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Abstract

We consider the problem of implementing two-party interactive quantum communication
over noisy channels, a necessary endeavor if we wish to fully reap quantum advantages
for communication. For an arbitrary protocol with n messages, designed for noiseless
qudit channels (where d is arbitrary), our main result is a simulation method that fails
with probability less than 2−Θ(nε) and uses a qudit channel n(1 + Θ(

√
ε )) times, of which

an ε fraction can be corrupted adversarially. The simulation is thus capacity achieving
to leading order, and we conjecture that it is optimal up to a constant factor in the

√
ε

term. Furthermore, the simulation is in a model that does not require pre-shared resources
such as randomness or entanglement between the communicating parties. Surprisingly,
this outperforms the best known overhead of 1 + O(

√
ε log log 1/ε) in the corresponding

classical model, which is also conjectured to be optimal [Haeupler, FOCS’14]. Our work
also improves over the best previously known quantum result where the overhead is a
non-explicit large constant [Brassard et al., SICOMP’19] for small ε.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The main questions

Quantum communication offers the possibility of distributed computation with extraordi-
nary provable savings in communication as compared with classical communication (see,
e.g., [56] and the references therein). Most often, if not always, the savings are achieved
by protocols that assume access to noiseless communication channels. In practice, though,
imperfection in channels is inevitable. Is it possible to make the protocols robust to noise
while maintaining the advantages offered by quantum communication? If so, what is the
cost of making the protocols robust, and how much noise can be tolerated? In this thesis,
we address these questions in the context of quantum communication protocols involving
two parties, in the low noise regime. Following convention, we call the two parties Alice
and Bob.

1.1.2 Channel coding theory as a special case

In the special case when the communication is one-way (say, from Alice to Bob), techniques
for making the message noise-tolerant, via error correcting codes, have been studied for a
long time. Coding allows us to simulate a noiseless communication protocol using a noisy
channel, under certain assumptions about the noise process (such as having a memoryless
channel). Typically, such simulation is possible when the error rate (the fraction of the
messages corrupted) is lower than a certain threshold. A desirable goal is to also maximize
the communication rate (also called the information rate), which is the length of the
original message, as a fraction of the length of its encoding. In the classical setting,
Shannon established the capacity (i.e., the optimal communication rate) of arbitrarily
accurate transmission, in the limit of asymptotically large number of channel uses, through
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the Noisy Coding Theorem [61]. Since then, researchers have discovered many explicit
codes with desirable properties such as good rate, and efficient encoding and decoding
procedures (see, for example, [65, 4]). Analogous results have been developed over the past
two decades in the quantum setting. In particular, capacity expressions for a quantum
channel transmitting classical data [42, 60] or quantum data [51, 63, 25] have been derived.
Even though it is not known how we may evaluate these capacity expressions for a general
quantum channel, useful error correcting codes have been developed for many channels
of interest (see, for example, [23, 22, 8, 11]). Remarkably, quantum effects give rise to
surprising phenomena without classical counterparts, including superadditivity [27, 41],
and superactivation [64]. All of these highlight the non-trivial nature of coding for noisy
quantum channels.

1.1.3 Communication complexity as a special case

In general two-party protocols, data are transmitted in each direction alternately, potentially
over a number of rounds. In a computation problem, the number of rounds may grow as a
function of the input size. Such protocols are at the core of several important areas including
distributed computation, cryptography, interactive proof systems, and communication
complexity. For example, in the case of the Disjointness function, a canonical task in
the two-party communication model, an n-bit input is given to each party, who jointly
compute the function with as little communication as possible. The optimal quantum
protocol for this task consists of Θ (

√
n ) rounds of communication, each with a constant

length message [21, 43, 1], and such a high level of interaction has been shown to be
necessary [45, 44, 18]. Furthermore, quantum communication leads to provable advantages
over the classical setting, without any complexity-theoretic assumptions. For example,
some specially crafted problems (see, for example, [55, 56]) exhibit exponential quantum
advantages, and others display the power of quantum interaction by showing that just one
additional round can sometimes lead to exponential savings [45].

1.1.4 The problem, and motivation for the investigation

In this thesis, we consider two-party interactive communication protocols using noisy
communication. The goal is to effectively implement an interactive communication protocol
to arbitrary accuracy despite noise in the available channels. We want to minimize the
number of uses of the noisy channel, and the complexity of the coding operations. The
motivation is two-fold and applies to both the classical and the quantum setting. First,
this problem is a natural generalization of channel coding from the 1-way to the 2-way
setting, with the “capacity” being the best ratio of the number of channel uses in the
original protocol divided by that needed in the noisy implementation. Here, we consider
the combined number of channel uses in both directions. Note that this scenario is different
from “assisted capacities” where some auxiliary noiseless resources such as a classical side
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channel for quantum transmission are given to the parties for free. Second, we would like
to generalize interactive protocols to the noisy communication regime. If an interactive
protocol can be implemented using noisy channels while preserving the complexity, then
the corresponding communication complexity results become robust against channel noise.
In particular, an important motivation is to investigate whether the quantum advantage in
interactive communication protocols is robust against quantum noise. Due to the ubiquitous
nature of quantum noise and fragility of quantum data, noise-resilience is of fundamental
importance for the realization of quantum communication networks. The coding problem
for interactive quantum communication was first studied in [16]. In Section 1.3, we elaborate
on this work and the questions that arise from it.

1.2 Fundamental difficulties in coding for quantum in-
teractive communication

For some natural problems the optimal interactive protocols require a lot of interaction.
For example, distributed quantum search over n items [21, 43, 1] requires Θ (

√
n) rounds

of constant-sized messages [45, 44, 18]. How can we implement such highly interactive
protocols over noisy channels? What are the major obstacles?

1.2.1 Standard error correcting codes are inapplicable

In both the classical and quantum settings, standard error correcting codes are inapplicable.
To see this, first suppose we encode each message separately. Then the corruption of even
a single encoded message can already derail the rest of the protocol. Thus, for the entire
protocol to be simulated with high fidelity, we need to reduce the decoding error for each
message to be inversely proportional to the length of the protocol, say n. For constant
size messages, the overhead of coding then grows with the problem size n, increasing the
complexity and suppressing the rate of simulation to 0 as n increases. The situation is even
worse with adversarial errors: the adversary can invest the entire error budget to corrupt the
shortest critical message, and it is impossible to tolerate an error rate above ≈ 1/number
of rounds, no matter what the rate of communication is. To circumvent this barrier, one
must employ a coding strategy acting collectively over many messages. However, most of
these are generated dynamically during the protocol and are unknown to the sender earlier.
Furthermore, error correction or detection may require communication between the parties,
which is also corruptible. The problem is thus reminiscent of fault-tolerant computation in
that the steps needed to implement error correction are themselves subject to errors.
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1.2.2 The no-cloning quantum problem

A fundamental property of quantum mechanics is that learning about an unknown quantum
state from a given specimen disturbs the state [6]. In particular, an unknown quantum
state cannot be cloned [26, 68]. This affects our problem in two fundamental ways. First,
any logical quantum data leaked into the environment due to the noisy channel cannot be
recovered by the communicating parties. Second, the parties hold a joint quantum state
that evolves with the protocol, but they cannot make copies of the joint state without
corrupting it.

1.3 Prior classical and quantum work

Despite the difficulties in coding for interactive communication, many interesting results
have been discovered over the last 25 years, with a notable extension in the quantum
setting.

1.3.1 Classical results showing positive rates

Schulman first raised the question of simulating noiseless interactive communication pro-
tocols using noisy channels in the classical setting [57, 58, 59]. He developed tree codes to
work with messages that are determined one at a time, and generated dynamically during
the course of the interaction. These codes have constant overhead, and the capacity is thus
a positive constant. Furthermore, these codes protect data against adversarial noise that
corrupts up to a 1

240 fraction of the channel uses. This tolerable noise rate was improved
by subsequent work, culminating to the results by Braverman and Rao [20]. They showed
that < 1

4 adversarial errors can be tolerated provided one can use large constant alphabet
sizes and that this bound on noise rate is optimal.

1.3.2 Classical results with efficient encoding and decoding

The aforementioned coding schemes are not known to be computationally efficient, as they
are built on tree codes; the computational complexity of encoding and decoding tree codes
is unknown. Other computationally efficient encoding schemes have been developed [13, 15,
14, 32, 33, 35]. The communication rates under various scenarios have also been studied
[17, 36, 28, 30]. However, the rates do not approach the capacity expected of the noise
rate.
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1.3.3 Classical results with optimal rates

Kol and Raz [46] first established coding with rate approaching 1 as the noise parameter
goes to 0, for the binary symmetric channel. Haeupler [37] extended the above result to
adversarial binary channels corrupting at most an ε fraction of the symbols, with commu-
nication rate 1 − O

(√
ε log log

(
1
ε

))
, which is conjectured to be optimal. For oblivious

adversaries, this increases to 1−O(
√
ε). Further studies of capacity have been conducted,

for example, in [40, 5]. For further details about recent results on interactive coding, see
the extensive survey by Gelles [31].

1.3.4 Quantum results showing positive rates

All coding for classical interactive protocols relies on “backtracking”: if an error is detected,
the parties go back to an earlier stage of the protocol and resume from there. Backtracking
is impossible in the quantum setting due to the no cloning principle described in the
previous subsection. There is no generic way to make copies of the quantum state at earlier
stages without restarting the protocol. Brassard, Nayak, Tapp, Touchette, and Unger [16]
provided the first coding scheme with constant overhead by using two ideas. The first
idea is to teleport each quantum message. This splits the quantum data into a protected
quantum share and an unprotected classical share that is transmitted through the noisy
channels using tree codes. Second, backtracking is replaced by rewinding of steps to return
to a desirable earlier stage; i.e., the joint quantum state is evolved back to that of an earlier
stage, which circumvents the no-cloning theorem. This is possible since local operations
can be made unitary, and communication can be reversed (up to more noise). Together,
a positive simulation rate (or constant overhead) can be achieved. Brassard et al. aim at
achieving a high noise tolerance with a non-vanishing communication rate. In contrast, in
this thesis, we focus on optimizing the communication rate in the low-noise regime. In the
noisy analogue to the Cleve-Buhrman communication model where entanglement is free,
Brassard et al. show that any error rate strictly less than 1/2 can be tolerated. Moreover,
in the noisy analogue to the Yao (plain) model, a noisy quantum channel with one-way
quantum capacity Q > 0 can be used to simulate an n-message protocol given O

(
1
Q
n
)
uses

of the channel. However, the communication rate is sub-optimal and the coding complexity
is unknown due to the use of tree codes. The rate is further reduced by a large constant in
order to match the quantum and classical data in teleportation, and in coordinating the
action of the parties (advancing or reversing the protocol).
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1.4 Results in this thesis, overview of techniques, and
our contributions

Inspired by the recent results on rate optimal coding for the classical setting [46, 37] and
the rate sub-optimal coding in the quantum setting [16], a fundamental question is: can
we likewise avoid the loss of communication rate for interactive quantum protocols? In
particular, is it possible to protect quantum data without pre-shared free entanglement, and
if we have to generate it at a cost, can we still achieve communication rates approaching 1
as the error rate vanishes? Further, can erroneous steps be reversed with noisy resources,
and with negligible overhead as the error rate vanishes? What is the complexity of rate
optimal protocols, if one exists? Are there other new obstacles?
Our main result in this thesis addresses all these questions. We focus on alternating
protocols, in which Alice and Bob exchange qudits back and forth in alternation.

Theorem 1.4.1. Consider any alternating two-party communication protocol Π in the
plain quantum model, communicating n messages over a noiseless channel with an alphabet
Σ of arbitrary size d. We provide a simulation protocol Π′ which given Π, simulates it
with probability at least 1 − 2−Θ(nε), over any fully adversarial error quantum channel
with the same alphabet Σ and error rate ε. The simulation uses n (1 + Θ (

√
ε)) rounds of

communication, and therefore achieves a communication rate of 1−Θ (
√
ε).

1.4.1 Outline of the ideas and our contributions

We start by studying a simpler setting where the input protocol Π and the noisy communi-
cation channel operate on the same communication alphabet of polynomial size in n, the
length of Π. This simplifies the algorithm while still capturing the main challenges we
need to address. The analysis is easier to follow and shares the same outline and struc-
ture with our main result, namely simulation of noiseless interactive communication over
constant-size alphabets. The framework we develop in this simpler model, sets the stage
for a smooth transition to the small alphabet case. Our rate optimal protocol requires
a careful combination of ideas to overcome various obstacles. Some of these ideas are
well-established, some are not so well known, some require significant modifications, and
some are new. A priori, it is not clear whether these previously developed tools would be
useful in the context of the problem.
For the clarity of presentation, we first, in Chapter 3, introduce our main ideas in a
simpler communication model, where Alice and Bob have access to free entanglement and
communicate over a fully adversarial error classical channel. We introduce several key ideas
while developing a basic solution to approach the optimal rate in this scenario. Inspired
by [16], we use teleportation to protect the communication and the simulation is actively
rewound whenever an error is detected. We develop a framework which allows the two
parties to obtain a global view of the simulation by locally maintaining a classical data
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structure. We adapt ideas due to Haeupler [37] to efficiently update this data structure
over the noisy channel and evolve the simulation.
Then, in Chapter 4, we extend these ideas to the plain model of quantum communication
with large alphabets. In the plain quantum model, Alice and Bob communicate over a fully
adversarial error quantum channel and do not have access to any pre-shared resources such
as entanglement or shared randomness. As a result any such resources need to be established
through extra communication. This in particular makes it more challenging to achieve a
high communication rate in this setting. Surprisingly, an adaptation of an old technique
called the Quantum Vernam Cipher (QVC) [50] turns out to be the perfect method to
protect quantum data in our application. QVC allows the two parties to recycle and reuse
entanglement as needed throughout the simulation. Building on the ideas introduced in
the teleportation-based protocol, one of our main contributions in this model is developing
a mechanism to reliably recycle entanglement in a communication efficient way.
Finally, in Chapter 5, we extend our results to the case where the communication alphabet
is of constant size. One barrier in applying the large alphabet simulation protocol in the
small alphabet case is that synchronizing the classical data requires exchanging logarithmic
position information in the length of the input protocol. In the large alphabet case this
corresponds to sending a constant number of symbols but when the communication alphabet
has a constant size this would lead to a vanishing simulation rate. Following Ref. [37], we
use meeting point based rewinding to circumvent this barrier. Combining our framework for
the large alphabet case with a carefully modified version of meeting point-based rewinding
mechanism leads to a solution for the small alphabet case. A priori, there is little reason
to expect that the simulation framework and the tools developed for each successive case
extend to the next. However, the extensions are surprisingly seamless and without serious
obstacles, culminating in the final result. This testifies to the power of the framework and
the choice of the tools we deploy.

1.4.2 Remarks on our results

Besides resolving the question concerning rate optimal coding for quantum interactive
communication in the low-noise regime, our work achieves a few additional goals. First,
our main result is achieved in the plain quantum model, where the two parties have no
pre-shared resources. Remarkably, our rate outperforms the conjectured optimal bound in
the corresponding plain classical model! Intuitively, this is possible in the quantum setting
because a secret key can be obtained from low noise quantum communication (or from
entanglement) and then more efficient hashing can be performed. Second, our result is
the first of its kind for establishing the capacity for a noisy quantum channel used in both
directions to leading order. Third, our teleportation-based simulation protocol provides the
first computationally efficient interactive coding scheme in the quantum setting. Moreover,
our protocol for the plain model of quantum communication is computationally efficient
modulo the initial entanglement distribution. In fact, the initial subroutine which only
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involves one-way communication and uses standard quantum error correction to establish
the entanglement used in the simulation is the only part of the simulation which we do not
know how to perform in a computationally efficient way.
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Chapter 2

Preliminaries

We assume that the reader is familiar with the quantum formalism for finite dimensional
systems; for a thorough treatment, we refer the interested reader to good introductions in
a quantum information theory context [53, Chapter 2], [66, Chapter 2] [67, Chapters 3, 4,
5].

2.1 Mathematical notation

Let r, s ∈ N with r ≤ s. We use [s] to denote the set {1, . . . , s}. The notation r : s is used
to denote the string of consecutive integers from r to s. Let A be a d-dimensional Hilbert
space with computational basis {|0〉 , . . . , |d− 1〉}. Let X and Z be the operators such
that X |k〉 def= |k + 1〉 and Z |k〉 def= ei·2π k

d |k〉. The generalized Pauli operators, also known
as the Heisenberg-Weyl operators, are defined as

{
XjZk

}
0≤j,k≤d−1

. Let Σ = {0, . . . , d− 1}.
For N ∈ N, the operators in

Pd,N
def= {Xj1Zk1 ⊗ · · · ⊗ XjNZkN}jl,kl∈Σ , l∈[N ] (2.1)

form a basis for the space of operators on A⊗N . For E ∈ Pd,N , we denote by wt (E) the
weight of E, i.e., the number of A subsystems on which E acts non-trivially. For j, k ∈ Σ,
we represent the single qudit Pauli error XjZk by the string jk ∈ Σ2. Similarly, a Pauli
error on multiple qudits is represented by a string in (Σ2)∗. The Fourier transform operator
F is defined to be the operator such that F |j〉 def= 1√

d

∑d−1
k=0 e

i·2π jk
d |k〉.

Proposition 2.1.1. Let
{

XjZk
}

0≤j,k≤d−1
be the set of generalized Pauli operators on a d-

dimensional Hilbert space. It holds that XjZk = e−i·2π jk
d ZkXj,FXjF† = Zj and FZjF† = X−j

for every j, k ∈ {|0〉 , . . . , |d− 1〉}.
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Definition 2.1.2. Let A,B be d-dimensional Hilbert spaces with computational bases
{|i〉A}0≤i≤d−1 and {|i〉B}0≤i≤d−1, respectively. The set of Bell states in A⊗ B is defined as

{∣∣∣φj,k〉
AB

def=
(
Xj
AZkA ⊗ 1

)
|φ〉AB : 0 ≤ j, k ≤ d− 1

}
,

where |φ〉AB
def= 1√

d

∑d−1
i=0 |i〉A |i〉B. We extend the definition of

∣∣∣φj,k〉 to all j, k ∈ Z,
as
∣∣∣φj,k〉 def=

∣∣∣φj (mod d),k (mod d)
〉
. By a (d-dimensional) maximally entangled state (MES),

we mean the state |φ〉 even though all the Bell states are maximally entangled.

We may verify that
∣∣∣φj,k〉 = 1√

d

∑d−1
t=0 e

2πi tk
d |t+ j, t〉.

Proposition 2.1.3. The Bell states
{∣∣∣φj,k〉}

0≤j,k≤d−1
form an orthonormal basis in A⊗B.

Proposition 2.1.4. For any unitary operator U on register A, it holds that

(U ⊗ 1) |φ〉AB = (1⊗ U>) |φ〉AB ,

where U> = ∑
j,k 〈j|U |k〉 |k〉〈j|. In particular, (F⊗ 1) |φ〉AB = (1⊗ F) |φ〉AB.

A quantum instrument is a generalized notion of a non-destructive quantum measurement
defined by a collection of completely positive maps {Ma}a∈Γ, where Γ is the set of mea-
surement outcomes and ∑a∈Γ Ma defines a quantum channel, i.e., a completely positive
and trace preserving map. The outcome of the measurement on a state ρ is a ∈ Γ with
probability Tr [Ma(ρ)] and the output state after the measurement conditioned on outcome
a is given by Tr [Ma (ρ)]−1Ma (ρ). The action of such a quantum instrument is expressed
as a quantum channel of the form

M(ρ) =
∑
a∈Γ

Ma(ρ)⊗ |a〉〈a| ,

where the second (classical) register contains the outcome of the measurement.

