
Nominal Unification with Atom and Context
Variables
Manfred Schmidt-Schauß1

Goethe-University Frankfurt, Germany
schauss@ki.cs.uni-frankfurt.de

https://orcid.org/0000-0001-8809-7385

David Sabel2

Goethe-University Frankfurt, Germany
sabel@ki.cs.uni-frankfurt.de

https://orcid.org/0000-0002-5109-3273

Abstract
Automated deduction in higher-order program calculi, where properties of transformation rules
are demanded, or confluence or other equational properties are requested, can often be done by
syntactically computing overlaps (critical pairs) of reduction rules and transformation rules. Since
higher-order calculi have alpha-equivalence as fundamental equivalence, the reasoning procedure
must deal with it. We define ASD1-unification problems, which are higher-order equational
unification problems employing variables for atoms, expressions and contexts, with additional
distinct-variable constraints, and which have to be solved w.r.t. alpha-equivalence. Our proposal
is to extend nominal unification to solve these unification problems. We succeeded in constructing
the nominal unification algorithm NomUnifyASD. We show that NomUnifyASD is sound and
complete for this problem class, and outputs a set of unifiers with constraints in nondeterministic
polynomial time if the final constraints are satisfiable. We also show that solvability of the output
constraints can be decided in NEXPTIME, and for a fixed number of context-variables in NP
time. For terms without context-variables and atom-variables, NomUnifyASD runs in polynomial
time, is unitary, and extends the classical problem by permitting distinct-variable constraints.

2012 ACM Subject Classification Theory of computation → Automated reasoning

Keywords and phrases automated deduction, nominal unification, lambda calculus, functional
programming

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.28

Related Version A full version of the paper is available at [32], http://nbn-resolving.de/
urn/resolver.pl?urn:nbn:de:hebis:30:3-452767.

1 Introduction

Automated deduction in higher-order program calculi, where properties of transformation rules
are demanded, or confluence or other equational properties are requested, can often be done
by syntactically computing overlaps (critical pairs) of reduction rules and transformation rules.
Since higher-order calculi have alpha-equivalence as fundamental equivalence, the reasoning
procedure must deal with it. We define ASD1-unification problems, which are higher-order
equational unification problems with variables for atoms, expressions, and contexts, with

1 Supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SCHM 986/11-1.
2 Supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA2908/3-1.

© Manfred Schmidt-Schauß and David Sabel;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:schauss@ki.cs.uni-frankfurt.de
https://orcid.org/0000-0001-8809-7385
mailto:sabel@ki.cs.uni-frankfurt.de
https://orcid.org/0000-0002-5109-3273
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.28
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-452767
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-452767
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Nominal Unification with Atom and Context Variables

additional distinct-variable constraints and which have to be solved w.r.t. alpha-equivalence.
Our proposal is to extend nominal unification to solve these unification problems. The appeal
of classical nominal unification is that it solves higher-order equations modulo α-equivalence
in quadratic time and outputs at most a single most general unifier [37, 6, 17].

Our intended application is the diagram-method, which is a syntactic proof method
(e.g. [38, 12, 34]) to show properties like correctness of program transformations. As an
example consider the reduction rule (cp) in the call-by-need lambda-calculus with let (see
e.g. [2, 23, 34]) (let x = λy.S in C[x])→ (let x = λy.S in C[λy.S]) with the restriction that
x is not bound by context C. The diagram-based proof method for correctness of program
transformations computes possible overlaps of the left-hand side (and in certain cases also of
the right-hand side) of a program transformation with the left-hand sides of the reduction rules.
An example equation is let A1 = λA2.S1 in D1[λA2.S1] .= let A3 = λA4.S2 in D2[A3]
where A,S,D are variables standing for concrete variables (called atoms), expressions, and
contexts, respectively. The equation comes together with constraints on possible occurrences
of atoms, which can be formulated using the distinct-variable condition (DVC) [5, 2] which in
turn requires to add a further renaming to the rule to fulfill it (see Example 2.5 for details).

A generalized situation for overlap computation is represented by the equation R[`] = C[`′],
where R is a reduction context (in which reduction takes place), ` is a left hand side of a
reduction rule, C is an arbitrary context, and `′ is the left hand side of a transformation rule.
Provided R,C are variables for reduction contexts and general contexts, respectively, solving
the unification equation R[`] .= C[`′] can be attacked by using nominal unification in the
extended language. However, for the general unification problem without any restrictions we
did not find an algorithm to solve it, since it seems to be too hard (we discuss the problems
in Sect. 4). As a consequence, we consider a subproblem and thus our presented algorithm
solves nominal unifcation problems that are restricted to be linear w.r.t. context variables,
so-called permutation variables do not occur in the input, and we require DVC-constraints
for all equations in the input. From the perspective of applications to reasoning in calculi,
these restrictions are (almost) optimal, since linearity of contexts in general holds, the DVC
is also an often used assumption, and permutation variables are not required.

Results. A sound and complete algorithm NomUnifyASD for nominal unification of
ASD1-unification problems is constructed. The algorithm NomUnifyASD computes in NP
time a solution including a constraint (Theorem 5.8) and the collecting version produces at
most exponentially many outputs. The algorithm NomFreshASD that checks satisfiability
of the constraints of a solution runs in NEXPTIME (Proposition 5.7), hence solvability of
ASD1-unification problems can be decided in NEXPTIME (Theorem 5.9). Since the number
of context-variables is the only parameter in the exponent of the complexity, we obtain that
if the number of context-variables is fixed, then the algorithm NomUnifyASD runs as a
decision algorithm in NP time.

For computing diagrams (in the diagram method), it is important to obtain a complete
set of unifiers. We expect that exponentiality of the number of unifiers is not a problem,
since the input is usually very small. For example, the rules of the let-calculus [2] need
only one context variable. We show that DVCs are a proper generalisation of freshness
constraints if combined with solving equations (Proposition 3.6). A technical innovation is
that decomposition for lambda-bindings can be extended to an arbitrary number of nested
lambda-bindings thanks to the DVC (see Remark 3.2, Proposition 3.3, and Example 3.4).

A corollary is that classical nominal unification (with expression-variables only) is general-
ized by replacing freshness constraints by DVC-constraints such that unitarity and polynomial
complexity still hold (Theorem 6.1).

M.Schmidt-Schauß and D. Sabel 28:3

Previous and Related Work. Nominal techniques [27, 26] support machine-oriented reason-
ing on the syntactic level supporting alpha-equivalence. Nominal unification of (syntactically
presented) lambda-expressions was successfully attacked and a quadratic algorithm was
developed [37, 6, 17] where technical innovations are the use of permutations on the abstract
level and of freshness constraints. The approach is used in higher-order logic programming
[8], and in automated theorem provers like nominal Isabelle [35, 36].

There are investigations that extend the expressive power of nominal unification problems:
The restriction that bound variables are seen as atoms can be relaxed: Equivariant unification
[7, 10] permits atom-variables and permutation-variables which however, appear to add too
much expressive power as mentioned in [7, 10]. A restricted language (allowing atom-
variables, but without permutations at all) and its nominal unification is analyzed in [16].
An investigation of nominal unification with atom-variables and a lazy-guessing algorithm
is described in [33, 15]. Nominal unification for a lambda-calculus with function constants
and a recursive-let is developed in [30] and shown to run in NP time. Reasoning on nominal
terms in higher-order rewrite systems and narrowing as a general, but not provably efficient
method for unification is described in [4]. Nominal techniques to compute overlaps w.r.t.
all term positions are in [3], but there are no context-variables and reduction strategies
cannot be encoded. If there are no binders, then the problem statement can be generalized to
first-order terms with arbitrary occurrences of context-variables and the unification problem
is in PSPACE [14].

Classical nominal unification is strongly related to higher-order pattern unification
[9, 18, 22, 28, 24] which is a decidable fragment of (undecidable) higher-order unification [13]
and has most general unifiers (i.e. is unitary). A slight extension to pattern unification that is
unitary and decidable is described in [19]. Another line of research for reasoning with binders
is the foundation of higher-order abstract syntax [25], and extensions of higher-order pattern
unification as in [1], which, however, cannot adequately deal with ASD1-unification problems,
the problem class of NomUnifyASD. The use of deBruijn indices [11] has some advantages
in representing lambda expressions and avoids alpha-renamings, but is not appropriate for
our problem, since we have to deal with free variables and with context variables that may
capture variables.

A proposal to the automated computation of overlaps and diagrams is in [31] where the
unifcation problems are solved w.r.t. syntactic equality. This approach permits an even
higher expressiveness of the language, but the support for alpha-equivalence reasoning is
missing, and hence several variants of extra constraints are necessary and further reasoning
needs a technically detailed analysis of renamings [29].

Outline. Sect. 2 contains the definitions and extensions of nominal syntax. In Sect. 3 the
preparations for the nominal unification algorithm are done, and in Sect. 4 the algorithm
NomUnifyASD is introduced, which consists of a set of (non-deterministic) rules, and
also the constraint checking algorithm NomFreshASD. In Sect. 5 the properties of the
algorithms are analyzed. In Sect. 6 the special case NLaS is reconsidered, and we illustrate
how the unification algorithm operates on examples. We conclude in Sect. 7. Due to space
constraints, some of the proofs are omitted, but given in [32].

2 Nominal Languages and Nominal Unification

Let F be a set of function symbols where each f ∈ F has a fixed arity ar(f) ≥ 0, and F
contains at least two function symbols, one of arity 0 (a constant) and one of arity ≥ 2. Let
At be the set of atoms ranged over by a, b; A be the set of atom-variables ranged over by

FSCD 2018

28:4 Nominal Unification with Atom and Context Variables

A,B; S be the set of expression-variables ranged over by S, T standing for expressions; D be
the set of context-variables ranged over by D standing for single hole-contexts; and P be the
set of permutation-variables ranged over by P standing for finite permutations on At, i.e.
bijections π on At such that their support supp(π) = {a ∈ At | π(a) 6= a} is a finite set.

