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Abstract. We present a trace model for Strachey parametric polymorphism. The
model is built using operational nominal game semantics and captures parametric-
ity by using names. It is used here to prove an operational version of a conjecture
of Abadi, Cardelli, Curien and Plotkin which states that Strachey equivalence
implies Reynolds equivalence in System F.

1 Introduction
Parametricity was first introduced by Strachey [22] as a way to characterise the behaviour
of polymorphic programs as being uniform with respect to the type of the arguments
provided. He opposed this notion to ad-hoc polymorphism, where a function can produce
arbitrarily different outputs when provided inputs of different types (for example an
integer and a boolean). To formalise this notion of parametricity, Reynolds introduced
relational parametricity [21]. It is defined using an equivalence on programs, that we
call Reynolds equivalence and is a generalisation of logical relations to System F. This
equivalence uses arbitrary relations over pairs of types to relate polymorphic programs.
So a parametric program that takes related arguments as input will produce related results.
Reynolds parametricity has been developed into a fundamental theory for studying
polymorphic programs [23,1,20].

Following results of Mitchell on PER-models of polymorphism [18], Abadi, Cardelli,
Curien and Plotkin [1,20] introduced another, more intentional notion of equivalence,
called Strachey equivalence. Two terms of System F are Strachey equivalent whenever,
by removing all their type annotations, we obtain two βη-equivalent untyped terms.
The authors conjectured that Strachey equivalence implies Reynolds equivalence (the
converse being easily shown to be false).

In this paper we examine a notion of Reynolds equivalence based on operational
logical relations, and prove that, for this notion, the conjecture holds. To do so, we intro-
duce a trace model for System F based on operational nominal game semantics [14,12].
Terms in our model are denoted as sets of traces, generated by a labelled transition
system, which represent interactions with arbitrary term contexts. In order to abstract
away type information from inputs to polymorphic functions, our semantics uses names
to model such inputs. The idea is the following: since names have no internal structure,
the function has no choice but to act “the same way” on such inputs, i.e. be parametric.
Our trace model yields a third notion of equivalence: trace equivalence (i.e. equality of
sets of traces). Then, the result is proven by showing that trace equivalence is included
in (operational) Reynolds equivalence, while it includes Strachey equivalence.
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∆;Γ,x ∶ θ ⊢M ∶ θ′

∆;Γ ⊢ λxθ.M ∶ θ → θ′
∆;Γ ⊢M ∶ θ → θ′ ∆;Γ ⊢ N ∶ θ

∆;Γ ⊢MN ∶ θ′

(x ∶ θ) ∈ Γ
∆;Γ ⊢ x ∶ θ

∆,X;Γ ⊢M ∶ θ
∆;Γ ⊢ ΛX.M ∶ ∀X.θ

∆;Γ ⊢M ∶ ∀X.θ
∆;Γ ⊢Mθ′ ∶ θ{θ′/X}

(λx.M)N =βη M{N/x}
(ΛX.M)θ =βη M{θ/X}
λx.Mx =βη M

ΛX.MX =βη M

Fig. 1. Typing rules and βη-equality axioms.

The traces in our model are formed of moves, which represent interactions between
the modelled term (the Player) and its context (the Opponent): either of Player or
Opponent can interrogate the terms provided by the other one, or respond to a previous
such interrogation. These moves are called questions and answers respectively. Names
enter the scene when calling terms which are of polymorphic type, in which case the
calling party would replace the actual argument type θ with a type name α, and record
locally the correspondence between α and θ. Another use of names in our model is for
representing terms that are passed around as arguments to questions. These are called
computation names, and are typed according to the term they each represent.

2 Definition of System F and Parametricity
We start off by giving the definitions of System F and of the parametric equivalence
relations we shall examine on it. The grammar for System F is standard and given by:

Type ∋ θ, θ′ ∶∶= X ∣ θ → θ′ ∣ ∀X.θ
Term ∋M,N ∶∶= λxθ.M ∣ ΛX.M ∣MN ∣Mθ

We write x, etc. for (term) variables, sourced from a countable set Var; and X , etc. for
type variables, taken from TVar. We define substitutions of open variables of either
kind in the usual capture-avoiding way. For instance, the term obtained by consecutively
applying substitutions η ∶ Var ⇀ Term and δ ∶ TVar ⇀ Type on M is written M{η}{δ}.

Terms are typed in environments ∆;Γ , where ∆ is a finite set of type variables, and
Γ is a set {x1 ∶ θ1, . . . , xm ∶ θm} of variable-type pairs. The typing rules are given in
Figure 1. The operational semantics we examine is βη-equality, defined as the least
syntactic congruence =βη that includes the axioms given on the RHS part of Figure 1.

We shall use the following common polymorphic encodings:

– Bool = ∀X. X →X →X , true = ΛX.λxX.λyX.x and false = ΛX.λxX.λyX.y,
– Unit = ∀X. X →X and id = ΛX.λxX .x.

Reynolds Equivalence We next introduce logical relations for System F. First, we let
Rel be the set of all typed relations between closed terms that are compatible with =βη:

Rel = {(θ1, θ2,R) ∣ R ⊆ Term ×Term ∧ ∀(M1,M2) ∈ R. ⋅; ⋅ ⊢Mi ∶ θi
∧ ∀M ′

1 =βη M1.∀M ′
2 =βη M2. (M ′

1,M
′
2) ∈ R}

Logical relationsRJθKδ are defined below, indexed by environments δ ∶ TVar ⇀ Rel:

RJXKδ = R when δ(X) = (_,_,R)
RJ∀X.θKδ = {(M1,M2) ∣ ∀(θ1, θ2,R) ∈ Rel. (M1θ1,M2θ2) ∈RJθKδ⋅[X↦(θ1,θ2,R)]}
RJθ1→ θ2Kδ = {(M1,M2) ∣ ∀(N1,N2) ∈RJθ1Kδ. (M1N1,M2N2) ∈RJθ2Kδ}
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We can now define the first notion of parametric equivalence for System F.

Definition 1. Given terms ∆;Γ ⊢ M1,M2 ∶ θ, we say that they are Reynolds equiva-
lent, and write ∆;Γ ⊢M1 ≃log M2 ∶ θ, if:

∀δ ∈RJ∆K.∀(η1, η2) ∈RJΓ Kδ. (M1{η1}{δ1},M2{η2}{δ2}) ∈RJθKδ

where RJ∆K = dom(∆)→ Rel, δ1 = {(X,θ1) ∣ δ(X) = (θ1,_,_)} (similar for δ2) and
RJΓ Kδ = {(η1, η2) ∈ (dom(Γ )⇀ Term)2 ∣ ∀(x, θ′) ∈ Γ. (η1(x), η2(x)) ∈RJθ′Kδ}.

The following result is standard [21].

Theorem 2 (Fundamental Property). If ∆;Γ ⊢M ∶ τ then ∆;Γ ⊢M ≃log M ∶ θ.

