46 research outputs found

    Nominal Game Semantics.

    Get PDF
    Tutorial notes presenting nominal game semantic

    Game Semantics for Interface Middleweight Java

    Get PDF
    We consider an object calculus in which open terms interact with the environment through interfaces. The calculus is intended to capture the essence of contextual interactions of Middleweight Java code. Using game semantics, we provide fully abstract models for the induced notions of contextual approximation and equivalence. These are the first denotational models of this kind

    DEQ:Equivalence Checker for Deterministic Register Automata

    Get PDF
    Register automata are one of the most studied automata models over infinite alphabets with applications in learning, systems modelling and program verification. We present an equivalence checker for deterministic register automata, called DEQ, based on a recent polynomial-time algorithm that employs group-theoretic techniques to achieve succinct representations of the search space. We compare the performance of our tool to other available implementations, notably in the learning library RALib and nominal frameworks LOIS and NLambda

    History-Register Automata

    Get PDF
    Programs with dynamic allocation are able to create and use an unbounded number of fresh resources, such as references, objects, files, etc. We propose History-Register Automata (HRA), a new automata-theoretic formalism for modelling such programs. HRAs extend the expressiveness of previous approaches and bring us to the limits of decidability for reachability checks. The distinctive feature of our machines is their use of unbounded memory sets (histories) where input symbols can be selectively stored and compared with symbols to follow. In addition, stored symbols can be consumed or deleted by reset. We show that the combination of consumption and reset capabilities renders the automata powerful enough to imitate counter machines, and yields closure under all regular operations apart from complementation. We moreover examine weaker notions of HRAs which strike different balances between expressiveness and effectiveness.Comment: LMCS (improved version of FoSSaCS

    Fragments of ML Decidable by Nested Data Class Memory Automata

    Full text link
    The call-by-value language RML may be viewed as a canonical restriction of Standard ML to ground-type references, augmented by a "bad variable" construct in the sense of Reynolds. We consider the fragment of (finitary) RML terms of order at most 1 with free variables of order at most 2, and identify two subfragments of this for which we show observational equivalence to be decidable. The first subfragment consists of those terms in which the P-pointers in the game semantic representation are determined by the underlying sequence of moves. The second subfragment consists of terms in which the O-pointers of moves corresponding to free variables in the game semantic representation are determined by the underlying moves. These results are shown using a reduction to a form of automata over data words in which the data values have a tree-structure, reflecting the tree-structure of the threads in the game semantic plays. In addition we show that observational equivalence is undecidable at every third- or higher-order type, every second-order type which takes at least two first-order arguments, and every second-order type (of arity greater than one) that has a first-order argument which is not the final argument

    Program Equivalence with Names

    Get PDF
    The nu-calculus of Pitts and Stark was introduced as a paradigmatic functional language with a very basic local-state effect: references of unit type. These were called names, and the motto of the new language went as follows: "Names are created with local scope, can be tested for equality, and are passed around via function application, but that is all." Because of this limited framework, the hope was that fully abstract models and complete proof techniques could be obtained. However, it was soon realised that the behaviour of nu-calculus programs is quite intricate, and program equivalence in particular is surprisingly difficult to capture. Here we shall focus on the following "hard" equivalence. new x,y in f. (fx=fy) == f. true We shall examine attempts and proofs of the above, explain the advantages and disadvantages of the proof methods and discuss why program equivalence in this simple language remains to date a mystery

    Probabilistic Programming Semantics for Name Generation

    Full text link
    We make a formal analogy between random sampling and fresh name generation. We show that quasi-Borel spaces, a model for probabilistic programming, can soundly interpret Stark's ν\nu-calculus, a calculus for name generation. Moreover, we prove that this semantics is fully abstract up to first-order types. This is surprising for an 'off-the-shelf' model, and requires a novel analysis of probability distributions on function spaces. Our tools are diverse and include descriptive set theory and normal forms for the ν\nu-calculus.Comment: 29 pages, 1 figure; to be published in POPL 202

    Fragments of ML decidable by nested data class memory automata

    Get PDF
    The call-by-value language RML may be viewed as a canonical restriction of Standard ML to ground-type references, augmented by a “bad variable” construct in the sense of Reynolds. We consider the fragment of (finitary) RML terms of order at most 1 with free variables of order at most 2, and identify two subfragments of this for which we show observational equivalence to be decidable. The first subfragment, RMLP−Str2⊢1, consists of those terms in which the P-pointers in the game semantic representation are determined by the underlying sequence of moves. The second subfragment consists of terms in which the O-pointers of moves corresponding to free variables in the game semantic representation are determined by the underlying moves. These results are shown using a reduction to a form of automata over data words in which the data values have a tree-structure, reflecting the tree-structure of the threads in the game semantic plays. In addition we show that observational equivalence is undecidable at every third- or higher-order type, every second-order type which takes at least two first-order arguments, and every second-order type (of arity greater than one) that has a first-order argument which is not the final argument
    corecore