The ground expressions are lambda-expressions extended by function symbols, where the
lambda-variables are called atoms. Contexts in the ground language are expressions over a
language extended with a symbol [·] the hole (occurring only once), where expressions can
be plugged in. The language will be enriched by symbols for atoms, expressions, contexts,
and permutations, where the latter are mappings that may change the names of atoms and
are represented by lists of swappings (a b).

I Definition 2.1. The syntax of NLaASDP is defined by the grammar

X ∈ AE ::= a | A | π·A
e ∈ E ::= X | S | π·S | (f e1 . . . ear(f)) | λX .e | C[e]
C ∈ C ::= [·] | D | π·D | (f e1 . . . [·] . . . en) | λX .[·] | C1[C2]
π ::= ∅ | (A1 A2) · π | (A a) · π | (a A) · π | (a1 a2) · π | P · π | P−1 · π

with the categories AE of atom expressions, E of expressions, C of contexts, and π of
permutations. Here A, S, D, and P is an atom-variable, expression-variable, context-variable,
or permutation-variable, respectively.

Nested permutations are forbidden, e.g. swappings (π1·A1 π2·A2) are excluded for simpli-
city of algorithms, and since their expressive power is already available using equations and
constraints. We use positions (tree addresses) in expressions, where we ignore permutation
expressions in the addressing scheme. Sublanguages of NLaASDP are denoted by NLM , where
M is a substring of aASDP , and the grammar is restricted accordingly. The mainly used
languages are NLa as the ground language for the solutions, NLaASD as the expression
language for the input, and NLaASDP as the working language inside of the unification
algorithm.

A substitution σ : NLaASDP → NLaASDP maps atom-variables to atom expressions,
expression-variables to expressions, context-variables to contexts, permutation-variables
to permutations. We identify a substitution with its extension to expressions. A ground
substitution ρ is a substitution ρ : NLaASDP → NLa. We use permutation application · as
operator and syntactic symbol, we use −1 as a syntactic symbol in P−1 and operator for
inversion, and we abbreviate ∅·V by V for a variable V . We use the following operations
and simplifications

(π1·π2)(e)→ (π1·(π2·e)) (π1·π2)−1→π−1
2 ·π

−1
1 π·[·]→ [·]

π·(f e1 . . . en)→ (f π·e1 . . . π·en) π·(λX.e)→λπ·X.π·e π·C[e]→ (π·C)[π·e]
(X1 X2)−1→ (X1 X2) (C1C2)[e]→C1[C2[e]]

which permit standardizations: in NLa all permutation operations can be removed; in NLaS ,
permutations can be represented as lists of swappings of length at most |n− 1| where n is the
number of used atoms; and in NLaASD, the permutation operations only lead to suspensions
of the form π·A and π·S, π·D. In all languages, permutations can be represented as a
composition of lists of swappings, permutation-variables P and inverses P−1, and context
expressions can be simplified to the form (π·D)[e].

Let tops(e) be the top symbol of e after simplification of permutation applications, i.e.
tops(a) = atom, tops(λX.e) = λ, tops(f e1 . . . en) = f , tops(π·A) = A, tops(π·S) = S, and
tops((π·D)[e]) = D. For an expression e or context C in NLa, we denote with FA(e) or

M.Schmidt-Schauß and D. Sabel 28:5

FA(C), resp., the set of free atoms, and with At(e) or At(C), resp., the set of all atoms. The
set of atoms that become bound in the hole of a context C, called the captured atoms of C,
is denoted as CA(C).

In NLa, α-equivalence ∼α is the closure by reflexivity and congruence and the rule
a 6∈ FA(e′) ∧ e ∼α (a b)·e′ =⇒ λa.e ∼α λb.e′. We also use α-equivalence for contexts: NLa-
contexts C1 and C2 are α-equivalent, written C1 ∼α C2, iff for all atoms a, C1[a] ∼α C2[a]
holds. E.g., λa.[·] 6∼α λb.[·], λa.λb.λa.[·] ∼α λb.λb.λa.[·], but λa.λb.[·] 6∼α λa.λa.[·]. For
C1 ∼α C2, it suffices if C1[a] ∼α C2[a] for all a ∈ CA(C1) ∪ CA(C2) ∪ {a′}, where a′ is a
fresh atom. Note that C1 ∼α C2 and e1 ∼α e2 imply C1[e1] ∼α C2[e2], but the reverse is
wrong: (f a λa.a) ∼α (f a λb.b), but (f a λa.[·]) 6∼α (f a λb.[·]) and a 6∼α b.

We explain instantiation modulo α for correctly defining solvability under dvc-restrictions.

I Definition 2.2 (Instantiation modulo α). For testing solvability of equations, we assume
that ground substitutions map into NLa/∼α. An equivalent method is that whenever a
ground substitution ρ is applied to a variable S or D, we use an α-renamed copy of Sρ or
Dρ, respectively, where the renaming is done by fresh atoms that do not occur elsewhere
(called instantiation modulo α), and where comparison is done modulo ∼α.

The following definition explains free/bound variables and the satisfiability of dvc-
constraints of expressions in NLa/∼α without using fresh atoms.

I Definition 2.3. Let e be a normalized NLaASDP -expression and ρ be a ground substitution
mapping into NLa/∼α, such that eρ is an NLa/∼α-expression. Then we define the bound
atoms BA(e, ρ), and satisfiability of the dvc of (e, ρ) as follows, where the bound atoms
introduced by ρ are ignored.
1. If X is an atom a or a suspension π·A where A is an atom-variable then BA(X, ρ) = ∅,

and the dvc is satisfied.
2. BA(π·S, ρ) = ∅, and the dvc is satisfied.
3. BA(f e1 . . . en, ρ) =

⋃n
i=1 BA(ei, ρ). The dvc is satisfied, if for all i 6= j, BA(ei, ρ) ∩

(FA(ejρ) ∪ BA(ej , ρ)) = ∅ and for all i, the dvc holds for (ei, ρ).
4. BA(λX.e, ρ) = BA(e, ρ) ∪ {Xρ}. The dvc is satisfied, if it is satisfied for (e, ρ), and if

Xρ 6∈ BA(e, ρ).
5. BA((π·D)[e], ρ) = BA(e, ρ) ∪ ((π)ρ)·CA(Dρ). The dvc is satisfied, if it is satisfied for D,

i.e. CA(Dρ) ∩ FA(Dρ) = ∅ as well as (BA(e, ρ) ∩ ((π)ρ)·(FA(Dρ) ∪ CA(Dρ)) = ∅, and
the dvc is satisfied for (e, ρ).

Note that BA(e, ρ) 6= BA(eρ), since for e = λA.S, ρ = {A 7→ a, S 7→ λb.(a b)}, we have
BA(eρ) = {a, b}, but BA(e, ρ) = {a} (where we do not distinguish between an atom and the
α-equivalence class of an atom).

Nominal unification is connected with formulating and solving constraints. We use
well-known freshness constraints and novel dvc-constraints.

I Definition 2.4 (Freshness and dvc-Constraints). Freshness constraints in NLaASDP are of
the form a# e and A# e, and dvc-constraintsin NLaASDP are of the form dvc(e), where e
is an NLaASDP -expression.

A ground substitution ρ satisfies A# e iff ρ(A) 6∈ FA(eρ); and ρ satisfies a# e iff
a 6∈ FA(eρ). The distinct variable condition (dvc) holds for an NLa-expression e, if all bound
atoms in e are distinct, and all free atoms in e are distinct from all bound atoms in e. For a
ground substitution ρ, dvc(e) is satisfied, iff (e, ρ) satisfies the dvc (Definition 2.3). This is
equivalent to eρ (using instantiation modulo α) satisfying the dvc.

FSCD 2018

28:6 Nominal Unification with Atom and Context Variables

If a ground substitution ρ satisfies all constraints of a set of freshness and/or dvc-
constraints, then we say that ρ is a solution of the constraint set. A set of constraints is
satisfiable iff there is a solution.

For example, f a λb.(g a λc.c) satisfies the dvc and f b λb.b violates it. With ρ = {S 7→λc.c}
we have (f (λa.S) (λb.S))ρ = f (λa.λc1.c1) (λb.λc2.c2) and ρ satisfies dvc(f (λa.S) (λb.S)).
As another example, ρ′ = {S 7→ λc.b} violates dvc(f (λa.S) (λb.S)).

I Example 2.5. Consider a lambda-calculus with let as in [2]. A reduction rule of the corres-
ponding calculus is let x=λy.s in C[x]→ let x= λy.s in C[λy.s] where C is a context. We
represent the expressions as (let (λAx.D[Ax]) (λAy.S)) and (let (λAx.D[λAy.S]) (λAy.S)).
However, D must not capture the atom represented by Ax, nor free atoms from S, and
Ax must not occur free in S. Both conditions can be captured by the constraint that
let (λAx.D[Ax]) (λAy.S) and let (λAx.D[λAy.S]) (λAy.S) have to satisfy the dvc. How-
ever, the latter violates the dvc in every case due to the two occurrences of the binder
Ay. Hence, we add a renaming to the rule and represent it as let (λAx.D[Ax]) (λAy.S)→
let (λAx.D[λAz.(Ay Az)·S]) (λAy.S) and Az #S. Now the dvc-constraints for both expres-
sions make sense and produce the correct conditions.

