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Abstract. Register automata are one of the most studied automata mod-
els over infinite alphabets with applications in learning, systems modelling
and program verification. We present an equivalence checker for determin-
istic register automata, called DEQ, based on a recent polynomial-time
algorithm that employs group-theoretic techniques to achieve succinct
representations of the search space. We compare the performance of
our tool to other available implementations, notably the learning library
RALib and nominal frameworks LOIS and NLambda.
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1 Introduction

Register automata [10,18] are one of the simplest models of computation over
infinite alphabets. They operate on an infinite domain of data by storing data
values in a finite number of registers, where the values are available for future
comparisons or updates. The automata can also recognise when a data value
does not appear in any of the registers and, moreover, when a data value has not
been seen so far at all [23].

Recent years have seen a surge of interest in models over infinite alphabets
due to their ability to account for numerous computational scenarios with un-
bounded data. For instance, XML query languages [21] need to compare attribute
values that originate from infinite domains. In programming verification, in turn,
there is need for abstractions of computations over infinite datatypes [10] as
well as scenarios involving unbounded resources, such as Java objects or ML
references. The expressivity of register automata in this context led to a number
of applications, such as run-time verification [8] and equivalence checking for
fragments of ML [17] and Java [15]. More broadly, they have been advocated as
a convenient formalism for systems modelling, which fuelled interest in extending
learning algorithms to the setting [20,4,1,6,14].

This paper presents DEQ), a tool for verifying language equivalence of register
automata in the deterministic case (the nondeterministic case is undecidable [18]).
As many of the above-mentioned applications rely on equivalence checking, several
implementations are available online for comparison. We compare the performance
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of our tool to the equivalence routines built on RALib [5], which is a library for
active learning algorithms for register automata, and two other implementations
programmed in LOIS [12] and NLambda [11]. The latter two are frameworks for
manipulating infinite structures in an imperative and functional style respectively,
which make it possible to define register automata as first-class data and, in
particular, naturally adapt the standard Hopcroft-Karp routine [9] to this setting.

Our experiments show that DEQ compares favourably to its competitors.
At the theoretical level, this is thanks to being based on a recently proposed
polynomial-time algorithm [16], which was the first polynomial-time algorithm
for the problem. The algorithm improves upon the “naive” algorithm that would
expand a register automaton to a finite-state automaton over a sufficiently large
finite alphabet, often incurring an exponential blow-up. The implementation from
RALib is similar in spirit to the naive approach but it incorporates a number
of tricks used to handle symmetry. On the other hand, LOIS and NLambda
represent infinite entities using first-order formulas and employ SMT solvers to
evaluate the resultant programs. In particular, the equivalence-testing routine
coded in NLambda has recently been used as part of an automata learning
framework [14]. Ours is also the only tool that can handle global freshness, i.e.
the recognition/generation of values that have not been seen thus far during the
course of computation. This is an important feature in the context of programming
languages that makes it possible to model object creation faithfully.

Register automata Throughout the paper, we let D be an infinite set (alpha-
bet). Its elements will be called data values. Register automata are a simple model
for modelling languages and behaviours over such an alphabet. They operate
over finitely many states and, in addition, are equipped with a finite number of
registers, where they can store elements of D. Each automaton transition can
refer to the registers by requiring e.g. that the data value from a specific register
be part of the transition’s label or, alternatively, that the label feature a fresh
data value (either not currently in the registers, or globally fresh — never seen
before), which could then be stored in one of the registers. Formally, transition
labels are pairs (¢, d) where t is a tag drawn from a finite alphabet and d € D. We

write ¢ LN ¢’ to indicate that the transition is labelled with (¢, d) where ¢ is a tag

and d is the data value currently stored in register . Similarly, ¢ LN ¢’ describes
transitions labelled with (¢, d), where d can be any element of D that is currently
not stored in any registers. Once the transition fires, d will be stored in register 3.

In contrast, ¢ ﬁ ¢ captures transitions with labels (¢, d), where d ranges over
all elements of D that have not yet been encountered by the automaton (i.e. d is
“globally fresh”).