Remark 3. Note that our definition of Reynolds equivalence does not coincide with
either of the definitions given in [1,20]: therein, parametricity is defined using relational
logics (and accompanying proof systems), whereas here we use quantification over
concrete relations over closed terms.

Strachey Equivalence Another notion of parametric equivalence is defined by means of
erasing types from terms. We define the type erasure erase(M) of a term M by:

erase(ΛX.M) = erase(M) erase(MN) = erase(M)erase(N)
erase(λxθ.M) = λx.erase(M) erase(Mθ) = erase(M)

and erase(x) = x. Thus, erase(M) is an untyped λ-term. Below we overload =βη to
also mean βη-equality in the untyped λ-calculus.

Definition 4. Given terms∆;Γ ⊢M1,M2 ∶ θ, we say that they are Strachey equivalent
if erase(M1) =βη erase(M2).

It was conjectured in [1,20] that Reynolds equivalence includes Strachey equivalence.
We prove this holds for the version of Reynolds equivalence given in Definition 1.

Theorem 5. Any two Strachey equivalent terms are also Reynolds equivalent.

It is interesting to think why a direct approach would not work in order to prove this
conjecture. Given Strachey equivalent terms M1,M2 of type Bool, suppose we want to
prove them Reynolds equivalent. We therefore take (θ1, θ2,R) ∈ Rel, (N1,1,N2,1) ∈ R,
and (N1,2,N2,2) ∈ R, and aim to prove that (M1θ1N1,1N1,2,M2θ2N2,1N2,2) ∈ R.
Ideally, we would like to prove that there exists j ∈ {1,2} s.t. for all i ∈ {1,2},
MiθiNi,1Ni,2 =βη Ni,j , but that seems overly optimistic. A first trick is to use Theo-
rem 2, to get thatM2 is related with itself. Thus, we get that (M2θ1N1,1N1,2,M2θ2N2,1N2,2) ∈
R, and it would suffice to prove M1θ1N1,1N1,2 =βη M2θ1N1,1N1,2 to conclude. How-
ever, our hypothesis is simply that erase(M1) =βη erase(M2).

A possible solution to the above could be to β-reduce both Miθ1N1,1N1,2, hoping
that the distinction between the two terms will vanish. Our trace semantics provides a
way to model the interaction between such a term Mi and a context ● θjNj,1Nj,2, and to
deduce properties about the normal form reached by their application via head reduction.
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3 A nominal trace semantics for System F
In this section we introduce a trace semantics for open terms which will be our main
vehicle of study for System F. The terms in our semantics will be allowed to contain
special constants representing any term that could fill in their open variables (these
be term or type variables). The use of names can be seen as a nominal approach to
parametricity: parametric types and values are represented in our semantics by names,
without internal structure. Thus, e.g. a parametric function is going to behave “the same
way” for any input, since the latter will be nothing but a name.

Our approach follows the line of work on nominal techniques [7,19] and nominal
operational game semantics [14,12]. We let the set of names be:

N = TN ⊎ CN

We therefore use two kinds of names: type names α,β ∈ TN; and computation names
c, d ∈ CN. We will range over arbitrary names by a and variants. We extend the syntax
of terms and types by including computation and type names as constants, and call the
resulting syntax namey terms and types:

M,N ∶∶= c ∣ x ∣ λxθ.M ∣ ΛX.M ∣MN ∣Mθ θ, θ′ ∶∶= α ∣X ∣ θ → θ′ ∣ ΛX.θ

A namey term or type is closed if it contains no free (type/term) variables – but it may
contain names. On the other hand, a value is a closed term in head normal form that
contains no names. We range over values with v and variants.

We will use the notation M̂, N̂ , and variants, to refer jointly to namey terms and
namey types. Namey terms are typed with additional typing hypotheses for the added
constants. These typings are made explicit in the trace model. By abuse of terminology,
we will drop the adjective “namey” and refer to the above simply as “terms” and “types”.
Formally speaking, namey terms and types form nominal sets (cf. Definition 8).

Note 6 (what do c’s and α’s represent?). A computation name c represents a term that
can replace the open variables of a term M . That is, in order to examine the semantics
of λxθ.M , we will look instead at M{c/x} where c a computation name of appropriate
type. Type names α have a similar purpose, for types.

Our trace semantics is built on top of head reduction, which is reminded next.
Moreover, we shall be using types in extended form, which determines the number and
types of arguments needed in order to fully apply a term of a given type.

Definition 7. The (standard) head reduction rules are given in Figure 2. Head normal
forms are given by the syntax on the LHS below,

Mhnf ∶∶= E[x] ∣ E[c] ∣ λxθ.Mhnf ∣ ΛX.Mhnf E ∶∶= ● ∣ EM ∣ Eθ

where E ranges over evaluation contexts (defined on the RHS). Evaluation contexts are
typed with types of the form θ↝ θ′. We write E ∶ θ↝ θ′ if we can derive ● ∶ θ ⊢ E ∶ θ′.

An extended type form is a sequence (τ1, ..., τn, ξ) with ξ ∈ TVar ∪ TN and, for
each i, τi ∈ Type ∪ {∀X ∣ X ∈ TVar}. Formally, the extended form of a type θ, written
ext(θ), is defined by:

ext(∀X.θ) = (∀X) ∶∶ ext(θ) ext(θ → θ′) = θ ∶∶ ext(θ′) ext(ξ) = (ξ)
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(λx.M)N →M{N/x}

(ΛX.M)θ →M{θ/X}
M →M ′

λx.M → λx.M ′

M →M ′

ΛX.M → ΛX.M ′

M →M ′ (∗)
E[M]→ E[M ′]

Fig. 2. Head reduction rules. Condition (∗) stipulates that M be not a Λ/λ-abstraction.

where we write h ∶∶ t for the sequence with head h and tail t (cf. list notation). Elements
of the form ∀X in these sequences are binders that bind to their right.

We let →∗ be the reflexive-transitive closure of →. It is a standard result that →∗

preserves typing and (strongly) normalises to head normal forms.
We finally introduce some infrastructure for working with objects with names.

Definition 8. We call a permutation π ∶ N → N finite if the set {a ∣ π(a) ≠ a} is finite,
and component-preserving if, for all a ∈ N, a ∈ TN iff π(a) ∈ TN.

A nominal set [7] is a pair (Z,∗) of a set Z along with an action (∗) from the set of
finite component-preserving computations of N on the set Z. For each z ∈ Z, the set of
names featuring in z form its support, written ν(z), which we stipulate to be finite.

In the sequel, when constructing objects with names (such as moves or traces) we
shall implicitly assume that these form nominal sets, where the permutation action is
defined by taking π ∗ z to be the result of applying π to each name in z.

