCG is defined by induction
on the structure of F as follows:

collectStatesFCG : FExpG → PExpG

collectStatesIdCG(s) = {normG(s)}
collectStatesBCG(b) = {}
collectStatesG1×G2CG(〈s1, s2〉) = collectStatesG1CG(s1) ∪ collectStatesG2CG(s2)
collectStatesG1+G2CG(ki(s)) = collectStatesGiCG(s) i ∈ {1, 2}
collectStatesG1+G2CG(⊥) = {}
collectStatesG1+G2CG(>) = {}
collectStatesGA

1 CG(f ) =
⋃

a∈A collectStatesG1CG(f (a))

We can now formulate the converse of Theorem 15.

Theorem 16 Let G be a polynomial functor. For every ε ∈ ExpG , ∆G(ε) = (S , g) is
such that S is finite and there exists s ∈ S with ε ∼ s.

Proof. First note that ε ∼ normG(ε) and normG(ε) ∈ S , by the definition of ∆G and
DG . The proof that S is finite, i.e. that DG({normG(ε)}, ∅) terminates, can be found in
appendix B. �

5.3 Examples

In this subsection we will illustrate the synthesis algorithm presented above. For simplic-
ity, we will consider deterministic and partial automata expressions over A = {a, b}.

Let us start by showing the synthesised automata for the most simple deterministic
expressions – ∅, 0 and 1.

?>=<89:;∅
a,b

		 ?>=<89:;0
a,b //?>=<89:;∅

a,b
		 ?>=<89:;/.-,()*+1

a,b //?>=<89:;∅
a,b

		

It is interesting to make the parallel with the traditional regular expressions and remark
that the first two automata recognize the empty language {} and the last the language {ε}
containing only the empty word. The following automaton, generated from the expression
a(1), recognizes the language {a},

ONMLHIJKa(1) a //

b
  A

AA
AA

AA
AA

?>=<89:;/.-,()*+1

a,b

��?>=<89:;∅
a,b

UU

13



For an example of an expression containing fixpoints, consider ε = µx . a(1⊕ x ). One can
easily compute the synthesised automaton

�� ���� ��µx . a(1⊕ x ) a //

b
%%KKKKKKKKKKKK
�� ���� ���� ���� ��1⊕ ε

a

��

b
��?>=<89:;∅

a,b

UU

and observe that it recognizes the language aa∗.
An important remark about these two last examples is that the automata generated are

not minimal. Our goal has been to generate a finite automaton from a regular expression.
From this the minimal automaton can always be obtained by identifying bisimilar states.

As a last example of deterministic expressions consider ε1 = µx . a(x ⊕ µy . a(y)).
Applying λD to ε1 one gets the following (partial) automaton:

�� ���� ��µx . a(x ⊕ µy . a(y)) a //

b

((RRRRRRRRRRRRRRRR
�� ���� ��ε1 ⊕ µy . a(y)

?>=<89:;∅
Calculating λD(ε1 ⊕ µy . a(y))(a), we have:

λD(ε1 ⊕ µy . a(y))(a) = λD(ε1)(a)⊕ λD(µy . a(y))(a)
= 〈0, ε1 ⊕ µy . a(y)⊕ µy . a(y)〉

When applying collectStatesG , the expression ε1 ⊕ µy . a(y)⊕ µy . a(y) will be normalized
to ε1 ⊕ µy . a(y), which is a state that already exists. Remark here the role of norm in
guaranteeing termination. As we saw in Section 3.1 only applying λD one would always
generate syntactically different states which instead of the automata generated now:

�� ���� ��µx . a(x ⊕ µy . a(y)) a //

b
((RRRRRRRRRRRRRRRR

�� ���� ��ε1 ⊕ µy . a(y)

a

��

b

��?>=<89:;∅
a,b

UU

would lead to the following infinite coalgebra:

�� ���� ��µx . a(x ⊕ µy . a(y)) a //

b

((RRRRRRRRRRRRRRRR
�� ���� ��ε1 ⊕ µy . a(y) a //

b
��

�� ���� ��ε1 ⊕ µy . a(y)⊕ µy . a(y) a //

b

uukkkkkkkkkkkkkkkkkk
. . .

?>=<89:;∅
a,b

UU

Let us now see a few examples of synthesis for partial automata expressions, where we
will illustrate the role of ⊥.
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As before, let us first present the corresponding automata for simple expressions – ∅,
a↑, a(∅) and a↑ ⊕ b↑.

?>=<89:;∅ a,b // ⊥ GFED@ABCa↑ b // ⊥ ONMLHIJKa(∅) a //

b

$$?>=<89:;∅ a,b // ⊥
�� ���� ��a↑ ⊕ b↑

In the graphical representation of a partial automata (S , p), whenever g(s)(a) ∈
{⊥,>} we represent a transition, but note that ⊥ 6∈ S and > 6∈ S (thus, the square
box) and have no defined transitions.