As an example, consider the automaton in Figure 5 (left), which simulates
a bounded “fresh” stack of size 2. By the latter we mean that the simulated
stack can store up to two 2 distinct data values. The automaton starts from state
p1, with all its registers empty (erased). It can make a transition labelled with
(push, dy), for any data value dj, store it in register 1, and go to state ps. From
there, it can either pop the data value already stored in register 1 and go back to
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Fig. 1. Two implementations of a size-2 “fresh” stack.

p1 (also erasing the register), or push another data value by making a transition
(push, ds), for any data value do # d;, and go to state ps. From there, it can pop
the data value already stored in register 2 (and erase that register) and go to
state p1, and so on.

The automaton in Figure 1 (right) also simulates a 2-bounded fresh stack, but
it does so using globally fresh transitions. That is, each (push, d) transition made
by the automaton is going to have a data value d that is different from all data
values used before. We can thus see that bisimilarity of the two automata will
fail after one pop: the LHS automaton will erase a data value from its registers
and, consequently, will be able to push the same data value again later. The
automaton on the RHS, though, will always be pushing globally fresh data values.
In other words, the following trace:

(push, dy) (pop, d1) (push, dy)

is permitted by the automaton on the LHS, but not by the RHS one.

2 Implementation

We have developed command-line tool for deciding language equivalence of this
class of automata that is implemented in Haskell*. The two input automata
(DRA) are specified using an XML file format which is parsed using the zml-
conduit library [22] and internalised as a pair of Haskell records. At the same time,
a dictionary of symbols is created so that user-specified strings (e.g. the names of
states) can be mapped to integers for efficiency. The algorithm presented in [16]
is, strictly speaking, given for computing bisimilarity of two states within the
same automaton. Hence, our implementation first transforms the input, which is
an instance of the language equivilance problem for two DRA, into an instance of
the Bisimilarity problem, by constructing the disjoint union of the two automata.

Our algorithm exploits the observation that in the deterministic setting,
language equivalence and bisimilarity are closely related, and it attempts to build
a bisimulation relation incrementally. To avoid potential exponential blow-ups, we
rely on symbolic representations based on (partial) permutations, which capture
matches between register content in various configurations. The outline of the
algorithm is presented below.

4 The tool and its source are available at http://github.com /stersay/deq
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1 R = Rinit; A = {uo};
2 while (A is not empty) do

3 u = A.get();

4 if u¢ Gen(R)

5 if w fails single-step testing return NO;
6 A.add(succ-set(u));

7 A = A.add({u});

8 R = R updated with u,

o return YES

The algorithm is similar in flavour to the classic Hopcroft-Karp algorithm
for DFA [9], which maintains sets of pairs of states. In contrast, we work with
four-tuples (g1, 0, g2, h), where ¢1, g2 are states, o is a partial permutation and
h is a parameter related to the number of registers. DEQ represents partial
permutations using an implementation of immutable integer maps that is based
on big endian patricia trees [13]. Most operations complete in amortized time
O(min(n, W)), where W is the number of bits of an integer. This is important
because manipulating partial permutations through insertion and deletion is at
the core of the innermost loop (line 8).

Starting from a four-tuple ug, which represents the input equivalence problem,
our implementation uses a finite sequence data type (based on 2-3 finger trees, for
constant time access to either end) to represent a queue A (initialised to {ug})
[19]. This sequence is used to store the four-tuples that still need to be scrutinised
to establish the original equivalence. Since the total number of possible four-tuples
is exponential in the number of registers (because one component is a partial
permutation over the register indexes), the algorithm prescribes a sophisticated
compact representation called a generating system. The generating system R
represents the set of four-tuples that have already been analysed (its initial value
Rinit contains four-tuples with identical states and identity permutations).

Each iteration of the loop considers a four-tuple u taken from the queue (line
3): first we check if it is already generated by the generating system accumulated
so far (line 4). Querying the generating system for membership requires deciding if
a permutation belongs to a permutation group generated by R. For this purpose,
DEQ uses an implementation of the celebrated Schreier-Sims polynomial time
group membership algorithm provided by the HaskellForMaths library [2].