3.1 Trace semantics preview

Before formally presenting the trace model, we look at some examples informally,
postponing the full details for the next section. Head-reduction brings terms into head
normal form. The trace semantics allows us to further ‘reduce’ terms of the form
E[cM̂1⋯M̂n], where c is some computation name. For such a term, following the game
semantics approach [3,11], our model will issue a move interrogating the computation c
on arguments M̂i, and putting E on top of an evaluation stack, denoted E . The move is
effectively a call to c, and E functions as a call stack which registers the calls that have
been made and are still pending. This will effectively lead to a labelled transition system
in which labels are moves issued by two parties: a Player (P), representing the modelled
term, and an Opponent (O) representing its enclosing term context.

Traces are sequences of moves, which in turn are tuples of names belonging to one
of these four classes, taking c ∈ CN and ai ∈ N for each i:

– Player questions c̄(a1, ..., an) (also P-questions),
– Opponent questions c(a1, ..., an) (also O-questions),
– PO-answers OKOK, and OP -answers OKOK.

Given a question move as above, we let its core name be c. We distinguish a computation
name cin ∈ CN, and call questions with core name cin initial. We define a trace T to be
a finite sequence of moves. Traces will be restricted to legal ones in Definition 12

In the following examples we give traces produced by simple System F terms. Traces
are formally produced by an LTS over configurations whose main component is an
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evaluation stack. An evaluation stack is a stack whose elements are typed evaluation
contexts, apart from the top element which can also be a typed term:

E ∶∶= E ′ ∣ (M,θ) ∶∶ E ′ E ′ ∶∶= ◊ ∣ (E, θ↝ θ′) ∶∶ E ′

We denote the empty stack with ◊. In the next two examples, for simplicity, configura-
tions shall only contain evaluation stacks.

Example 9. Recall that id = ΛX.λxX . x ∶ Unit and Unit = ∀X.X → X . The ex-
tended type of Unit, ext(Unit) = (∀X,X,X), indicates that id requires two argu-
ments in order to be evaluated: one type and one term of that given type. Thus, the traces
produced by id will start with an interrogating/calling move cin(α, c) of O:

– cin is the computation name assigned (by convention) to the term being evaluated
(in this case, id);

– α, c are names abstracting the actual type and term arguments which id is called on.
It is assumed that c is of type α.

Starting from the initial move cin(α, c), a trace of id can be produced as follows:

⟨◊⟩
cin(α,c)ÐÐÐÐ→ ⟨(idαc,α)⟩→ ⟨(c,α)⟩

c̄()
Ð→ ⟨(●, α↝α)⟩ OKOKÐÐÐ→ ⟨◊⟩

Thus, O starts the interaction by interrogating id with α, c. This results in idαc, which
gets head reduced to c. At this point, c is a head normal form of type α, and P can
answer the initial question cin(α, c). This is done in two steps. First, P further reduces
c by playing a move c̄() (here c takes 0 arguments as ext(α) = (α)), and pushes the
current evaluation context (●, α↝α) on the stack. O then responds by triggering a pair
of answers OKOK, which answer both questions played so far. The resulting trace is:
cin(α, c) ⋅ c̄() ⋅OKOK.

Note 10 (what are OKOK and OKOK?). As System F base types are type variables, there
is no real need for answer moves: a type X has no return values. For example, in the
game models of Hughes [9] and Laird [15], answer moves were effectively suppressed
(either explicitly, or by allowing moves c(⋯) to function as answers). Here, to give the
semantics an operational flavour, we introduce instead explicit ‘dummy’ answers OK.

Example 11. Consider now M = λfUnit. f ∶Unit→Unit. We have that ext(Unit→
Unit) = (Unit,∀X,X,X), and therefore M requires three arguments for its evalua-
tion: one term of type Unit, one type, and one term if that latter type. We can therefore
start a trace of M with an initial move cin(c1, α1, c) and continue as follows.

⟨◊⟩
cin(c1,α1,c2)ÐÐÐÐÐÐÐ→ ⟨(Mc1α1 c2, α1)⟩→ ⟨(c1 α1 c2, α1)⟩

c̄1(α2,c3)ÐÐÐÐÐ→ ⟨(●, α2↝α1)⟩

Thus, the initial move leads to Mc1α1c2, which in turn reaches the hnf c1α1c2, with
c1 ∶Unit, and at that point P needs to invoke c1 with arguments α1 and c2. These are
abstracted away by fresh names α2 and c3 respectively, which are passed as arguments
to c1. c3 in particular has type α2. The result of this invocation will be of type α2, which
is the hole type in (● ∶ α2↝α1). O can only produce a term of α2 by simply returning
c3. Similarly to before, this is done in two steps: by O playing c3(), which brings c2 (the
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term represented by c3) at the top of the stack, which in turn triggers a pair of answers
OKOK and brings c2 inside the context (● ∶ α2↝α1).

⟨(●, α2↝α1)⟩
c3()ÐÐ→ ⟨(c2, α2) ∶∶ (●, α2 ↝ α1)⟩

OKOKÐÐÐ→ ⟨(c2, α1)⟩
c̄2()ÐÐ→ ⟨(●, α1↝α1)⟩

OKOKÐÐÐ→ ⟨◊⟩

The latter step leaves us with (c2, α1), which reaches ◊ as in the previous example.

3.2 Definition of the LTS

We now proceed with the formal definition of the trace semantics. We start off with a
series of definitions setting the conditions for a trace to be legal.

The names appearing in a trace are owned by whoever introduces them. A move m
introduces a name a in a trace T if m is a question q(a⃗) with ai = a for some i. For
each A ∈ {O,P}, we let the set of names of T that are owned by A be:

A(T ) = {a ∈ N ∣ ∃m. m is an A-question in T ∧m introduces a}.

We will be referring to the names appearing in A(T ) as A-names.
Each move in a trace needs to be justified, i.e. depend on an earlier move (unless

the move is initial). Justification is defined in different ways for questions and answers.
Given a trace T and two moves m,m′ in T , we say that m′ justifies m when m′ is
before m in T and:

– m is a question with core name c and m′ introduces c, or
– m is an answer which answers m′ (and m′ is a question).

Answering of questions is defined as follows. Each answer (occurrence) m answers the
pair of question moves (m1,m2) containing the last two question moves in T which are
before m and have not been answered yet.

We can now define legality conditions for traces. Below, for A ∈ {O,P}, we say
that a move is A-starting if it is an A-question or an AA�-answer (where O� = P and
P � = O). Similarly, a move is A-ending if it is either an A-question or an A�A-answer.

Definition 12. A trace T is said to be legal when, for each A ∈ {O,P}:
1. A-ending moves can only be followed by A�-starting moves;
2. all moves in T are justified, apart from the first move which must be initial;
3. apart from cin, every name of T is introduced exactly once in it;
4. for each A-question with core name c ≠ cin, we have c ∈ A�(T );
5. if an AA�-answer answers (m,m′) then these are A- and A�-questions respectively.

