2,863 research outputs found

    Nominal Unification with Atom and Context Variables

    Get PDF
    Automated deduction in higher-order program calculi, where properties of transformation rules are demanded, or confluence or other equational properties are requested, can often be done by syntactically computing overlaps (critical pairs) of reduction rules and transformation rules. Since higher-order calculi have alpha-equivalence as fundamental equivalence, the reasoning procedure must deal with it. We define ASD1-unification problems, which are higher-order equational unification problems employing variables for atoms, expressions and contexts, with additional distinct-variable constraints, and which have to be solved w.r.t. alpha-equivalence. Our proposal is to extend nominal unification to solve these unification problems. We succeeded in constructing the nominal unification algorithm NomUnifyASD. We show that NomUnifyASD is sound and complete for this problem class, and outputs a set of unifiers with constraints in nondeterministic polynomial time if the final constraints are satisfiable. We also show that solvability of the output constraints can be decided in NEXPTIME, and for a fixed number of context-variables in NP time. For terms without context-variables and atom-variables, NomUnifyASD runs in polynomial time, is unitary, and extends the classical problem by permitting distinct-variable constraints

    Nominal Unification from a Higher-Order Perspective

    Full text link
    Nominal Logic is a version of first-order logic with equality, name-binding, renaming via name-swapping and freshness of names. Contrarily to higher-order logic, bindable names, called atoms, and instantiable variables are considered as distinct entities. Moreover, atoms are capturable by instantiations, breaking a fundamental principle of lambda-calculus. Despite these differences, nominal unification can be seen from a higher-order perspective. From this view, we show that nominal unification can be reduced to a particular fragment of higher-order unification problems: Higher-Order Pattern Unification. This reduction proves that nominal unification can be decided in quadratic deterministic time, using the linear algorithm for Higher-Order Pattern Unification. We also prove that the translation preserves most generality of unifiers

    Nominal Unification of Higher Order Expressions with Recursive Let

    Get PDF
    A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in non-deterministic polynomial time. We also explore specializations like nominal letrec-matching for plain expressions and for DAGs and determine the complexity of corresponding unification problems.Comment: Pre-proceedings paper presented at the 26th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, Scotland UK, 6-8 September 2016 (arXiv:1608.02534

    Nominal C-Unification

    Full text link
    Nominal unification is an extension of first-order unification that takes into account the \alpha-equivalence relation generated by binding operators, following the nominal approach. We propose a sound and complete procedure for nominal unification with commutative operators, or nominal C-unification for short, which has been formalised in Coq. The procedure transforms nominal C-unification problems into simpler (finite families) of fixpoint problems, whose solutions can be generated by algebraic techniques on combinatorics of permutations.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Closed nominal rewriting and efficiently computable nominal algebra equality

    Full text link
    We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of the lambda-calculus and first-order logic.Comment: In Proceedings LFMTP 2010, arXiv:1009.218

    From nominal to higher-order rewriting and back again

    Full text link
    We present a translation function from nominal rewriting systems (NRSs) to combinatory reduction systems (CRSs), transforming closed nominal rules and ground nominal terms to CRSs rules and terms, respectively, while preserving the rewriting relation. We also provide a reduction-preserving translation in the other direction, from CRSs to NRSs, improving over a previously defined translation. These tools, together with existing translations between CRSs and other higher-order rewriting formalisms, open up the path for a transfer of results between higher-order and nominal rewriting. In particular, techniques and properties of the rewriting relation, such as termination, can be exported from one formalism to the other.Comment: 41 pages, journa

    From nominal sets binding to functions and lambda-abstraction: connecting the logic of permutation models with the logic of functions

    Get PDF
    Permissive-Nominal Logic (PNL) extends first-order predicate logic with term-formers that can bind names in their arguments. It takes a semantics in (permissive-)nominal sets. In PNL, the forall-quantifier or lambda-binder are just term-formers satisfying axioms, and their denotation is functions on nominal atoms-abstraction. Then we have higher-order logic (HOL) and its models in ordinary (i.e. Zermelo-Fraenkel) sets; the denotation of forall or lambda is functions on full or partial function spaces. This raises the following question: how are these two models of binding connected? What translation is possible between PNL and HOL, and between nominal sets and functions? We exhibit a translation of PNL into HOL, and from models of PNL to certain models of HOL. It is natural, but also partial: we translate a restricted subsystem of full PNL to HOL. The extra part which does not translate is the symmetry properties of nominal sets with respect to permutations. To use a little nominal jargon: we can translate names and binding, but not their nominal equivariance properties. This seems reasonable since HOL---and ordinary sets---are not equivariant. Thus viewed through this translation, PNL and HOL and their models do different things, but they enjoy non-trivial and rich subsystems which are isomorphic

    An Abstract Machine for Unification Grammars

    Full text link
    This work describes the design and implementation of an abstract machine, Amalia, for the linguistic formalism ALE, which is based on typed feature structures. This formalism is one of the most widely accepted in computational linguistics and has been used for designing grammars in various linguistic theories, most notably HPSG. Amalia is composed of data structures and a set of instructions, augmented by a compiler from the grammatical formalism to the abstract instructions, and a (portable) interpreter of the abstract instructions. The effect of each instruction is defined using a low-level language that can be executed on ordinary hardware. The advantages of the abstract machine approach are twofold. From a theoretical point of view, the abstract machine gives a well-defined operational semantics to the grammatical formalism. This ensures that grammars specified using our system are endowed with well defined meaning. It enables, for example, to formally verify the correctness of a compiler for HPSG, given an independent definition. From a practical point of view, Amalia is the first system that employs a direct compilation scheme for unification grammars that are based on typed feature structures. The use of amalia results in a much improved performance over existing systems. In order to test the machine on a realistic application, we have developed a small-scale, HPSG-based grammar for a fragment of the Hebrew language, using Amalia as the development platform. This is the first application of HPSG to a Semitic language.Comment: Doctoral Thesis, 96 pages, many postscript figures, uses pstricks, pst-node, psfig, fullname and a macros fil

    Finite and infinite support in nominal algebra and logic: nominal completeness theorems for free

    Full text link
    By operations on models we show how to relate completeness with respect to permissive-nominal models to completeness with respect to nominal models with finite support. Models with finite support are a special case of permissive-nominal models, so the construction hinges on generating from an instance of the latter, some instance of the former in which sufficiently many inequalities are preserved between elements. We do this using an infinite generalisation of nominal atoms-abstraction. The results are of interest in their own right, but also, we factor the mathematics so as to maximise the chances that it could be used off-the-shelf for other nominal reasoning systems too. Models with infinite support can be easier to work with, so it is useful to have a semi-automatic theorem to transfer results from classes of infinitely-supported nominal models to the more restricted class of models with finite support. In conclusion, we consider different permissive-nominal syntaxes and nominal models and discuss how they relate to the results proved here
    corecore