2.2 Quantum Communication Model

The definitions for the noiseless and noisy quantum communication models are copied
from Ref. [16]. We refer the reader to this reference for a more detailed discussion of
the relationship of the noiseless quantum communication model to well-studied quantum
communication complexity models such as Yao model and the Cleve-Buhrman model.
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2.2.1 Noiseless Communication Model

In the noiseless quantum communication model that we want to simulate, there are five
quantum registers: the A register held by Alice, the B register held by Bob, the C register,
which is the communication register exchanged back-and-forth between Alice and Bob and
initially held by Alice, the E register held by a potential adversary Eve, and finally the
R register, a reference system which purifies the state of the ABCE registers throughout
the protocol. The initial state |ψinit〉ABCER ∈ H(A⊗B ⊗ C ⊗E ⊗R) is chosen arbitrarily
from the set of possible inputs, and is fixed at the outset of the protocol, but possibly
unknown (totally or partially) to Alice and Bob. Note that to allow for composition of
quantum protocols in an arbitrary environment, we consider arbitrary quantum states
as input, which may be entangled with systems RE. A protocol Π is then defined by
the sequence of unitary operations U1, U2, · · · , Un+1, with Ui for odd i known at least
to Alice (or given to her in a black box) and acting on registers AC, and Ui for even i
known at least to Bob (or given to him in a black box) and acting on registers BC. For
simplicity, we assume that n is even. We can modify any protocol to satisfy this property,
while increasing the total cost of communication by at most one communication of the C
register. The unitary operators of protocol Π can be assumed to be public information,
known to Eve. On a particular input state |ψinit〉, the protocol generates the final state
|ψfinal〉ABCER = Un+1 · · ·U1 |ψinit〉ABCER, for which at the end of the protocol the A and C
registers are held by Alice, the B register is held by Bob, and the E register is held by
Eve. The reference register R is left untouched throughout the protocol. The output of
the protocol resides in systems ABC, i.e., Π(|ψinit〉) = TrER

(
|ψfinal〉〈ψfinal|ABCER

)
, and by

a slight abuse of notation we also represent the induced quantum channel from ABCE to
ABC simply by Π. This is depicted in Figure 2.1. Note that while the protocol only acts
on ABC, we wish to maintain correlations with the reference system R, while we simply
disregard what happens on the E system assumed to be in Eve’s hand. Since we consider
local computation to be free, the sizes of A and B can be arbitrarily large, but still of finite
size, say mA and mB qubits, respectively. Since we are interested in a high communication
rate, we do not want to restrict ourselves to the case of a single-qubit communication
register C, since converting a general protocol to one of this form can incur a factor of two
overhead. We thus consider alternating protocols in which the register C is of fixed size, say
d dimensions, and is exchanged back-and-forth. We believe that non-alternating protocols
can also be simulated by adapting our techniques, but we leave this extension to future
work. Note that both the Yao and the Cleve-Buhrman models of quantum communication
complexity can be recast in this framework; see Ref. [16].
We later embed length n protocols into others of larger length ñ > n. To perform such
noiseless protocol embedding, we define some dummy registers Ã, B̃, C̃ isomorphic to A, B,
C, respectively. Ã and C̃ are part of Alice’s scratch register and B̃ is part of Bob’s scratch
register. Then, for any quantum registers D, D̃ associated with isomorphic Hilbert spaces,
let SWAPD↔D̃ denote the unitary operation that swaps the D, D̃ registers. Recall that n is
assumed to be even. In a noiseless protocol embedding, for i ∈ {1, 2, · · ·n− 1}, we leave Ui
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Figure 2.1: Depiction of a quantum protocol in the noiseless communication model.

untouched. We replace Un by (SWAPB↔B̃Un) and Un+1 by (SWAPAC↔ÃC̃Un+1). Finally,
for i ∈ {n+ 2, n+ 3, · · · ñ+ 1}, we define Ui = I, the identity operator. This embedding is
important in the setting of interactive quantum coding for the following reasons. First, a
robust protocol against transmission noise may require more than n rounds of interaction
to successfully simulate an input protocol of length n. Adding these Ui for i > n makes the
protocol well defined for ñ + 1 steps. Therefore, ensuring that we never run out of steps
of the input protocol to simulate. Then, swapping the important registers into the safe
registers Ã, B̃, C̃ ensures that the important registers are never affected by noise arising
after the first n+1 steps have been applied. Hence, in our simulation, as long as we succeed
in implementing the first n+ 1 steps without errors, the simulation will succeed since the
Ã, B̃, C̃ registers will then contain the output of the simulation, with no error acting on
these registers.
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2.2.2 Noisy Communication Model

There are many possible models for noisy communication. For our main results, we focus
on one in particular, analogous to the Yao model with no shared entanglement but noisy
quantum communication, which we call the plain quantum model. In Chapter 3, we consider
and define an alternative model.
For simplicity, we formally define in this section what we sometimes refer to as alternating
communication models, in which Alice and Bob take turns in transmitting the commu-
nication register to each other, and this is the model in which most of our protocols are
defined. Our definitions easily adapt to somewhat more general models which we call
oblivious communication models, following Ref. [20]. In these models, Alice and Bob do
not necessarily transmit their messages in alternation, but nevertheless in a fixed order and
of fixed sizes known to all (Alice, Bob and Eve) depending only on the round, and not on
the particular input or the actions of Eve. Communication models with a dependence on
inputs or actions of Eve are called adaptive communication models.

Plain Quantum Model In the plain quantum model, input registers ABCE are shared
between Alice (AC), Bob (B) and Eve (E) and the reference register R contains the
purification of the input. These registers are initially in the |ψinit〉 state which is the initial
state of the input protocol to be simulated. The output registers ÃB̃C̃ are shared between
Alice (ÃC̃) and Bob (B̃). These are the registers introduced in the noiseless protocol
embedding described above and at the end of the simulation contain the output state. The
reference register R is left untouched throughout. In additions to these registers, Alice has
workspace A′, Bob has workspace B′, the adversary Eve has workspace E ′, and there is
some quantum communication register C ′ of some fixed size d′ dimensions (we will consider
only d′ = d in this work), exchanged back and forth between them n′ times, passing through
Eve’s hand each time. Alice and Bob can perform arbitrary local processing between each
transmission, whereas Eve’s processing when the C ′ register passes through her hand is
limited by the noise model as described below. Alice and Bob also possess registers CA
and CB, respectively, acting as virtual communication register C from the original protocol
Π of length n to be simulated. The communication rate of the simulation is given by the
ratio n log d

n′ log d′ .
We are interested in two models of errors, adversarial and random noise. In the adversarial
noise model, we are mainly interested in an adversary Eve with a bound εn′ on the number
of errors that she introduces on the quantum communication register C ′ that passes through
her hand. The fraction ε of corrupted transmissions is called the error rate. More formally,
an adversary in the quantum model with error rate bounded by ε ∈ [0, 1] is specified by
a sequence of instruments NE′C′1

1 , . . . ,NE′C′
n′

n′ acting on register E ′ of arbitrary dimension
d′′ and the communication register C ′ of dimension d′ in protocols of length n′. For any
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density operator ρ on H(E ′ ⊗ C ′⊗n′), the action of such an adversary is

NE′C′1
1 · · · NE′C′

n′
n′ (ρ) =

∑
i

GiρG
†
i , (2.2)

for i ranging over some finite set, subject to ∑iG
†
iGi = 1E

′C′⊗n
′
, where each Gi is of the

form
Gi =

∑
F∈Pd′′,1

∑
H∈Pd′,n′
wt(H)≤εn′

αiF,HF
E′ ⊗HC′⊗n

′

. (2.3)

In the random noise model, we consider n′ independent and identically distributed uses
of a noisy quantum channel acting on register C ′, half the time in each direction. Eve’s
workspace register E ′ (including her input register E) can be taken to be trivial in this
noise model. We only analyze the protocols in this thesis against adversarial noise, however,
using concentration of measure arguments, it is straightforward to show that the same
protocols can be used to obtain similar results in the random noise model as well.
For both noise models, we say that the simulation succeeds with error δ if for any input, the
output in register ÃB̃C̃ at the end of the simulation is the same as the output obtained by
running the protocol Π on the same input, while also maintaining correlations with system
R, up to error δ in trace distance.
Note that adversaries in the quantum model can inject fully quantum errors since the
messages are quantum, in contrast to adversaries corrupting classical messages which are
restricted to be modifications of classical symbols. On the other hand, for classical messages
the adversary can read all the messages without the risk of corrupting them, whereas in
the quantum model, any attempt to “read” messages will result in an error in general on
some quantum message.

2.3 Protocols over qudits

In this section, we revisit two quantum communication protocols, both of which are essential
to our simulation algorithms and analyze the effect of noise on these protocols.

2.3.1 Quantum teleportation over noisy qudit channels

The protocol given here is an extension of quantum teleportation to qudits. Readers may
refer to Chapter 6 in Ref. [67] for more details.

Definition 2.3.1. (Quantum teleportation protocol)

Alice possesses an arbitrary d-dimensional qudit in state |ψ〉A, which she wishes to commu-
nicate to Bob. They share an MES in the state |φ〉A1B1

.
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1. Alice performs a measurement on registers AA1 with respect to the Bell basis{∣∣∣φj,k〉}
j,k
.

2. She transmits the measurement outcome (j, k) to Bob.

3. Bob applies the unitary transformation ZkB1Xj
B1 on his state to recover |ψ〉.

In the rest of the thesis the measurements implemented in Definition 2.3.1 are referred to
as the teleportation measurements and the receiver’s unitary transformation to recover the
target state is referred to as teleportation decoding operation.
If Bob receives (j′, k′) due to a corruption on Alice’s message, the state he gets after
decryption will be the following:

Zk′BXj′

BXd−j
B Zd−kB |ψ〉 = ei· 2π

d
(j′−j)k′Xj′−jZk′−k |ψ〉 . (2.4)

2.3.2 Quantum Vernam cipher over noisy qudit channels

In this section, we revisit quantum Vernam cipher (QVC) introduced by Leung [50], which
is a quantum analog of Vernam cipher (one-time-pad). For a unitary operation U , the
controlled gate c-U is defined as

(c-U)AB |j〉A |k〉B
def= |j〉U j |k〉 .

The extension of quantum Vernam cipher to qudit systems goes as follows.

Definition 2.3.2. (Quantum Vernam cipher)

Alice possesses an arbitrary d-dimensional qudit in state |ψ〉A, which she wishes to commu-
nicate to Bob. They share an MES pair in the state |φ〉A1B1

|φ〉A2B2
, with Alice and Bob

holding registers A1A2 and B1B2, respectively.

1. Alice applies the unitary transformation (c-Z)A2A
(c-X)A1A

.

2. She transmits the register A to Bob.

3. Bob applies the unitary transformation (c-X−1)B1B
(c-Z−1)B2B

.

Quantum Vernam cipher uses entanglement as the key to encrypt quantum information
sent through an insecure quantum channel. In sharp contrast with the classical Vernam
cipher, the quantum key can be recycled securely. Note that if no error occurs on Alice’s
message, then Bob recovers the state |ψ〉 perfectly, and at the end of the protocol the MES
pair remain intact. The scheme detects and corrects for arbitrary transmission errors, and
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Figure 2.2: Sending one qudit through quantum channel E using quantum Vernam cipher.

it only requires local operations and classical communication between the sender and the
receiver.
In particular, if Alice’s message is corrupted by the Pauli error XjZk, the joint state after
Bob’s decryption is(

c-X−1
)
B1A

(
c-Z−1

)
B2A

XjZk (c-Z)A2A
(c-X)A1A

|φ〉A1B1
|φ〉A2B2

|ψ〉A

= 1
d

d−1∑
t,t′=0

(
c-X−1

)
B1A

(
c-Z−1

)
B2A

XjZk (c-Z)A2A
(c-X)A1A

|t〉A1
|t〉B1

|t′〉A2
|t′〉B2

|ψ〉A

= 1
d

d−1∑
t,t′=0

|t〉A1
|t〉B1

|t′〉A2
|t′〉B2

X−tZ−t′XjZkZt′Xt |ψ〉A

= 1
d

d−1∑
t,t′=0

ei· 2π
d

(kt−jt′) |t〉A1
|t〉B1

|t′〉A2
|t′〉B2

XjZk |ψ〉

=
∣∣∣φ0,k

〉
A1B1

∣∣∣φ0,−j
〉
A2B2

⊗ XjZk |ψ〉 . (2.5)

Note that by Eq. (2.5), there is a one-to-one correspondence between the Pauli errors and
the state of the maximally entangled pair. An Xj error on the cipher-text is reflected in
the state of the second MES as a Z−j error and a Zk error on the cipher-text is reflected in
the state of the first MES as a Zk error. Note that for every integer s we have(

F⊗ F†
) ∣∣∣φ0,s

〉
=

(
FZs ⊗ F†

)
|φ〉 =

(
FZsF† ⊗ 1

)
|φ〉 =

(
X−s ⊗ 1

)
|φ〉 .

Therefore, in order to extract the error syndrome, it suffices for Alice and Bob to apply F
and F†, respectively, on their marginals of the MESs and measure them in the computational
basis. By comparing their measurement outcomes they can determine the Pauli error.
When quantum Vernam cipher is used for communication of multiple messages, it is possible
to detect errors without disturbing the state of the MES pairs at the cost of an additional
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fresh MES. This error detection procedure allows for recycling of MESs which is crucial in
order to achieve a high communication rate, as explained in Section 4.3.2. Here we describe
a simplified version of the detection procedure. First we need the following two lemma.

Proposition 2.3.3. It holds that

(c-X)A1A2
· (c-X)B1B2

∣∣∣φj1,k1
〉
A1B1

∣∣∣φj2,k2
〉
A2B2

=
∣∣∣φj1,k1−k2

〉
A1B1

∣∣∣φj1+j2,k2
〉
A2B2

.

In particular,

(c-X)A1A2
· (c-X)B1B2

∣∣∣φ0,k1
〉
A1B1

∣∣∣φ0,k2
〉
A2B2

=
∣∣∣φ0,k1−k2

〉
A1B1

∣∣∣φ0,k2
〉
A2B2

.

Proof.

(c-X)A1A2
· (c-X)B1B2

∣∣∣φj1,k1
〉
A1B1

∣∣∣φj2,k2
〉
A2B2

= 1
d

d−1∑
t1,t2=0

(c-X)A1A2
· (c-X)B1B2

ei· 2π
d

(t1k1+t2k2) |t1 + j1〉A1
|t1〉B1

|t2 + j2〉A2
|t2〉B2

= 1
d

d−1∑
t1,t2=0

ei· 2π
d

(t1k1+t2k2) |t1 + j1〉A1
|t1〉B1

|t2 + j2 + t1 + j1〉A2
|t2 + t1〉B2

=
∣∣∣φj1,k1−k2

〉
A1B1

∣∣∣φj1+j2,k2
〉
A2B2

.

Suppose that Alice and Bob start with m copies of the MES |φ〉 and use them in pairs
to communicate messages using QVC over a noisy channel. By Eq. (2.5) all the MESs
remain in span

{∣∣∣φ0,k
〉

: 0 ≤ k ≤ d− 1
}
. This invariance is crucial to the correctness of our

simulation. Let
∣∣∣φ0,ki

〉
AiBi

be the state of the i-th MES after the communication is done.
In order to detect errors, Alice and Bob use an additional MES |φ〉A0B0

. For i = 1, ...,m,
Alice and Bob apply (c-X)A0Ai

and (c-X)B0Bi
, respectively. By Proposition 2.3.3, the joint

state of the register A0B0 will be
∣∣∣φ0,−

∑m

i=1ki
〉
A0B0

. Now, all Alice and Bob need to do
is to apply F and F † on registers A0 and B0, respectively, and measure their marginal
states in the computational basis. By comparing their measurement outcomes they can
decide whether any error has occurred. In this procedure the MESs used as the keys in
QVC are not measured. Note that if the corruptions are chosen so that ∑m

i=1ki = 0 mod d
then this procedure fails to detect the errors. We will analyze a modified version of this
error detection procedure in detail in Section 4.3.2 which allows error detection with high
probability independent of the error syndrome.
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2.4 Small-bias and k-wise independence

Definition 2.4.1. Let X = X1 . . . Xn be a random variable distributed over {0, 1}n and
J ⊆ [n] be a non-empty set. The bias of J with respect to distributionX, denoted biasJ (X),
is defined as

biasJ (X) def=
∣∣∣∣∣Pr

(∑
i∈J

Xi = 1
)
− Pr

(∑
i∈J

Xi = 0
)∣∣∣∣∣ ,

where the summation is mod 2. For J = ∅, bias is defined to be zero, i.e., bias∅ (X) = 0.

Definition 2.4.2 (small-bias probability space). Let δ ∈ [0, 1]. A distribution X over
{0, 1}n is called a δ-biased probability space if biasJ (X) ≤ δ, for all non-empty subsets
J ⊆ [n].

Definition 2.4.3. Let p and q be probability distributions over the same (countable) set
Ω. The L1-distance between p and q is defined as

‖p− q‖1
def=

∑
x∈Ω
|p(x)− q(x)| , (2.6)

and the L2-distance between p and q is defined as

‖p− q‖2
def=
√∑
x∈Ω

(p(x)− q(x))2 . (2.7)

We say p and q are δ-close in L1-distance if ‖p− q‖1 ≤ δ. Similarly, p and q are said to be
δ-close in L2-distance if ‖p− q‖2 ≤ δ.
We will make use of the following proposition providing an alternative characterization of
the L1-distance between two probability distributions.

Proposition 2.4.4. Let p and q be probability distributions over some (countable) set Ω,
then

‖p− q‖1 = 2 sup
A⊆Ω
|p(A)− q(A)| .

Intuitively, a small-bias random variable is statistically close to being uniformly distributed.
The following lemma quantifies this statement.

Proposition 2.4.5 ([3]). Let X be a δ-biased distribution over {0, 1}n and let U denote
the uniform distribution over {0, 1}n. Then X is δ-close in L2-distance and

(
2n/2δ

)
-close

in L1-distance to U .

Definition 2.4.6 (k-wise independence). A distribution X over {0, 1}n is called k-wise
independent if for any subset J ⊆ [n] such that |J | = k, XJ , the restriction of X to the
subset J is uniformly distributed.
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The following is a direct corollary of Proposition 2.4.5.

Proposition 2.4.7 ([3]). Any δ-biased random variable X ∈ {0, 1}n is ε-close in L1-
distance to being k-wise independent for ε = 2k/2δ.

We use the following lemma in our algorithms to stretch uniformly random strings to much
longer small-bias pseudo-random strings.

Lemma 2.4.8 ([52]). For every δ ∈ (0, 1), there exists a deterministic algorithm which
given O

(
log n+ log 1

δ

)
uniformly random bits outputs a δ-biased pseudo-random string of

n bits.
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Chapter 3

Teleportation-based coding scheme
via large alphabet classical channels

In this chapter, we focus on the teleportation-based quantum communication model with
a polynomial-size alphabet. In this model, Alice and Bob share an unlimited number of
copies of the maximally entangled state (MES) |φ〉 before the protocol begins. The parties
effectively send each other qudit messages by using an MES and then sending two classical
symbols from the communication alphabet per qudit. The complexity of the protocol is the
number of classical symbols exchanged, while the MESs are available for free. We call this
model noiseless if the classical channel is noiseless. A large communication alphabet allows
the parties to send logarithmic amount of information by communicating only a constant
number of symbols from the alphabet. This simplifies our algorithm while allowing us to
address the main challenges of interactive communication in this setting. In Chapter 5, we
extend the framework we develop in this chapter to constant-size communication alphabets
by carefully adapting the existing machinery in the classical setting.

3.1 Overview

At a high level, we adapt ideas due to Brassard et al. [16] and Haeupler [37] to design
the simulation protocol. Namely, the simulation protocol Π′ tries to construct the joint
quantum state of the parties in the original protocol Π by evolving Π. When a transmission
error is detected, we actively reverse earlier local operations in Π′, as in Ref. [16]. In
addition, we make communication robust to noise by adapting ideas from Ref. [37]. In the
simulation protocol Π′, both parties conduct the original conversation from Π as if there
were no noise, except for the following:

• At regular intervals they exchange concise “summaries” of their (potentially different)
views of the conversation up to that point.
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• If the summaries are consistent, they continue the conversation.

• If the summaries are inconsistent, a transmission error is presumed to have occurred
at some point in the simulation. The parties then rewind the simulation to an earlier
stage of the conversation and resume from there.

This template can be interpreted as an error-correcting code over many messages, with
trivial, and most importantly, message-wise encoding. The two-way summaries correspond
to error syndromes for a large number of messages, thereby preserving the rate.
Next, we provide a more detailed description of the classical protocol of Ref. [37] for noisy
interactive communication which can be helpful in understanding our algorithm. The input
protocol is divided into smaller blocks of r = Θε(1) messages. At any point in the simulation,
each party has a partial transcript corresponding to their view of the conversation so far.
Let TA and TB denote Alice’s and Bob’s partial transcripts, respectively. Starting from
empty strings TA and TB, at the beginning of each iteration, the two parties compare their
partial transcripts through hashing. As described above, if their hash values do match, they
continue their original conversation for another block of length r. Otherwise, they need to
backtrack to a common prefix of TA and TB. One way to achieve this is to discard the last
block of their transcripts when they suspect that an error has occurred. However, TA and
TB are not necessarily of the same length and this simple strategy may lead to backtracking
all the way to empty strings TA and TB. In the large alphabet setting, Alice and Bob can
send logarithmic transcript length information by communicating only a constant number
of symbols from the alphabet. In the scenario above, the party with a longer transcript
keeps backtracking until both transcripts are equally long and then they both backtrack
until they reach a common prefix. In Chapter 5 we will explain how the rewinding steps
are coordinated when the communication is over a constant-size alphabet.
In the classical setting, the simulation works by limiting the maximum amount of commu-
nication that is rendered useless by a single error to Oε(1), where ε is the error-rate. As the
error-rate vanishes, the communication rate goes to 1. In addition, the consistency tests
are efficient, consisting of evaluation of simple hash functions.
Before we describe our simulation protocol in more detail (in Section 3.3), we discuss some
of its important aspects.

3.1.1 Insufficiency of simply combining [16] and [37]

Suppose we wish to simulate an interactive protocol Π that uses noiseless classical channels
in the teleportation-based model. When implementing Π with noisy classical channels, it is
not sufficient to apply the Haeupler template to the classical messages used in teleportation,
and rewind as in Ref. [16] when an error is suspected. The reason is that, in Ref. [16],
each message is expanded to convey different types of actions in one step (for example,
whether the parties are evolving the original protocol forward or reversing it). This also
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helps maintain the matching between the classical messages and the corresponding MES,
and the matching between the registers containing the two halves of the MESs. However,
this method incurs a large constant factor overhead in the communication which we wish
to avoid.