The conditions above can be given names (suggesting their purpose) as follows: 1. alter-
nation, 2. justification, 3. well-introduction, 4. well-calling, 5. well-answering.

Each trace T has a complement, which we denote T � and is obtained from T by
switching O/P in all of its moves (i.e. each c(a⃗) becomes c̄(a⃗), OKOK becomes OKOK,
etc). T is legal iff T � is.

Traces are produced by use of a labelled transition system. The LTS comprises moves
as labels, and of configurations as nodes. Each configuration contains an evaluation stack
of terms and environments that need to be evaluated, as well as mappings containing
type/term information on names that have appeared so far. We introduced evaluation
stacks in the previous section. Here we shall restrict the allowed shapes thereof as follows.
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We let passive and active evaluation stacks be defined by the following two grammars
respectively, and take evaluation stacks to be E ∶∶= Epass ∣ Eactv,

Epass ∶∶= ◊ ∣ [(E,α↝ θ)] ∣ (E,α↝α′) ∶∶ Epass , Eactv ∶∶= [(M,θ)] ∣ (M,α) ∶∶ Epass ,

where θ ranges over closed types with ν(θ) = ∅, and ◊ is the empty stack.
The other two components of configurations will be maps γ and φ of the shape:

γ ∈ (CN⇀(Term ×Type))⊗ (TN⇀(Type × {U})), φ ∈ (CN⇀Type)⊗ (TN⇀{U}),

with F ⊗G = {f ∪ g ∣ f ∈ F ∧ g ∈ G}. U is a special “universe” symbol that represents
the type of types – it is only used for convenience. Then, in words:

– γ assigns term-type pairs to computation names, and type-U pairs to type names,
– φ assigns types to computation names, and U to type names.

The role of a map γ is to abstract away terms to computational names, and types to type
names. On the other hand, a map φ simply types names. In the LTS, when P wants to
interrogate an O-computation name c with some arguments, they will abstract away the
actual arguments to names, record the abstraction in γ, and call c on these names. On
the other hand, when O interrogates a P -computation name c with some move c(a⃗), we
will record in φ the types of the (new!) O-names a⃗.

The abstraction of arguments to names is instrumented by a dedicated operation AVal.
This operation assigns to each sequence ((M̂1, τ1), ..., (M̂n, τn), ξ), where (τ1, ..., τn, ξ)
is an extended type (i.e. the type of the computation name we want to call) and each M̂i

is a closed term or type (the i-th argument), a set of triples of the form (a⃗, γ, β) where:

– a⃗ is a sequence (a1, ..., an) of names (abstracting each of the arguments M̂i),
– γ is a map as above, with domain {a1, ..., an},
– β is the result type one gets after applying each ai for each τi.

The operator is formally defined next. In the same definition we introduce the semantics
of types, JθK, as sets of triples of the form (a⃗, φ, β), which represent all possible input-
output name tuples (a⃗, β) that are allowed for θ, including their typing φ.

Definition 13. Given a closed type θ (which may contain type names), we let its seman-
tics be JθK = Jext(θ)K, where the latter is defined inductively by:

J(α)K = {(ε, ε,α)}
Jθ ∶∶ LK = {((c, a⃗), φ ⋅ [c↦ θ], α) ∣ c ∈ CN, (a⃗, φ,α) ∈ JLK}

J∀X ∶∶ LK = {((β, a⃗), φ ⋅ [β ↦ U], α) ∣ β ∈ TN, (a⃗, φ,α) ∈ JL{α/X}K}

On the other hand, to each sequence ((M̂1, τ1), ..., (M̂n, τn), ξ) we assign a set of
abstract values AVal(((M̂1, τ1), ..., (M̂n, τn), ξ)) inductively by:

AVal((α)) = {(ε, ε,α)}
AVal((M,θ) ∶∶ L) = {((c, a⃗), γ ⋅ [c↦ (M,θ)], α) ∣ c ∈ CN, (a⃗, γ, α) ∈ AVal(L)}

AVal((θ,∀X) ∶∶ L) = {((β, a⃗), γ ⋅ [β ↦ (θ,U)], α) ∣ β ∈ TN, (a⃗, γ, α) ∈ AVal(L{β/X})}
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(INT) ⟨(M,θ) ∶∶ E , γ, φ⟩Ð→ ⟨(M ′, θ) ∶∶ E , γ, φ⟩ when M →∗ M ′ with M ′ a head normal form.

(OQ0) ⟨◊, γ, φ⟩
c(a1,...,an)ÐÐÐÐÐÐ→ ⟨[(Ma1⋯an, α)], γ, φ ⋅ φ′⟩

with γ(c) = (M,θ), ((a1, . . . , an), φ′, α) ∈ JθK and α ∈ dom(φ ⋅ φ′).

(OQ) ⟨(E,α↝ θ′) ∶∶ E , γ, φ⟩
c(a1,...,an)ÐÐÐÐÐÐ→ ⟨(Ma1⋯an, α′) ∶∶ (E,α↝ θ′) ∶∶ E , γ, φ ⋅ φ′⟩

with α ∈ dom(γ), γ(c) = (M,θ), ((a1, . . . , an), φ′, α′) ∈ JθK and α′ ∈ dom(φ ⋅ φ′) ∪ {α}.

(PQ0) ⟨[(E[cM̂1⋯M̂n], θ)], γ, φ⟩
c̄(a1,...,an)ÐÐÐÐÐÐ→ ⟨[(E,α↝ θ)], γ ⋅ γ′, φ⟩

when θ is a closed with empty support, ext(φ(c)) = (τ1, . . . , τn, ξ)
and ((a1, . . . , an), γ′, α) ∈ AVal((M̂1, τ1), . . . , (M̂n, τn), ξ).

(PQ) ⟨(E[cM̂1⋯M̂n], α′) ∶∶ E , γ, φ⟩
c̄(a1,...,an)ÐÐÐÐÐÐ→ ⟨(E,α↝ α′) ∶∶ E , γ ⋅γ′, φ⟩ when α′∈ dom(φ),

ext(φ(c)) = (τ1, . . . , τn, ξ) and ((a1, . . . , an), γ′, α) ∈ AVal((M̂1, τ1), . . . , (M̂n, τn), ξ).

(OA) ⟨(●, α↝ α) ∶∶ E , γ, φ⟩ OKOKÐÐÐ→ ⟨E , γ, φ⟩ when α ∈ dom(φ).

(PA) ⟨(M,α) ∶∶ (E,α↝ θ) ∶∶ E , γ, φ⟩ OKOKÐÐÐ→ ⟨(E[M], θ) ∶∶ E , γ, φ⟩ when α ∈ dom(γ) and M a hnf.

Fig. 3. Reduction rules for the LTS.