I Definition 2.6. Let L be a sublanguage of NLaASDP . A nominal unification problem in L
is a pair (Γ,∇) where Γ is a finite set of equations e .= e′ with e, e′ ∈ L and ∇ is a finite set
of freshness and dvc-constraints, where all expressions are in L. A ground substitution ρ is
a solution of (Γ,∇) iff ρ satisfies ∇ and eρ ∼α e′ρ for all e .= e′ ∈ Γ. A unifier for (Γ,∇) is a
pair (σ,∇′) in L, where σ is a substitution and ∇′ is a set of constraints, such that ∇′ is
satisfiable and for every substitution γ such that σ ◦ γ is ground for Γ,∇,∇′, the following
implication holds: (σ ◦ γ) satisfies ∇′ =⇒ (σ ◦ γ) is a solution for (Γ,∇).

A set M of unifiers is complete, iff for every solution ρ of (Γ,∇), there is a unifier
(σ,∇′) ∈ M such that there is a ground substitution γ with Aσγ=ρ(A), Sσγ ∼α ρ(S),
Dσγ ∼α ρ(D), and Pσγ=ρ(P) for all variables A, S, D and P occurring in (Γ,∇) (we
say (σ,∇′) covers ρ). A unifier (σ,∇′) is a most general unifier of (Γ,∇), iff {(σ,∇′)} is a
complete set of unifiers for (Γ,∇).

I Theorem 2.7 ([37, 6, 18, 17]). The nominal unification problem in NLaS, with ∇ consisting
of freshness constraints only, is solvable in quadratic time and is unitary: For a solvable
nominal unification problem (Γ,∇), there exists a most general unifier of the form (σ,∇′)
which can be computed in polynomial time.

3 Preparations for NLaASD-Unification

As a preparation for the unification rules treating equations of the form D1[e1] .= D2[e2],
we analyze properties of contexts and expressions in this section. Clearly, for every NLa-
expression e there is some e′ with e ∼α e′ s.t. e′ satisfies the dvc. If e satisfies the dvc,
then π·e also satisfies the dvc for any permutation π.

I Lemma 3.1. Let e1, e2 be two expressions in NLa that satisfy the dvc (separately). Then
e1 ∼α e2 is equivalent to the condition that there exists a permutation π with e1 = π·e2,
where supp(π) ⊆ (At(e1) ∪ At(e2)) \ (FA(e1) ∪ FA(e2)).

Proof. If e1, e2 satisfy the dvc and e1 = π·e2 where π does not change free atoms of
e1, e2, then clearly e1 ∼α e2. We prove the other direction of the claim by induction on
the size. For constants and atoms, this is trivial, since π does not change free atoms. If

M.Schmidt-Schauß and D. Sabel 28:7

e1=λa.e′1 and e2=λa.e′2, then e′1 ∼α e′2, hence e′1 = π·e′2, for a (minimal) permutation π.
Hence e1 = π·e2. Let e1 = λa.e′1 and e2 = λb.e′2, with a 6= b. Then a#e2, a#e′2, and
e′1 ∼α (a b)·e′2. The expressions e′1 and (a b)·e′2 satisfy the dvc, by induction hypothesis,
e′1 = π′·(a b)·e′2, for a permutation π′ where π′(a) = a. Let π be the permutation π′·(a b).
Then π′·(a b)·b = a. Hence π·e2 = e1. If e1 = f e1,1 . . . e1,n, and e2 = f e2,1 . . . e

′
2,n, then by

induction there are permutations πi such that πi·e2,i = e1,i for all i. Since the permutations
can be chosen minimal and are only determined by the binders, and since the dvc is assumed,
the permutations are disjoint. Thus we can compose (i.e. union) the permutations, and
obtain π = π1 . . . πn as the required permutation. J

I Remark 3.2. The inductive definition of ∼α for abstractions is

a#λb.s2, s1 ∼α (a b)·s2

λa.s1 ∼α λb.s2

where a may be equal to b or different. Generalizing this for arbitrary contexts results in the
situation C1 = λa1. . .λan.[·], C2 = λb1. . .λbn.[·], and the rule

CA(C1) #C2[s2],∃π : (C1 ∼α π·C2, s1 ∼α π·s2)
C1[s1] ∼α C2[s2]

where π·bi = ai for all i, CA(C1) = {a1, . . . , an}, and CA(C2) = {b1, . . . , bn}. We assume
that ai 6= aj, bi 6= bj for i 6= j, but ai = bj for some i, j may hold. We show below, that the
latter rule is already the general one, provided the dvc holds for C1[s1] and C2[s2].

We now analyze the decomposition of context applications C[e] under the assumption
that the dvc holds. For an NLa-context C, we denote with CAO(C) the ordered tuple of
the atoms in CA(C), where the atom ordering is according to the nesting of active bindings:
The outermost bound atom comes first. For example, if C = λa.λa.(f (λb.λc.b) (λb.λb.[·])),
then CAO(C) = (a, b).

I Proposition 3.3. Let C1, C2 be NLa-contexts and e1, e2 be NLa-expressions, such that C1
and C2 have identical hole positions, and C1[e1] as well as C2[e2] satisfy the dvc. Then
C1[e1] ∼α C2[e2] is equivalent to

∀a ∈ CA(C1): a#C2[e2] and there is a permutation π with C1 ∼α π·C2 and e1 ∼α
π·e2, where π does not change free atoms in C2[e2], π maps CAO(C2) to CAO(C1),
and supp(π) ⊆ CA(C2) ∪ CA(C1).

Proof. We show “ =⇒ ” by induction on the length of the hole path of C1. If the length is
0, then the claim is trivial. For the induction step, let the length be strictly greater than 0.

If C1 = f e1 . . . C
′
1︸︷︷︸
k

. . . en then C2 = f e′1 . . . C
′
2︸︷︷︸
k

. . . e′n. The capture condition holds, since

CA(C ′i) = CA(Ci). The assumption and the congruence property of ∼α imply ei ∼α e′i for
all i 6= k. By the induction hypothesis there is a permutation πk satisfying the theorem,
which is the required permutation.
If C1 = λa.C ′1 and C2 = λa.C ′2, then the capture condition holds, C ′1[e1] and C ′2[e2] are
α-equivalent, and we can apply the induction hypothesis.
If C1 = λa.C ′1 and C2 = λb.C ′2, then a#C ′2[e2], and C ′1[e1] ∼α (a b)·C ′2[e2]. The
dvc also holds for (a b)·C ′2, hence we can apply the induction hypothesis, and obtain
C ′1 ∼α π′·(a b)·C ′2, and e1 ∼α π′·(a b)·e2, and ∀c ∈ CA(C ′1): c#(a b)·C ′2[e2]. The
equation c = a is not possible, since C1[·] satisfies the dvc; c = b may be possible, but

FSCD 2018

28:8 Nominal Unification with Atom and Context Variables

since a#C ′2[e2], and due to the application of (a b) there are no free occurrences of b in
(a b)·C ′2[e2]. This implies ∀c ∈ CA(C1): c#C2[e2]. The application π′·(a b)·b results in
a, since π′ does not change a. Hence the required permutation is π = π′·(a b).

The direction “⇐=” is easy: if there are two expressions e1 ∼α e2, C1[e1], C2[e2] satisfy the
dvc, and there is a permutation π that does not change free atoms in e2, and C1 ∼α π·C2,
then C1[e1] ∼α C2[e2]. J

I Example 3.4. The dvc is required in Proposition 3.3: Let C1 = f a λa.[·] and C2 =
f a λb.[·], which implies C1[a] = (f a λa.a) ∼α (f a λb.b) = C2[b]. The dvc is violated
for the left expression. We see that there does not exist a (common) permutation π with
C1 ∼α π·C2 and e1 ∼α π·e2.

Note that exploiting the general decomposition property of context-variables above in a
unification algorithm, even under strong restrictions, requires permutation-variables, and
also constraints of the form CA(D) # e. There are investigations on nominal unification
permitting variable permutations [7, 10], but an extension to context-variables is open. We
will use further components in the constraint set, which will refine the information.

I Definition 3.5. Let ρ be a ground substitution. The unification algorithm uses the
following further constraint components:

A 6= e, where e is an atom expression. (short form of A#e)
CA(D)#e, which is satisfied by ρ, if for all atoms a ∈ CA(Dρ): a#eρ.
supp(π)#e, which is satisfied by ρ, if for all atoms a ∈ (supp(π)ρ): a#eρ.
supp(π) ⊆ CA(C1) ∪ CA(C2) which is satisfied by ρ, if for all atoms a ∈ (supp(π)ρ):
a ∈ CA(C1ρ) ∪ CA(C2ρ).
C 6= ∅, which is satisfied by ρ, if Cρ is not the trivial context.

I Proposition 3.6. In NL-languages containing expression-variables, freshness constraints
can in linear time be encoded as dvc-constraints by translating a#e into dvc((f (λa.a) S)),
plus the equation S .= e; and A#e into dvc((f (λA.A) S)) plus the equation S .= e where f
is a binary function symbol, and in both cases, S is a new expression-variable.

4 The Unification Algorithm NomUnifyASD for NLaASD

The nominal unification problem in the language NLaASDP without any restriction seems to
be too hard (at least we did not find an algorithm to solve it). We discuss the reasons that
make the problem so hard, and which restrictions we introduce to handle it. One hint is
that already context unification for first-order terms is a quite hard problem. Its solvability
was open for decades and recently shown to be in PSPACE [14]. That is why we restrict the
input and allow only single occurrences of the same context-variable. A further complication
is permutation-variables, since nominal unification with permutation-variables but without
contexts, known as equivariant unification [7, 10], is known to be solvable in EXPTIME.
However, if context-variables and permutations are combined, then it is unclear how to do
constraint solving, since the (to be guessed) support of the permutations depends on the set
of captured atoms occurring in the instance of context-variables, and it is unknown how to
bound this number of atoms. For this reason, we forbid permutation variables in the input
problem (however allow them during execution of the unification algorithm) and consider
the specific class of so-called ASD1-unification problems:

I Definition 4.1 (ASD1-Unification Problem). An ASD1-unification problem is a nominal
unification problem (Γ,∇) in NLaASD (see Definition 2.6), where each context variable D
occurs at most once in Γ and all top-expressions ei of equations (e1

.= e2) ∈ Γ have a
dvc-constraint dvc(ei) ∈ ∇ (for i = 1, 2).