3.1.2 New difficulties in rate-optimal simulations

Due to errors in communication, the parties need to actively rewind the simulation to
correct errors on their joint quantum state. This itself can lead to a situation where the
parties may not agree on how they proceed with the simulation (to rewind simulation or
to proceed forward). In order to move on, both parties first need to know what the other
party has done so far in the simulation. This allows them to obtain a global view of the
current joint state and decide on their next action. In Ref. [16], this reconciliation step
was facilitated by the extra information sent by each party and the use of tree codes. This
mechanism is not available to us.

3.1.3 Framework

Our first new idea is to introduce sufficient yet concise data structures so that the parties
can detect inconsistencies in (1) the stage in which they are in the protocol, (2) what
type of action they should be taking, (3) histories leading to the above, (4) histories of
measurement outcomes generated by one party versus the potentially different (corrupted)
received instruction for teleportation decoding, (5) which system contains the next MES
to be used, (6) a classical description of the joint quantum state, which is only partially
known to each party. Each of Alice and Bob maintain her/his data (we collectively call
these DA, DB respectively, here), and also an estimate of the other party’s data (D̃B, D̃A
respectively). Without channel noise, these data are equal to their estimates.

3.1.4 A major new obstacle: out-of-sync teleportation

At every step in the simulation protocol Π′, Alice and Bob may engage in one of three
actions based on their current view of the simulation: a forward step in Π, step in reverse,
or the exchange of classical information. However, due to adversary’s corruptions Alice and
Bob may have inconsistent views of the simulation. This leads to a new difficulty: errors
in the summaries can trigger Alice and Bob to engage in different actions. In particular, it
is possible that one party tries to teleport while the other expects classical communication,
with only one party consuming his/her half of an MES. They then become out-of-sync
over which MESs to use. This kind of problem, to the best of our knowledge, has not
been encountered before, and it is not clear if quantum data can be protected from such
error. (For example, Alice may try to teleport a message into an MES that Bob already
“used” earlier.) One of our main technical contributions is to show that the quantum data
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can always be located and recovered when Alice and Bob resolve the inconsistencies in
their data (DA, D̃B) and (D̃A, DB) in the low noise regime. This is particularly surprising
since quantum data can potentially leak irreversibly to the environment (or the adversary):
Alice and Bob potentially operate in an open system due to channel noise, and out-of-sync
teleportation a priori does not protect the messages so sent.

3.1.5 Tight rope between robustness and rate

The simulation maintains sufficient data structures to store information about each party’s
view so that Alice and Bob can overcome all the obstacles described above. The simulation
makes progress so long as Alice’s and Bob’s views are consistent. The robustness of the
simulation requires that the consistency checks be frequent and sensitive enough so that
errors are caught quickly. On the other hand, to optimize interactive channel capacity,
the checks have to remain communication efficient and not too frequent neither. We also
put in some redundancy in the data structures to simplify the analysis. This calls for
delicate analysis in which we balance the two. In more detail, let c denote the number
of communicated symbols for consistency checks in each iteration. Roughly speaking, for
every r symbols of Π, r + c symbols are communicated in the simulation protocol. The
other source of losing the simulation rate is the communication wasted by transmission
errors. A single error is sufficient to waste r + c communicated symbols in at least one
iteration. This informal argument suggests that any such successful coding scheme would
require communication of at least

n

r
(r + c) + nε (r + c)

symbols. This expression is minimized when r ≈
√
c/ε. This also implies that the commu-

nication rate of 1−Θ (
√
ε) is the best we can hope to achieve using protocols based on the

rewind-if-error paradigm above.

3.2 Result

The following is our main result in the teleportation-based model for simulation of any
n-round noiseless communication protocol over an adversarial channel that corrupts any ε
fraction of the transmitted symbols.
Theorem 3.2.1. Consider any n-round alternating communication protocol Π in the
teleportation-based model, communicating messages over a noiseless channel with an alpha-
bet Σ of bit-size Θ (log n). Algorithm 2 is a computationally efficient coding scheme which
given Π, simulates it with probability at least 1− 2−Θ(nε), over any fully adversarial error
channel with alphabet Σ and error rate ε. The simulation uses n (1 + Θ (

√
ε)) rounds of

communication, and therefore achieves a communication rate of 1−Θ (
√
ε). Furthermore,

the computational complexity of the coding operations is O (n2).
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3.3 Description of Protocol

We follow the notation associated with quantum communication protocols introduced in
Section 2.2 in the description below.
Recall that in the teleportation-based quantum communication model, Alice and Bob
implement a protocol Π0 with prior shared entanglement and quantum communication by
substituting teleportation for quantum communication. For simplicity, we assume that Π0
is alternating, and begins with Alice. In the implementation Π of Π0, the message register C
from Π0 has two counterparts, CA and CB, held by Alice and Bob, respectively. The unitary
operations on AC in Π0 are applied by Alice on ACA in Π. When Alice sends the qudit
in C to Bob in Π0, she applies the teleportation measurement to CA and her share of the
next available MES, and sends the measurement outcome to Bob in Π. Then Bob applies
a decoding operation on his share of the MES, based on the message received, and swaps
the MES register with CB. Bob and Alice’s actions in Π when Bob wishes to do a local
operation and send a qudit to Alice in Π0 are analogously defined. For ease of comparison
with the joint state in Π0, we describe the joint state of the registers in Π (or its simulation
over a noisy channel) in terms of registers ABC. There, C stands for CA if Alice is to send
the next message or all messages have been sent, and for CB if Bob is to send the next
message.
Starting with such a protocol Π in the teleportation-based model, we design a simulation
protocol Π′ which uses a noisy classical channel. The simulation works with blocks of even
number of messages. By a block of size r (for even r) of Π, we mean a sequence of r local
operations and messages alternately sent in Π by Alice and Bob, starting with Alice.
Roughly speaking, Alice and Bob run the steps of the original protocol Π as is, in blocks
of size r def= Θ( 1√

ε
), with r even. They exchange summary information between these

blocks, in order to check whether they agree on the operations that have been applying
to the quantum registers ABC in the simulation. The MESs used for teleportations are
correspondingly divided into blocks of r MESs, implicitly numbered from 1 to r: the odd
numbered ones are used to simulate quantum communication from Alice to Bob, and the
even numbered ones from Bob to Alice. If either party detects an error in transmission,
they may run a block of Π in reverse, or simply communicate classically to help recover
from the error. The classical communication is also conducted in sequences equal in length
to the ones involving a block of Π. A block of Π′ refers to any of these types of sequences.

3.3.1 Metadata

Alice uses an iteration in Π′ for one out of four different types of operations: evolving
the simulation by running a block of Π in the forward direction (denoted a “+1” block);
reversing the simulation by applying inverses of unitary operations of Π (denoted a “−1”
block); synchronizing with Bob on the number of MESs used so far by applying identity
operators between rounds of teleportation or reversing such an iteration (denoted a “0”
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block, with 0 standing for the application of unitary operations U0
i which are 1AC); catching

up on the description of the protocol so far by exchanging classical data with Bob (denoted a
“C” block, with C standing for “classical”). Alice records the sequence of types of iterations
as her “metadata” in the string FullMA ∈ {±1, 0,C}∗. FullMA gets extended by one
symbol for each new iteration of the simulation protocol Π′. The number of blocks of r
MESs Alice has used is denoted qMA which corresponds to the number of non-C symbols
in FullMA. Similarly, Bob maintains data FullMB and qMB.
FullMA and FullMB may not agree due to the transmission errors. To counter this, the
two players exchange information about their metadata at the end of each block. Hence,
Alice also holds M̃B and qM̃B as her best estimation of Bob’s metadata and the number
of MESs he has used, respectively. Similarly, Bob holds M̃A and qM̃A. We use these data
to control the simulation; before taking any action in Π′, Alice checks if her guess M̃B
equals FullMB. Bob does the analogous check for his data.

3.3.2 Number of MESs used

Once both parties reconcile their view of each other’s metadata with the actual data, they
might detect a discrepancy in the number of MESs they have used. The three drawings in
Figure 3.1 represent the d n2r (1 + O(rε))e blocks of r = O(

√
1/ε) MESs at different points

in the protocol: first, before the protocol begins; second, when Alice and Bob have used
the same number of MESs; and third, when they are not synchronized, say, Alice has used
more blocks of MESs than Bob. A difference in qMA and qMB indicates that the joint state
of the protocol Π can no longer be recovered from registers ACACBB alone. Since one party
did not correctly complete the teleportation operations, the (possibly erroneous) joint state
may be thought of as having “leaked” into the partially measured MESs which were used
by only one party. We will elaborate on this scenario in Section 3.3.5.

3.3.3 Pauli data

The last piece of information required to complete the description of what has happened
so far on the quantum registers ABC is about the Pauli operators corresponding to tele-
portation, which we call the “Pauli data”. These Pauli data contain information about the
teleportation measurement outcomes as well as about the teleportation decoding operations.
Since incorrect teleportation decoding may arise due to the transmission errors, we must
allow the parties to apply Pauli corrections at some point. We choose to concentrate such
Pauli corrections on the receiver’s side at the end of each teleportation. These Pauli cor-
rections are computed from the history of all classical data available, before the evolution
or reversal of Π in a block starts. The measurement data are directly transmitted over the
noisy classical communication channel and the decoding data are directly taken to be the
data received over the noisy channel. If there is no transmission error, the decoding Pauli
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Figure 3.1: These figures represent the MES blocks at different stages of the protocol. The
systems depicted by circles have not been used yet for teleportation, those depicted by
squares have been used already. (either “Measured” or teleportation-decoded.) Figure (a)
represents the MES blocks at the beginning of the protocol, when none have been used.
Figure (b) represents them when Alice and Bob have used the same number of them; this
is the desired situation. Figure (c) represents a situation when Alice and Bob are out of
sync; e.g., Alice has used more MES blocks than Bob. They then work to get back in sync
before resuming the simulation.

operation should correspond to the inverse of the effective measurement Pauli operation
and cancel out to yield a noiseless quantum channel. Figure 3.2 depicts the different types
of Pauli data in a block corresponding to type +1 for Alice and −1 for Bob. The Pauli
operations applied on Alice’s side are in the following order:

teleportation measurement for the first qudit she sends,
decoding operation for the first qudit she receives,
correction operation for the same qudit (the first qudit she receives);
teleportation measurement for the second qudit she sends,
decoding operation for the second qudit she receives,
correction operation for the same qudit (the second qudit she receives);
and so on.

The Pauli operations applied on Bob’s side are in a different order:
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decoding operation for the first qudit he receives,
correction operation for the same qudit (the first qudit he receives),
teleportation measurement for the first qudit he teleports;
decoding operation for the second qudit he receives,
correction operation for the same qudit (the second qudit he receives),
teleportation measurement for the second qudit he sends;
and so on.

Alice records as her Pauli data in the string FullPA ∈ (Σ3r)∗, the sequence of Pauli operators
that are applied on the quantum register on her side. Each block of FullPA is divided
into 3 parts of r symbols from the alphabet set Σ. The first part corresponds to the r

2
teleportation measurement outcomes with two symbols for each measurement outcome.
Each of the r

2 teleportation decoding operations are represented by two symbols in the
second part. Finally, the third part contains two symbols for each of the r

2 Pauli corrections.
Similarly, Bob records the sequence of Pauli operators applied on his side in FullPB. As
described above, the measurement outcomes and the decoding Pauli operations are available
to the sender and the receiver, respectively. Based on the message transcript in Π′ so far,
Alice maintains her best guess P̃B for Bob’s Pauli data and Bob maintains his best guess
P̃A for Alice’s Pauli data. These data also play an important role in the simulation. Before
taking any action in Π′, Alice checks if her guess P̃B equals FullPB. Bob does the analogous
check for his data.
Alice and Bob check and synchronize their classical data, i.e., the metadata and Pauli data,
by employing the ideas underlying the Haeupler algorithm [37]. Once they agree on each
other’s metadata and Pauli data, they both possess enough information to compute the
content of the quantum register (to the best of their knowledge).

3.3.4 Hashing for string comparison

We use randomized hashes to compare strings and catch disagreements probabilistically.
The hash values can be viewed as summaries of the strings to be compared. Usually, a
random bit string called the seed is used to select a function from the family of hash
functions. We say a hash collision occurs when a hash function outputs the same value for
two unequal strings. In the large alphabet case (Chapters 3 and 4), we use the following
family of hash functions based on the ε-biased probability spaces constructed in [52].

Lemma 3.3.1 (from [52]). For any l, any alphabet Σ, and any probability 0 < p < 1, there
exist s = Θ(log(l log |Σ|) + log 1

p
), o = Θ(log 1

p
), and a simple function h, which given an

s-bit uniformly random seed S maps any string over Σ of length at most l into an o-bit
output, such that the collision probability of any two l-symbol strings over Σ is at most p.
In short:

∀l,Σ, 0 < p < 1 : ∃s = Θ(log(l log |Σ|)+log 1
p

) , o = Θ(log 1
p

) , h : {0, 1}s×Σ≤l 7→ {0, 1}o
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Figure 3.2: Representation of the teleportation-based scheme for a size r block. The figure
on the left corresponds to Alice and Bob having blocks of type +1, the most common
block type, and the one on the right to a block of type −1 for both. The large rectangles
correspond to unitary operations of the original protocol or their inverses, or even an
identity operator, being applied by Alice or by Bob to AC or BC, respectively. Bob has
r/2 rectangles and applies a unitary operation or an inverse in each of them whenever he
has a block of type ±1. Alice has r/2 + 1 rectangles and uses the first r/2 to apply unitary
operations in a block of type +1 and apply an identity on the last one, while she applies an
identity in the first one and inverses of unitary operations in the r/2 last ones in a block
of type −1. This is so that a −1 block for Alice can be the inverse of a +1 block for Alice,
and vice-versa. The small circles correspond to the Pauli operations due to teleportation
measurement and teleportation decoding, with the teleportation being from Alice to Bob
on odd numbered MESs and from Bob to Alice on even numbered MESs. The small squares
on the receiver side right after the teleportation decoding circle corresponds to the Pauli
corrections made in order to try to correct errors in previous blocks.

s.t. ∀X, Y ∈ Σ≤l, X 6= Y, S ∈ {0, 1}s i.i.d. Bernoulli(1/2) : P [hS(X) = hS(Y)] ≤ p .

In our application, the hash family of Lemma 3.3.1 is used to compare Θ (n)-symbol strings,
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where n is the length of the input protocol. Therefore, in the large alphabet setting, the
collision probability can be chosen to be as low as p = 1/poly (n), while still allowing the
hash values to be exchanged using only a constant number of symbols. In the teleportation-
based model, where Alice and Bob have access to free pre-shared entanglement, they
generate the seeds by measuring the MESs they share in the computational basis.

3.3.5 Out-of-Sync Teleportation

Basic out-of-sync scenario

Consider an iteration in which Alice believes she should implement a +1 block, while Bob
believes he has to resolve an inconsistency in their classical data. Alice will simulate one
block of the input protocol Π, consuming the next block of MESs. On the other hand,
Bob will try to resolve the inconsistency through classical communication alone, and not
access the quantum registers. Thus Alice will treat Bob’s messages as the outcomes of
his teleportation measurements, and she performs the teleportation decoding operations
according to these messages. The situation is even worse, since Alice sends quantum
information to Bob through teleportation of which Bob is unaware, and Bob views the
teleportation measurement outcomes sent by Alice as classical information about Alice’s
local Pauli data and metadata corresponding to previous iterations. Note that at this point
the quantum state in registers ABC may potentially be lost. This scenario could continue
for several iterations and derail the simulation completely. To recover from such a situation,
especially to retrieve the quantum information in the unused MESs at his end, it would
seem that Alice and Bob would have to rewind the simulation steps in Π′ (and not only
the steps of the original protocol Π) to an appropriate point in the past. This rewinding
itself would be subject to error, and the situation seems hopeless. Nonetheless, we provide
a simple solution to address this kind of error, which translates out-of-sync teleportation
to errors in implementing the forward simulation or rewinding of the original protocol Π.
As explained earlier, Alice and Bob first reconcile their view of the history of the simulation
stored in their metadata. Through this, suppose they both discover the discrepancy in the
number of MESs used. (There are other scenarios as well; for example, they may both think
that qMA = qMB. These scenarios lead to further errors, but the simulation protocol Π′
eventually discovers the difference in MESs used.) In the scenario in which Alice and Bob
both discover that qMA 6= qMB, they try to “gather” the quantum data hidden in the partially
used MESs back into the registers ABC. In more detail, suppose Bob has used fewer MESs
than Alice, and he discovers this at the beginning of the i-th iteration. Let E1E2 · · ·Er
be registers with Bob that hold the halves of the first block of MESs that Alice has used
but Bob has not. Note that E1, E3, . . . , Er−1 contain quantum information teleported by
Alice, and E2, E4, . . . , Er are MES-halves intended for teleportation by Bob. The MES-
halves corresponding to E2, E4, . . . , Er have already been used by Alice to “complete” the
teleportations she assumed Bob has performed. Say Alice used this block of MESs in the i′-
th iteration. In the i-th iteration, Bob teleports the qudit E1 using the MES-half E2, E3
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with E4, and so on. That is, Bob teleports qudit Ej using the MES-half Ej+1 in increasing
order of j, for all odd j ∈ [r], as if the even numbered MESs had not been used by Alice.
The effect of this teleportation is the same as if Alice and Bob had both tried to simulate
the local operations and communication from the original protocol in the i′-th iteration (in
the forward direction or to correct the joint state), except that the following also happened
independently of channel error :

1. the Pauli operations used by Bob to decode E1, E3, . . . , Er−1 were all the identity,

2. the unitary operations used by Bob on the registers BC were all the identity, and

3. the Pauli operations applied by Alice for decoding Bob’s teleportation were unrelated
to the outcome of Bob’s teleportation measurements.

This does not guarantee correctness of the joint state in ABC, but has the advantage
that quantum information in the MES-halves E1, E3, . . . , Er−1 that is required to restore
correctness is redirected back into the registers ABC. In particular, the difference in the
number of MESs used by the two parties is reduced, while the errors in the joint quantum
state in ABC potentially increase. The errors in the joint state are eventually corrected
by reversing the incorrect unitary operations, as in the case when the teleportations are all
synchronized.
To understand the phenomenon described above, consider a simpler scenario where Bob
wishes to teleport a qudit |ξ〉 in register B1 to Alice using an MES in registers E ′1E1, after
which Alice applies the unitary operation V to register E ′1. If they follow the corresponding
sequence of operations, the final state would be V |ξ〉, stored in register E ′1. Instead
suppose they do the following. First, Alice applies V to register E ′1, then Bob measures
registers B1E1 in the generalized Bell basis and gets measurement outcome (j, k). He sends
this outcome to Alice. We may verify the state of register E ′1 conditioned on the outcome
is V (XjZk) |ξ〉. Thus, the quantum information in ξ is redirected to the correct register,
albeit with a Pauli error (that is known to Alice because of his message). In particular, Alice
may later reverse V to correctly decode the teleported state. The chain of teleportation
steps described in the previous paragraph has a similar effect.

3.3.6 First representation of the quantum registers

A first representation for the content of the quantum registers ABC in Π′ can be obtained
directly and explicitly from the metadata and the Pauli data, and is denoted JS1, as in
Eq. (3.1) below, with JS standing for “joint state”. We emphasize that this is the state
conditioned on the outcomes of the teleportation measurements as well as the transcript
of classical messages received by the two parties. However, the form JS1 is essentially
useless for deciding the next action that the simulation protocol Π′ should take, but it
can be simplified into a more useful representation. This latter form, denoted JS2, as
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in Eq. (3.2) below, directly corresponds to the further actions we may take in order to
evolve the simulation of the original protocol or to actively reverse previous errors. We
first consider JS1 and JS2 in the case when qMA = qMB.
We sketch how to obtain JS1 from FullMA, FullMB, FullPA and FullPB (when qMA = qMB).
Each block of r MESs which have been used by both Alice and Bob corresponds to a
bracketed expression [∗j] for some content “∗j” corresponding to the j-th block that we
describe below. The content of the quantum registers is then the ABC part of

JS1 = [∗qMA] · · · [∗2][∗1] |ψinit〉ABCER , (3.1)

with |ψinit〉ABCER being the initial state of the original protocol. (To be accurate, the
representation corresponds to the sequence of operations that have been applied to |ψinit〉,
and knowledge of |ψinit〉 is not required to compute the representation.) It remains to
describe the content ∗j of the j-th bracket. It contains from right to left r

2 iterations of the
following:

Alice’s unitary operation - Alice’s teleportation measurement outcome -
Bob’s teleportation decoding - Bob’s Pauli correction - Bob’s unitary operation
- Bob’s teleportation measurement outcome -
Alice’s teleportation decoding - Alice’s Pauli correction.