Both φ and γ are finite partial functions whose domains are sets of names. For such
maps, the extension notation we used e.g. in φ ⋅ [c↦ z] (for appropriate z) means fresh
extension: φ ⋅[c↦ z] = φ∪{(c, z)} and given that c ∉ dom(φ). This notation is extended
to whole maps: e.g. φ ⋅φ′ = φ∪φ′ and given that dom(φ)∩dom(φ′) = ∅. Moreover, for
each map γ we write fst(γ) for its first projection: fst(γ) = {(a, M̂) ∣ γ(a) = (M̂,_)}.
Similarly, second projection is given by: snd(γ) = {(a,Z) ∣ γ(a) = (_, Z)}.

Definition 14. A configuration is a triple ⟨E , γ, φ⟩ where E is an evaluation stack and
γ and φ are as above. The reduction rules of the LTS are given in Figure 3. We write
Tr(C) for the set of traces generated by a configuration C.

Given a typed term ∆;Γ ⊢M ∶ θ, with ∆ = {X1, . . . ,Xn}, Γ = {x1 ∶ θ1, . . . , xm ∶
θm}, we set ⟨∆;Γ ⊢M ∶ θ⟩ = ⟨◊, [cin ↦ (M̃, θ̃)], ε⟩ and

J∆;Γ ⊢M ∶ θK = {T ∈ Tr(⟨∆;Γ ⊢M ∶ θ⟩) ∣ T has at most one initial move }

where θ̃ = ∀X1. . . .∀Xn.θ1 → ⋯→ θm → θ and M̃ = ΛX1. . . . ΛXn.λx
θ1
1 . . . . λx

θm
m .M .

A configuration is active (resp. passive) if its evaluation stack is so. An active
configuration stands for a term being computed and it may only produce P -moves. A
passive configuration, on the other hand, stands for a scenario where O is next to play.
Moreover, the map φ in a configuration contains information on the O-names that have
been played, i.e. dom(φ) contains O-names, while dom(γ) contains P -names.

To better grasp Figure 3 let us consider an initial configuration ⟨◊, [cin ↦ (M,θ)], ε⟩
and look at its traces, for some closed term M (so no need for M̃, θ̃) with empty support.

– At the beginning, the only rule that can be applied is (OQ0), whereby O inter-
rogates the term M by issuing a move cin(a⃗). The names a⃗ are selected from JθK and
represent arguments thatO fully applies the termM on. Since θ has empty support, its ex-
tended form is of the shape (τ1, ..., τn,X) withX bound by one of the τi’s. Consequently,
when the names a1, ..., an are applied for τ1, ..., τn, the variable X will be replaced by
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some type name α. The rule makes this explicit, by requiring that (a⃗, φ′, α) ∈ JθK. Thus,
writing φ0 instead of φ′ and setting γ0 = [cin ↦ (M,θ)], the transition brings us to a
configuration ⟨[(Ma⃗,α)], γ0, φ0⟩, where dom(φ0) = {a1, ..., an}.

– At this point, the term Ma⃗ can be reduced using head reduction and brought to
head normal form. Applying the (INT) rule we reach some ⟨[(E[cM̂1⋯M̂k], α)], γ0, φ0⟩.

– We next interrogate the computation name c. The latter must have come from the
a1, ..., an that were applied to M , hence is an O-name. To interrogate it, P plays a ques-
tion c̄(a⃗′), using the (PQ) rule and assuming (a⃗′, γ′, α′) ∈ AVal(((M̂1, τ

′
1), ..., (M̂k, τ

′
k), ξ)),

φ0(c) = θ′, ext(θ′) = (τ ′1, ..., τ ′k, ξ). This leads to ⟨[(E,α′↝α)], γ1, φ0⟩ (γ1 = γ0 ⋅ γ′).
– We are now at a passive configuration, where E has been stored on the stack and

O is required to produce a response of type α′. By definition of AVal, either α′ = α or
α′ is in a′1, ..., a

′
k and hence belongs to P . In the latter case, O can only produce such a

response by calling back P , using rule (OQ), playing an O-question and adding a new
term on the evaluation stack. In the former case, O would directly respond with a hnf of
type α, say N . But, since E ∶ α↝α and therefore E = ●, P would simply reply back
playing N again. To avoid this copycat of hnf’s, we simply play an OP -answer and
remove the top of the evaluation stack – this is what the (OA) rule achieves.

Example 15. In Figure 4 we include example traces for terms M1,M2 ∶Unit→Unit
(taken from [1], Instance 3.25) and for the Church numerals Mk ∶Nat. The former pair
is an instance of Theorem 21 – Strachey equivalence implies trace equivalence.

In our scenario above we started from a passive configuration with empty stack and
a singleton γ. A different way to produce a trace is to start from an active configuration
with a stack containing only a term E[cinM̂1⋯M̂n], in which case the rule (PQ0) would
commence the trace. More generally, we call a configuration C with stack E :

– a term configuration, if E = ◊ or the bottom element of E has type α or α↝α′;
– a context configuration, if the bottom of E has type θ or α↝ θ, and θ is a closed

with empty support.
Each reduction sequence in the LTS can only contain either term or context configura-
tions. In our discussion above and in Example 15 we examine the semantics of terms,
and therefore use term configurations. In later sections, when we shall start looking at
the semantics of contexts, we will be using context configurations as well.

While we have not defined leaves for our LTS, there is a natural notion of a trace
being “completed”. In particular, we call a trace T complete if all its questions have been
answered. We write CTr(C) for the set of complete traces generated from C. Term and
context configurations can both produce complete traces. Given a term configuration C

and a complete trace T , we write C ⇓T if C
TÐ→ C ′ and C ′ has an empty evaluation stack.

On the other hand, given a context configuration C, a complete trace T and a value v,

we write C ⇓T,v if C
TÐ→ C ′ and C ′ has an evaluation stack with a single element (v, θ).

Lemma 16. Given a term configuration C and T ∈ Tr(C), then T is complete iff C ⇓T .