If the four-tuple is already generated we move on to the next iteration.
Otherwise we check if the configurations represented by u can withstand a one-
step attack in the corresponding bisimulation game (line 5). If u fails single-step
testing, the algorithm can immediately terminate and return NO. If u passes the
tests, the algorithm generates a set succ-set(u) consisting of “successor four-tuples’
that are added to A for future verification (lines 6-7). In this case, the generating
system is extended to represent u as well (line 8). For efficiency reasons, DEQ
fuses these two parts of the algorithm together. A collection of successors is
computed by looping over all outgoing transitions relevant to u, and failing if
any cannot be constructed. In what follows we refer to this as the inner loop of
the algorithm. The successor four-tuples are then added to the queue and the
generating system R is extended so that it generates w.

)
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Fig. 2. DEQ and NLambda. Fig. 3. DEQ and LOIS.

The polynomial-time complexity of the algorithm stems from several results
in group theory and computational group theory. For instance, in order to check
u & Gen(R), we need to perform group membership testing [7] and termination
of the loop follows from the fact that subgroup chains of symmetric groups can
only have linear length [3]. All the theoretical details related to the Algorithm
can be found in [16].

3 Case Studies

In theory the worst-case performance of the algorithm is dominated by the
complexity of permutation group membership testing, which is O(n%) for a
straightforward implementation of the Schreier-Sims algorithm. In the following
series of case studies we examine the performance of our implementation for
particular families of inputs. In this way we can highlight certain interesting
examples and also try to gauge the expected performance outside of the worst
case, in particular where the group structure is quite simple.

All the experiments were carried out on the CAV’19 AE virtual machine,
running on a Windows 10 host equipped with an Intel Core i7-8650U CPU
running at 1.9GHz and 8GB of RAM. For the purposes of running the tools
LOIS and RALib-EqCheck (see below), Z3 4.4.1 and OpenJDK 1.8.0_191 were
installed on the virtual machine.

3.1 Stack data structure

There are natural situations in which the symbolic bisimulations are quite sim-
ple, such as when the number of tuples depends only on |@|. This is the case
for automata simulating a finite stack, which have been considered within the
nominal automata learning framework of [14]. In this case study, we describe two
families of automata simulating finite stacks, indexed by the stack size. Here and
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Fig. 4. DEQ and RALib-Eqcheck. Fig. 5. Stacks scaling.

in the subsequent examples, all states will be assumed final.

LR-stack of size n RL-stack of size n
— Registers: 1,...,n — Registers: 1,...,n
— States: p1,...,Pn+1 with p; initial — States: qi1,...,qn+1 with g1 initial

Available registers at ¢;: [n—i+2,n)
Transitions: for ¢ € [1, n]:

— Available registers at p;: [1,7 — 1]
— Transitions: for ¢ € [1,n]:

push,i® push,(n—i+1)*®
Pi — > Pi+1, Qi —— qi+1,
pop, i pop,n—i+1
Pi+1 — Di- qiv1 — qi

In both families of machines, the registers under their natural order are used
in order to store the elements of a stack. Although LR-stacks push data into the
registers from left to right and RL-stacks push data into the registers from right
to left, this is an internal difference and LR-stacks of size n and RL-stacks of
size n are language equivalent. In particular, the equivalence can be witnessed
by a symbolic bisimulation in which there is exactly one tuple for each state
of the two machines. Our algorithm will compute this bisimulation after O(n)
iterations, making O(n) group membership queries.

Hence, we can use this example to examine whether there is any significant
overhead to using a blackbox group membership algorithm in practice, when
the groups are easy to describe. By considering the plot of running time against
stack size in Figure 5, we conclude that any overhead is insignificant since growth
remains roughly quadratic in n (a second degree polynomial has been fitted to
the data using R’s Im algorithm).