Here, one can now observe how ⊥ is used to encode underspecification, working as a
kind of deadlock state. Note that in the first three expressions the behaviour for one or
both of the inputs is missing, whereas in the last expression the specification is complete.

The element > is used to deal with inconsistent specifications. For instance, consider
the expression a↑⊕b↑⊕a(a↑⊕b↑). All inputs are specified, but note that on the outermost
level input a appears in two different sub-expressions – a↑ and a(a↑ ⊕ b↑) – specifying
at the same time that input a leads to successful termination and that it leads to a state
where a↑ ⊕ b↑ holds, which is contradictory, giving rise to the following automaton.

�� ���� ��a↑ ⊕ b↑ ⊕ a(a↑ ⊕ b↑) a // >

For an example with fixpoints take µx . a↑⊕ b(x ), which generates the simple automaton:

�� ���� ��µx . a↑ ⊕ b(x )

b

SS

6 Conclusions

We have presented a generalization of Kleene’s theorem for polynomial coalgebras. More
precisely, we have introduced a language of expressions for polynomial coalgebras and we
have shown that they constitute a precise syntactic description of deterministic systems, in
the sense that every expression in the language is bisimilar to a state of a finite coalgebra
(Theorem 15) and vice-versa (Theorem 16).

The work presented in this paper generalizes the classical Kleene theorem for deter-
ministic automata, as well as previous work of the authors on Mealy machines [BRS08]
and Kozen’s recent results on coalgebraic theory of Kleene algebra with tests [Koz08].

Many questions remain to be answered. In particular one would like to be able to deal
with non-deterministic systems (which amounts to include the powerset functor in our
class of functors) and probabilistic systems.

Providing a complete finite axiomatization, generalizing results presented in [Koz91,
É98] is also subject of current research. This will provide a generalization of Kleene
algebra to polynomial coalgebras.

In our language we have a fixpoint operator, µx .ε, and action prefixing, a(ε), opposed
to the use of star E∗ and sequential composition E1E2 in classical regular expressions.
We would like to study in more detail the precise relation between these two (equally
expressive) syntactic formalisms.

Finally, the language of expressions introduced in this paper can be extended with a
negation operator, as long as we consider constant functors to be Boolean algebras instead
of join semilattices. The language obtained would have both least and greatest fixpoint
operators and, as for the present set of expressions, can be given a coalgebraic struc-
ture. However, the resulting coalgebra would not be finite in general. We are currently
investigating such an extension for model checking purposes.
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A Proof of Theorem 15 (cont.)

We prove, for all polynomial functors G and finite G-coalgebras (S , g), that the relation

RG = {〈εs , s〉 | s ∈ S}

is a bisimulation. We have to show, for all 〈εs , s〉 ∈ RG , that 〈λG(ε1), g(s)〉 ∈ G(RG).
The key observation is that the following relation

LFCG = {〈λFCG(εF
s′ [εq/xq ]), s ′〉 | s ′ ∈ FS}

satisfies LFCG = F (RG) and, for all 〈εs , s〉 ∈ RG , one has that 〈λG(εs), g(s)〉 ∈ LG (as
before, LG = LGCG). Note that here [εq/xq ] denotes the syntactic replacement of free
ocurrences of xq by εq , defined for all q ∈ S .

The proof that LFCG = F (RG) follows easily by induction on the structure of F . Let
us illustrate for the case F = F1 + F2.

LF1+F2CG = {〈κi(λFiCG(εFi

s′ [εq/xq ])), κi(s ′)〉 | s ′ ∈ Fi(S )} ∪ {〈⊥,⊥〉, 〈>,>〉} i ∈ 1, 2

Now, using the induction hypothesis, we know that 〈λFiCG(εFi

s′ [εq/xq ]), s ′〉 ∈ Fi(RG) and
therefore LF1+F2 = F1 + F2(RG).

It remains to prove that for all 〈εs , s〉 ∈ RG , one has 〈λG(εs), g(s)〉 ∈ LG . In other
words, we need to show that λG(εs) = λG(εG

g(s)[εq/xq ]). We prove it by induction on the
structure of G . For G = Id , note that εs = µxs . ∅ and we have:

λId(µxs . ∅) = ∅ = λId(µxg(s). ∅) = λId(xg(s)[εq/xq ]) = λId(εId
g(s)[εq/xq ])

Similarly, for G = B , εs = µxs . g(s) and

λB (µxs . g(s)) = g(s) = g(s)[εq/xq ] = λB (g(s)[εq/xq ]) = λB (εB
g(s)[εq/xq ])

The remaining three cases are proven in a similar way. We will only show the proof
for G = G1 + G2. If g(s) = ⊥, then εs = ∅ and