We conclude this section by looking at some restrictions characterising actual config-
urations. We first extend fst to evaluation stacks by: fst(◊) = ◊ and fst((Z,_) ∶∶ E) =
Z ∶∶ fst(E).
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M1 = λfUnit. fUnit f ∶Unit→Unit, M2 = λfUnit.ΛX. f(X →X)(fX) ∶Unit→Unit,

and ext(Unit→Unit) = (Unit,∀X,X,X). Traces for M1 (left) and M2 (right):

⟨◊, γ0, ε, ε⟩ (γ0 = [cin ↦ (M1, θ)])
cin(c1,α1,c2)ÐÐÐÐÐÐÐ→ ⟨(M1 c1 α1 c2, α1), γ0, φ0⟩

Ð→ ⟨(c1 Unit c1 α1 c2, α1), γ0, φ0⟩
c̄1(α2,c3)ÐÐÐÐÐ→ ⟨(●α1 c2, α2 ↝ α1), γ1, φ0⟩
c3()ÐÐ→ ⟨(c1, α2) ∶∶ (●α1 c2, α2 ↝ α1), γ1, φ0⟩
OKOKÐÐÐ→ ⟨(c1 α1 c2, α1), γ1, φ0⟩
c̄1(α

′

2,c
′

3)ÐÐÐÐÐ→ ⟨(●, α′2 ↝ α1), γ2, φ0⟩
c′3()ÐÐ→ ⟨(c2, α′2) ∶∶ (●, α′2 ↝ α1), γ2, φ0⟩
OKOKÐÐÐ→ ⟨(c2, α1), γ2, φ0⟩
c̄2()ÐÐ→ ⟨(●, α1↝α1), γ1, φ0⟩

OKOKÐÐÐ→ ⟨◊, γ1, φ0⟩

⟨◊, γ′0, ε, ε⟩ (γ′0 = [cin ↦ (M2, θ)])
cin(c1,α1,c2)ÐÐÐÐÐÐÐ→ ⟨(M2 c1 α1 c2, α1), γ′0, φ0⟩

Ð→ ⟨(c1(α1 → α1)(c1α1)c2, α1), γ′0, φ0⟩
c̄1(α2,c3)ÐÐÐÐÐ→ ⟨(● c2, α2 ↝ α1), γ′1, φ0⟩
c3()ÐÐ→ ⟨(c1α1, α2) ∶∶ (● c2, α2 ↝ α1), γ′1, φ0⟩
OKOKÐÐÐ→ ⟨(c1 α1 c2, α1), γ′1, φ0⟩Ð→ . . .

where:

φ0 = {c1 ↦Unit, α1 ↦ U , c2 ↦ α1}
γ1 = γ0 ⋅ [α2 ↦ (Unit,U), c3 ↦ (c1,Unit)]
γ2 = γ1 ⋅ [α′2 ↦ (α1,U), c′3 ↦ (c2, α′2)]
γ′1 = γ′0 ⋅ [α2 ↦ (α1→α1,U), c3 ↦ (c1α1, α1→α1)]

Mk = ΛX.λfX→X. λxX.Nf,x,k NMf ,Mx,k =Mf(Mf(. . . (Mf

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

Mx)) . . .)
ext(Nat) = (∀X,X →X,X,X)

Set γ0 = [cin ↦ (Mk,Nat)]. Reduction for Mk:

⟨◊, γ0, ε, ε⟩
cin(α1,cf ,cx)ÐÐÐÐÐÐÐ→ ⟨(Mk α1 cf cx, α1), γ0, φ0⟩ Ð→ ⟨(cf(Ncf ,cx,k−1), α1), γ0, φ0⟩

c̄f (c1)ÐÐÐ→ ⟨(●, α1 ↝ α1), γ1, φ0⟩
OKOKÐÐÐ→ ⟨◊, γ1, φ0⟩

c1()ÐÐ→ ⟨(cf(Ncf ,cx,k−2), α1), γ1, φ0⟩
c̄f (c2)ÐÐÐ→ ⟨(●, α1 ↝ α1), γ2, φ0⟩

OKOKÐÐÐ→ ⟨◊, γ2, φ0⟩ ⋯
ck−1()ÐÐÐ→ ⟨(cx, α1), γk−1, φ0⟩

c̄x()ÐÐ→ ⟨(●, α1 ↝ α1), γk−1, φ0⟩
OKOKÐÐÐ→ ⟨◊, γk−1, φ0⟩

where φ0 = {α1 ↦ U , cf ↦ (α1 → α1), cx ↦ α1} and γi = γi−1 ⋅ [ci ↦ (Ncf ,cx,k−i, α1)].

Fig. 4. Top: traces for two terms of type Unit→Unit. Bottom: traces for Church numeral Mk.

Definition 17. A configuration ⟨E , γ, φ⟩ is said to be legal when:
– dom(γ) ∩ dom(φ) = ∅ and ν(fst(E)) ∪ ν(cod(fst(γ))) ⊆ dom(φ);
– for all c ∈ dom(γ) ∩ CN, given γ(c) = (M,θ), we have ∆φ;Γφ,γ ⊢M ∶ θ{γv};
– if the top of E is (M,θ), then ∆φ;Γφ,γ ⊢ M ∶ θ̃ with either θ = α ∈ dom(γ) and
γ(α) = (θ̃,U), or θ = α ∈ dom(φ) and θ̃ = θ, or θ = θ̃ is a closed type with empty
support and E = [(M,θ)];

– If E = (M,α1) ∶∶ (E,α2 ↝ θ) ∶∶ E ′, either α1 = α2 or α1 ∈ dom(φ);
– for all (E,α ↝ θ) in E with α ∈ dom(γ), ∆φ;Γφ,γ ,⊢ E ∶ γv(α) ↝ θ, and either
θ = α ∈ dom(φ) or θ is a closed type with empty support, and (E,α ↝ θ) is at the
bottom of E ;
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– for all (E,α ↝ θ) in E with α ∈ dom(φ), we have θ = α and E = ●;
where ∆φ = dom(φ) ∩TN and Γφ,γ = {(x, θ{fst(γ)}) ∣ (x, θ) ∈ φ}.

Lemma 18. If C is a legal configuration and C
mÐ→ C ′ then C ′ is a legal configuration.

4 Parametricity in the Trace Model, and proof of Theorem 5
We next examine the relationship between trace equivalence and the notions of Reynolds
and Strachey equivalence. We prove that Strachey equivalence is included in trace equiv-
alence (Theorem 21), which in turn is included in Reynolds equivalence (Theorem 28).

4.1 From Strachey to trace equivalence

Definition 19. Let Ci = ⟨Ei, γi, φi⟩, for i = 1,2, be two configurations. We say that
C1 and C2 are Strachey-equivalent when E1 and E2 have the same size, dom(γ1) =
dom(γ2), φ1 = φ2 and:

– for all c ∈ dom(γ1), if γi(c) = (Mi, θi) then θ1 = θ2 and erase(M1)=βη erase(M2);
– if (Zi, αi) is the j-th element of Ei, then α1 = α2 and erase(Z1) =βη erase(Z2);

where E1 =βη E2 just if E1[x] =βη E2[x] for some/all fresh x.

The first inclusion can then be proven as follows.

Lemma 20. Given two Strachey-equivalent legal configurations C1,C2, if C1
mÐ→ C ′

1

for some m,C ′
1 then there is C2

mÐ→ C ′
2 such that C ′

1 and C ′
2 are Strachey-equivalent.

Theorem 21. For all Strachey-equivalent ∆,Γ ⊢M1,M2 ∶ θ, we have JM1K = JM2K.

Proof. Taking T ∈ J∆;Γ ⊢M1 ∶ θK, we prove that T ∈ J∆;Γ ⊢M2 ∶ θK by induction on
the length of T , using the previous lemma.