M.Schmidt-Schauß and D. Sabel 28:9

We describe a unification algorithm to solve ASD1-unification problems. During the exe-
cution of the algorithm the invariant, that context variables occur only once in the equations,
must be kept and thus instantiations within the equations (which could duplicate occurrences
of context variables) are not permitted. For example, transitions using replacement starting
with S .= D[. . .], S .= e1, S

.= e2, . . . would introduce two occurrences of D, since the result
is D[. . .] .= e1, D[. . .] .= e2, As a consequence we propose a Martelli-Montanari-style
algorithm [21] that avoids instantiations within the unsolved equations.

The state during unification is a tuple (Γ,∇, θ,∆) using expressions from NLaASDP ,
where Γ is a set of sets of expressions, so-called multi-equations, ∇ is a set of freshness and
dvc-constraints and further constraints of Definition 3.5, θ is a substitution in triangle-form3,
represented as a set of components, and ∆ is a set of context-variables that are assumed to
be nonempty. We omit the component ∆, if it is not changed by the unification rules.

Multi-equations M = {e1, . . . , en} will sometimes be written as e1
.= e2

.= . . .
.= en, and

we write π·M to apply permutation π to all expressions in the multi-set, i.e. π·M is the
multi-equation {π·e1, . . . , π·en}. We will assume that the expressions in Γ are flattened,
using iteratively the rule (flatten) in Fig. 1, i.e., in (f e1 . . . en), λπ·X ′.e, and in D[e], the
expressions ei, e are of the form π·X, where X is an atom- or expression-variable.

For permutations, we assume that there is a compression scheme implementing sharing
using an SLP [20] where a permutation is a composition (i.e. like a string) of the basic
components (a b), (A a), (a A), (A B), P, P−1, and the expansion of a representation may be
exponentially long, and where the required operations on the permutations like composition
and inverting can be done in polynomial time. However, to keep the presentation simple, we
do not mention this compression and operations in the unification rules.

I Definition 4.2. The input of the non-deterministic algorithm NomUnifyASD is an ASD1-
unification problem (Γ,∇), where Γ is a set of equations and ∇ a set of dvc- and freshness
constraints, both over NLaASD. The internal data structure is a tuple (Γ,∇, θ,∆), over
NLaASDP . The algorithm finishes either with Fail, or, if Γ is empty and no failure rule
applies, with a tuple (∇′, θ,∆′). The rules of the algorithm NomUnifyASD are shown in
Figs. 2, 3, 4, 5, 6, which are partitioned into the following rule sets: The rule (flatten) in Fig.
1 is applied until no longer applicable. The variable-replacement and usual decomposition
rules are in Fig. 2, the rules for decomposing multi-equations with expressions of the form
D[. . .], and with function symbols or λ as top symbol are in Fig. 3, the decomposition rules
for multi-equations of expressions D[. . .] are in Fig. 4, where the starred rules (DDPRm*)
and (DDFrk*) are not used directly; the rules for guessing context-variables as empty or
nonempty are in Fig. 5, and the failure rules are in Fig. 6. Rules (fD), (λD) make one
(parallel) decomposition step, where rule (fD) first guesses a common first level of the hole
positions of all Di. Rule (DDPrf) guesses that one context is a prefix of the others; rule
(DDPRm) guesses a (maximal) common prefix of the contexts Di (such that it is a proper
prefix of all Di) and rule (DDFrk*) guesses that Di fork and the first level of the hole
positions of Di.

The priorities of rule application are the sequence as above, i.e. the rules in Fig. 2, 3, 4,
5, 6. Within the rule sets, for rules in Figs. 2, 3, the priority is the sequence as given in the
figures. For the rules in Figs. 4 and 5, within the rule sets the priority is the same. The
failure rules can be applied at any time.

3 A substitution in triangle-form is a shared representation of a substitution, e.g., the substitution in
triangle-form {x 7→ (f y z), y 7→ a, z 7→ λb.b} is the substitution {x 7→ f a (λb.b), y 7→ a, z 7→ λb.b}, i.e.
the substitution itself is idempotent.

FSCD 2018

28:10 Nominal Unification with Atom and Context Variables

(flatten)
Γ ·∪{C[e] .= M}

Γ ·∪{C[S] .= M} ·∪{S .= e}
where C 6= [·], e is neither π · Si nor π ·Ai

and S is a fresh variable

Figure 1 The flatten-rule.

(Elm1)
(Γ ·∪{e .= e

.= M},∇, θ)
(Γ ·∪{e .= M},∇, θ)

(Elm2)
(Γ ·∪{{e}},∇, θ)

(Γ,∇, θ)

(Slv1)
(Γ ·∪{π1·S

.= π2·V
.= M},∇, θ)

(Γσ ·∪{π2·V
.= Mσ},∇σ, θ ∪ σ)

if S 6= V , V is an S- or A-variable or atom, and
σ = {S 7→ π−1

1 ·π2·V }

(Slv2)
(Γ ·∪{π1·A

.= π2·X
.= M},∇, θ)

(Γσ ·∪{π2·X
.=Mσ},∇∪{A=π−1

1 ·π2·X}, θ∪σ)
if X 6=A is an atom or atom-
variable, and σ={A 7→π−1

1 ·π2·X}

(Slv3)
(Γ ·∪{π1·X1

.= π2·X2
.= M},∇, θ)

(Γ ·∪{π1·X1
.= M},∇∪ {X1=π−1

1 ·π2·X2}, θ)
if X1, X2 are atom-variables s.t.
X1=X2, or X1, X2 are atoms

(Slv4)
(Γ ·∪{π·S .= e

.= M},∇, θ)
(Γ ·∪{e .= M},∇, θ ∪ {S 7→ π−1·e})

if S does not occur in M , e or Γ

(Mrg)
(Γ ·∪{π1·S

.= M1} ·∪{π2·S
.= M2},∇, θ)

(Γ ·∪{S .= π−1
1 ·M1

.= π−1
2 ·M2},∇, θ)

(Slv5)
(Γ ·∪{S .= π·S .= M},∇, θ)

(Γ ·∪{S .= M},∇ ·∪{supp(π)#S},∇, θ)

(ff)
(Γ ·∪{(f e1 . . . ear(f))

.= (f e′1 . . . e′ar(f))
.= M},∇, θ)

(Γ ·∪{(f e1 . . . ear(f))
.= M} ·∪{e1

.= e′1, . . . , ear(f)
.= e′ar(f)},∇, θ)

(Abstr)
(Γ ·∪{λX.e1

.= M},∇, θ)
(Γ ·∪{λA′1.e1

.= M},∇ ·∪{A′1 = X}, θ)
if X is of the form a or π·A where π is
not trivial, and A′1 is fresh

(λλ)
(Γ ·∪{λA1.e1

.= λA2.e2
.= M},∇, θ)

(Γ ·∪{λA1.e1
.= M, e1

.= (A1 A2)·e2},∇ ·∪{A1#λA2.e2}, θ)

Figure 2 Rules of NomUnifyASD for Variables and Decomposition.

(eD)
(Γ ·∪{e1

.= (π·D)[e2] .= M},∇, θ,∆)
(Γ ·∪{e1

.=e2
.=M},∇[[·]/D], θ∪{D 7→ [·]},∆)

if tops(e1) is an atom variable, atom,
or tops(e1)=S, S occurs in e2; D 6∈∆

(fD)
(Γ ·∪{f e1 . . . en

.= (π1·D1)[e′1] .= . . .
.= (πm·Dm)[e′m]},∇, θ,∆)

(Γ ·∪{{ek} ∪ {Di,1[e′i] | k = j(i), i ∈ {1, ..,m}} | k = 1, . . . , n},
∇, θ ∪ {Di 7→ π−1

i ·(f e1 . . . Di,1︸︷︷︸
j(i)

. . . en) | i = 1, . . . ,m},∆)

if ∀i : Di ∈ ∆, and where context variables Di,1 for i = 1, . . . ,m are fresh
and where for all i = 1, . . . ,m, the index position j(i) of Di is guessed.

(λD)
(Γ ·∪{λX.e0

.= (π1·D1)[e1] .= . . .
.= (πm·Dm)[em]},∇, θ,∆)

(Γ ·∪{e0
.= (X A1)·(D1,1[e1]) .= . . .

.= (X Am)·(Dm,1[em])},
∇∪ {X #λAi.Di,1[ei] | i = 1, . . . ,m}, θ ∪ {Di 7→ π−1

i ·(λAi.Di,1)},∆)
if ∀i : Di ∈ ∆ and X is an atom or atom-variable and Ai, Di,1 are fresh

Figure 3 Rules of NomUnifyASD for F-D-Decomposition.

M.Schmidt-Schauß and D. Sabel 28:11

(DDPrf)
(Γ ·∪{(π1·D1)[e1] .= (π2·D2)[e2] .= . . .