λG1+G2(µxs . ∅) = λG1+G2(∅) = λG1+G2(∅[εq/xq ]) = λG1+G2(ε
G1+G2
⊥ [εq/xq ])

If g(s) = >, then εs = l [∅]⊕ r [∅] and

λG1+G2(µxs . l [∅]⊕ r [∅]) = λG1+G2(l [∅]⊕ r [∅]) = λG1+G2(ε
G1+G2
> [εq/xq ])

If g(s) = k1(s ′), then εs = µxs . l [εG1
s′ ] and

λG1+G2(µxs . l [εG1
s′ ]) = λG1+G2(l [ε

G1
s′ ][εs/xs ]) = λG1+G2(ε

G1+G2
κ1(s′)

[εq/xq ])

Similarly for g(s) = k2(s ′).
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B Proof of termination

We prove that our synthesis algorithm delivers a finite coalgebra for every regular expres-
sion, i.e. the function D({ε}, ∅) terminates (Theorem 23) . In order to prove this, we will
show that all states generated during the synthesis process, starting with ε, are contained
in a finite set (Theorem 22).

Definition 17 Given ε ∈ Exp, define the set cl(ε) to be the smallest set satisfying:

cl(∅) = {∅}
cl(ε1 ⊕ ε2) = {ε1 ⊕ ε2} ∪ cl(ε1) ∪ cl(ε2)
cl(µx . ε1) = {µx . ε1} ∪ cl(ε1[µx . ε1/x ])
cl(l(ε1)) = {l(ε1)} ∪ cl(ε1)
cl(r(ε1)) = {r(ε1)} ∪ cl(ε1)
cl(l [ε1]) = {l [ε1]} ∪ cl(ε1)
cl(r [ε1]) = {r [ε1]} ∪ cl(ε1)
cl(a(ε1)) = {a(ε1)} ∪ cl(ε1)

♦

Note that ε ∈ cl(ε). We have to prove two other properties about this set, which we will
use later when proving termination.

Theorem 18 Let ε, ε′ ∈ Exp. Then:

(i) ε′ ∈ cl(ε) ⇒ cl(ε′) ⊆ cl(ε)

(ii) Given an expression ε ∈ Exp, the set cl(ε) is finite.

Proof. The theorem follows easily by double induction on the maximum number N (ε)
(as defined in Section 3.1) of nested unguarded occurrences of µ-expressions in ε and on
the syntactic structure of ε. We treat a few selected cases.

For (i), we look at the cases when N (ε) ≤ k and ε = ε1 ⊕ ε2 or ε = µx . ε1. For the
first case, suppose ε′ ∈ cl(ε1 ⊕ ε2). Then, either ε′ = ε1 ⊕ ε2, and the result follows
trivially, or ε′ ∈ cl(εi), i ∈ {1, 2}, and the result follows by induction and the fact that
cl(εi) ⊆ cl(ε1 ⊕ ε2). For the second case, suppose that ε′ ∈ cl(µx . ε1). Then, either
ε′ = µx . ε1, and the result follows trivially, or ε′ ∈ cl(ε1[µx . ε1/x ]) and, by induction,
cl(ε′) ⊆ cl(ε1[µx . ε1/x ]). Thus, cl(ε′) ⊆ cl(µx . ε1).

For (ii), let us show the cases N (ε) ≤ k and ε = a(ε1) or ε = µx . ε1. Both cases follow
trivially by induction, since the induction hypothesis state that cl(ε1) and cl(ε1[µx . ε1/x ])
are finite, respectively.

�

Definition 19 Given a polynomial functor G and ε ∈ ExpG , we define clG(ε) by:

clG(ε) = {ε′ ∈ cl(ε) | ε′ ∈ ExpG}

♦

It is easy to see that clG(ε) inherits the properties of cl(ε): ε ∈ clG(ε); if ε′ ∈ clG(ε)
then clG(ε′) ⊆ clG(ε); and clG(ε) is finite.

Theorem 20 Let ε ∈ ExpG . Then, normG(ε) = ε1 ⊕ · · · ⊕ εk , with all εi distinct and
εi ∈ clG(ε).
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Proof. By induction on the structure of ε. The result follows directly from the definition
of normG . In fact, all the cases, apart from ε1 ⊕ ε2 follow trivially because ε ∈ clG(ε).

For ε = ε1 ⊕ ε2, we have

normG(ε1 ⊕ ε2) = plus(rem(flatten(normG(ε1)⊕ normG(ε2))))

Applying the induction hypothesis we see that normG(ε1) = γ1 ⊕ · · · ⊕ γk , with all
γi distinct and γi ∈ clG(ε1). Similar for ε2. But clG(ε1) ⊆ clG(ε) and clG(ε2) ⊆ clG(ε).
Therefore, applying flatten and rem to this expression we know that the argument list of
plus will only have distinct elements of clG(ε) and thus normG(ε1 ⊕ ε2) = ε′1 ⊕ · · · ⊕ ε′k ,
with all ε′i distinct and ε′i ∈ cl(ε).