The inclusion above is strict. This is shown, for example, by the following terms
Mtrue,Mfalse ∶Unit→Unit, which are trace equivalent but not Strachey-equivalent:

Mb = λfUnit.ΛX.λxX .snd(f(Bool ×X)⟨b, x⟩) (b = true, false)

Here we use the impredicative encoding of product types [8]: θ1 × θ2 = ∀X.(θ1 → θ2 →
X) → X , ⟨M,N⟩ = ΛX.λfθ1→θ2→X .fMN and snd = λxθ1×θ2 .xθ2(λyθ1 .λzθ2 .z).
Setting γ0 = [cin ↦ (Mb,Unit → Unit)] and Cb = ⟨⋅; ⋅ ⊢Mb ∶ Unit → Unit⟩, we
have:

Cb

cin(cf ,α,c)ÐÐÐÐÐÐ→ ⟨(snd(cf(Bool × α)⟨b, c⟩), α), γ0, φ0⟩ (φ0 = [cf ↦Unit, α ↦ U , c↦ α])
c̄f (β,c

′
)

ÐÐÐÐ→ ⟨(snd●, β ↝ α), γ1, φ0⟩ (γ1 = γ0 ⋅ [β ↦ (Bool × α,U), c′ ↦ (⟨b, c⟩, β)])
c′()
ÐÐ→ ⟨(⟨b, c⟩, β) ∶∶ (snd●, β ↝ α), γ1, φ0⟩

OKOKÐÐÐ→ ⟨(snd⟨b, c⟩, α), γ1, φ0⟩
ÐÐÐ→ ⟨(c,α), γ1, φ0⟩

c̄()
Ð→ ⟨(●, α ↝ α), γ1, φ0⟩

OKOKÐÐÐ→ ⟨◇, γ1, φ0⟩

and this is the only complete trace in JMbK. Indeed, O cannot interrogate another name,
as cin can only be played once, and c′ cannot be played with the (OQ0) rule.

The other inclusion (trace included in Reynolds) is more challenging and requires us
to introduce machinery for relating the semantics of terms and semantics of contexts to
that of terms and contexts composed.
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(P-INT) ⟨(M,α) ∶∶ EP ,EO, γP , γO⟩ÐÐÐ→ ⟨(M ′, α) ∶∶ EP ,EO, γP , γO⟩ whenM →∗ M ′ (hnf).

(O-INT) ⟨EP , (M,α) ∶∶ EO, γP , γO⟩ÐÐÐ→ ⟨(M ′, α) ∶∶ EP ,EO, γP , γO⟩ whenM →∗ M ′ (hnf).

(PA) ⟨(M,α) ∶∶ (E,α↝ α′) ∶∶ EP , (●, α↝ α) ∶∶ EO, γP , γO⟩ OKOKÐÐÐ→⟨(E[M], α′) ∶∶ EP ,EO, γP , γO⟩
with M a hnf and α ∈ dom(γP ).

(OA) ⟨(●, α↝ α) ∶∶ EP , (M,α) ∶∶ (E,α↝ θ) ∶∶ EO, γP , γO⟩ OKOKÐÐÐ→⟨EP , (E[M], θ) ∶∶ EO, γP , γO⟩
with M a hnf and α ∈ dom(γO).

(PQ) ⟨(E[cM̂1⋯M̂n], α′) ∶∶ EP ,EO, γP , γO⟩
c̄(a⃗)
ÐÐ→ ⟨(E,α↝ α′) ∶∶ EP , (Ma⃗,α) ∶∶ EO, γP ⋅γ′, γO⟩ when α′ ∈ dom(γO), γO(c) = (M,θ),
ext(θ) = (τ1, . . . , τn, ξ) and ((a1, . . . , an), γ′, α) ∈ AVal((M̂1, τ1), . . . , (M̂2, τn), ξ).

(OQ) ⟨EP , (E[cM̂1⋯M̂n], θ) ∶∶ EO, γP , γO⟩
c(a⃗)
ÐÐ→ ⟨(Ma⃗,α) ∶∶ EP , (E,α↝ θ) ∶∶ EO, γP , γO ⋅γ′⟩

when θ = α′ ∈ dom(γP ) or θ a closed type with empty support, with γP (c) = (M,θ),
ext(θ) = (τ1,⋯, τn, ξ) and ((a1, . . . , an), γ′, α) ∈ AVal((M̂1, τ1),⋯, (M̂2, τn), ξ).

Fig. 5. Composite LTS.

4.2 Composite LTS

We let a composite configuration be a tuple ⟨EP ,EO, γP , γO⟩, where γP and γO are
maps γ as above, EP is a term evaluation stack, and EO is a context evaluation stack.
These configurations represent the interaction between a term and a context. The term-
part in the interaction is played by EP and γP , while the context-part by EO and γO. As
with ordinary configurations, we define an LTS for composite ones in Figure 5. Given a
composite configuration C, a trace T and a value v (hnf with empty support) we write

C ⇓T,v when C
TÐ→ ⟨◊, [(v, θ)], γP , γO⟩.

Composite configurations allow us to compose a term and a context semantically: we
essentially play the traces of one against the other. Another way to obtain a composite
semantics is to work syntactically, i.e. by composing configurations and then executing
the resulting term. This is defined next.

Definition 22. Given two evaluation stacks (EP ,EO), we build their merge (which may
not always be defined) EP ∣∣EO inductively by ◊∣∣[(M,θ)] =M and:

((M,α) ∶∶ EP )∣∣((E,α ↝ θ) ∶∶ EO) = EP ∣∣((E[M], θ) ∶∶ EO)
((E,α ↝ θ) ∶∶ EP )∣∣((M,α) ∶∶ EO) = ((E[M], θ) ∶∶ EP )∣∣EO

When it is defined, we say that EP ,EO are compatible. Then, a composite configu-
ration C = ⟨EP ,EO, γP , γO⟩ is legal when (EP ,EO) are compatible and when both
⟨EP , γP , snd(γO)⟩ and ⟨EO, γO, snd(γP )⟩ are legal.

We now relate the reduction of a composite configuration with the head reduction of
the merge of its two evaluation stacks. First, taking the two environments γP , γO of a
legal composite configuration, we compute their closure (γP ⋅ γO)∗ as follows. Setting
γ0 = fst(γP ⋅ γO), and γi = {(a, M̂{γ}) ∣ (a, M̂) ∈ γi−1} (i > 0), there is an integer n
such that ν(cod(γn)) = ∅. We write (γP ⋅ γO)∗ for the environment defined as γn, for
the least n satisfying this latter condition.
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Theorem 23. Given a legal composite configurationC = ⟨EP ,EO, γP , γO⟩, thenC ⇓T,v
iff (EP ∣∣EO){(γP ⋅ γO)∗}→∗ v.