It also allows for an additional unitary operation of Alice on the far left when she is
implementing a block of type −1; we elaborate on this later. If Alice’s block type is +1, all
her unitary operations are consecutive unitary operations from the original protocol (with
the index of the unitary operations depending on the number of ±1 in FullMA), while if it
is −1, they are inverses of such unitary operations. If Alice’s block type is 0, all unitary
operations are equal to the identity on registers ACA. Similar properties hold for Bob’s
unitary operations on registers BC. Alice’s block type corresponds to the content of the j-
th non-C element in FullMA, and Bob’s to the content of the j-th non-C element in FullMB.
Alice’s Pauli data corresponds to the content of the j-th block in FullPA, and Bob’s to the
content of the j-th block in FullPB. The precise rules by which Alice and Bob determine
their respective types for a block in Π′, and which blocks of Π (if any) are involved, are
deferred to the next section. Note that when qMA = qMB, the first qMA MES blocks have
been used by both parties but not necessarily in the same iterations. Nevertheless, the
remedial actions the parties have taken to recover from out-of-sync teleportation have
reduced the error on the joint state to transmission errors as if all the teleportations were
synchronized and the adversary had introduced those additional errors; see Section 3.3.5.
To give a concrete example, suppose from her classical data, Alice determines that in her
j-th non-C block of Π′, she should actively reverse the unitary operations of block k
of Π to correct some error in the joint state. So her j-th non-C block of Π′ is of
type −1. Suppose Alice’s Pauli data in the j-th block of FullPA correspond to Pauli
operators pA,1pA,2 · · · pA,3r/2 in the order affecting the joint state; that is, the Pauli op-
erators pA,1 , pA,4 , . . . , pA,3(r/2−1)+1 correspond to the sequence of Alice’s teleportation
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measurement outcomes, the Pauli operators pA,2 , pA,5 , . . . , pA,3(r/2−1)+2 are her teleporta-
tion decoding operations and pA,3 , pA,6 , . . . , pA,3r/2 are her Pauli corrections, respectively.
Consider Bob’s j-th non-C block of Π′. Note that this may be a different block of Π′
than Alice’s j-th non-C block. Suppose from his classical data, Bob determines that in
his j-th non-C block of Π′, he should apply the unitary operations of block l of Π to
evolve the joint state further. So his j-th non-C block of Π′ is of type +1. Suppose Bob’s
Pauli data in the j-th block of FullPB correspond to Pauli operators pB,1pB,2 · · · pB,3r/2, in
the order affecting the joint state; that is, the Pauli operators pB,1 , pB,4 , . . . , pB,3(r/2−1)+1
are Bob’s decoding operations and pB,2 , pB,5 , . . . , pB,3(r/2−1)+2 are his Pauli corrections
and pB,3 , pB,6 , . . . , pB,3r/2 correspond to his teleportation measurement outcomes, respec-
tively. Then from FullMA,FullMB,FullPA,FullPB, we can compute a description of the
joint state as in Eq. (3.1), with ∗j equal to

U−1
kr+1

×
(
pA,3(r/2−1)+3 pA,3(r/2−1)+2

) (
pB,3(r/2−1)+3 Ulr+r pB,3(r/2−1)+2 pB,3(r/2−1)+1

)
×
(
pA,3(r/2−1)+1 U−1

kr+3

)
× · · ·
×
(
pA,3(s−1)+3 pA,3(s−1)+2

) (
pB,3(s−1)+3 Ulr+2s pB,3(s−1)+2 pB,3(s−1)+1

)
×
(
pA,3(s−1)+1 U−1

kr+(r−2s+3)

)
× · · ·
× (pA,6 pA,5) (pB,6 Ulr+4 pB,5 pB,4)

(
pA,4 U−1

kr+(r−1)

)
× (pA,3 pA,2) (pB,3 Ulr+2 pB,2 pB,1) (pA,1 1) .

Note that Alice and Bob are not necessarily able to compute the state JS1. Instead,
they use their best guess for the other party’s metadata and Pauli data in the procedure
described in this section to compute their estimates JS1A and JS1B of JS1, respectively.
Note that Alice and Bob will not compute their estimates of JS1 unless they believe that
they both know each other’s metadata and Pauli data and have used the same number of
MES blocks.

3.3.7 Second representation of the quantum registers

To obtain JS2 from JS1, we first look inside each bracket and recursively cancel consecutive
Pauli operators inside the bracket. In case a bracket evaluates to the identity operator
on registers ABC, we remove it. Once each bracket has been cleaned up in this way, we
recursively try to cancel consecutive brackets if their contents correspond to the inverse
of one another (assuming that no two Ui of the original protocol are the same or inverses
of one another). Once no such cancellation works out anymore, what we are left with is
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representation JS2, which is of the following form (when qMA = qMB):

JS2 = [#b] · · · [#1][Ugr · · ·U(g−1)r+2U(g−1)r+1] · · · [Ur · · ·U2U1] |ψinit〉ABCER . (3.2)

Here, the first g brackets starting from the right correspond to the “good” part of the
simulation, while the last b brackets correspond to the “bad” part of the simulation, the
part that Alice and Bob have to actively rewind later. The integer g is determined by the
left-most bracket such that along with its contents, those of the brackets to the right equal
the sequence of unitary operations U1, U2, . . . , Ugr from the original protocol Π in reverse.
The brackets to the left of the last g brackets are all considered bad blocks. Thus, the
content of [#1] is not [U(g+1)r · · ·Ugr+1], while the contents of [#2] to [#b] are arbitrary
and have to be actively rewound before Alice and Bob can reverse the content of [#1].
Once the two parties synchronize their metadata, the number of MESs they have used
and their Pauli data, they compute their estimates of JS1. Alice uses JS1A in the above
procedure to compute her estimate JS2A of JS2. Similarly, Bob computes JS2B from JS1B.
These in turn determine their course of action in the simulation as described next. If b > 0,
they actively reverse the incorrect unitary operators in the last bad block, while assuming
the other party does the same. They start by applying the inverse of [#b], choosing
appropriately whether to have a type ±1 or 0 block, and also choosing appropriate Pauli
corrections. Else, if b = 0, they continue implementing unitary operations Ugr+1 to U(g+1)r
of the original input protocol Π to evolve the simulation. Note that each player has their
independent view of the joint state, and takes actions assuming that their view is correct.
In this process, Alice and Bob use their view of the joint state to predict each other’s next
action in the simulation and extend their estimates of each other’s metadata and Pauli
data accordingly.
We describe a few additional subtleties on how the parties access the quantum register in
a given block, as represented in Figure 3.2. First, each block begins and ends with Alice
holding register C and being able to perform a unitary operation. In +1 blocks, she applies
a unitary operation at the beginning and not at the end, whereas in −1 blocks she applies
the inverse of a unitary operation at the end and not at the beginning. This is in order to
allow a −1 block to be the inverse of a +1 block, and vice-versa. Second, whenever Alice
and Bob are not synchronized in the number of MESs they have used so far, as explained in
Section 3.3.5, the party who has used more will wait for the other to catch up by creating a
new type C block while the party who has used less will try to catch up by creating a type
0 block, sequentially feeding the C register at the output of a teleportation decoding to the
input of the next teleportation measurement. Notice that due to errors in communication,
it might happen that +1 blocks are used to correct previous erroneous −1 blocks and 0
blocks are used to correct previous erroneous 0 blocks. As illustrated in Figure 3.2, the
block on the right is the inverse of the one on the left if the corresponding Pauli operators
are inverses of each other.
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3.3.8 Representations of quantum registers while out-of-sync

We now define the JS1 and JS2 representations of the joint state in the case when qMA 6=
qMB. Note that in this case, conditioned on the classical data with the two parties, JS1
and JS2 represent a pure state. However, in addition to the ABCER registers, we must
also include the half-used MES registers in the representation. Let u def= |qMA − qMB|. For
concreteness, suppose that qMA > qMB. Then the JS1 representation is of the following
form:

JS1 = [∗qMA] · · · [∗qMB] · · · [∗2][∗1] |ψinit〉ABCER . (3.3)

The content of the first qMB brackets from the right, corresponding to the MES blocks which
have been used by both parties are obtained as described in Subsection 3.3.6. The leftmost
u brackets correspond to the MES blocks which have been used only by Alice. We refer
to these blocks as the ugly blocks. These brackets contain Alice’s unitary operations from
the input protocol, her teleportation decoding operations and Pauli correction operations
in her last u non-classical iterations of the simulation. Additionally, they contain the u
blocks of MES registers used only by Alice. In each of these blocks, the registers indexed
by an odd number have been measured on Alice’s side and the state of the MES register
has collapsed to a state which is obtained from Alice’s Pauli data.
The representation JS2 is obtained from JS1 as follows: We denote by [@u] · · · [@1] the
leftmost u brackets corresponding to the ugly blocks. We use the procedure described in
Subsection 3.3.7 on the rightmost qMB brackets in JS1 to obtain JS2 of the following form:

JS2 = [@u] · · · [@1][#b] · · · [#1][Ugr · · ·U(g−1)r+2U(g−1)r+1] · · · [Ur · · ·U2U1] |ψinit〉ABCER ,
(3.4)

with g good blocks, and b bad blocks, for some non-negative integers g, b.
Thus, in the rest of this section, we assume that JS2 is of the form of Eq. (3.4) at the end
of each iteration for some non-negative integers g, b, u which are given by

g
def= the number of good unitary blocks in JS2, (3.5)

b
def= the number of bad unitary blocks in JS2, and (3.6)

u
def= |qMA − qMB|. (3.7)

We point out that Alice and Bob compute their estimates of JS1 and JS2 only if, based
on their view of the simulation so far, they believe that they have used the same number
of MES blocks. Therefore, whenever computed, JS1A, JS1B and JS2A, JS2B are always of
the forms described in Subsections 3.3.6 and 3.3.7, respectively.
Notice that if there are no transmission errors or hash collisions and Alice and Bob do
as described earlier in this section after realizing that qMA > qMB, then the ugly blocks
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[@u] · · · [@2] remain as they were while block [@1] becomes a standard block of unitary
operations acting on registers ABC only, quite probably being a new bad block, call it
[#b + 1]. More generally, if there is either a transmission error or a hash collision, Bob
might not realize that qMA > qMB. Then he might either have a C type of iteration in which
case block [@1] also remain as is, or else it is a +1, −1 or 0 (non-C) type of iteration and
then he may apply non-identity Pauli operations and unitary operations on registers BC,
which still results in block [@1] becoming a standard block of unitary operations acting
on registers ABC only. Similarly if there is either a transmission error or a hash collision,
Alice might not realize that qMA > qMB. Then she might have a non-C type of iteration in
which case a new ugly block, call it [@u+ 1], would be added to the left of [@u].

3.3.9 Summary of main steps

The different steps that Alice and Bob follow in the simulation protocol Π′ are summarized
in Algorithm 1. Recall that each party runs the simulation algorithm based on their view
of the simulation so far.

Algorithm 1: Main steps in one iteration of the simulation for the large alphabet
teleportation-based model

1 Agree on the history of the simulation contained in the metadata, i.e., ensure
FullMA = M̃A and FullMB = M̃B. This involves Algorithm 5—rewindMD, and
Algorithm 6—extendMD.

2 Synchronize the number of MESs used, in particular, ensure qMA = qM̃B and
qMB = qM̃A. This involves Algorithm 7—syncMES.

3 Agree on Pauli data for all the teleportation steps and additional Pauli corrections
for addressing channel errors, i.e., ensure FullPA = P̃A and FullPB = P̃B. This is
done via Algorithm 8—rewindPD and Algorithm 9—extendPD.

4 Compute the best guess for JS1 and JS2. If there are any “bad” blocks in the
guess for JS2, reverse the last bad block of unitary operations. I.e., implement
quantum rewinding so that b = 0 in JS2. This is done in Algorithm 11—simulate.

5 If no “bad” blocks remain, implement the next block of the original protocol. This
results in an increase in g in JS2, and is also done through Algorithm
11—simulate.

The algorithms mentioned in each step are presented in the next section. Figure 3.3
summarizes the main steps in flowchart form.
In every iteration exactly one of the steps listed in Algorithm 1 is conducted. Alice and Bob
skip one step to the next only if the goal of the step has been achieved through the previous
iterations. The simulation protocol is designed so that unless there is a transmission error
or a hash collision in comparing a given type of data, Alice and Bob will go down these
steps in tandem, while never returning to a previous step. For instance, once Alice and Bob

35



Figure 3.3: Flowchart of the teleportation-based scheme for high rate noisy interactive
quantum communication. Most of the communication is spent actually trying to simulate
the protocol, in the simulate subroutine.

achieve the goal of step 1, as long as no transmission error or hash collision occurs, their
metadata will remain synchronized while they are conducting any of the next steps. This
is in fact a crucial property which we utilize in the analysis of the algorithm. In particular,
to ensure this property, Alice and Bob need to synchronize the number of MESs they have
used before synchronizing their Pauli data.

3.4 Algorithm

In this section, we present our simulation protocol Π′ in the teleportation-based model when
the communication alphabet is polynomial-size. We first introduce the data structure used
in our algorithm in this model, which summarizes the definition of the variables appearing
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in the pseudo-code.

3.4.1 Data structure

• Metadata: In every iteration NewMetaA ∈ {±1, 0,C} corresponds to Alice’s block
type which determines how the simulation of the input protocol proceeds locally on
Alice’s side. NewMetaA = C corresponds to a classical iteration, in which Alice does
not access the quantum registers. NewMetaA ∈ {±1, 0} determines the exponent of
the unitary operators from the input protocol Π applied by Alice in the current itera-
tion of the simulation. Alice records her metadata in FullMA which is concatenated
with NewMetaA in every iteration and has length i after i iterations. Her best guess
of Bob’s block type in the current iteration is denoted by ˜NewMetaB. Alice maintains
a guess for Bob’s metadata in M̃B which gets modified or corrected as she gains more
information through interaction with Bob. Note that M̃B is not necessarily full-length
in every iteration and its length may decrease. `M̃B denotes the length of M̃B. Bob’s
local data, NewMetaB, FullMB, ˜NewMetaA, M̃A and `M̃A are defined similarly.

Alice maintains a guess `MA for the length of M̃A, which is with Bob. We define MA
to be the prefix of FullMA of length `MA, i.e., MA def= FullMA [1 : `MA]. When MA
appears in any of the algorithms in this section, it is implicitly computed by Alice
from FullMA and `MA. The number of MES blocks used by Alice for teleportation is
denoted by qMA. We use qM̃B to denote Alice’s guess of the number of MES blocks
used by Bob. Note that qMA and qM̃B are the number of 0, 1 and −1 symbols in MA
and M̃B, respectively. Bob’s MB, `MB, qMB and qM̃A are defined similarly.

• Pauli data: In every iteration NewPauliA ∈ (Σr)3 consists of three parts: The first
part corresponds to the outcomes of Alice’s teleportation measurements in the current
iteration; the second part corresponds to the received transmissions which determine
the teleportation decoding operation and the last part which corresponds to Pauli
corrections.
The Pauli data are recorded locally by Alice in FullPA. Starting from the empty
string, FullPA is concatenated with NewPauliA whenever Alice implements a non-C
iteration. Alice’s best guess for Bob’s NewPauliB in each iteration is denoted by

˜NewPauliB. She maintains a string P̃B as an estimate of Bob’s Pauli data. The
length of P̃B is denoted by `P̃B. Alice also maintains `PA, her estimate for the
length of P̃A, which is with Bob. PA denotes the prefix of FullPA of length `PA, i.e.,
PA def= FullPA [1 : `PA]. When PA appears in any of the algorithms in this section,
it is implicitly computed by Alice from FullPA and `PA. Bob’s local Pauli data
NewPauliB , FullPB , ˜NewPauliA , P̃A , `P̃A , `PB , PB are defined similarly.
A critical difference between the metadata and the Pauli data is that the metadata
assigns one symbol for each block while the Pauli data assigns 3r symbols for each
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block.

• We use H with the corresponding data as subscript to denote the hashed data, e.g.,
HMA denotes the hash value of the string MA.

• The data with ′ denote the received data after transmission over the noisy channel,
e.g., `′MB denotes what Alice receives when Bob sends `MB.

• The variable Itertype ∈ {MD,PD,MES, SIM} determines the iteration type for the
party: MD and PD correspond to iterations where metadata and Pauli data are
processed or modified, MES is used for iterations where the party is trying to catch
up on the number of used MESs, and SIM corresponds to iterations where the party
proceeds with evolving the simulation of Π by applying a block of unitary operators
from Π or the inverse of such a block of unitary operators in order to fix an earlier
error.

• The variable RewindExtend ∈ {R,E} determines in classical iterations if a string of
the local metadata or Pauli data is extended or rewound in the current iteration.

3.4.2 Pseudo-code

This section contains the pseudo-codes for the main algorithm and the subroutines that
each party runs locally in the simulation protocol. The subroutines are the following:
Preprocess, which determines what will happen locally to the classical and quantum data
in the current iteration of the simulation; rewindMD and extendMD, which process the
local metadata; syncMES which handles the case when the two parties do not agree on the
number of MES blocks they have used; rewindPD and extendPD process the local Pauli
data; and finally, simulate, in which the player moves on with the simulation of the input
protocol according to the information from subroutine Computejointstate of Preprocess.
When a party believes that the classical data are fully synchronized, he or she uses the
subroutine Computejointstate to extract the necessary information to decide how to evolve
the joint quantum state next. This information includes estimates of JS1 and JS2 defined
in Eqs. (3.1) and (3.2), respectively, NewMetaA, RewindExtend, ˜NewMetaB, Block which
represents the index of the block of unitary operations from the input protocol Π the party
will perform, PCorr representing Alice’s Pauli corrections and P̃Corr representing Alice’s
guess of Bob’s Pauli corrections.
For the subroutines used in the simulation protocol, we list all the global variables accessed
by the subroutine as the Input at the beginning of the subroutine. Whenever applicable,
the relation between the variables when the subroutine is called is stated as the Promise
and the global variables which are modified by the subroutine are listed as the Output.

Remark 3.4.1. The amount of communication in each iteration of Algorithm 2 is inde-
pendent of the iteration type.
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Remark 3.4.2. Since in every iteration of Algorithm 2 the lengths of FullMA and FullMB
increase by 1, in order to be able to catch up on the metadata, Alice and Bob need
to communicate two symbols at a time when extending the metadata. This is done by
encoding the two symbols into strings of length r of the channel alphabet Σ using the
mapping encodeMD in Algorithm 4 and decoding it using the mapping decodeMD in
Algorithm 6.

Algorithm 2: Main algorithm (Alice’s side)
Input: n round protocol Π in teleportation-based model over polynomial-size

alphabet Σ
1 Initialize

r ← Θ (1/
√
ε) ;

Rtotal ← d n2r + Θ(nε)e ;
qMA, `MA, `M̃B, `PA, `P̃B ← 0 ;
MA, M̃B,PA, P̃B ← ∅ ;

2 h← hash function of Lemma 3.3.1 with p = 1/n5 and o = s = Θ(log n) ;
3 Measure Θ (Rtotal) MESs in the computational basis and record the binary

representation of the outcomes in S1, . . . , S4Rtotal ;
// 4Rtotal seeds of length s for the hash function h

4 For i = 1→ Rtotal
B Preprocessing phase

5 HMA ← hS4i−3 (MA) ;
6 HM̃B ← hS4i−2

(
M̃B

)
;

7 HPA ← hS4i−1 (PA) ;
8 HP̃B ← hS4i

(
P̃B

)
;

9 Send (
HMA, `MA, HM̃B, `M̃B, HPA, `PA, HP̃B, `P̃B

)
;

10 Receive (
H ′M̃A, `

′
M̃A, H

′
MB, `

′
MB, H

′
P̃A, `

′
P̃A, H

′
PB, `

′
PB

)
;

3.5 Analysis

Our analysis is inspired by a potential function argument used in Ref. [37] to track the
progress of the simulation. In order to show the correctness of the above algorithm, we
condition on some view of the metadata and Pauli data, i.e., FullMA, MA, M̃A, FullMB,
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Algorithm 3: Main algorithm (Alice’s side, cont. from previous page)
11

12 Preprocess;
13 if Itertype 6= SIM then
14 Send msg;
15 Receive msg′;

// messages are communicated alternately

B Case i.A
16 if Itertype = MD and RewindExtend = R then
17 rewindMD;

B Case i.B
18 else if Itertype = MD and RewindExtend = E then
19 extendMD;

B Case ii.A
20 else if Itertype = MES and NewMetaA = C then
21 return;

B Case ii.B
22 else if Itertype = MES and NewMetaA = 0 then
23 syncMES;

B Case iii.A
24 else if Itertype = PD and RewindExtend = R then
25 rewindPD;

B Case iii.B
26 else if Itertype = PD and RewindExtend = E then
27 extendPD;

// Classical data are synchronized
B Case iv

28 else
29 simulate.