.= (πn·Dn)[en]},∇, θ,∆)
(Γ ·∪{e1

.= P2·((π2·D2,2)[e2]) .= . . .
.= Pn·((πn·Dn,2)[en])},

∇∪ {CA(D1)#π−1
1 ·((πi·Di)[ei]), i = 2, . . . , n}

∪{supp(Pi) ⊆ (CAO(π1·D1) ∪ CAO(πi·Di,1)) | i = 2, . . . , n},
θ ∪ {Di 7→ Di,1Di,2, Di,1 7→ π−1

i ·P
−1
i ·π1·D1 | i = 2, . . . , n},

∆ ∪ {Di,1 | i = 2, . . . , n}) where Di,1, Di,2, P2, . . . , Pn are fresh.

if ∀i:Di∈∆

(DDPRm)First apply (DDPRm*); then apply rule (DDFrk) to the resulting multi-equation.
(DDFrk) Apply (DDFrk*), then remove all introduced variables Si,j using (Slv4)

(DDPRm*)
(Γ ·∪{(π1·D1)[e1] .= (π2·D2)[e2] .= . . .

.= (πn·Dn)[en]},∇, θ,∆)
(Γ ·∪{(π1·D1,1)[e1] .=P2·((π2·D2,1)[e2]) .= . . .

.=Pn·((πn·Dn,1)[en])},
∇∪ {CA(D1,0)#(π2·D2)[e2], . . . ,CA(Dn,0)#(πn·Dn)[en]}
∪ {supp(Pi) ⊆ (CAO(D1,0) ∪ CAO(Di,0)) | i = 2, . . . , n},

θ ∪ {D1 7→ (π−1
1 ·D1,0)D1,1, . . . , Dn 7→ (π−1

n ·Dn,0)Dn,1,

D2,0 7→ P−1
2 ·D1,0, . . . , Dn,0 7→ P−1

n ·D1,0},
∆ ∪ {Di,j | i = 1, . . . , n, j = 0, 1}) where Pi, Di,j are fresh.

if ∀i:Di∈∆

(DDFrk*)
(Γ ·∪{(π1·D1)[e1] .= . . .

.= (πn·Dn)[en]},∇, θ,∆)
(Γ ·∪{{(πi·D′i)[ei] | i ∈M1} ∪ {πi·Si,1 | i 6∈M1}}

·∪ . . . ·∪
{{(πi·D′i)[ei] | i ∈Mm} ∪ {πi·Si,m | i 6∈Mm}},∇, θ ∪ σ,∆)

where f with ar(f)≥2 and the index positions j(i) for i=1, . . . , n are guessed
such that |{j(i) | 1 ≤ i ≤ n}| ≥ 2; andMk := {h | j(h) = k} for k = 1, . . . ,m;
and σ = {Di 7→ (f Si,1 . . . D′i[·]︸︷︷︸

j(i)

. . . Si,m) | 1 ≤ i ≤ n} where D′i, Si,i′ are fresh.

if ∀i: Di∈∆

Figure 4 Rules of NomUnifyASD for D-D-decomposition.

(GuessDEmpty)
(Γ,∇, θ,∆)

(Γ[[·]/D],∇[[·]/D], θ ∪ {D 7→ [·]},∆)
If D 6∈ ∆, D occurs in Γ

(GuessDNonEmpty)
(Γ,∇, θ,∆)

(Γ,∇, θ,∆ ∪ {D})
If D 6∈ ∆, D occurs in Γ

Figure 5 Rules of NomUnifyASD for guessing D empty or nonempty.

(Clash)
(Γ ·∪{e1

.= e2
.= M},∇, θ)

Fail

if tops(e1) and tops(e2) are different atoms; or tops(e1)
and tops(e2) are atom, λ or a function symbol, and
tops(e1) 6= tops(e2); or tops(e1) is an atom or atom-
variable, and tops(e2) is λ or f ∈ F .

(Cycle)
(Γ ·∪{S1

.= e1
.= M1, . . . , Sn

.= en
.= Mn},∇, θ,∆)

Fail
if all ei are neither variables nor suspensions, all context variables occurring
in ei are in ∆, Si+1 occurs in ei for i = 1, . . . , n− 1, and S1 occurs in en

(eDFail)
(Γ ·∪{e1

.= (π·D)[e2] .= M},∇, θ,∆)
Fail

if tops(e1) is atom or an atom-variable,
or tops(e1)=S and S occurs in e2; D∈∆

Figure 6 Failure Rules of NomUnifyASD.

FSCD 2018

28:12 Nominal Unification with Atom and Context Variables

I Example 4.3. For f aS2 S1
.= f S1 (λa.S3)S3 there is a substitution that equates the

expressions. However, if there are dvc-constraints for the top expressions then these cannot
be satisfied, since for example, the instantiation ρ(S3) = a cannot be α-renamed. Another
example is f S S .= f (λa.a) (λb.b), which is solvable by {S 7→ λa.a}: it does not lead to a
dvc-violation, since it is treated as instantiation modulo α.

We define the non-deterministic algorithm that checks satisfiability of the output con-
straints, where we give the justification later in Section 5. The algorithm exploits the
execution sequence of NomUnifyASD, since without this information a decision algorithm
appears to be impossible since permutation-variables as well as context-variables appear in
the constraint.

I Definition 4.4. The algorithm NomFreshASD operates on the output (∇, θ,∆) of
NomUnifyASD and uses the set of all atoms and atom-variables occurring in the exe-
cution sequence H leading to this output, and the number d of context-variables in the input.
It performs the following steps:
(I) Iteratively guess the solution of atom-variables, i.e. for an atom-variable A guess that

A is mapped by the solution to an already used atom in H, or to a fresh one, and
replace the atom-variable A accordingly in H. In the next iteration the fresh atom is
among the used ones. Let H ′ be the adjusted execution sequence. Note that the exact
names of fresh atoms are irrelevant. Thus there is only a linear number (w.r.t. the
number of used atoms) of possibilities for every atom-variable. Let MA be the set of
all atoms in the execution sequence H ′.

(II) Replace every expression-variable S that occurs in H ′ and that is not instantiated by
θ, by a constant c from the signature.

(III) Construct M∞ as a set of |MA| ∗ (d!)2 atoms by extending the set MA by further
fresh atoms, where d is the number of context-variables in Γ. Guess for every context-
variable D that occurs in Γ,∇, θ and that is not instantiated by θ, the ordered set of
captured atoms from the given set of atoms.

(IV) Guess the permutation-variables as bijections on the set M∞.
(V) Test the freshness constraints, equality, disequality, extended freshness constraints, and

non-emptiness constraints, which are now immediately computable. To test whether
the θ violates the dvc in Γ, use dynamic programming to compute the sets FA,BA for
every expression- and context-variable, and CA(D) for the context-variables D that
are not instantiated by θ. Then test the dvc-property, which is possible in polynomial
time.

5 Properties of NomUnifyASD and NomFreshASD

An example which shows that implicitly requiring the dvc is not stable, in contrast to
requiring explicit dvc-constraints, is {S1

.= f (λa.a) (λa.a)}. It does not satisfy the dvc,
but after applying (flatten), we obtain {S1

.= (f S (λa.a)), S .= λa.a} which has the solution
{S 7→ λa.a, S1 7→ (f (λa′.a′) (λa.a)). If the initial set ∇ contains dvc(f (λa.a) (λa.a)),
then there is no solution before and after flattening, since (flatten) cannot be applied to
expressions within ∇.

I Lemma 5.1. If the input is (Γ,∇), then the application of (flatten) to a subexpression of
e of the equations Γ does not change the set of solutions.

I Proposition 5.2. For a nominal unification problem (Γ,∇) in NLaASD as input, the
non-deterministic algorithm NomUnifyASD terminates after a polynomial number of steps.

M.Schmidt-Schauß and D. Sabel 28:13

Proof. Let maxArity be the maximal arity of function symbols in the signature. Let
µ1 := µ1,1 + 2 ∗ maxArity ∗ µ1,2 where µ1,1 is the number of expressions in Γ and µ1,2 is the
number of occurrences of function symbols and λ-s in Γ. Let µ2 be µ1,1 minus the number
of multi-equations. Let µ3 be the pair of the number of occurrences of context-variables in
Γ and the number of context-variables in Γ which are not in ∆. Let µ4 be the number of
occurrences of expressions λX, where X is ∅·a, π·a, or π·A and π is nontrivial. The following
table lists the relation between Γ before and after the application of the rule or subalgorithm,
where GD(N)E abbreviates rules (GuessDEmpty) and (GuessDNonEmpty).

rule µ1 µ2 µ3 µ4

any rule of Fig. 2 except Abstr >
Abstr = = = >

eD = = >

rule µ1 µ2 µ3

fD >

λD >

GD(N)E = = >

rule µ1 µ2 µ3

DDPrf = = >

DDPRm= >

DDFrk = >

It can be verified for (Elm1), (Elm2), (Slv1), (Slv2), (Slv3), (Slv4), (Mrg), (Slv5), (ff),
(Abstr), (λλ), and (eD) by a simple check. It is correct for (fD) and (λD), since f e1 . . . em is
removed, which counts 2*maxArity. (DDPrf) removes one occurrence of a context-variable.
(DDFrk) splits the context-directions, and first introduces expression-variables Si, which are
then removed. Hence the number of expressions in multi-equations is the same, but there
are more multi-equations. For (DDPRm), it suffices to check (DDFrk). The measure µ3
is not increased by any rule, and µ2 ≤ µ1, and µ4 ≤ µ1, hence the number of executions
of rules is polynomial. Since there are multiple sub-steps, we have to argue that a single
rule application can be done in polynomial time. The number of steps within the rules is
polynomial due to the strict decrease w.r.t. the orderings. J

I Lemma 5.3. If all top expressions of the initial set of equations Γ are restricted by the
dvc, then this also holds for all top-expressions in the equations in the sequence of rule
executions of the algorithm NomUnifyASD.