Finally, we relate the LTS’s for composite configurations and ordinary configurations
(Theorem 26). Combined with Theorem 23, this gives us a correlation between the traces
of two compatible configurations and the head reduction we obtain once we merge their
evaluation stacks.

Definition 24. Given legal configuartions CP = ⟨EP , γP , φP ⟩ and CO = ⟨EO, γO, φO⟩,
we say that they are compatible when EP ,EO are compatible, snd(γP ) = φO and
snd(γO) = φP . For each pair (CP ,CO) of compatible configurations, we define their
merge CP ∧∧CO as the composite configuration ⟨EP ,EO, γP , γO⟩.

Lemma 25. Taking (CP ,CO) a pair of compatible configurations, CP ∧∧CO ⇓T,v iff
CP ⇓T and CO ⇓T �,v .

Theorem 26. Given CP,1,CP,2,CO such that CP,1,CO and CP,2,CO are pairwise
compatible and Tr(CP,1) = Tr(CP,2), if CP,1∧∧CO ⇓T,v , then CP,2∧∧CO ⇓T,v .

Proof. From Lemma 25 we get CP,1 ⇓T and CO ⇓T �,v . Thus, T ∈ Tr(CP,1) and hence
T ∈ Tr(CP,2). Lemma 16 then yieldsCP,2 ⇓T and, from Lemma 25,CP,2∧∧CO ⇓T,v .

4.3 Proof of Theorem 5

Theorem 5 follows from Theorems 21 and 28. Theorem 28, which is proved below,
shows that any trace equivalent terms are also Reynolds equivalent. This is achieved as
follows. In the previous section we saw how to relate reductions of terms-in-context to
the semantics of terms and contexts. Given terms M1,M2 which are trace equivalent,
and fully applying them to related arguments, we obtain head reductions to values. These
reductions can be decomposed into LTS reductions producing corresponding traces, for
the terms and their argument terms (which form contexts). But, since the terms are trace
equivalent, M2 can simulate the behaviour of M1 in the context of M1, and that allows
us to show that the two composites reduce to the same value.

We start by extending logical relations to extended types with empty support. We
defineRJext(θ)Kδ by:

RJ(X)Kδ = {R ∣ δ(X) = (_,_,R)}
RJθ ∶∶ LKδ = {(M1,N1) ∶∶ L′ ∣ (M1,N1) ∈RJθKδ ∧L′ ∈RJLKδ}

RJ∀X ∶∶ LKδ = {(θ1, θ2) ∶∶ L′ ∣ (θ1, θ2,R) ∈ Rel ∧L′ ∈RJLKδ⋅[X↦(θ1,θ2,R)]}

Lemma 27. (M1,M2) ∈RJθKδ iff for all ((N̂1
1 , N̂

1
2 ), . . . , (N̂n

1 , N̂
n
2 ),R) ∈RJext(θ)Kδ ,

(M1N̂
1
1⋯N̂n

1 ,M2N̂
1
2⋯N̂n

2 ) ∈ R.

Theorem 28. For all trace equivalent ∆;Γ ⊢M1,M2 ∶ θ, we have that M1 ≃log M2.

Proof. Taking δ ∈RJ∆K and (η1, η2) ∈RJΓ Kδ , we show (M1{η1}{δ1},M2{η2}{δ2}) ∈
RJθKδ. Using Lemma 27, we take ((N̂1

1 , N̂
1
2 ), . . . , (N̂n

1 , N̂
n
2 ),R) ∈ RJext(θ)Kδ, and

prove that (M1{η1}{δ1}N̂1
1⋯N̂n

1 ,M2{η2}{δ2}N̂1
2⋯N̂n

2 ) ∈ R.
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For each i ∈ {1,2}, there exists a value vi s.t. Mi{ηi}{δi}N̂1
i ⋯N̂n

i →∗ vi. Using the
closure of R w.r.t. =βη, it suffices to show that (v1, v2) ∈ R. Suppose ∆ = X1, . . . ,Xk

and Γ = x1 ∶ θ1, . . . , xm ∶ θm. We write CPi for the configuration ⟨∆;Γ ⊢Mi ∶ θ⟩, and
CO,i for the configuration ⟨cinδi(X1)⋯δi(Xk)ηi(x1)⋯ηi(xm)N̂1

i ⋯N̂n
i , ε, [cin ↦ θ̃]⟩,

where θ̃ = ∀X1. . . .∀Xn.θ1 → ⋯→ θm → θ.
From Theorem 23, for each i ∈ {1,2} there is a trace Ti such that CP,i∧∧CO,i ⇓Ti,vi .

M1,M2 being trace equivalent, we have that Tr(CP,1) = Tr(CP,2). So from Theorem 26,
we get that CP,2∧∧CO,1 ⇓T1,v1 , and from Theorem 23 that M2{η1}{δ1}N̂1

1⋯N̂n
1 →∗ v1.

Finally, from Theorem 2, we get that (M2{η1}{δ1}N̂1
1⋯N̂n

1 ,M2{η2}{δ2}N̂1
2⋯N̂n

2 ) ∈
R. Thus, using the closure of R w.r.t. =βη , we have that (v1, v2) ∈ R.

5 Related and Future Work
The literature on parametric polymorphism is vast; here we look at the works closest
to ours, which come from the game semantics area. The first game model for System F
was introduced by Hughes [10,9]. The model is intentional, in the sense that it is fully
complete for βη-equivalence. Starting from that model, de Lataillade [6,5] characterised
parametricity categorically via the notion of dinaturality [4]. In [2], Abramsky and
Jagadeesan developed a model for System F to characterise genericity, as introduced
by Longo, Milstead and Soloviev [17]. A type θ is said to be generic when two terms
M1,M2 of type ∀X.θ′ are equivalent just if M1θ and M2θ are equivalent. Their model
contains several generic types. More recently, Laird [15] has introduced a game model
for System F augmented with mutable variables. His model is closer to ours than the
previous ones, and in particular his notion of copycat links can be seen as connected to
the use of names for parametricity.

In all of the above models the denotation of terms is built compositionally by
induction on the structure of the term. In a different line of work, closer in spirit to
our model, Lassen and Levy [16] have introduced normal form bisimulations for a
language with parametric polymorphism. These bisimulations are defined on LTSs
whose definition has similarities with ours. However, the model is for a CPS-style
language which has not only polymorphic but also recursive types. Finally, our own
model for a higher-order polymorphic language with general references [13] can be seen
as a direct precursor to this work, albeit in a very different setting (call-by-value, with
references).

Further on, we would like to study the existence of generic types in our model, as
well as its dinaturality properties. We would moreover like to examine coarser notions of
trace equivalence that bring us closer to Reynolds polymorphism. Finally, we would like
to see if the trace model can be used to prove the original conjecture of [1,20]. While
this seems plausible in principle, proving equivalences using definable logical relations
requires additional tools, such as restrictions on the LTS, to avoid circular reasoning.
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