Tool comparison We can encode this family of examples using the frameworks of
LOIS [12] and NLambda [11], and directly as a set of inputs to RALib-EqCheck®

5 We used an unreleased implementation of the equivalence checking algorithm that
was kindly communicated to us by F. Howar.
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[5]. We use a vector in the former framework and a list in the latter framework in
order to represent the sequence of registers. However, these other tools can only
handle instances of relatively small size. This is not surprising, since they support
classes of automata that are much more general. In contrast, the polynomial
time algorithm implemented by DEQ is highly specialised to a specific subclass.
Moreover, in the two frameworks, the automata cannot be specified directly.
Instead, they need to be generated in the internal language, which in our case
generates many inequality constraints. Hence, we have restricted our comparison
to stacks of size at most 15. The scatter plots in Figures 2, 3 and 4 show the
running times of the three implementations compared on all possible pairs of stack
sizes®. The results show quite clearly that DEQ can determine (in)equivalence
several orders of magnitude faster than the other tools.

3.2 Global simulating local freshness

In this case study we maintain a relatively simple group structure in the generating
system, but introduce globally fresh transitions. Due to the use of global freshness,
no other tools will process this example. When the history of a run is small, locally
fresh transitions can be simulated by globally fresh transitions. This behaviour is
captured by the following automata. Since tags are not needed in this example,
we shall omit them from the definition.

GloLo* of sizen

— Registers: 1,...,n

— States: 0,...,n + 1 with 0 initial

— Available registers at state i € [1,n]: [1,1]
Available registers at state n + 1: [1,n]

® *
— Transitions: i ~— i+ 1, for i € [0,n — 1], and n = n + 1.

GloLo® is an automaton that reads r globally fresh names and then a single locally
fresh name. GloLo® behaves similarly, except that the final name is required to
be globally fresh. Let us distinguish the two sets of states of these two machines
by labelling the former p; and the latter g;, for each state i.

The reason that pg is bisimilar to ¢q is that the machines will read exactly n
globally fresh names before reaching state n, and all will be stored in the registers
of both machines. Next, one machine reads a locally fresh name, whilst the other
reads a globally fresh name, but because all of the history of the computation
is stored in registers, local and global freshness coincide, and the configurations
are bisimilar. Associated run times are plotted in Figure 6. It can be seen that
the management of the history that is required by supporting global freshness
adds a linear factor: the curve displayed is a cubic polynomial, fit using R’s Im
algorithm.

5 The encoding used for the comparison with RALib-EqCheck was slightly modified to
reflect certain structural constraints imposed by that tool. This alternative encoding
is larger and hence runtimes are not comparable with the other two experiments.
Note that the timing data for RALib-EqCheck contains JVM start-up time.
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3.3 Complex partial permutations represented compactly

In the previous case, there was at most one partial permutation associated with
every pair of states in the symbolic bisimulation. Here we consider a family of
instances in which the collection of partial permutations occurring in constructed
bisimulations can be quite complicated.

Cpt of size n

— Registers: 1,...,n
States: g1, ..., Gnt1
Available registers at state i: [1,7 — 1]

Transitions: g; AT Gir1 and ¢; g, gi+1 for i € [1,n] and j € p(g;).

t;,i® ti,J ..
Gn+1 — Gn+1 and gp41 —= gni1, for i,7 € [1,n).

where p(q) is the set of available registers at state ¢. In this family, for size
n we assume that the automaton runs over an alphabet with n distinct tags
{t1,...,tn}. We compare the language of such an automaton with the language
of the corresponding automaton from a family CptR, which have essentially the
same structure, but utilise the registers in the opposite order.

In this automaton, the registers are initially populated over the course of
the first n states, with the Cpt automaton and the CptR automaton populating
registers in the opposite order. Then, when both automata reach state g,,, there is
the possibility to store a fresh letter in any register or read from any register, and
return to state g,. Consequently, the correspondence between these states in the
Cpt and CptR automata can become complex. However, since all transitions are
available to both automata, they will nevertheless be bisimilar, and hence accept
the same language. Running times are plotted in Figure 7; the curve displayed is
a fourth-degree polynomial.
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