�

Theorem 21 Let ε1, ε2 ∈ ExpG . Then:

collectStatesFCG(PlusFCG(ε1, ε2)) ⊆ {normG(
⊕
ε∈X

ε) | X ∈ P(csts1 ∪ csts2)}

where cstsi = collectStatesFCG(εi) (i ∈ {1, 2}).

Proof. The proof follows by induction on the structure of F . For F = Id , we have:

collectStatesIdCG(PlusIdCG(ε1, ε2)) = collectStatesIdCG(ε1 ⊕ ε2)
= {normG(ε1 ⊕ ε2)}
= {normG(normG(ε1)⊕ normG(ε2))}
⊆ {normG(

⊕
ε∈X ε) | X ∈ P({normG(ε1),normG(ε2)})}

This result follows because collectStatesIdCG(εi) = {normG(εi)}.
For F = F1 × F2, we calculate:

collectStatesF1×F2CG(PlusF1×F2CG(〈ε1, ε2〉, 〈ε3, ε4〉))
= collectStatesF1×F2CG(〈PlusF1CG(〈ε1, ε3〉),PlusF2CG(〈ε2, ε4〉)〉)
= collectStatesF1CG(〈PlusF1CG(〈ε1, ε3〉)) ∪ collectStatesF2CG(PlusF2CG(〈ε2, ε4〉)〉)
⊆ {normG(

⊕
ε∈X ε) | X ∈ P(csts1 ∪ csts3)} ∪ {normG(

⊕
ε∈X ε) | X ∈ P(csts2 ∪ csts4)}

⊆ {normG(
⊕

ε∈X ε) | X ∈ P(csts1 ∪ csts2 ∪ csts3 ∪ csts4)}

The result follows since

collectStatesF1×F2CG(〈ε1, ε2〉)∪collectStatesF1×F2CG(〈ε3, ε4〉) = csts1∪csts2∪csts3∪csts4

The remaining cases are proven in a similar way. �

Theorem 22 Let ε ∈ ExpG . Then, collectStatesFCG(λFCG(ε)) ⊆ {ε1 ⊕ · · · ⊕ εk |
with all εi distinct , εi ∈ clG(ε)}.

Proof. Follows easily by double induction on maximum number N (ε) of nested un-
guarded occurrences of µ-expressions and on the length of proofs for typing expressions.
We treat only a few cases. For N (ε) = 0 consider the case of ε = ε1 ⊕ ε2.

collectStatesFCG(λFCG(ε1 ⊕ ε2))
= collectStatesFCG(PlusFCG(λFCG(ε1), λFCG(ε2))) (def. λFCG)
⊆ {normG(⊕ε′∈X ε′) | X ∈ P(csts1 ∪ csts2)} (Theorem 21)
⊆ {ε′′1 ⊕ · · · ⊕ ε′′k | with all ε′′i distinct , ε′′i ∈ clG(ε1) ∪ clG(ε2)} (ind. hyp. + Thm 20)
⊆ {ε′′1 ⊕ · · · ⊕ ε′′k | with all ε′′i distinct , ε′′i ∈ clG(ε1 ⊕ ε2))} (def. clG(ε1 ⊕ ε2))
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For N (ε) ≤ k consider the case of ε = µx .ε1.

collectStatesFCG(λFCG(µx .ε1))
= collectStatesFCG(λFCG(ε1[µx .ε1/x ])) (def. λFCG)
⊆ {ε′1 ⊕ · · · ε′k | with all ε′i distinct , ε′i ∈ clG(ε1[µx .ε1/x ])} (ind. hyp.)
⊆ {ε′1 ⊕ · · · ε′k | with all ε′i distinct , ε′i ∈ clG(µx .ε1))} (def. clG(µx .ε1))

�

Theorem 23 For a given expression ε ∈ ExpG , D({ε}, ∅) terminates.

Proof. From Theorem 22, we know that

collectStatesG(λG(ε)) ⊆ {ε1 ⊕ · · · ⊕ εk | with all εi distinct , εi ∈ clG(ε)}

Because clG(ε) is finite the number of possible combinations for the above expressions
is finite. For all εi ∈ clG(ε), we have clG(εi) ⊆ clG(ε) (and thus clG(ε1⊕· · ·⊕εk ) ⊆ clG(ε)).
This gives us an upper bound for the number of states that need to be processed. Since
by the definition of D no state is processed twice, the set newsts will eventually be empty
and, therefore, D({ε}, ∅) terminates. �
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