I Proposition 5.4. Inspecting the details of all rules of NomUnifyASD shows soundness:
The solutions of the final data structure are also solutions of the input. The following rules
of the algorithm NomUnifyASD do not lose any solutions, i.e. for every solution ρ of the
data structure Q before application, there is a solution ρ′ of the output data structure Q′,
such that ρ(X) ∼α ρ′(X) for all atom-, expression-, context- and permutation-variables X
occurring in Q: Rules from Fig. 2, rules (eD), (λD) from Fig. 3, and the failures rules.

I Proposition 5.5. The algorithm NomUnifyASD is complete: If ρ is a solution of the
intermediate data structure Q, Γ is not empty and no failure rule applies, then there is a
possible rule application, such that there is solution ρ′ of the output Q′, and ρ(X) ∼ ρ′(X)
for all atom-, expression-, context- and permutation-variables X occurring in Q.

We now consider the correctness and complexity of NomFreshASD.

I Lemma 5.6. Let H be an execution of NomUnifyASD starting with S0 := (Γ0,∇0, θ0,∆0)
where Γ0 = Γ, context variables occur at most once, and θ0,∆0 are trivial or empty. Let the
sequence H end with Sout = (∅,∇out, θout,∆out), and let ρ be a solution of the input as well
as of the output Sout. Then there is also a solution ρ′ that uses only a set of atom VA∞
with |VA∞| ≤ |VA| ∗ ((d!)2), where the visible set VA of atoms VA = {a | a occurs in H} ∪
{Aρ | A occurs in H}, and where d is the number of context-variables in Γ.

I Proposition 5.7. Let (∇out, θout,∆out) be the output of NomUnifyASD for input (Γ,∇).
The algorithm NomFreshASD decides satisfiability of the output in NEXPTIME in the size

FSCD 2018

28:14 Nominal Unification with Atom and Context Variables

of the input, where the main components are |(Γ,∇)|∗((d!)2), where d is the number of context-
variables in Γ. For a fixed upper bound on the number of context-variables, satisfiability can
be checked in NP time.

I Remark. There is a complexity jump between freshness constraints and dvc-constraints in
NLaSD, since satisfiability of freshness constraints in NLaSD is in PTIME whereas satisfiability
of dvc-constraints in NLaSD is NP-hard.

Combining Propositions 5.5, 5.2, and 5.7 shows:

I Theorem 5.8. For Γ,∇ as input the algorithm NomUnifyASD terminates and is sound
and complete. The computation of some output (∇′, θ′,∆′) can be done in NP-time, and the
collecting version of the algorithm produces at most exponentially many outputs (∇′, θ′,∆′).
Decidability of solvability of output constraints, and hence of the input, is in NEXPTIME,
and if the number of context-variables is fixed, then in NP time.

I Theorem 5.9. Solvability of ASD1-unification problems is in NEXPTIME.

6 Specializations, Applications and Examples

We consider nominal unification in NLaS with freshness and dvc-constraints extending the res-
ult of [37] (see Theorem 2.7) by allowing dvc-constraints and by restricting NomUnifyASD

I Theorem 6.1. The nominal unification problem in NLaS where freshness- and dvc-
constraints are permitted in ∇ is solvable in polynomial time. Moreover, for solvable (Γ,∇),
there exists a most general unifier of the form (∇′, θ) which can be computed in polynomial
time, i.e., the problem class is unitary.

Proof. We assume that the algorithm computes in polynomial time a unifier (∇′, θ) consisting
of a substitution θ and a constraint set ∇′, where in addition we assume that the output
substitution θ is represented in triangle-form and that it is of polynomial size (see [33] for the
technique). Soundness and completeness of computing only a single execution path follows
from Proposition 5.4 since there are no permutation-variables and no context-variables.

For the final satisfiability test, we instantiate the expression-variables in the codomain of
θ with a constant from the signature. Note that also λa.a could be used if there is no such
constant. For expression-variables S, it is possible to compute FA(Sθ) in polynomial time
using dynamic programming. The bound atoms in FA(Sθ) are irrelevant, since these will
be renamed by the substitution process which is done modulo α. Then the check for every
constraint dvc(e), whether eθ satisfies the dvc, can be performed in polynomial time. J

The application of NomUnifyASD to NLAS also yields at most one most general unifier,
however, the complexity to check solvability is increased, since already the solvability of
freshness constraints in NLAS is NP-hard [33].

We now consider applications and examples.

I Example 6.2. As a first example, we consider the equation λA1.λA2.A1
.= λA1.λA2.A2

together with dvc-constraints for both expressions. The algorithm NomUnifyASD finds a
potential candidate for a solution, which sets A1 7→ A2. However, constraint checking using
NomFreshASD fails, since for any instantiation which instantiates A1 and A2 with the
same atom, the dvc does not hold.

As a second example, consider the input equation λA1.λA2.A1
.= λA2.λA1.A2 together

with dvc-constraints for both expressions. The algorithm NomUnifyASD finds a potential

M.Schmidt-Schauß and D. Sabel 28:15

candidate for a solution, which is the identity substitution for A1 and A2. Algorithm
NomFreshASD shows satisfiability of the dvc-constraints, where a requirement is that A1
and A2 are set to different atoms.

As a third simple example, consider the equation D1[A] .= D2[B] with dvc-constraints for
the input and the additional constraint A 6= B. We consider the execution that applies rule
(DDPrf): This results in the potential solution which sets A 7→ P2 ·B, D2 7→ D2,1, D2,1 7→
P−1

2 ·D1 and adds the constraints CA(D1)#D2[B], supp(P2) ⊆ CAO(D1) ∪ CAO(D2,1) to
∇. Algorithm NomFreshASD detects satisfiability, for instance, by instantiating A 7→ a,
B 7→ b, and then guessing CAO(D1) = {a} and P2 = (a b).

We now consider reductions and transformation rules. Most of them in the application
domain of functional programming languages require freshness and/or dvc-constraints to
exclude invalid instances of the rules.

I Example 6.3. The rule app (λA.S) S′ → let A = S′ in S is a sharing-variant of β-
reduction. It needs the constraint dvc(app (λA.S) S′) if let is recursive, to ensure that for
the instances, there are no free occurrence of Aρ in S′ρ.

The rule let A = S in D[A]→ let A = S in D[S] copies a single expression represented
by the variable S to the target position represented by context-variable D. The constraint
dvc(let A = S in D[A]) prevents capturing in instances, s.t. Aρ is not captured by Dρ.
The constraint dvc(let A = S in D[S]) prevents that Dρ captures atoms that are free in
Sρ. Since instances Sρ are α-renamed in (let A = S in D[S])ρ, these constraints suffice.

I Example 6.4. We describe an exemplary unification problem that occurs in correct-
ness proofs of program transformations. A reduction rule in the let-calculus of [2] is
letAx=(letAy=Sy inSx) inSr → letAy=Sy in letAx=Sx inSr with dvc-constraint
dvc(letAx=(letAy=Sy inSx) inSr) that prevents the occurrence of Ay as free atom in Sr,
and thus an unwanted capture in the right hand side. To check whether there is a (nontrivial)
overlap of the left hand side of the rule with itself (as a transformation) we form the uni-
fication equation letAx=(letAy=Sy inSx) inSr

.= D[letA′x=(letA′y=S′y inS′x) inS′r]
where the context-variable D is intended as a representation of the reduction strategy4. For
correct application of the rule, the dvc-constraints dvc(letAx=(letAy=Sy inSx) inSr)
and dvc(D[letA′x=(letA′y=S′y inS′x) inS′r]) are required. We omit the case that D 7→ [·]
and analyze the instantiation which sets D 7→ (letAx=D1 inSr). We obtain the equa-
tion letAy=Sy inSx

.= D1[letA′x=(letA′y=S′y inS′x) inS′]. Guessing D1 7→ [·] results
in letAy=Sy inSx

.= letA′x=(letA′y=S′y inS′x) inS′r. Guessing Ay 7→ A′x, we obtain as
solution Sy

.= (letA′y=S′y inS′x), Sx
.= S′r. If we alternatively guess Ay 6= A′x, we obtain as

solution Sy
.= (letA′y=S′y inS′x) and Sx

.= (AxA′y)·S′r together with the constraint Ay #S′r.

7 Conclusion and Further Work

We described and analyzed a nominal unification algorithm for a language with higher-order
expressions and variables for atoms, expressions and contexts, where unification problems
consist of unification equations, freshness and dvc-constraints. Further work is to extend
and adapt the unification and constraint solution method to more constructs of higher-order
languages, like a recursive-let, or context-classes.

4 In general, the reduction strategy has to be represented by context classes as in [31].

FSCD 2018

28:16 Nominal Unification with Atom and Context Variables

References

1 Andreas Abel and Brigitte Pientka. Higher-order dynamic pattern unification for dependent
types and records. In C.-H. Luke Ong, editor, Proc. 10th TLCA 2011, volume 6690 of Lect.
Notes Comput. Sci., pages 10–26. Springer, 2011. doi:10.1007/978-3-642-21691-6_5.

2 Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. A
call-by-need lambda calculus. In Proc. POPL 1995, pages 233–246, San Francisco, CA,
1995. ACM Press. doi:10.1145/199448.199507.

3 Mauricio Ayala-Rincón, Maribel Fernández, Murdoch Gabbay, and Ana Cristina Rocha
Oliveira. Checking overlaps of nominal rewriting rules. Electr. Notes Theor. Comput. Sci.,
323:39–56, 2016. doi:10.1016/j.entcs.2016.06.004.

4 Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-Sobrinho. Nominal narrow-
ing. In Delia Kesner and Brigitte Pientka, editors, Proc. FSCD 2016, volume 52, pages 11:1–
11:17, Dagstuhl, Germany, 2016. Schloss Dagstuhl. doi:10.4230/LIPIcs.FSCD.2016.11.