30 return Main algorithm;
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Algorithm 4: Preprocess (Alice’s side)
Input: 

HMA, `MA, HM̃B, `M̃B, HPA, `PA, HP̃B, `P̃B
H ′

M̃A
, `′

M̃A
, H ′MB, `

′
MB, H

′
P̃A
, `′

P̃A
, H ′PB, `

′
PB

FullMA, M̃B,FullPA, P̃B, qMA


Output: (

Itertype,RewindExtend,NewMetaA,FullMA, `MA, ˜NewMetaB, `M̃B,msg
)

1 if
(
HMA, HM̃B

)
=
(
H ′

M̃A
, H ′MB

)
and `MA = `′

M̃A
= `M̃B = `′MB = i− 1 then

2 Compute qM̃B;
B Processing metadata

B Case i.A
3 if

(
HMA, HM̃B, `MA, `M̃B

)
6=
(
H ′

M̃A
, H ′MB, `

′
M̃A
, `′MB

)
then

4 Itertype ← MD;
5 RewindExtend ← R;
6 NewMetaA← C;
7 FullMA← (FullMA,NewMetaA);
8 msg ← dummy message of length r;

B Case i.B
9 else if (`MA < i− 1) or

(
`M̃B < i− 1

)
then

10 Itertype ← MD;
11 RewindExtend ← E;
12 NewMetaA← C;
13 FullMA← (FullMA,NewMetaA);
14 if `MA < i− 1 then
15 msg ← encodeMD (FullMA [`MA + 1, `MA + 2]); // Encode MD in Σr

16 else
17 msg ← dummy message of length r;

B Comparing number of used MES blocks
B Case ii.A

18 else if qMA > qM̃B then
19 Itertype ← MES;
20 NewMetaA← C;
21 FullMA← (FullMA,NewMetaA);
22 `MA ← `MA + 1;
23 ˜NewMetaB ← 0;
24 M̃B ←

(
M̃B, ˜NewMetaB

)
;

25 `M̃B ← `M̃B + 1;
26 msg ← dummy message of length r;
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Algorithm 4: Preprocess (Alice’s side, cont. from previous page)
B Case ii.B

26 else if qMA < qM̃B then
27 Itertype ← MES;
28 NewMetaA← 0;
29 FullMA← (FullMA,NewMetaA);
30 `MA ← `MA + 1;
31 ˜NewMetaB ← C;
32 M̃B ←

(
M̃B, ˜NewMetaB

)
;

33 `M̃B ← `M̃B + 1;
34 msg ← dummy message of length r;

B Processing Pauli data
B Case iii.A

35 else if
(
HPA, HP̃B, `PA, `P̃B

)
6=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
then

36 Itertype ← PD;
37 RewindExtend ← R;
38 NewMetaA← C;
39 FullMA← (FullMA,NewMetaA);
40 `MA ← `MA + 1;
41 ˜NewMetaB ← C;
42 M̃B ←

(
M̃B, ˜NewMetaB

)
;

43 `M̃B ← `M̃B + 1;
44 msg ← dummy message of length r;

B Case iii.B
45 else if (`PA < 3qMA · r) or

(
`P̃B < 3qM̃B · r

)
then

46 Itertype ← PD;
47 RewindExtend ← E;
48 NewMetaA← C;
49 FullMA← (FullMA,NewMetaA);
50 `MA ← `MA + 1;
51 ˜NewMetaB ← C;
52 M̃B ←

(
M̃B, ˜NewMetaB

)
;

53 `M̃B ← `M̃B + 1;
54 if `PA < 3qMA · r then
55 msg ← FullPA [`PA + 1, `PA + r]
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Algorithm 4: Preprocess (Alice’s side, cont. from previous page)
B Processing joint quantum state

B Case iv
56 else
57 Itertype ← SIM;
58 computejointstate;
59 FullMA = (FullMA,NewMetaA);
60 `MA ← `MA + 1;
61 M̃B ←

(
M̃B, ˜NewMetaB

)
;

62 `M̃B ← `M̃B + 1;
63 return Preprocess;

Algorithm 5: rewindMD (Alice’s side)
Input:

(
HMA, `MA, HM̃B, `M̃B, H

′
M̃A
, `′

M̃A
, H ′MB, `

′
MB

)
Promise:

(
HMA, HM̃B, `MA, `M̃B

)
6=
(
H ′

M̃A
, H ′MB, `

′
M̃A
, `′MB

)
.

Output: (`MA, `
′
MB)

1 if `MA 6= `′
M̃A

or `M̃B 6= `′MB then
2 if `MA > `′

M̃A
then

3 `MA ← `MA − 1;
4 if `M̃B > `′MB then
5 `M̃B ← `M̃B − 1;

6 else
7 if HMA 6= H ′

M̃A
then

8 `MA ← `MA − 1;
9 if HM̃B 6= H ′MB then

10 `M̃B ← `M̃B − 1;

11 return rewindMD;
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Algorithm 6: extendMD (Alice’s side)
Input:

(
`MA, `M̃B, M̃B,msg′, i

)
Promise:

(
HMA, HM̃B, `MA, `M̃B

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A
, `′MB

)
,

`MA < i− 1 or `M̃B < i− 1.
Output:

(
`MA, M̃B, `M̃B

)
1 if `MA < i− 1 then
2 `MA ← `MA + 2;
3 else if `MA = i− 1 then
4 `MA ← `MA + 1;
5 if `M̃B < i− 1 then
6 M̃B

[
`M̃B + 1, `M̃B + 2

]
← decodeMD (msg′); // decode MD from Σr

7 `M̃B ← `M̃B + 2;
8 else if `M̃B = i− 1 then
9 M̃B ←

(
M̃B,C

)
;

10 `M̃B ← `M̃B + 1;
11 return extendMD;

Algorithm 7: syncMES (Alice’s side)
Input: (FullPA, qMA)
Promise:

(
HMA, HM̃B, `MA, `M̃B

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1
)
,

`MA = `M̃B = i , qMA < qM̃B.
Output: qMA,NewPauliA,FullPA

1 Recall that A′B′C ′ are the registers that are used to generate the joint quantum
state of the protocol being simulated, and C ′ is the communication register;

2 Let E1E2 · · ·Er be the r registers with Alice that contain halves of the block of r
MESs with indices in the interval (qMA · r, (qMA + 1) · r] ;

3 Teleport C ′ using E1; then teleport E2 using E3, E4 using E5, and so on (i.e.,
teleport Ej using Ej+1 for even j ∈ [r − 2]), and then store Er in register C ′ ;
// See Section 3.3.5 for the rationale, and Bob’s analogue of this

step
4 Store the teleportation measurement outcomes in m ∈ Σr;
5 NewPauliA← (m, 0r, 0r);
6 FullPA← (FullPA,NewPauliA);
7 qMA ← qMA + 1;
8 return syncMES;
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Algorithm 8: rewindPD (Alice’s side)
Input:

(
HPA, `PA, HP̃B, `P̃B, H

′
P̃A
, `′

P̃A
, H ′PB, `

′
PB

)
Promise:

(
HMA, HM̃B, `MA, `M̃B

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1
)
,

`MA = `M̃B = i , qMA = qM̃B ,(
HPA, HP̃B, `PA, `P̃B

)
6=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
.

Output:
(
`PA, `P̃B

)
1 if `PA 6= `′

P̃A
or `P̃B 6= `′PB then

2 if `PA > `′
P̃A

then
3 `PA ← `PA − r;
4 if `P̃B > `′PB then
5 `P̃B ← `P̃B − r;

6 else
7 if HPA 6= H ′

P̃A
then

8 `PA ← `PA − r;
9 if HP̃B 6= H ′PB then

10 `P̃B ← `P̃B − r;

11 return rewindPD;

Algorithm 9: extendPD (Alice’s side)
Input:

(
`PA, `P̃B, P̃B, qMA, qM̃B,msg′

)
Promise:

(
HMA, HM̃B, `MA, `M̃B

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1
)
,

`MA = `M̃B = i , qMA = qM̃B ,(
HPA, HP̃B, `PA, `P̃B

)
=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA < 3qMA · r or `P̃B < 3qM̃B · r.
Output:

(
`PA, P̃B, `P̃B

)
1 if `PA < 3qMA · r then
2 `PA ← `PA + r;
3 if `P̃B < 3qM̃B · r then
4 P̃B

[
`P̃B + 1 : `P̃B + r

]
← msg′;

5 `P̃B ← `P̃B + r;
6 return extendPD;
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Algorithm 10: Computejointstate (Alice’s side)
Input:

(
FullMA, M̃B,FullPA, P̃B

)
Promise:

(
HMA, HM̃B, `MA, `M̃B

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A
, `′MB

)
,

`MA = `M̃B = i− 1 , qMA = qM̃B,(
HPA, HP̃B, `PA, `P̃B

)
=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA = `′
P̃A

= 3qMA · r , `P̃B = `′PB = 3qM̃B · r.

Output:
(

JS1A, JS2A,NewMetaA, ˜NewMetaB,Block,RewindExtend,PCorr, P̃Corr

)
1 Compute JS1A;
2 Compute JS2A;
3 Compute NewMetaA;
4 Compute RewindExtend;
5 Compute ˜NewMetaB;
6 Compute Block;
7 Compute PCorr;
8 Compute P̃Corr;

// Refer to Sections 3.3.6, 3.3.7 to see how these variables are
computed

9 return Computejointstate;

Algorithm 11: simulate (Alice’s side)
Input:

(
qMA,FullPA, `PA, P̃B, `P̃B,RewindExtend,NewMetaA,Block,PCorr, P̃Corr

)
Promise:

(
HMA, HM̃B, `MA, `M̃B, qMA

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1, qM̃B

)
,

`MA = `M̃B = i,
(
HPA, HP̃B, `PA, `P̃B

)
=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA = `P̃B = 3qMA · r
Output:

(
FullPA, `PA, P̃B, `P̃B

)
1 Continue the simulation of the input protocol according to Block, NewMetaA and

PCorr;
2 Record all teleportation measurement outcomes in α;
3 Record all received Bob’s teleportation measurement outcomes in β;
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Algorithm 11: simulate (Alice’s side, cont. from previous page)
4 NewPauliA← (α, β,PCorr);
5 FullPA← (FullPA,NewPauliA);
6 `PA ← `PA + 3r;
7 ˜NewPauliB ←

(
β, α, P̃Corr

)
;

8 P̃B ←
(

P̃B, ˜NewPauliB
)
;

9 `P̃B ← `P̃B + 3r;
10 qMA ← qMA + 1;
11 return simulate;

MB, M̃B, FullPA, PA, P̃A, FullPB, PB and P̃B. We define a potential function Φ as

Φ def= ΦQ + ΦMD + ΦPD ,

where ΦMD and ΦPD measure the correctness of the two parties’ current estimate of each
other’s metadata and Pauli data, respectively, and ΦQ measures the progress in reproducing
the joint state of the input protocol. We define

mdA
+

def= the length of the longest prefix where MA and M̃A agree; (3.8)

mdB
+

def= the length of the longest prefix where MB and M̃B agree; (3.9)

mdA
−

def= max{`MA, `M̃A} −md
A
+; (3.10)

mdB
−

def= max{`MB, `M̃B} −md
B
+; (3.11)

pdA
+

def= b1
r
× the length of the longest prefix where PA and P̃A agreec; (3.12)

pdB
+

def= b1
r
× the length of the longest prefix where PB and P̃B agreec; (3.13)

pdA
−

def= 1
r

max{`PA, `P̃A} − pd
A
+; (3.14)

pdB
−

def= 1
r

max{`PB, `P̃B} − pd
B
+. (3.15)

Also, recall that

g
def= the number of good unitary blocks in JS2, (3.16)

b
def= the number of bad unitary blocks in JS2, and (3.17)

u
def= |qMA − qMB|, (3.18)

with qMA and qMB the number of non-C iterations for Alice and Bob, respectively.
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Now we are ready to define the components of the potential function. At the end of the
i-th iteration, we let

ΦQ
def= g − b− 5u , (3.19)

ΦMD
def= mdA

+ − 3mdA
− +mdB

+ − 3mdB
− − 2i , (3.20)

ΦPD
def= pdA

+ − pdA
− + pdB

+ − pdB
− − 3qMA − 3qMB , (3.21)

Φ def= ΦQ + ΦMD + ΦPD . (3.22)

where g, b and and u are defined in Eqs. (3.16), (3.17), and (3.18).

Lemma 3.5.1. Throughout the algorithm, it holds that

• ΦMD ≤ 0 with equality if and only if Alice and Bob have full knowledge of each other’s
metadata, i.e., mdA

+ = mdB
+ = i and mdA

− = mdB
− = 0.

• ΦPD ≤ 0 with equality if and only if Alice and Bob have full knowledge of each other’s
Pauli data, i.e., pdA

+ = 3qMA, pdB
+ = 3qMB and pdA

− = pdB
− = 0.

Proof. The first statement follows from the property that mdA
+,md

B
+ ≤ i, and the second

statement holds since pdA
+ ≤ 3qMA and pdB

+ ≤ 3qMB.

Note that if g − b− u ≥ n/2r, the noiseless protocol embedding described in Section 2.2.1,
guarantees that not only is the correct final state of the original protocol produced and
swapped into the safe registers Ã, B̃ and C̃, but also they remain untouched by the bad
and ugly blocks of the simulation. Therefore, by Lemma 3.5.1, for successful simulation of
an n-round protocol it suffices to have Φ ≥ n/2r, at the end of the simulation.
The main result of this section is the following:

Theorem 3.2.1 (Restated). Consider any n-round alternating two-party communication
protocol Π in the teleportation-based model, communicating messages over a noiseless
channel with an alphabet Σ of bit-size Θ (log n). Algorithm 2 is a computationally efficient
coding scheme which given Π, simulates it with probability at least 1 − 2−Θ(nε), over any
fully adversarial error channel with alphabet Σ and error rate ε. The simulation uses
n (1 + Θ (

√
ε)) rounds of communication, and therefore achieves a communication rate of

1−Θ (
√
ε). Furthermore. the computational complexity of the coding operations is O (n2).

Proof Outline. We prove that any iteration without an error or hash collision increases
the potential by at least one while any iteration with error or hash collision reduces the
potential by at most some fixed constant. As in Ref. [37], with very high probability
the number of hash collisions is at most O(nε), the same order of magnitude as the
number of errors, therefore negligible. Finally, our choice of the total number of iterations,
Rtotal

def= dn/2r + κnεe (for a sufficiently large constant κ), guarantees an overall potential
increase of at least n/2r. As explained above, this suffices to prove successful simulation
of the input protocol.
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Lemma 3.5.2. Each iteration of the Main Algorithm (Algorithm 2) without a hash collision
or error increases the potential Φ by at least 1.

Proof. Note that in an iteration with no error or hash collision, Alice and Bob agree on
the iteration type. Moreover, if Itertype = MD or PD (Case i or iii), they also agree on
whether they extend or rewind the data (the subcase A or B), and if Itertype = MES
(Case ii), then exactly one of them is in Case A and the other one is in Case B. We analyze
the potential function in each of the cases, keeping in mind that we only encounter Case ii
or later cases once the metadata of the two parties are consistent and of full length, and
similarly, that we encounter Case iv once the parties have used the same number of MESs
and the Pauli data with the two parties are consistent and of full length. Lemma 3.5.1
guarantees that ΦMD becomes 0 on entering Case ii, and that ΦMD = ΦPD = 0 on entering
Case iv.

• Alice and Bob are in Case i.A:

– ΦPD and ΦQ stay the same.
– i increases by 1.
– mdA

+ and mdB
+ stay the same.

– None of mdA
− and mdB

− increases, and at least one decreases by 1.

Therefore, ΦMD increases at least by 3− 2 = 1, and so does Φ.

• Alice and Bob are in Case i.B:

– ΦPD and ΦQ stay the same.
– i increases by 1.
– mdA

− and mdB
− stay at 0.

– At least one of `MA or `MB is smaller than i− 1; If only `MA < i− 1, then mdA
+

increases by 2, and mdB
+ by 1. The case where only `MB < i − 1 is similar. If

both are smaller than i− 1, then mdA
+ and mdB

+ both increase by 2.

Therefore, ΦMD increases by at least 3− 2 = 1, and so does Φ.

• Alice is in Case ii.A, Bob is in Case ii.B:

– ΦMD stays at 0.
– qMB increases by 1.
– qMA, pdA

+, pdA
−, pdB

+, pdB
− all stay the same.

– g remains the same, b increases by at most 1, and u decreases by 1.

Therefore, ΦQ increases by at least 5− 1 = 4, and ΦPD decreases by 3. So Φ increases
by at least 1.
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• Alice is in Case ii.B, Bob is in Case ii.A: This case is similar to the one above.

• Alice and Bob are in Case iii.A

– ΦMD stays at 0, and ΦQ stays the same
– pdA

+, pdB
+, qMA and qMB stay the same.

– None of pdA
− and pdB

− increases, and at least one decreases by 1.

Therefore, ΦPD increases by at least 1, and so does Φ.

• Alice and Bob are in Case iii.B

– ΦMD stays at 0, and ΦQ stays the same.
– pdA

−, pdB
− stay at 0, and qMA, qMB stay the same.

– At least one of the following holds: `PA < 3qMA · r, in which case pdA
+ increases

by 1 (otherwise it remains unchanged), or `PB < 3qMB ·r, and then pdB
+ increases

by 1 (otherwise it remains unchanged).

Therefore, ΦPD increases by at least 1, and so does Φ.

• Alice and Bob are in Case iv

– ΦMD and ΦPD stay at 0.
– u stays at 0
– Either g stays the same and b decreases by 1 (when b 6= 0) or b stays at 0 and g

increases by 1.

Therefore, ΦQ increases by 1, and so does Φ.

Hence Φ increases at least by 1 for each iteration of the algorithm without a hash collision
or error.

Lemma 3.5.3. Each iterations of Algorithm 2, regardless of the number of hash collisions
and errors, decreases the potential Φ by at most 45.

Proof. At each step, i increases by 1 while, in the worst case, g, mdA
+,mdB

+, pdA
+ and pdB

+
decrease by at most 1, b, u, qMA and qMB increase by at most 1, mdA

− and mdB
− increase by

at most 3 and pdA
− and pdB

− increase by at most 4. Hence, ΦQ, ΦMD and ΦPD decrease at
most by 7, 22, and 16, respectively. So in total, Φ decreases by at most 45.

The following lemma is from [37].
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Lemma 3.5.4. The number of iterations of Algorithm 2 suffering from a hash collision is
at most 6nε with probability at least 1− 2−Θ(εn).

Proof of Theorem 3.2.1: Let Rtotal = d n2re+ 368nε. The total number of iterations is less
than 2n, so the total number of iterations with an error is at most 2nε. By Lemma 3.5.4,
with probability at least 1−2−Θ(εn), the number of iterations with a hash collision is at most
6nε. Therefore, by Lemma 3.5.2, in the remaining Rtotal − 8nε = d n2re+ 360nε iterations,
the potential Φ increases by at least one. The potential decreases only when there is an
error or hash collision and it decreases by at most 45. So at the end of the simulation, we
have

g − b− u ≥ ΦQ ≥ Φ ≥ Rtotal − 8nε− 45× 8nε ≥ n

2r .

Hence the simulation is successful. Furthermore, note that the amount of communication in
each iteration is independent of the iteration type and is always 2r+Θ(1) symbols: in every
iteration each party sends Θ(1) symbols to communicate the hash values and the lengths of
the metadata and Pauli data in line 9 of Algorithm 2; each party sends another r symbols,
either in line 14 of Algorithm 2, if Itertype 6= SIM or in Algorithm 11 to communicate the
teleportation measurement outcomes. So the total number of communicated symbols is

Rtotal · (2r + Θ(1)) =
(
d n2re+ Θ(nε)

)
(2r + Θ(1)) = n(1 + Θ(

√
ε)) , (3.23)

as claimed.
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Chapter 4

Recycling-based coding scheme via
large alphabet quantum channels

In this chapter, we focus on the plain quantum communication model with polynomial-size
alphabet. Our simulation protocol in this model is obtained by adapting the framework
introduced in Chapter 3, using additional tools to overcome the new challenges in this
communication model.

4.1 Overview

4.1.1 Teleportation is inapplicable

Switching from the teleportation-based model to the plain quantum model, suppose we are
given a protocol Π using noiseless quantum communication, and we are asked to provide a
protocol Π′ using noisy quantum channels under the strongly adversarial model described
earlier. In the absence of free entanglement, how can we protect quantum data from leaking
to the environment without incurring a non-negligible overhead? First, note that some
form of protection is necessary, as discussed in Section 1.2. Second, teleportation would
be too expensive to use, since it incurs an overhead of at least 3: we have to pay for the
MES as well as the classical communication required.
Surprisingly, an old and relatively unknown idea called the Quantum Vernam Cipher
(QVC) [50] turns out to be a perfect alternative method to protect quantum data with
negligible overhead as the noise rate approaches 0.

4.1.2 Quantum Vernam Cipher (QVC)

Suppose Alice and Bob share two copies of the MES |φ0,0〉, each over two d-dimensional
systems. For Alice to send a message to Bob, she applies a controlled-X operation with her
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half of the first MES as control, and the message as the target. She applies a controlled-Z
operation from her half of the second MES to the message. When Bob receives the message,
he reverses the controlled operations using his halves of the MESs. The operations are
similar for the opposite direction of communication. A detailed description is provided in
Section 2.3.2.
QVC is designed so that given access to an authenticated classical channel from Alice to
Bob, Bob can determine and correct any error in the transmission of the quantum message.
This can simply be done by measuring Zl type changes to one half of the two MES. They
can also run QVC many times to send multiple messages and determine the errors in a
large block using a method called “random hashing”, and recycle the MESs if the error rate
(as defined in our adversarial model) is low. This is a crucial property of QVC and leads to
one of the earliest (quantum) key recycling results known. What makes QVC particularly
suitable for our problem is that encoding and decoding are performed message-wise, while
error detection can be done in large blocks, and entanglement can be recycled if no error
is detected. It may thus be viewed as a natural quantum generalization to Haeupler’s
consistency checks.
As an aside, in Appendix E of Ref. [50], the relative merits of teleportation and QVC
were compared, and it was determined that entanglement generation over an insecure noisy
quantum channel followed by teleportation is more entanglement efficient than QVC with
entanglement recycling in some test settings. However, this difference vanishes for low noise.
Furthermore, the comparison assumes authenticated noiseless classical communication to
be free. QVC requires an amount of classical communication for the consistency checks
which vanishes with the noise parameter (but this cost was not a concern in that study).
Furthermore, QVC was also proposed as an authentication scheme, but the requirement
for interaction to authenticate and to recycle the key or entanglement was considered a
disadvantage, compared to non-interactive schemes. (Those are only efficient for large
block length, and cannot identify the error when one is detected. So, these authentication
schemes are inapplicable). We thus provide renewed insight into QVC when interaction is
natural (while it is considered expensive in many other settings).

