7 research outputs found

    Noisy Interactive Quantum Communication

    Get PDF
    We consider the problem of implementing two-party interactive quantum communication over noisy channels, a necessary endeavor if we wish to fully reap quantum advantages for communication. For an arbitrary protocol with n messages, designed for noiseless qudit channels (where d is arbitrary), our main result is a simulation method that fails with probability less than 2â»á¶żâœâżá”‹âŸ and uses a qudit channel n(1 + Θ(√Δ)) times, of which Δ fraction can be corrupted adversarially. The simulation is thus capacity achieving to leading order, and we conjecture that it is optimal up to a constant factor in the √Δ term. Furthermore, the simulation is in a model that does not require pre-shared resources such as randomness or entanglement between the communicating parties. Surprisingly, this outperforms the best known overhead of 1 + O(√(Δ log log 1/Δ)) in the corresponding classical model, which is also conjectured to be optimal [Haeupler, FOCS’14]. Our work also improves over the best previously known quantum result where the overhead is a non-explicit large constant [Brassard et al., FOCS’14] for small Δ

    Adaptive Protocols for Interactive Communication

    Full text link
    How much adversarial noise can protocols for interactive communication tolerate? This question was examined by Braverman and Rao (IEEE Trans. Inf. Theory, 2014) for the case of "robust" protocols, where each party sends messages only in fixed and predetermined rounds. We consider a new class of non-robust protocols for Interactive Communication, which we call adaptive protocols. Such protocols adapt structurally to the noise induced by the channel in the sense that both the order of speaking, and the length of the protocol may vary depending on observed noise. We define models that capture adaptive protocols and study upper and lower bounds on the permissible noise rate in these models. When the length of the protocol may adaptively change according to the noise, we demonstrate a protocol that tolerates noise rates up to 1/31/3. When the order of speaking may adaptively change as well, we demonstrate a protocol that tolerates noise rates up to 2/32/3. Hence, adaptivity circumvents an impossibility result of 1/41/4 on the fraction of tolerable noise (Braverman and Rao, 2014).Comment: Content is similar to previous version yet with an improved presentatio

    Coding for interactive communication correcting insertions and deletions

    Get PDF
    We consider the question of interactive communication, in which two remote parties perform a computation while their communication channel is (adversarially) noisy. We extend here the discussion into a more general and stronger class of noise, namely, we allow the channel to perform insertions and deletions of symbols. These types of errors may bring the parties "out of sync", so that there is no consensus regarding the current round of the protocol. In this more general noise model, we obtain the first interactive coding scheme that has a constant rate and resists noise rates of up to 1/18−Δ1/18-\varepsilon. To this end we develop a novel primitive we name edit distance tree code. The edit distance tree code is designed to replace the Hamming distance constraints in Schulman's tree codes (STOC 93), with a stronger edit distance requirement. However, the straightforward generalization of tree codes to edit distance does not seem to yield a primitive that suffices for communication in the presence of synchronization problems. Giving the "right" definition of edit distance tree codes is a main conceptual contribution of this work