5 Henk P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland,
Amsterdam, New York, 1984.

6 Christophe Calvès and Maribel Fernández. A polynomial nominal unification algorithm.
Theor. Comput. Sci., 403(2-3):285–306, 2008. doi:10.1016/j.tcs.2008.05.012.

7 James Cheney. The complexity of equivariant unification. In Proc. ICALP 2004,
volume 3142 of Lect. Notes Comput. Sci., pages 332–344. Springer, 2004. doi:10.1007/
978-3-540-27836-8_30.

8 James Cheney. Nominal Logic Programming. PhD thesis, Cornell University, Ithaca, NY,
2004.

9 James Cheney. Relating higher-order pattern unification and nominal unification. In Proc.
UNIF 2005, pages 104–119, 2005.

10 James Cheney. Equivariant unification. J. Autom. Reasoning, 45(3):267–300, 2010. doi:
10.1007/s10817-009-9164-3.

11 Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies: A tool for
automatic formula manipulation, with application to the church-rosser theorem. Indaga-
tiones Mathematicae, 34:381–392, 1972.

12 Maribel Fernández and Albert Rubio. Nominal completion for rewrite systems with binders.
In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Proc.
ICALP 2012 Part II, volume 7392 of Lect. Notes Comput. Sci., pages 201–213. Springer,
2012. doi:10.1007/978-3-642-31585-5_21.

13 Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci.,
1(1):27–57, 1975. doi:10.1016/0304-3975(75)90011-0.

14 Artur Jez. Context unification is in PSPACE. In Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, editors, Proc. ICALP 2014 Part II, volume 8573 of Lect.
Notes Comput. Sci., pages 244–255. Springer, 2014. doi:10.1007/978-3-662-43951-7_
21.

15 Yunus Kutz and Manfred Schmidt-Schauß. Most general unifiers in generalized nominal
unification. In Informal Proceedings of UNIF 2017, 2017.

16 Matthew R. Lakin. Constraint solving in non-permutative nominal abstract syntax. Logical
Methods in Computer Science, 7(3), 2011. doi:10.2168/LMCS-7(3:6)2011.

17 Jordi Levy and Mateu Villaret. An efficient nominal unification algorithm. In Christopher
Lynch, editor, Proc. RTA 2010, volume 6 of LIPIcs, pages 209–226. Schloss Dagstuhl, 2010.
doi:10.4230/LIPIcs.RTA.2010.209.

18 Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. ACM
Trans. Comput. Log., 13(2):10, 2012. doi:10.1145/2159531.2159532.

http://dx.doi.org/10.1007/978-3-642-21691-6_5
http://dx.doi.org/10.1145/199448.199507
http://dx.doi.org/10.1016/j.entcs.2016.06.004
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.11
http://dx.doi.org/10.1016/j.tcs.2008.05.012
http://dx.doi.org/10.1007/978-3-540-27836-8_30
http://dx.doi.org/10.1007/978-3-540-27836-8_30
http://dx.doi.org/10.1007/s10817-009-9164-3
http://dx.doi.org/10.1007/s10817-009-9164-3
http://dx.doi.org/10.1007/978-3-642-31585-5_21
http://dx.doi.org/10.1016/0304-3975(75)90011-0
http://dx.doi.org/10.1007/978-3-662-43951-7_21
http://dx.doi.org/10.1007/978-3-662-43951-7_21
http://dx.doi.org/10.2168/LMCS-7(3:6)2011
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.209
http://dx.doi.org/10.1145/2159531.2159532

M.Schmidt-Schauß and D. Sabel 28:17

19 Tomer Libal and Dale Miller. Functions-as-constructors higher-order unification. In Delia
Kesner and Brigitte Pientka, editors, Proc. FSCD 2016, volume 52 of LIPIcs, pages 26:1–
26:17. Schloss Dagstuhl, 2016. doi:10.4230/LIPIcs.FSCD.2016.26.

20 Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity
Cryptology, 4(2):241–299, 2012. doi:10.1515/gcc-2012-0016.

21 Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans.
Program. Lang., 4(2):258–282, 1982. doi:10.1145/357162.357169.

22 Dale Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. J. Log. Comput., 1(4):497–536, 1991. doi:10.1093/logcom/1.4.
497.

23 Andrew K. D. Moran, David Sands, and Magnus Carlsson. Erratic fudgets: A semantic
theory for an embedded coordination language. In Proc. Coordination 1999, volume 1594 of
Lect. Notes Comput. Sci., pages 85–102. Springer, 1999. doi:10.1007/3-540-48919-3_8.

24 Tobias Nipkow. Functional unification of higher-order patterns. In Proc. LICS 1993, pages
64–74. IEEE Computer Society, 1993. doi:10.1109/LICS.1993.287599.

25 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Richard L. Wexelblat,
editor, Proc. PLDI 1988, pages 199–208. ACM, 1988. doi:10.1145/53990.54010.

26 Andrew Pitts. Nominal techniques. ACM SIGLOG News, 3(1):57–72, 2016. doi:10.1145/
2893582.2893594.

27 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013.

28 Zhenyu Qian. Linear unification of higher-order patterns. In Proc. TAPSOFT 1993, pages
391–405. Springer, 1993. doi:10.1007/3-540-56610-4_78.

29 David Sabel. Alpha-renaming of higher-order meta-expressions. In Wim Vanhoof and
Brigitte Pientka, editors, Proc. PPDP 2017, pages 151–162. ACM, 2017. doi:10.1145/
3131851.3131866.

30 Manfred Schmidt-Schauß, Temur Kutsia, Jordi Levy, and Mateu Villaret. Nominal unifica-
tion of higher order expressions with recursive let. In Manuel V. Hermenegildo and Pedro
López-García, editors, Proc. LOPSTR 2016, volume 10184 of Lect. Notes Comput. Sci.,
pages 328–344. Springer, 2016. doi:10.1007/978-3-319-63139-4_19.

31 Manfred Schmidt-Schauß and David Sabel. Unification of program expressions with re-
cursive bindings. In James Cheney and German Vidal, editors, Proc. PPDP 2016, pages
160–173. ACM, 2016. doi:10.1145/2967973.2968603.

32 Manfred Schmidt-Schauß and David Sabel. Nominal unification with atom and context
variables – report version. Frank report 59, Institut für Informatik, Goethe-Universität
Frankfurt am Main, 2018. URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:
de:hebis:30:3-452767.

33 Manfred Schmidt-Schauß, David Sabel, and Yunus Kutz. Nominal unification with atom-
variables. J. Symbolic Comput., 2018. to appear. doi:10.1016/j.jsc.2018.04.003.

34 Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. Safety of Nöcker’s strictness ana-
lysis. J. Funct. Programming, 18(04):503–551, 2008. doi:10.1017/S0956796807006624.

35 Christian Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reasoning, 40(4):327–
356, 2008. doi:10.1007/s10817-008-9097-2.

36 Christian Urban and Cezary Kaliszyk. General bindings and alpha-equivalence in nominal
Isabelle. Log. Methods Comput. Sci., 8(2), 2012. doi:10.2168/LMCS-8(2:14)2012.

37 Christian Urban, Andrew M. Pitts, and Murdoch Gabbay. Nominal unification. In Proc.
CSL 2003, EACSL 2003, and KGC 2003, volume 2803 of Lect. Notes Comput. Sci., pages
513–527. Springer, 2003. doi:10.1007/978-3-540-45220-1_41.

FSCD 2018

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.26
http://dx.doi.org/10.1515/gcc-2012-0016
http://dx.doi.org/10.1145/357162.357169
http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.1007/3-540-48919-3_8
http://dx.doi.org/10.1109/LICS.1993.287599
http://dx.doi.org/10.1145/53990.54010
http://dx.doi.org/10.1145/2893582.2893594
http://dx.doi.org/10.1145/2893582.2893594
http://dx.doi.org/10.1007/3-540-56610-4_78
http://dx.doi.org/10.1145/3131851.3131866
http://dx.doi.org/10.1145/3131851.3131866
http://dx.doi.org/10.1007/978-3-319-63139-4_19
http://dx.doi.org/10.1145/2967973.2968603
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-452767
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-452767
http://dx.doi.org/10.1016/j.jsc.2018.04.003
http://dx.doi.org/10.1017/S0956796807006624
http://dx.doi.org/10.1007/s10817-008-9097-2
http://dx.doi.org/10.2168/LMCS-8(2:14)2012
http://dx.doi.org/10.1007/978-3-540-45220-1_41

28:18 Nominal Unification with Atom and Context Variables

38 Joe B. Wells, Detlef Plump, and Fairouz Kamareddine. Diagrams for meaning preservation.
In Robert Nieuwenhuis, editor, Proc. RTA 2003, volume 2706 of Lect. Notes Comput. Sci.,
pages 88–106. Springer, 2003. doi:10.1007/3-540-44881-0_8.

A Detailed Proofs

A.1 Completeness of NomUnifyASD
I Definition A.1. We introduce n-contexts for some n ≥ 1 (also called multi-contexts)
in NLa. These are expressions of NLa extended by constants (holes) [·]i, i = 1, . . . , n,
where every hole occurs at most once. For n ≥ 1 and two n-contexts C1, C2 the relation
C1 ∼α C2 holds, iff for all n-tuples a1, . . . , an of (perhaps equal) atoms ai, it holds that
C1[a1, . . . , an] ∼α C2[a1, . . . , an] as expressions, which is a generalization from contexts to
multi-contexts.

The following lemma helps in the completeness proof of rule (DDFrk).