4.1.3 Entanglement recycling and adaptations of QVC for the
current problem

In the current scenario, we have neither free MESs nor an authenticated classical channel.
Instead, Alice and Bob start the protocol by distributing the MESs they need, using a high
rate quantum error correcting code over the low-noise channel. Then, they run the input
protocol Π as is over the noisy channel, while frequently checking for errors by performing
quantum hashing [8, 50], using the same noisy quantum channel instead of an authenticated
classical channel. If they detect an inconsistency, assuming that the errors are most likely
recent, they measure a small block of MESs in the recent past to determine the errors.
They continue this process until they get matching quantum hash values indicating (with
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constant probability) that they have located and identified all the errors and the remaining
MESs can be recycled and reused to encrypt the messages. Frequent quantum hashing
allows Alice and Bob to boost their confidence about recyclability of the earlier MESs
and reuse MESs in a cyclic way. Note that for successful simulation it is crucial to ensure
that the recycled MESs are indeed not corrupted and that Alice and Bob recycle the same
sequence of MESs. One of our main contributions in this chapter is developing a framework
for recycling entanglement in a communication efficient way. We show that entanglement
generation of O (n

√
ε) MESs, where n is the length of the input protocol Π and ε is the

noise parameter, is sufficient to last through the whole simulation.

4.1.4 Framework

As in the case of the teleportation-based protocols, due to transmission errors and collisions,
Alice and Bob do not necessarily always agree on their actions in the simulation. Therefore,
in every iteration both parties need to obtain a global view of the history of the simulation
so far to correctly decide their next actions. They achieve this goal by maintaining a
similar data structure as in the teleportation-based case. The data structure now contains
additional information to keep track of their measurements, which Alice and Bob use in
the recycling process.

4.1.5 Additional out-of-sync problems

Due to transmission errors introduced by the adversary, Alice and Bob may get out of sync
in QVC. In such a scenario, the QVC operations are performed by only one party and the
quantum data intended to be sent to the other party leaks into the MES registers used
to encrypt the messages. Furthermore, the parties may not agree on the subset of MESs
they have already measured when they perform quantum hashing. As we will explain in
Section 4.3.4, in the worst case, this can further lead to the leakage of the quantum data
into all the MES registers involved in the quantum hashing procedure.
We show that, surprisingly, once again the quantum data can be recovered once Alice and
Bob reconcile the differences in the data structure developed for the task. This is in spite
of the fact that there is no reason to expect out-of-sync QVC to be sufficient to protect the
quantum data from leaking to the environment when encoding and decoding operations
are performed incorrectly and quantum data is sent via the noisy quantum channel.

4.2 Result

The following is our main result in the plain quantum model with polynomial-size commu-
nication alphabet for simulation of any n-round noiseless communication protocol over a
fully adversarial channel of error-rate ε defined in Section 2.2.2.
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Theorem 4.2.1. Consider any n-round alternating communication protocol Π in the plain
quantum model, communicating messages over a noiseless channel with an alphabet Σ of
bit-size Θ (log n). Algorithm 14 is a quantum coding scheme which given Π, simulates it
with probability at least 1− 2−Θ(nε), over any fully adversarial error channel with alphabet
Σ and error rate ε. The simulation uses n (1 + Θ (

√
ε)) rounds of communication, and

therefore achieves a communication rate of 1−Θ (
√
ε).

4.3 Description of Protocol

4.3.1 General Description

Our simulation of noiseless protocols in the plain quantum model of communication proceeds
using the same idea of running Oε (1) rounds of the input protocol as is, while checking if the
adversary has corrupted the communication during the previous iterations and if necessary,
actively rewinding the simulation to correct errors. The quantum messages are protected
using QVC against corruptions by the adversary. In order to detect potential transmission
errors, the MES pairs used as the key in QVC may be measured after each communication
round. The measurement outcomes may be stored and later on compared to obtain the error
syndrome. Therefore, using a data structure similar to the one introduced in the previous
section, one can obtain a coding scheme for simulating any protocol in the plain quantum
model. However, this approach is not efficient in using the entanglement. Recall that in
the plain quantum model, the parties do not pre-share any entanglement, hence they need
to establish the shared MESs through extra communication. Rather than measuring the
MES pairs immediately after each round of communication, we use the quantum hashing
procedure described in Section 4.3.2 to check whether any transmission error has occurred
so far. Note that if Alice and Bob detect an error, they need to determine the error and
eventually actively rewind the simulation to correct it and resume the simulation from
there. However, similar to the teleportation-based protocol, due to transmission errors
Alice and Bob may not always agree on how they proceed with the simulation in every
iteration. Thus, in every iteration before taking further actions, each party needs to know
the actions of the other party so far. More accurately, they first need to obtain a global
view of their joint quantum state. Alice and Bob locally maintain a similar data structure
as in the teleportation-based protocol containing metadata and Pauli data, which needs
to be synchronized in the algorithm. They first need to ensure they have full knowledge
of each other’s metadata. Then similar to the teleportation-based case, in order to avoid
out-of-sync scenarios in communication using QVC, it is crucial for them to synchronize
the number of MESs they have used (see Section 4.3.3). We denote by `A

QVC and `B
QVC,

the number of blocks of MES pairs used by Alice and Bob, respectively. After ensuring
`A

QVC = `B
QVC (to the best of their knowledge), they compare their quantum hash values

to check for errors. Note that quantum hashing does not indicate in which round of
communication the error has occurred. If the hash values do not match, they measure the
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last block of MES pairs which has not gained as much trust as the older blocks through
quantum hashing. This effectively collapses the adversary’s action on this block to Pauli
errors. The effective errors can be determined jointly from the measurement outcomes,
which are recorded by Alice and Bob as part of their local Pauli data. Otherwise, if the
hashes do match, then Alice and Bob synchronize their Pauli data. Note that similar to
the teleportation-based protocol, the Pauli corrections performed by Alice and Bob are also
recorded as part of the Pauli data. Together with the metadata, this gives Alice and Bob
all the information they need to compute their estimate of the current joint state. Hence,
they can determine how to proceed with the simulation next.

Recycling entanglement and recycling data. An important complication arising
in simulation of protocols in the plain quantum model is that in order to achieve the
simulation rate of 1−Θ(

√
ε), we cannot afford to access a new MES pair in every round of

communication using QVC. This is where we use a crucial property of QVC, namely the
key recycling property. In communication using QVC if no error occurs on the message
then the pair of MESs used will remain intact, hence they can be recycled and used in
later rounds. Otherwise, at some point Alice and Bob need to measure the MES pair to
get the error syndrome, in which case the pair cannot be recycled. By performing quantum
hashing regularly and carefully keeping track of the measured MES blocks, Alice and Bob
can recycle MES pairs as needed and run the simulation by establishing a smaller number
of MESs at the beginning of the protocol. The blocks of MES pairs used in QVC are
implicitly indexed from 1 to LQVC, where LQVC denotes the total number of MES blocks
reserved for communication using QVC.
In order to correctly simulate the input protocol we need to ensure that the recycling is
successful in every iteration, namely that the same MES blocks are recycled by the two
parties in every iteration and that they are indeed not corrupted when being recycled.
Note that if the two parties reuse an MES pair which has been corrupted due to an earlier
transmission error in QVC, then even if Alice and Bob detect the error and measure the
MES pair, they have no way of knowing whether the error has occurred the last time the
MES pair were used or in an earlier round. Moreover, if a block of MES pairs has been
locally measured by only one party, say Alice, then the other party, Bob, needs to measure
the block and avoid this block when encrypting future messages using QVC.
We modify the metadata so that it contains additional information to keep track of each
party’s measurements. Alice maintains a string RA ∈ {S,M}∗, where the M symbol
corresponds to a measured MES block and S is used for an MES block still in superposition.
In every iteration, Alice concatenates RA with an S symbol corresponding to her next
fresh/recycled MES block and records the index of the MES block in a string IndexA ∈
[LQVC]∗. Both RA and IndexA are of length i after i iterations. If she measures an
MES block in the current iteration, she changes the corresponding S symbol in RA to M.
Similarly, Bob maintains the strings RB and IndexB. The strings IndexA and IndexB serve
as queues of MES blocks to be used/reused by Alice and Bob, respectively. Note that MES

56



Figure 4.1: The strings RA and IndexA in two consecutive iterations LQVC +1 and LQVC +2.
The pointer `RecycleA moves to the next S symbol in RA to find the next MES block to
recycle.

blocks in these queues are not necessarily used immediately or even in the same iteration
by the two parties. In order to achieve successful recycling, Alice and Bob need to ensure
that the strings RA and RB are the same (at least in a long enough prefix). Using her
full-length estimate M̃B of FullMB, Alice computes an estimate R̃B of RB. Note that if
M̃B = FullMB then R̃B = RB. Similarly, Bob computes his estimate R̃A of RA from his
full-length estimate M̃A of FullMA. After synchronizing their metadata and ensuring that
they have used the same number of MES blocks, they synchronize their recycling data.
After LQVC iterations, Alice and Bob start recycling MESs in a circular way. In order
to achieve this, Alice uses a recycling pointer `RecycleA. In every iteration, this pointer
moves forward on the strings RA and IndexA until it reaches the next S symbol in RA.
The corresponding MES block is recycled and its index is recorded at the end of IndexA.
Similarly, Bob uses a pointer `RecycleB together with RB and IndexB to recycle entanglement.
Frequent hashing of the metadata allows them to be highly confident that their recycling
data agree in a sufficiently long prefix. Furthermore, quantum hashing ensures that with
high probability all the recycled MES blocks are indeed reusable. Figure 4.1 depicts the
status of the strings RA and IndexA in two consecutive iterations and how the pointers
move on these strings in the recycling process described above.
Note that the synchronization of the recycling data is slightly different from the synchro-
nization of the metadata and the Pauli data. For the latter, Alice and Bob just need to
know each other’s local data, i.e., Alice needs to know FullMB and FullPB and Bob needs
to know FullMA and FullPA and the corresponding data need not be the same. Whereas
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for the recycling data, Alice and Bob need to learn each other’s data and match them,
i.e., they need to ensure RA = RB. Moreover, unlike FullMA,FullMB and FullPA,FullPB,
earlier parts of the strings RA and RB get modified during the simulation as Alice and
Bob perform measurements to extract error syndromes.

Entanglement distribution. At the outset of the simulation, Alice and Bob use Al-
gorithm 12 below to share Θ(n

√
ε) copies of the MES |φ0,0〉, defined in Definition 2.1.2.

To establish the shared MESs, one party, say Alice, creates the states locally and sends
half of each MES to the other party using an appropriate quantum error correcting code
of distance 4nε and constant rate. Note that such a code is guaranteed to exist by the
quantum Gilbert-Varshamov bound [29].

Algorithm 12: Robust Entanglement Distribution
1 C ← Error Correcting Code with rate 1−Θ(H(ε)) and distance 4nε;
2 if Alice then
3 Prepare Θ (n

√
ε) MESs in registers A,B′ each holding half of every MES;

4 Transmit C (B′) to Bob;
5 else if Bob then
6 Receive C ′(B′);
7 Decode C ′(B′) into register B;
8 return Robust Entanglement Distribution;

We remark that the initial entanglement distribution is the only part of the simulation
protocol in the plain quantum model which we do not know how to perform efficiently.
The shared MESs are used as follows:

• Θ (n
√
ε) MESs are used in pairs to serve as the key for encryption of messages using

QVC. They are divided into LQVC = Θ (nε) blocks of 2r MES pairs, where r = Θ( 1√
ε
).

In each block the MES pairs are implicitly numbered from 1 to 2r. The odd-numbered
pairs are used in QVC to send messages from Alice to Bob and the even-numbered
pairs are used to send messages from Bob to Alice,

• Θ(n
√
ε) MESs are reserved to be used in quantum hashing, and

• the remaining Θ(n
√
ε) MESs are measured in the computational basis by both parties

to obtain a common random string to be used as the seed for classical and quantum
hashing.

We show that with the limited error budget of the adversary, the Θ(n
√
ε) MESs established

at the beginning of simulation are sufficient to successfully simulate the input protocol.
This allows us to achieve a simulation rate of 1−Θ(

√
ε). Figure 4.2 shows the MES blocks

in different stages of the simulation.
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Figure 4.2: These figures represent the blocks of MES pairs at different stages of the
protocol. To simplify the figure, we represent each block by a single MES. Note that these
are used in a circular pattern, corresponding to recycling some of the previously used blocks
of MES pairs. Those depicted as circles are assumed to be good and usable for QVC, those
depicted by squares have been measured already in order to extract the error syndrome.
Figure (a) represents the MES blocks at the beginning of the protocol, when none have
been measured. Figure (b) represents them when Alice and Bob agree on which ones have
been measured and have used the same amount of them for QVC, which is the desired
state. Figure (c) represents a situation when Alice and Bob have gotten out-of-sync, e.g.,
Alice has measured some blocks that Bob has not (and maybe used QVC more often than
Bob). They then work to get back in sync before resuming the simulation.

4.3.2 Quantum Hashing

By performing local measurements on the MES pairs used as the keys for encrypting
the messages in QVC and comparing the measurement outcomes on both sides, one can
extract the error syndrome corresponding to the corruptions introduced over the noisy
communication channel. As explained in the previous subsection, although this allows
the two parties to detect errors immediately, it is not efficient for our application. In
Subsection 2.3.2, we introduced an error detection procedure which allows the parties to
check for corruptions when QVC is used over several rounds of communication to send
multiple messages at the cost of losing only one MES which is measured at the end. However,
this error detection procedure is not directly useful in our application since the adversary
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can always choose the corruptions in a way that makes it impossible for Alice and Bob
to detect errors; see subsection 2.3.2. Instead, Alice and Bob use the quantum hashing
procedure described below to check whether there is an undetected error. To avoid the
adversary from hiding her corruptions from the detection procedure above, Alice and Bob
choose a random subset of the MESs and try to detect errors in this subset rather than
all MESs used in QVC. More precisely, quantum hashing involves the following steps in
our algorithm. At the beginning of the i-th iteration, Alice and Bob pick a fresh MES
serving as the control system used in the error detection procedure. Recall that Alice and
Bob locally maintain the strings IndexA and IndexB, respectively, corresponding to their
recycled MES blocks. Alice uses the shared randomness established at the outset of the
protocol to choose a random subset of the MES registers contained in the blocks specified by
IndexA

[
`RecycleA + 1 : `A

QVC

]
. Using her recycling data RA, she locally determines the MESs

in this random subset which she has not measured already. She performs her operations in
the detection procedure described in Subsection 2.3.2 only on these MESs. Bob does the
same locally, based on IndexB and RB. Alice and Bob store their measurement outcomes
in QHA and QHB, respectively, and exchange the values. We prove that except with
exponentially small probability, recycling is successful throughout the execution of the
algorithm. As we will see, this implies that in every iteration, `RecycleA = `RecycleB and
IndexA = IndexB. However, RA and RB do not necessarily match in every iteration.
Therefore, in some iterations, Alice and Bob may perform quantum hashing on different
subsets of the MESs. Moreover, if the two parties are not synchronized in the number
of MES blocks they have used, they might perform quantum hashing on an MES that is
only used by one party but not the other. We discuss these out-of-sync quantum hashing
scenarios in Subsection 4.3.4. We remark that Alice and Bob do not need to perform
quantum hashing on any of the MESs within the blocks specified by IndexA [1 : `RecycleA].
In fact, if according to RA [1 : `RecycleA], an MES block is measured then it does not appear
in IndexA

[
`RecycleA + 1 : `A

QVC

]
. Otherwise, it appears exactly once. The same statement

holds for RB and IndexB.
Alice and Bob compare their quantum hash values only when they believe they have full
knowledge of each other’s metadata, have used the same number of MES blocks and agree
on their recycling data. If they get the same hash values, they assume no error has occurred.
Otherwise, they believe they have detected an error. Note that similar to all other types
of data that are communicated over the noisy channel, the quantum hash values may get
corrupted by the adversary. We say a quantum hash collision has occurred in an iteration
only when recycling has been successful so far, Alice and Bob are indeed synchronized in
their metadata, the number of MES blocks they have used and their recycling data and
QHA = QHB despite the fact that there are non-measured MES blocks which are not in
the |φ0,0〉⊗4r state.
The following lemma shows that in every iteration of the algorithm, assuming successful
recycling up to that point, the probability of a quantum hash collision is at most 1/2.

Lemma 4.3.1. Let m ∈ N and k = k1 . . . km ∈ {0, 1, . . . , d − 1}m. Suppose that Alice
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and Bob share the states |φ0,0〉A0B0
,
∣∣∣φ0,k1

〉
A1B1

, . . . ,
∣∣∣φ0,km

〉
AmBm

and a random variable S
distributed over {0, 1}m, independent of k, interpreted as a subset of [m]. Alice and Bob
apply c-XA0Ai and c-XB0Bi, for all i ∈ S. Then they apply the quantum Fourier transform
operator F and its inverse F† on A0 and B0, respectively. They measure the registers in
the computational basis with outcomes QHA and QHB, respectively. Then for k = 0m,
independent of the random variable S, we have

Pr[QHA = QHB] = 1 .

Moreover, for uniformly random S, for all k 6= 0m, we have

Pr[QHA = QHB] ≤ 1
2 .

Proof. Let S = S1S2 . . . Sm. By Lemma 2.3.3, the state in register A0B0 before the
measurements is(

F⊗ F†
) ∣∣∣φ0,−

∑m

i=1 Siki
〉
A0B0

=
(
FZ−

∑m

i=1 Siki ⊗ F†
) ∣∣∣φ0,0

〉
=
(
FZ−

∑m

i=1 SikiF† ⊗ 1
) ∣∣∣φ0,0

〉
=
(
X−

∑m

i=1 Siki ⊗ 1
) ∣∣∣φ0,0

〉
=
∣∣∣φ−∑m

i=1 Siki,0
〉
,

where the first and the last equality follow from Definition 2.1.2; the second equality
holds by Proposition 2.1.4 and the fact that F = FT . The third equality follows from
Proposition 2.1.1. Hence

Pr[QHA = QHB] = Pr
[∑

Siki = 0 mod d
]
.

If k = 0m then the above probability equals 1. Suppose that k is non-zero in a non-empty
subset J of coordinates in [m]. Consider the set Z of all s ∈ {0, 1}m such that ∑ siki = 0
mod d. Note that the minimum Hamming distance of elements of Z restricted to J is at
least 2, since otherwise there exists j ∈ J such that d divides kj, contradicting kj ∈ [d− 1].
Fix j ∈ J and let ej ∈ {0, 1}m be the string which is 1 in the j-th coordinate and zero
everywhere else. For every s ∈ Z, the string s+ ej is not in Z. Therefore, |Z| ≤ 2m−1 and
for S uniformly distributed over {0, 1}m we have

Pr
[∑

Siki = 0 mod d
]
≤ 1

2 .

Note that the above bound is tight when |J | = 1. Finally, by Lemma 2.3.3 the state in the
registers A1B1, . . . , AmBm remains unchanged.

In order to reduce the collision probability to a smaller constant, quantum hashing may
be repeated for a constant number of times in every iteration with fresh control MESs and
independent random subsets S.
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Classical seeds needed for quantum hashing. Alice and Bob perform quantum
hashing and communicate the hash values in every iteration but they only compare their
hash values in a subset of iterations. We choose to do so in order to avoid the two
parties from getting out-of-sync on which MES register to use in quantum hashing. As the
hashing procedure only consumes a constant number of MESs in each iteration, the total
number of MESs used in quantum hashing in the entire simulation is Θ (Rtotal) = Θ (n

√
ε),

and they constitute a constant fraction of the MESs distributed at the outset of the
protocol; see Subsection 4.3.1. On the other hand, generating independent Θ (rt)-bit seeds,
with r ∈ Θ (1/

√
ε) and t ∈ Θ (nε), for each of the Rtotal iterations would require Θ (n2ε)

bits of shared randomness. The shared randomness is obtained by measuring a fraction of
the MESs established at the beginning of the algorithm. Even in the large-alphabet case,
sharing Θ (n2ε) bits of randomness would require too much communication.
To circumvent this obstacle Alice and Bob start with a smaller number of i.i.d. random bits
and extend them to a much longer pseudo-random string. In more detail, they measure
Θ (n
√
ε) MESs in the computational basis and record the binary representation of the

outcomes in R′. Then they each use the deterministic algorithm of Lemma 2.4.8 with
δ = 2−Θ(n√ε), to obtain a shared δ-biased string R′ of length Θ (rtRtotal) = Θ (n2ε). The
following lemma bounds the collision probability when instead of a uniformly random seed,
a δ-biased seed is used in quantum hashing. Note that in our application of Lemma 4.3.2,
we have m = O (rt) = O (n

√
ε).