    Interactive quantum information theory

    Get PDF
    La thĂ©orie de l'information quantique s'est dĂ©veloppĂ©e Ă  une vitesse fulgurante au cours des vingt derniĂšres annĂ©es, avec des analogues et extensions des thĂ©orĂšmes de codage de source et de codage sur canal bruitĂ© pour la communication unidirectionnelle. Pour la communication interactive, un analogue quantique de la complexitĂ© de la communication a Ă©tĂ© dĂ©veloppĂ©, pour lequel les protocoles quantiques peuvent performer exponentiellement mieux que les meilleurs protocoles classiques pour certaines tĂąches classiques. Cependant, l'information quantique est beaucoup plus sensible au bruit que l'information classique. Il est donc impĂ©ratif d'utiliser les ressources quantiques Ă  leur plein potentiel. Dans cette thĂšse, nous Ă©tudions les protocoles quantiques interactifs du point de vue de la thĂ©orie de l'information et Ă©tudions les analogues du codage de source et du codage sur canal bruitĂ©. Le cadre considĂ©rĂ© est celui de la complexitĂ© de la communication: Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantitĂ© de communication Ă©changĂ©e, sans Ă©gard au coĂ»t des calculs locaux. Nos rĂ©sultats sont sĂ©parĂ©s en trois chapitres distincts, qui sont organisĂ©s de sorte Ă  ce que chacun puisse ĂȘtre lu indĂ©pendamment. Étant donnĂ© le rĂŽle central qu'elle occupe dans le contexte de la compression interactive, un chapitre est dĂ©diĂ© Ă  l'Ă©tude de la tĂąche de la redistribution d'Ă©tat quantique. Nous prouvons des bornes infĂ©rieures sur les coĂ»ts de communication nĂ©cessaires dans un contexte interactif. Nous prouvons Ă©galement des bornes atteignables avec un seul message, dans un contexte d'usage unique. Dans un chapitre subsĂ©quent, nous dĂ©finissons une nouvelle notion de complexitĂ© de l'information quantique. Celle-ci caractĂ©rise la quantitĂ© d'information, plutĂŽt que de communication, qu'Alice et Bob doivent Ă©changer pour calculer une tĂąche bipartie. Nous prouvons beaucoup de propriĂ©tĂ©s structurelles pour cette quantitĂ©, et nous lui donnons une interprĂ©tation opĂ©rationnelle en tant que complexitĂ© de la communication quantique amortie. Dans le cas particulier d'entrĂ©es classiques, nous donnons une autre caractĂ©risation permettant de quantifier le coĂ»t encouru par un protocole quantique qui oublie de l'information classique. Deux applications sont prĂ©sentĂ©es: le premier rĂ©sultat gĂ©nĂ©ral de somme directe pour la complexitĂ© de la communication quantique Ă  plus d'une ronde, ainsi qu'une borne optimale, Ă  un terme polylogarithmique prĂšs, pour la complexitĂ© de la communication quantique avec un nombre de rondes limitĂ© pour la fonction « ensembles disjoints ». Dans un chapitre final, nous initions l'Ă©tude de la capacitĂ© interactive quantique pour les canaux bruitĂ©s. Étant donnĂ© que les techniques pour distribuer de l'intrication sont bien Ă©tudiĂ©es, nous nous concentrons sur un modĂšle avec intrication prĂ©alable parfaite et communication classique bruitĂ©e. Nous dĂ©montrons que dans le cadre plus ardu des erreurs adversarielles, nous pouvons tolĂ©rer un taux d'erreur maximal de une demie moins epsilon, avec epsilon plus grand que zĂ©ro arbitrairement petit, et ce avec un taux de communication positif. Il s'ensuit que les canaux avec bruit alĂ©atoire ayant une capacitĂ© positive pour la transmission unidirectionnelle ont une capacitĂ© positive pour la communication interactive quantique. Nous concluons avec une discussion de nos rĂ©sultats et des directions futures pour ce programme de recherche sur une thĂ©orie de l'information quantique interactive.Quantum information theory has developed tremendously over the past two decades, with analogues and extensions of the source coding and channel coding theorems for unidirectional communication. Meanwhile, for interactive communication, a quantum analogue of communication complexity has been developed, for which quantum protocols can provide exponential savings over the best possible classical protocols for some classical tasks. However, quantum information is much more sensitive to noise than classical information. It is therefore essential to make the best use possible of quantum resources. In this thesis, we take an information-theoretic point of view on interactive quantum protocols and study the interactive analogues of source compression and noisy channel coding. The setting we consider is that of quantum communication complexity: Alice and Bob want to perform some joint quantum computation while minimizing the required amount of communication. Local computation is deemed free. Our results are split into three distinct chapters, and these are organized in such a way that each can be read independently. Given its central role in the context of interactive compression, we devote a chapter to the task of quantum state redistribution. In particular, we prove lower bounds on its communication cost that are robust in the context of interactive communication. We also prove one-shot, one-message achievability bounds. In a subsequent chapter, we define a new, fully quantum notion of information cost for interactive protocols and a corresponding notion of information complexity for bipartite tasks. It characterizes how much quantum information, rather than quantum communication, Alice and Bob must exchange in order to implement a given bipartite task. We prove many structural properties for these quantities, and provide an operational interpretation for quantum information complexity as the amortized quantum communication complexity. In the special case of classical inputs, we provide an alternate characterization of information cost that provides an answer to the following question about quantum protocols: what is the cost of forgetting classical information? Two applications are presented: the first general multi-round direct-sum theorem for quantum protocols, and a tight lower bound, up to polylogarithmic terms, for the bounded-round quantum communication complexity of the disjointness function. In a final chapter, we initiate the study of the interactive quantum capacity of noisy channels. Since techniques to distribute entanglement are well-studied, we focus on a model with perfect pre-shared entanglement and noisy classical communication. We show that even in the harder setting of adversarial errors, we can tolerate a provably maximal error rate of one half minus epsilon, for an arbitrarily small epsilon greater than zero, at positive communication rates. It then follows that random noise channels with positive capacity for unidirectional transmission also have positive interactive quantum capacity. We conclude with a discussion of our results and further research directions in interactive quantum information theory

    Noisy Interactive Quantum Communication

    No full text
    corecore