I Lemma A.2. Let n ≥ 1, C1, C2 be NLa-n-contexts, and e1,i, e2,i, i = 1, . . . , n be NLa-
expressions, such that the corresponding hole positions of C1 and C2 are identical, and
such that C1[e1,1, . . . , e1,n] and C2[e2,1 . . . , e2,n] satisfy the dvc. Then C1[e1,1, . . . , e1,n] ∼α
C2[e2,1, . . . , e2,n] iff the following holds:

CA(C1) #C2[e2,1 . . . , e2,n], and there is a permutation π that does not change free atoms
in C2[e2,1 . . . , e2,n] with C1 ∼α π·C2 and e1,i ∼α π·e2,i for all i, π maps CAO(C2) to
CAO(C1), and supp(π) ⊆ CAO(C1) ∪ CAO(C2).

I Proposition 5.5. The algorithm NomUnifyASD is complete: If ρ is a solution of the
intermediate data structure Q, Γ is not empty and no failure rule applies, then there is a
possible rule application, such that there is solution ρ′ of the resulting data structure Q′, and
ρ(X) ∼ ρ′(X) for all atom-, expression-, context- and permutation-variables X occurring in
Q.

Proof. Let ρ be a solution of the current state. We scan the cases:
1. We can assume that all multi-equations have at least two expressions since otherwise rule

(Elm1) is applicable.
2. We can also assume that all context-variables that occur in Γ are contained in ∆, by

applying either (eD), or one of the rules (GuessDEmpty) or (GuessDNonEmpty), where
the choice is directed by the solution.

3. If there is a multi-equation that has only context-variables as top symbols, then one of
the rules from Fig. 4 is applicable, depending on the solution ρ, and there is a solution ρ′
of the output that extends ρ. The condition that top-expressions in the input satsify the
DVC and that the input are ASD1-unification problems is necessary for the application
of Proposition 3.3.

4. If there is a multi-equation such that all but one expression have context-variables as top
symbols, then there are several possibilities: Since D ∈ ∆ for all D, one of the rules from
Fig. 3 is applicable, since either the context-variables’ instances have a common prefix or
not. Proposition 3.3 and the knowledge on permutations show that the execution of the
rules is possible. In any case, there will be a solution ρ′ after the application that is an
extension of ρ (on the variables of Q).

5. For the other cases there are at least two expressions in the multi-equation, which do
not have a context-variable as top-symbol. The failure rules are not applicable, since
otherwise, there is no solution. If the top symbols of two expressions are λ, or function

http://dx.doi.org/10.1007/3-540-44881-0_8

M.Schmidt-Schauß and D. Sabel 28:19

symbols, then rules (ff), (Abstr) or (λλ) can be applied and there is a solution ρ′ extending
ρ after the application. If there are two expressions of the form π·X, where X is an atom
or expression-variable, then (Slv1), (Slv2), (Slv3), or (Slv4) is applicable, and there is a
solution ρ′ extending ρ after the application. Similar for the case where tops(.) yields
atom twice. If one expression is of the form π·X, and the other is not of this form, then
we apply (Slv4) if this is possible.

6. The final case is that for all equations, the equation pattern permits only applications
of rule (Slv4), all multi-equations have only two expressions, but the conditions on
non-containment of S in rule (Slv4) prevent this. Defining a quasi-ordering on the
expression-variables generated by the containment ordering over equations shows that
there are no finite instance-expressions for some expression-variable, which is impossible,
since we have assumed that there are solutions. Indeed in this case a failure rule would
apply. J

A.2 Satisfiability of Constraints of NomUnifyASD
I Lemma 5.6. Let H be a sequence of executions of NomUnifyASD starting with S0 :=
(Γ0,∇0, θ0,∆0) where Γ0 = Γ, the condition on the input are as stated in Definition 4.4, and
θ0,∆0 are trivial or empty. Let the sequence H end with Sout = (∅,∇out, θout,∆out), and
let ρ be a solution of the input as well as of the output Sout. Then there is also a solution
ρ′ that uses only a set of atom VA∞ with |VA∞| ≤ |VA| ∗ ((d!)2), where the visible set VA
of atoms VA = {a | a occurs in H} ∪ {Aρ | A occurs in H}, and where d is the number of
context-variables in Γ.

Proof. We show a stronger claim by induction on the steps of the execution: Let DF and
DP be the set of context-variables D1 in the applications of (DDPrf) in H and D1,0 in the
application of (DDPRm) in H, and Pi, i = 2, . . . , n in the applications of (DDPrf) and
(DDPRm), resp. Let us call these the focused context-variables and the focused permutation-
variables in the respective rule applications. These are the set of context-variables that
are moved to the codomain of θ. The permutation-variables are exactly all the generated
ones in H. Let VA = {a | a occurs in H} ∪ {Aρ | A occurs in H}. Then the size of VA is
polynomial, since the execution sequence H can be generated in polynomial time according
to Proposition 5.2. The claim is: there is a solution ρ′ that uses only the set VA∞ of atoms,
where VA0=VA, and VAi is constructed below, such that |VAi+1| ≤ |VAi|∗d2, where d is the
number of context-variables in the input, and where |VAi+1|>|VAi| only if rule (DDPrf) or
(DDPRm) was executed. The construction implies VAi ⊆ VAi+1. The final VA∞ is defined
as the final VAi.

We define the construction: Let i be an index in H and Si = (Γi,∇i, θi,∆i) be a state in
H with set VAi, such that the next step is (DDPrf) or (DDPRm) leading to Si+1. Let us
assume that it is the first occasion in H such that a focussed context-variable or permutation-
variable that is in the focus of a rule application (DDPrf) or (DDPRm), uses an atom a′ in
its instances under ρ, where a′ 6∈ VAi. Then the following changes are made to the solution
ρ, resulting in ρ′ and a modified execution sequence H ′.

First consider the modification concerning the rule (DDPrf):
Using the same notation as in the rule application, we consider the instances
(CAO(π1·D1)ρ), (CAO(P2·π2·D2,1)ρ),. . . , (CAO(Pn·πn·Dn,1)ρ). We can assume that
(π1·D1)ρ, (P2·π2·D2,1)ρ,. . . , (Pn·πn·Dn,1)ρ only consist of λak,1, . . . , ak,m.[·] where
m = |CAO(π1·D1)|, by modifying the solution ρ, which is without effect on the further
execution of the algorithm NomUnifyASD and solvability. We show that the number

FSCD 2018

28:20 Nominal Unification with Atom and Context Variables

of binders can be bounded: Luckily, we can also eliminate the binder at position j,
if ak,j is not in VAi for all k: eliminate the binder j in every context above, then
modify the instantiation of the permutation-variables Pk such that these map exactly
(πi·Di,1)ρ to CAO(π1·D1) for k ≥ 2, which is justified by Proposition 3.3. Hence Pk
does not need any extra fresh atoms in its support. Using the thus modified ρ, we
replace all atoms (as expressions) by the constant c at the following positions: If the
atom at this position in the instance eiρ is an atom ak,j for some k.
Since binders cannot be repeated, an upper bound on the maximal number of binders
for a single context-variable is |Vi| ∗ d′, where d′ is the number of context-variables in
Γi. The number of all used atoms in the instances is at most |Vi| ∗ d′ ∗ d′.
Let ρ′ be ρ after these modifications. The ground substitution ρ′ is a solution of the
state Si+1, and such that the same execution still leads to a final state that covers ρ′.
There is no effect on the execution of the rules of the algorithm, since the changes are
only in the solution.

Now consider the modification for the rule (DDPRm). It is similar to the previous case,
but we detail it, since the names of variables are different.

Consider the instances (CAO(π1·D1,0)ρ), . . . , (CAO(πn·Dn,0)ρ). We can assume that
(πk·Dk,0)ρ only consist of λak,1, . . . , ak,m.[·] where m = |CAO(D1,0)|, by modifying the
solution ρ, which is without effect on the execution of the algorithm NomUnifyASD
and solvability. We can also eliminate the binder at position j, if ak,j is not in VAi

for all k, as follows: eliminate the binder j in every (πk·Dk,0)ρ, then modify the
instantiation of the permutation-variables Pk such that these map exactly CAO(Dk,0)
to CAO(D1,0) for k ≥ 2. Using the thus modified ρ, we replace atoms by the constant
c at all the following positions: If the atom at this position in the instance eiρ is an
atom with erased binder: ak,j for some k.
An upper bound on the maximal number of binders for a single context-variable is
|Vi|∗d′∗d′ where d′ is the number of context-variables in Γi.
Let ρ′ be ρ after these modifications. The ground substitution ρ′ is a solution of the
state Si+1, and such that the same execution still leads to a final state that covers ρ′.

The number of executions of rules (DDPrf), (DDPRm) is at most the number of differ-
ent context-variables. This holds, since (DDPrf) removes one context-variable, and since
(DDPRm) calls (DDFrk), and (DDFrk) can be applied also at most as often as there are expres-
sions with topmost context-variables. As additional argument, all other rules keep the number
of context-variables, and there is never a merge of two multisets that only contain context-
variables. The estimation for the maximal number of variables is that in (CAO(π1·D1)ρ),
there can at most be di ∗ |Vi| variables, where di is the number of context-variables in Γi.
Since there is an iterated multiplication, we obtain |VA| ∗ d ∗ d ∗ (d− 1) ∗ (d− 1) . . ., which
leads to the estimation as claimed.

This change can be iterated until there are no (DDPrf), (DDPRm)-steps having an index
j where completely fresh variables are used for all context-variables in the multi-equation.
Finally, we have constructed VA∞, and the modified solution ρ′. J

	Introduction
	Nominal Languages and Nominal Unification
	Preparations for NLaASD-Unification
	The Unification Algorithm NomUnifyASD for NLaASD
	Properties of NomUnifyASD and NomFreshASD
	Specializations, Applications and Examples
	Conclusion and Further Work
	Detailed Proofs
	Completeness of NomUnifyASD
	Satisfiability of Constraints of NomUnifyASD