Lemma 4.3.2. Suppose that the random variable S in Lemma 4.3.1 is δ-biased. Then for
all k 6= 0m, we have

Pr[QHA = QHB] ≤ 1
2 + 2m/2δ .

Proof. Let U denote the uniform distribution on {0, 1}m and Z be the subset of all s ∈
{0, 1}m such that ∑ siki = 0 mod d. By Propositions 2.4.5 and 2.4.4, we have

|U(Z)− S(Z)| ≤ 1
2‖U − S‖1 ≤

1
2 × 2m/2‖U − S‖2 ≤ 2m/2δ .

Therefore, by Lemma 4.3.1, we have

Pr[QHA = QHB] = Pr
[∑

Siki = 0 mod d
]

= S(Z) ≤ 1
2 + 2m/2δ .

4.3.3 Out-of-Sync Quantum Vernam Cipher

Consider the scenario where Alice, based on her view of the simulation so far, implements a
+1 block, while Bob believes their classical data are not consistent and therefore implements
a C iteration. Alice simulates a block of the input protocol Π while using the next block
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of MES pairs in the queue IndexA to encrypt her messages using QVC. At the same
time, Bob tries to reconcile the inconsistency through classical communication and does
not send his messages using QVC. In this scenario, they also interpret the messages they
receive incorrectly. Alice believes Bob is also encrypting his messages using QVC and she
applies QVC decoding operations and her Pauli corrections on Bob’s messages. Moreover,
she potentially applies unitary operations of the input protocol on her local registers.
Meanwhile, Bob treats Alice’s messages as classical information about the data he believes
they need to synchronize. More importantly, since he does not perform the QVC operations
(decoding operations in odd rounds and encoding operations in even rounds) on his side, in
each round the corresponding MES pair becomes entangled with the message register. So
crucial information for continuing the simulation spreads to multiple registers. Moreover,
this scenario could continue for several iterations. Nonetheless, we provide a simple way to
redirect the quantum information back to the ABC registers, while effectively reducing this
type of error to corruptions introduced in the joint state due to transmission errors by the
adversary. Once reduced to such errors, Alice and Bob can actively rewind the incorrect
part of the simulation and resume from there.
As explained earlier, the first step for Alice and Bob is to ensure they have full knowledge of
each other’s metadata. Once they both achieve this goal, they discover the discrepancy in
the number of MES blocks they have used. Suppose Bob has used fewer blocks of MES pairs
than Alice, i.e., `A

QVC > `B
QVC and he discovers this at the beginning of the i-th iteration.

Let E1E2 . . . E4r be the registers with Bob containing halves of the 4r MESs in the first
MES block that Alice has used, say in the i′-th iteration, but Bob has not so far. Note that
in iteration i′, Alice has used the MES pairs corresponding to E1E2, E5E6, . . . , E4r−3E4r−2
on her side to encrypt quantum information using QVC and she has performed QVC
decoding operations on Bob’s messages and her marginal of MES pairs corresponding to
E3E4, E7E8, . . . , E4r−1E4r. In the i-th iteration, Alice and Bob both send dummy messages
to each other. Let C1, C2, . . . , Cr denote the r message registers sent from Alice to Bob
after communication over the noisy channel. For every j ∈ [r], upon receiving Cj, Bob
applies QVC decoding operations on Cj and E4j−3E4j−2, and then applies QVC encoding
operations on Cj and E4j−1E4j, i.e., he applies

(c-Z)E4jCj
(c-X)E4j−1Cj

(
c-X−1

)
E4j−3Cj

(
c-Z−1

)
E4j−2Cj

,

and then he discards the message register Cj. The effect of these operations is the same as
if Alice and Bob had both used the MES block in sync, i.e., in the i′-th iteration, except
the following also happened independently of channel error :

1. Alice’s messages in the i′-th iteration were replaced by C1, . . . , Cr and Bob applied
his QVC decoding operations on these dummy messages rather than the messages
Alice intended to communicate,

2. the unitary operations used by Bob on the registers BC were all identity, and
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3. Bob’s messages were replaced by his messages of the i′-th iteration and Alice’s QVC
decoding operations were applied on these (classical) messages.

The above procedure redirects the quantum information leaked to the MES registers back
to the ABC registers, while introducing errors which act exactly the same as transmission
errors introduced by the adversary. As in the case of corruptions by the adversary, once
Alice and Bob measure the MES block, the error collapses to a Pauli error which can be
determined by comparing the measurement outcomes by Alice and Bob. We choose to
perform the measurements at the end of the i-th iteration, rather than leaving the algorithm
to detect the error through quantum hashing (as in the case of transmission errors).

4.3.4 Out-of-Sync Quantum Hashing

Consider the scenario in which Alice and Bob have used the same number of MES blocks
for communication using QVC but have measured different subsets of MES blocks. Suppose
that when they perform quantum hashing, the random subset of MESs they choose contains
an MES in registers A1B1, which has been measured by only one party, say Alice. Let VAVB
be the registers used as the control registers by Alice and Bob in quantum hashing. Alice
and Bob compare their quantum hash values only if they believe they have measured the
same subset of MES blocks. Therefore, if they compare their hash values in this iteration,
it is due to a transmission error or a metadata hash collision. Note that in this scenario
Bob applies a controlled-X operation on the partially measured MES, while Alice who
has measured her marginal does not. Since A1 is already measured by Alice, after Bob’s
controlled-X operation the registers A1B1 do not get entangled with VAVB. However, the
state in the VAVB registers will be mapped to |φ0,a〉, for a random a ∈ {0, 1, . . . , d − 1}
corresponding to Alice’s measurement outcome. This (quite probably) results in Alice and
Bob taking incorrect actions from which they can recover once they realize the inconsistency
in their classical data. The algorithm is designed to ensure that the register B1 is measured
by Bob and A1B1 is not reused by the two parties in future iterations. Moreover, Bob’s
controlled-X operation does not change the outcome of his measurement on B1. This
ensures that Alice and Bob can correctly learn any potential error on the message register
in the corresponding communication round once they learn each other’s Pauli data.
A subtler scenario occurs when Alice and Bob perform quantum hashing when they have
used different numbers of MES blocks. Suppose that `A

QVC > `B
QVC, i.e., Alice has used more

MES blocks and the random subset of MESs they choose for quantum hashing contains an
MES which has been only used on Alice’s side. As explained in the previous section, when
QVC operations are performed only on one side, the MES pair used as the key becomes
entangled with the message register and the quantum information in the message register
leaks to these half-used MES pairs. In the current scenario, once quantum hashing is done
the information leaks into the additional MES in registers VAVB. Even worse, since the
same MES register is used as the control system when applying the controlled-X operations
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on all the MESs in the random subset, the information may leak even further into those
registers as well. Surprisingly, the simple solution we provided to recover from out-of-sync
QVC resolves this issue as well. The first measure we need to take is to ensure quantum
hashing is performed in a sequential way on the MESs in the random subset, starting from
the MES used earliest to the latest one. This ensures that the states in the MES registers
which have been used both by Alice and Bob do not get disturbed. However, the remaining
MESs in the random subset become entangled with VAVB and potentially each other. We
need to ensure that these MES registers are not reused in future iterations. Once the two
parties synchronize their metadata and realize that they are out of sync on the number of
MESs they have used, Bob completes QVC on his side as described in the previous section
and immediately measures his marginal of the MES block. This ensures that he will never
reuse this block in future iterations. The algorithm is designed so that by the time Alice
needs to decide whether to recycle this MES block or not, she will have measured her
marginal of the MES registers. We prove that except with probability 2−Θ(nε) recycling is
successful in all iterations and such a block of MES registers is never recycled.
Despite the fact that quantum hashing is performed before Bob completes the QVC op-
erations on his side, this procedure has the same effect as if Bob had completed QVC
before the quantum hashing was performed. To understand this phenomenon, consider the
following simpler scenario. Suppose that Alice and Bob share 3 copies of the MES |φ0,0〉
in registers A1B1, A2B2 and VAVB. Alice uses the MES pair in registers A1B1 and A2B2
as the key to encrypt a message in register C using QVC and sends the message register
to Bob. Suppose that the adversary applies the Pauli error XaZb on the message register
for some a, b ∈ {0, 1, . . . , d− 1}. Now suppose that before Bob applies his QVC decoding
operations, Alice applies c-X on VAA1 with VA being the control system. Then their joint
state is(

c-X−1
)
B1C

(
c-Z−1

)
B2C

(c-X)VAA1

(
XaZb

)
C

(c-Z)A2C
(c-X)A1C∣∣∣φ0,0

〉
VAVB

∣∣∣φ0,0
〉
A1B1

∣∣∣φ0,0
〉
A2B2
|ψ〉C .

Note that (c-X)VAA1
commutes with Bob’s QVC decoding operation (c-X−1)B1C

(c-Z−1)B2C
.

Therefore, by Eq. (2.5) their joint state is given by

(c-X)VAA1

(
XaZb

)
C

∣∣∣φ0,0
〉
VAVB

∣∣∣φ0,b
〉
A1B1

∣∣∣φ0,−a
〉
A2B2
|ψ〉C .

Note that VAVB and A1B1 are entangled as a result of the controlled-X operation. Never-
theless, Alice and Bob still extract the correct error syndrome when they measure A1, A2
and B1, B2, respectively, and compare their measurement outcomes. This is due to the
fact that the error on the message register is reflected in the MES pair as phase errors and
the phase error in each MES can still be detected correctly by local measurements in the
Fourier basis even after the controlled-X operation is applied. In the out-of-sync quantum
hashing scenario described above a similar effect occurs. Finally, note that when Alice and
Bob do not agree on the number of MES blocks they have used, they do not compare their
quantum hash values unless a transmission error or a metadata hash collision occurs.
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4.3.5 First representation of the joint quantum state

As in Section 3.3, we start by introducing a first representation of the joint state, denoted
JS1, which in turn is simplified into a more informative representation. This latter rep-
resentation, denoted JS2, is the representation which Alice and Bob need to compute
correctly in order to make progress in simulation of the input protocol Π and decide their
next action in Π′. Recall that due to the recycling of MESs, each block of MES pairs may
be used multiple times to encrypt messages using QVC. The representations JS1 and JS2
defined below are valid only if the recycling has been successful so far in Π′, namely that
Alice and Bob have recycled the same block of MES registers in every iteration and that
these registers were indeed in the |φ0,0〉 state when recycled. We prove that except with
probability 2−Θ(nε) the recycling is successful throughout the algorithm.
Recall that in the adversarial noise model, the adversary Eve can introduce arbitrary errors
on the quantum communication register C ′ that passes through her hand subject to the
constraints given by Eq. (2.2) and Eq. (2.3). Furthermore, as explained in Section 4.3.3,
the algorithm is designed so that once the two parties agree on the number of blocks of
MES pairs they have used, the error in the joint state due to out-of-sync QVC in any
iteration is translated to a transmission error on the message registers, as if the MES blocks
were used in sync and transmission errors were introduced by the adversary. We emphasize
that in both cases, the error on the message register is a mixture of linear combinations
of Pauli errors and once Alice and Bob measure a block of MES pairs to extract (part of)
the syndrome, the error on the corresponding message register collapses to a Pauli error.
Then the joint state can be written in terms of a new mixture of linear combinations of
Pauli errors conditioned on the measurement outcomes, which are recorded in the Pauli
data by the two parties. To simplify the joint state representation and the analysis of the
algorithm, without loss of generality, we focus on a fixed but arbitrary error syndromeW in
any such linear combination of Pauli errors arising in the simulation protocol Π′. We prove
the correctness of the algorithm for any such error syndrome which by linearity implies the
correctness of the algorithm against any adversary defined in Section 2.2.2. Let E ∈ Pd,n′
be a Pauli error with wt (E) ≤ εn′. In the remainder of this chapter, we assume E is the
error introduced by the adversary into the n′ communicated qudits in Π′.
We first define the representations JS1 and JS2 after i iterations of the algorithm in the case
when the two parties have used the same number of blocks of MES pairs, i.e., `A

QVC = `B
QVC.

In Subsection 4.3.7, we explain how these representations are modified when Alice and Bob
are out of sync in the number of MES blocks they have used.
We sketch how to obtain JS1 from FullMA, FullMB, FullPA and FullPB, when the error
syndrome is given by W ∈ (Σ2)∗ defined below in terms of E, conditioned on some view
of the classical data. Recall that when `A

QVC = `B
QVC, there is a one-to-one correspondence

between the state of each MES register and the Pauli error on the message register in the
corresponding communication round. Therefore, in order to simplify the representations,
without introducing any ambiguity, we omit the MES registers from the representations
JS1 and JS2. The first representation JS1 of the joint state after i iterations (when
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`A
QVC = `B

QVC) is given by

JS1 = [∗`A
QVC] · · · [∗2][∗1] |ψinit〉ABCER , (4.1)

where |ψinit〉ABCER is the initial state of the original input protocol Π and the content
of each bracket is described below. The j-th bracket corresponds to the j-th block of
MES pairs which have been used by both Alice and Bob and contains from right to left r
iterations of the following:

Alice’s unitary operation -
Pauli error on Alice’s message -
Bob’s Pauli correction - Bob’s unitary operation -
Pauli error on Bob’s message -
Alice’s Pauli correction.

Similar to the teleporation-based protocol, we allow for an additional unitary operation
by Alice on the far left when she implements a block of type −1. Using the same rules
described in Section 3.3.7, in each bracket, the block of unitary operations of the input
protocol Π applied by Alice (if any) and her block type (±1 or 0) can be computed from
FullMA. Moreover, her Pauli corrections are recorded in FullPA and the block of FullPA
containing these Pauli corrections can be located using FullMA. Each block of FullPA
may correspond to two different types of iterations: when Alice measures a block of MES
pairs to extract the error syndrome she concatenates FullPA with a new block containing
her measurement outcomes (with no Pauli corrections), whereas in iterations in which
she communicates using QVC, she may apply Pauli corrections in between and records
the Pauli corrections in FullPA. Therefore, FullMA may be used to distinguish these
two different types of blocks and locate the corresponding Pauli corrections in FullPA.
Similarly, in each bracket, the block of unitary operations of Π applied by Bob, his block
type and his Pauli corrections are obtained from FullMB and FullPB. Finally, in JS1, the
Pauli errors on the messages in each bracket are specified in terms of the error syndrome
W = W1W2 . . .W`AQVC

∈ (Σ2)2r×`AQVC defined below. The communication in each iteration of
the algorithm has two parts. In the first part, the parties use a constant number of rounds
to communicate the pointers and hash values. Any transmission error introduced by the
adversary on these messages only affects the actions of the two parties in the current and
future iterations, which will be recorded in the metadata and Pauli data and reflected in the
joint state representation. The second part involves 2r rounds of communication, in which
either classical information is communicated (e.g., to reconcile inconsistencies in the data
structures) or QVC is used to communicate quantum information (on one side or both).
Transmission errors on these messages can directly modify the joint state and need to be
separately taken into account in the joint state representation. Let W ′ = W ′

1W
′
2 . . .W

′
Rtotal

denote the error syndrome corresponding to the restriction of E to these messages over the
Rtotal iterations of the algorithm, where each W ′

j is a string in (Σ2)2r representing a Pauli
error on 2r qudits. For every j ∈

[
`A

QVC

]
, if the j-th block of MES pairs has been used in
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sync on both sides, say in iteration j′, we let Wj = W ′
j′ . Otherwise, the j-th block of MES

pairs has been used out of sync and we define Wj to be the error syndrome arising on the
message registers in the corresponding communication rounds due to the remedial actions
the parties take to recover from out-of-sync QVC; see Section 4.3.3 for more details. Each
Wj ∈ (Σ2)2r specifies the 2r Pauli errors in the j-th bracket from the right.
Note that in order to compute the representation JS1, one needs to know FullMA, FullMB,
FullPA, FullPB and W . This information is not necessarily available to Alice and Bob at
any point during the simulation. In fact, we use the representation in order to analyze
the progress in the simulation. Alice and Bob compute their best guess for JS1 based on
their estimates of each other’s classical data. They only compute their estimates of JS1
when they believe that they have full knowledge of each other’s metadata and Pauli data,
fully agree on the recycling data, have used the same number of MES blocks and have
measured all blocks of MES pairs which were corrupted in communication using QVC or
due to out-of-sync QVC.
Alice’s estimate JS1A of JS1 is of the same form as in Eq. (4.1), except she uses her best
guess of FullMB and FullPB in the above procedure. Moreover, the string W in JS1 is
replaced by WA = WA

1 . . .WA
`AQVC

∈ (Σ2)2r×`AQVC computed by Alice as follows. For every

j ∈
[
`A

QVC

]
,

• if RA [j] = S, then she sets WA
j = (02)2r. Recall that when Alice computes JS1A, she

believes that they have used the same number of MES blocks and have both already
measured all blocks of MES pairs which were corrupted in communication using QVC.
Therefore, in Alice’s view the remaining rounds of communication using QVC have
not been corrupted.

• Otherwise, RA [j] = R̃B [j] = M, i.e., Alice has measured the corresponding block
of MES pairs and believes Bob has measured them as well. Using FullMA and M̃B,
Alice locates the corresponding measurement outcomes in FullPA and P̃B and sets
WA
j to be the error syndrome obtained from the measurement outcomes.

Note that if Alice computes JS1A in an iteration with no transmission errors or hash
collisions, then the computed representation JS1A is indeed equal to JS1. Bob computes
JS1B similarly using his best estimate of FullMA and FullPA in the above procedure.

4.3.6 Second representation of the joint quantum state

The representation JS2 is obtained from JS1 as follows. In JS1, starting from the rightmost
bracket, we recursively try to cancel consecutive brackets if their contents correspond to
inverse of one another. Once no further such cancellation is possible, what we are left with
is the JS2 representation, which is of the following form (when `A

QVC = `B
QVC):

JS2 = [#b] · · · [#1][Ugr · · ·U(g−1)r+2U(g−1)r+1] · · · [Ur · · ·U2U1] |ψinit〉ABCER , (4.2)
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where g is the largest integer such that the concatenation of the first g brackets starting from
the right equals the sequence Ugr, . . . , U2, U1 of unitary operations of Π. As in Section 3.3,
we refer to these brackets as the “good” blocks, and the remaining b brackets which need
to be actively rewound are called the “bad” blocks.
Once the parties have synchronized their classical data (to the best of their knowledge) as
described earlier, they have all the information they need to compute their best guesses
JS1A and JS1B of JS1. Using the same procedure described above, from JS1A Alice
computes her estimate JS2A of JS2. Similarly, Bob computes JS2B from JS1B. Note that
the two parties may have different views of their joint state, based on which they decide how
to further evolve the state in Π′. The rules by which Alice and Bob decide their respective
types (±1 or 0) for the next block in Π′, and which blocks of unitary operations of Π (if
any) are involved, are the same as the teleportation-based protocol; see Section 3.3.7.

4.3.7 Representation of the joint state while out-of-sync

We now define the representations JS1 and JS2 in the case when `A
QVC 6= `B

QVC. Note that
in this case similar to the teleportation-based protocol, conditioned on the classical data
with Alice and Bob and a fixed error syndrome E by the adversary, JS1 and JS2 represent
a pure state. However, in addition to the ABCER registers we need to include the MES
blocks which have been used by only one party. Let u def= |`A

QVC − `B
QVC|. For concreteness

suppose that `A
QVC > `B

QVC. Then the JS1 representation is of the following form:

JS1 = [∗`A
QVC] · · · [∗`B

QVC] · · · [∗2][∗1] |ψinit〉ABCER . (4.3)

The content of the first `B
QVC brackets from the right corresponding to the MES blocks which

have been used by both parties are obtained as described in Subsection 4.3.5. The leftmost
u brackets, correspond to the MES blocks which have been used only by Alice. We refer
to these blocks as the ugly blocks. These brackets contain Alice’s unitary operations from
the input protocol Π, her Pauli correction operations and QVC encoding and decoding
operations, as well as all the MES registers involved in these iterations which remain
untouched on Bob’s side.
The representation JS2 is obtained from JS1 as follows: We denote by [@u] · · · [@1] the
leftmost u brackets corresponding to the ugly blocks. We use the procedure described in
Subsection 4.3.6 on the rightmost `B

QVC brackets in JS1 to obtain JS2 of the following form:

JS2 = [@u] · · · [@1][#b] · · · [#1][Ugr · · ·U(g−1)r+2U(g−1)r+1] · · · [Ur · · ·U2U1] |ψinit〉ABCER ,
(4.4)

for some non-negative integers g and b, which we refer to as the number of good blocks
and the number of bad blocks in JS2 representation, respectively. We point out that
Alice and Bob do not compute their estimates of JS1 and JS2 unless, based on their
view of the simulation so far, they believe that they have used the same number of MES
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blocks. Therefore, whenever computed, JS1A, JS1B and JS2A, JS2B are always of the forms
described in Subsections 4.3.5 and 4.3.6, respectively. Note that Alice and Bob can realize
that `A

QVC 6= `B
QVC by learning each other’s metadata. Then if they do as described in

Subsection 4.3.3, if no error or collision occurs, they will reduce the number of ugly blocks
in JS2 by one. In this case, block [@1] turns into a standard block of unitary operations,
potentially introducing a new bad block [#b + 1]. If there is either a transmission error
or a hash collision, however, Bob might not realize that `A

QVC > `B
QVC. Then if he has a

+1, −1 or 0 type of iteration then he may apply non-identity Pauli operations and unitary
operations on registers BC, which still results in block [@1] becoming a standard block
of unitary operations acting on registers ABC only. Otherwise, block [@1] remains as is.
Similarly if there is an error or a hash collision, Alice might not realize that `A

QVC > `B
QVC.

Then she might use her next block of MES registers to communicate using QVC in which
case a new ugly block, call it [@u+ 1], would be added to the left of [@u].

4.3.8 Constant collision probability for classical hashing suffices

As in the teleportation-based algorithm, in our algorithm in the plain model the hash
function of Lemma 3.3.1 is used to check for inconsistencies in the classical data maintained
by Alice and Bob. Recall that in Chapter 3, the collision probability p for the hash function
h of Lemma 3.3.1 is chosen to be 1/poly(n). The output of the hash function is of length
o = Θ

(
log 1

p

)
= Θ(log n) bits. Therefore, in the large-alphabet case the hash values

corresponding to the classical data can be communicated using only a constant number
of rounds. However, in the small-alphabet case, using a logarithmic number of rounds to
communicate the hash values leads to a vanishing simulation rate. In our algorithm in this
section, we use the hash family of Lemma 3.3.1 with a constant collision probability and
show that p = Θ (1) suffices to keep the number of hash collisions low. We address this
issue in the simpler large-alphabet setting to simplify the proof in the small-alphabet case
at the conceptual level.
Following Haeupler [37], we circumvent the barrier explained above using the observation
that hashing only makes one-sided errors. In other words, collision only occurs when the
data to be compared are not equal, which in turn is a result of corruptions by the adversary.
As the error budget of the adversary is bounded by 2nε, one would expect the total number
of rounds in which the classical data being compared are not equal to be bounded by O (nε).
In fact, this allows us to have a constant collision probability while keeping the number of
hash collisions in the same order as the number of transmission errors.

4.3.9 Summary of main steps

In Algorithm 13, we summarize the outline of the steps which are followed by Alice and
Bob in the simulation. Note that since synchronizing recycling data creates new Pauli data,
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we choose to do this step before synchronizing the Pauli data. Similar to the teleportation-
based case, the algorithm is designed so that unless there is a transmission error or a hash
collision in comparing a given type of data, Alice and Bob will simultaneously go down
these steps while never returning to a previous step. This in fact is a crucial property used
in the analysis of the algorithm.

Algorithm 13:Main steps in one iteration of the simulation for the large alphabet
recycling-based model

1 Agree on the history of the simulation contained in metadata, i.e., ensure
FullMA = M̃A and FullMB = M̃B. This involves Algorithm 5—rewindMD and
Algorithm 6—extendMD.

2 Synchronize the number of MES blocks used in QVC, in particular, ensure
`A

QVC = ˜̀B
QVC and `B

QVC = ˜̀A
QVC. This is done via Algorithm 19—Q-syncMES.

3 Agree on the measurement pointers and the recycling data up to the pointers, in
particular, ensure (`RA,RA [1 : `RA]) =

(˜̀
RB, R̃B

[
1 : ˜̀RB

])
and

(`RB,RB [1 : `RB]) =
(˜̀

RA, R̃A
[
1 : ˜̀RA

])
. This involves Algorithm 20—rewindRD.

4 Ensure no undetected quantum error from earlier rounds exists. This is done by
ensuring QHA = QHB and involves Algorithm 21—measuresyndrome.

5 Ensure `RA = `A
QVC and `RB = `B

QVC. This is achieved via
Algorithm 22—extendRD.

6 Agree on Pauli data, in particular, ensure FullPA = P̃A and FullPB = P̃B. This is
done via Algorithm 23—Q-rewindPD and Algorithm 24—Q-extendPD.

7 Compute the best guess for JS1 and JS2. If there are any “bad” blocks in the guess
for JS2, reverse the last bad block of unitary operations. I.e., implement quantum
rewinding so that b = 0 in JS2. This is done in Algorithm 26—Q-simulate.

8 If no “bad” blocks remain, implement the next block of rounds of the original
protocol. This results in an increase in g in JS2, and is also done through
Algorithm 26—Q-simulate.

Note that although in step 1 we use the same algorithms for synchronizing the metadata
as in the teleportation-based case (rewindMD and extendMD), the alphabet over which
the metadata strings are defined are now different (see Subsection 4.4.1). The algorithms
mentioned in the remaining steps are presented in the next section. Figure 4.3 summarizes
the main steps in flowchart form.

4.4 Algorithm

In this section, we present our simulation protocol in the plain quantum communication
model over large alphabets. First, we introduce the data structure and the variables
appearing in the pseudo-code.

71



Figure 4.3: Flowchart of the recycling-based scheme for high rate noisy interactive quantum
communication.

4.4.1 Data structure

Alice and Bob maintain a data structure obtained by modifying the one introduced in
Section 3.4.1.
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• Metadata: The metadata now contain new symbols corresponding to recycling
operations and error detection measurements. In every iteration NewMetaA ∈
{±1, 0,C, 0ED,M,C′} specifies Alice’s action in the current iteration. Similar to the
teleportation-based algorithm, in an iteration with NewMetaA = C, Alice does not
access the quantum registers and if NewMetaA ∈ {±1, 0}, then the unitary operators
of the original protocol applied locally by Alice in the current iteration have exponent
NewMetaA. If NewMetaA = M Alice measures the block of MES registers specified
by her measurement pointer and moves the pointer back by 1. NewMetaA = C′
corresponds to a classical iteration for Alice in which she just moves her measurement
pointer forward by 1. Finally, in an iteration with NewMetaA = 0ED, Alice completes
QVC on her side as explained in Section 4.3.3. The notation 0ED is used to emphasize
that similar to an iteration with NewMetaA = 0 no unitary operator of the original
protocol is applied by Alice, but she measures the block of MES registers at the end
of the iteration for error detection.
Alice records her metadata in FullMA which is concatenated with NewMetaA in each
iteration and has length i at the end of the i-th iteration. Similar to the teleportation-
based algorithm, Alice maintains a string M̃B as an estimate of Bob’s metadata,
which is not necessarily full-length. The length of M̃B is denoted by `M̃B. Alice
also maintains `MA, her estimate for the length of M̃A, which is with Bob. MA is
defined as the prefix of FullMA of length `MA, i.e., MA def= FullMA [1 : `MA]. When
MA appears in any of the algorithms in this section, it is implicitly computed by
Alice from FullMA and `MA. We denote by `A

QVC the number of iterations in which
Alice has performed QVC so far. Note that `A

QVC can be computed from FullMA
and is equal to the number of ±1, 0, 0ED symbols in FullMA. Bob’s local metadata
variables are defined similarly.

• Recycling data: Quantum recycling data are used to decide whether a block of
MES pairs can be reused for communication using QVC. The recycling data alphabet
consists of the symbol M corresponding to a measured block of MES pairs and the
symbol S, used for a block of MES pairs still in superposition. Alice records her
recycling data in a string RA, which is of length i after i iterations. The string
RA is also computable from FullMA. Alice maintains a queue, IndexA, of indices
corresponding to MES blocks to be used/reused in QVC. Similar to RA, the string
IndexA is of length i after i iterations. In every iteration, the recycling subroutine
returns the variable NextIndexA which contains the index of the recycled MES block
by Alice and the string IndexA is concatenated with this index. If no such index
exists in an iteration, NextIndexA is assigned the value ⊥ and the protocol aborts.
The variable `RecycleA is a pointer on RA and IndexA used by Alice in the recycling
subroutine to determine NextIndexA. Alice moves this pointer forward until it reaches
the next S symbol in RA (if it exists) and records the value of IndexA in this coordinate
into NextIndexA. In every iteration, if the protocol does not abort, RA is concatenated
with an S symbol corresponding to the recycled MES block and if an MES block is

73



measured the corresponding element of RA is changed from S to M. Alice maintains
a measurement pointer, `RA, which together with IndexA specify the block of MES
pairs to be measured in iterations with NewMetaA = M. In each iteration, the pointer
`RA may stay the same or move backward or forward by 1 and can be computed
from FullMA. The measurement pointers also serve as reference points up to which
Alice and Bob compare their recycling data in each iteration. Bob’s recycling data
variables are defined similarly. Alice computes R̃B and ˜̀

RB as her estimate of Bob’s
RB and `RB, respectively, based on her full-length estimate M̃B of FullMB. Note
that if M̃B = FullMB then Alice’s estimates of Bob’s recycling data are correct.

• Pauli data: In any iteration, new Pauli data is generated on Alice’s side if and
only if she measures a block of MES pairs or performs QVC locally. NewPauliA has
three parts: If a block of r MES pairs is measured locally by Alice in the current
iteration then the measurement outcome, (m1,m2) ∈ Σ4r, is recorded in the first
two parts of NewPauliA, and the third part contains ⊥2r, corresponding to no Pauli
corrections. Otherwise, if Alice performs QVC then ⊥2r is recorded in each of the
first two parts and the third part similar to the teleportation-based protocol specifies
the Pauli corrections.
Alice records her Pauli data in FullPA. Starting from the empty string, FullPA is
concatenated with NewPauliA whenever Alice measures an MES block or performs
QVC. She maintains a string P̃B as an estimate of Bob’s Pauli data. The length of P̃B
is denoted by `P̃B. Alice also maintains `PA, her estimate for the length of P̃A, which
is with Bob. PA denotes the prefix of FullPA of length `PA, i.e., PA def= FullPA [1 : `PA].
When PA appears in any of the algorithms in this section, it is implicitly computed
by Alice from FullPA and `PA. We define qMA

def= |FullPA| /6r. Note that qMA can be
computed from FullMA. Alice computes her estimate qM̃B of qMB using her full-length
estimate M̃B of FullMB. Bob’s Pauli data variables are defined similarly.

• As in Chapter 3, we use H with different variables as subscript to represent hash
values, e.g., HMA represents a hash value corresponding to MA. We use QHA and
QHB to represent quantum hash values. The data variables with a superscript ′
denote the received data after transmission over the noisy channel, e.g., `′MB denotes
what Alice receives when Bob sends `MB.

• The variable Itertype takes two new values: RD corresponding to recycling data
synchronization and QH corresponding to an iteration in which the received quantum
hash value does not match the locally computed quantum hash value.

Finally, LQVC denotes the total number of MES blocks to be used as the keys in QVC.

Remark 4.4.1. We point out an additional subtlety in interpreting the Pauli data by the
two parties. Recall that when Alice and Bob compute their estimates of the joint state,
they use the metadata to locate in the Pauli data, the measurement outcomes for each block
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of measured MES pairs. However, due to transmission errors or collisions, it is possible to
have an inconsistency between the metadata and the Pauli data. For instance, M̃A may
indicate that a specific block of P̃A contains the measurement outcomes on an MES block,
whereas it actually has ⊥2r in the first two parts and corresponds to an iteration in which
Alice has performed QVC. In any such scenario, Alice and Bob interpret the ⊥ symbols as
0 and compute the joint state. This most likely introduces new errors on the joint state
from which Alice and Bob can recover once they obtain a correct view of the simulation.

4.4.2 Pseudo-code

This section contains the pseudo-code for the main algorithm and the subroutines that
each party runs locally in the simulation protocol. For each subroutine, we list all the
global variables accessed by the subroutine as the Input at the beginning of the subroutine.
Whenever applicable, the relation between the variables when the subroutine is called is
stated as the Promise and the global variables which are modified by the subroutine are
listed as the Output.

Algorithm 14: Q-Main (Alice’s side)
Input: n round protocol Π in plain quantum model over polynomial-size alphabet

Σ
1 Q-Initialization;
2 For i = 1→ Rtotal
3 if i ≤ LQVC then
4 NextIndexA← i; // No recycling in first LQVC iterations

5 else
6 Recycle;
7 if NextIndexA =⊥ then
8 Abort;

9 IndexA← (IndexA,NextIndexA);
10 RA← (RA, S);

B computing hash values
11 HMA ← hS4i−3 (MA);
12 HM̃B ← hS4i−2

(
M̃B

)
;

13 HPA ← hS4i−1 (PA);
14 HP̃B ← hS4i

(
P̃B

)
;

15 Quantum-hash;
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Algorithm 14: Q-Main (Alice’s side, cont. from previous page)
16

17 Send (
HMA, `MA, HM̃B, `M̃B, HPA, `PA, HP̃B, `P̃B,QHA

)
;

18 Receive (
H ′M̃A, `

′
M̃A, H

′
MB, `

′
MB, H

′
P̃A, `

′
P̃A, H

′
PB, `

′
PB,QHB ′

)
;

19 Q-Preprocess; B Determining iteration type

20 if Itertype 6= SIM then
21 Send msg;
22 Receive msg′;

// messages are communicated alternately

B Case i.A
23 if Itertype = MD and RewindExtend = R then
24 rewindMD;

B Case i.B
25 else if Itertype = MD and RewindExtend = E then
26 extendMD;

B Case ii.A
27 else if Itertype = MES and NewMetaA = C then
28 return;

B Case ii.B
29 else if Itertype = MES and NewMetaA = 0ED then
30 Q-syncMES;

B Case iii
31 else if Itertype = RD and RewindExtend = R then
32 rewindRD;

B Case iv
33 else if Itertype = QH then
34 measuresyndrome;
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Algorithm 14: Q-Main (Alice’s side, cont. from previous page)
35

B Case v
36 else if Itertype = RD and RewindExtend = E then
37 extendRD;

B Case vi.A
38 else if Itertype = PD and RewindExtend = R then
39 rewindPD;

B Case vi.B
40 else if Itertype = PD and RewindExtend = E then
41 extendPD;

B Case vii
42 else
43 Q-Simulate;

44 return Q-Main;

Algorithm 15: Q-Preprocess (Alice’s side)
Input: 

HMA, `MA, HM̃B, `M̃B, HPA, `PA, HP̃B, `P̃B,QHA
H ′

M̃A
, `′

M̃A
, H ′MB, `

′
MB, H

′
P̃A
, `′

P̃A
, H ′PB, `

′
PB,QHB ′

FullMA, `A
QVC, M̃B,RA, `RA,FullPA, P̃B


Output:

(
Itertype,RewindExtend,NewMetaA,FullMA, `MA, ˜NewMetaB, M̃B, `M̃B,msg

)
1 if

(
HMA, HM̃B

)
=
(
H ′

M̃A
, H ′MB

)
and `MA = `′

M̃A
= `M̃B = `′MB = i− 1 then

2 Compute ˜̀B
QVC, R̃B, ˜̀RB, qM̃B;

B Processing Metadata
B Case i.A

3 if
(
HMA, HM̃B, `MA, `M̃B

)
6=
(
H ′

M̃A
, H ′MB, `

′
M̃A
, `′MB

)
then

4 Itertype ← MD;
5 RewindExtend ← R;
6 NewMetaA← C;
7 FullMA← (FullMA,NewMetaA);
8 msg ← dummy message of length r;
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Algorithm 15: Q-Preprocess (Alice’s side, cont. from previous page)
B Case i.B

9 else if (`MA < i− 1) or
(
`M̃B < i− 1

)
then

10 Itertype ← MD;
11 RewindExtend ← E;
12 NewMetaA← C;
13 FullMA← (FullMA,NewMetaA);
14 if `MA < i− 1 then
15 msg ← encodeMD (FullMA [`MA + 1, `MA + 2]); // Encode MD in Σr

16 else
17 msg ← dummy message of length r;

B Comparing number of used MES blocks
B Case ii.A

18 else if `A
QVC >

˜̀B
QVC then

19 Itertype ← MES;
20 NewMetaA← C;
21 FullMA← (FullMA,NewMetaA);
22 `MA ← `MA + 1;
23 ˜NewMetaB ← 0ED;
24 M̃B ←

(
M̃B, ˜NewMetaB

)
;

25 `M̃B ← `M̃B + 1;
26 msg ← dummy message of length r;

B Case ii.B

27 else if `A
QVC <

˜̀B
QVC then

28 Itertype ← MES;
29 NewMetaA← 0ED;
30 FullMA← (FullMA,NewMetaA);
31 `MA ← `MA + 1;
32 ˜NewMetaB ← C;
33 M̃B ←

(
M̃B, ˜NewMetaB

)
;

34 `M̃B ← `M̃B + 1;
35 msg ← dummy message of length r;
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Algorithm 15: Q-Preprocess (Alice’s side, cont. from previous page)
B Processing recycling data

B Case iii
36 else if (`RA,RA [1 : `RA]) 6=

(˜̀
RB, R̃B

[
1 : ˜̀RB

])
then

37 Itertype ← RD;
38 RewindExtend ← R;
39 if `RA > ˜̀

RB then
40 NewMetaA← M;
41 ˜NewMetaB ← C;
42 else if `RA < ˜̀

RB then
43 NewMetaA← C;
44 ˜NewMetaB ← M;
45 else
46 NewMetaA← M;
47 ˜NewMetaB ← M;
48 FullMA← (FullMA,NewMetaA);
49 `MA ← `MA + 1;
50 M̃B ←

(
M̃B, ˜NewMetaB

)
;

51 `M̃B ← `M̃B + 1;
52 msg ← dummy message of length r;

B Case iv
53 else if QHA 6= QHB ′ then
54 Itertype ← QH;
55 NewMetaA← M;
56 FullMA← (FullMA,NewMetaA);
57 `MA ← `MA + 1;
58 ˜NewMetaB ← M;
59 M̃B ←

(
M̃B, ˜NewMetaB

)
;

60 `M̃B ← `M̃B + 1;
61 msg ← dummy message of length r;
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Algorithm 15: Q-Preprocess (Alice’s side, cont. from previous page)
B Case v

62 else if `RA < `A
QVC then

63 Itertype ← RD;
64 RewindExtend ← E;
65 NewMetaA← C′;
66 FullMA← (FullMA,NewMetaA);
67 `MA ← `MA + 1;
68 ˜NewMetaB ← C′;
69 M̃B ←

(
M̃B, ˜NewMetaB

)
;

70 `M̃B ← `M̃B + 1;
71 msg ← dummy message of length r;

B Processing Pauli data
B Case vi.A

72 else if
(
HPA, HP̃B, `PA, `P̃B

)
6=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
then

73 Itertype ← PD;
74 RewindExtend ← R;
75 NewMetaA← C;
76 FullMA← (FullMA,NewMetaA);
77 `MA ← `MA + 1;
78 ˜NewMetaB ← C;
79 M̃B ←

(
M̃B, ˜NewMetaB

)
;

80 `M̃B ← `M̃B + 1;
81 msg ← dummy message of length r;

B Case vi.B
82 else if (`PA < 6qMA · r) or

(
`P̃B < 6qM̃B · r

)
then

83 Itertype ← PD;
84 RewindExtend ← E;
85 NewMetaA← C;
86 FullMA← (FullMA,NewMetaA);
87 `MA ← `MA + 1;
88 ˜NewMetaB ← C;
89 M̃B ←

(
M̃B, ˜NewMetaB

)
;

90 `M̃B ← `M̃B + 1;
91 if `PA < 6qMA · r then
92 msg ← FullPA [`PA + 1, `PA + r]
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Algorithm 15: Q-Preprocess (Alice’s side, cont. from previous page)
B Case vii

93 else
94 Q-Computejointstate;
95 Itertype ← SIM;
96 FullMA = (FullMA,NewMetaA);
97 `MA ← `MA + 1;
98 M̃B ←

(
M̃B, ˜NewMetaB

)
;

99 `M̃B ← `M̃B + 1;
100 return Q-Preprocess;

Algorithm 16: Q-Initialization (Alice’s side)
1 Initialize

LQVC ← Θ (nε) ;
r ← Θ (1/

√
ε) ;

Rtotal ← dn/2r + Θ(nε)e ;
t← Θ (nε) ;
`MA, `M̃B, `PA, `P̃B, `

A
QVC, `RA, `RecycleA ← 0 ;

FullMA, M̃B,FullPA, P̃B,RA, IndexA← ∅ ;
2 h← hash function of Lemma 3.3.1 with p = Θ(1), o = Θ(1), s = Θ (log n) ;
3 Robust Entanglement Distribution ;
4 Reserve LQVC · 4r MES pairs to be used as the keys in QVC ;
5 Reserve 10Rtotal MESs to be used in quantum hashing ;
6 Measure Θ (Rtotal) MESs in the computational basis and record the binary

representation of the outcomes in S1, . . . , S4Rtotal ;
// 4Rtotal seeds of length s for the hash function h

7 Measure the remaining Θ (n
√
ε) MESs in the computational basis and record the

binary representation of the outcomes in R′ ;
8 Stretch R′ to a δ-biased pseudo-random string R = R1, . . . , R10Rtotal using the

deterministic algorithm of Lemma 2.4.8 where δ = 2−Θ(nr ) ;
// 10Rtotal seeds of length 4rLQVC used in quantum hashing

9 return Q-Initialization;
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Algorithm 17: Recycle (Alice’s side)
Input:

(
RA, IndexA, `RecycleA, `

A
QVC

)
Output: (`RecycleA,NextIndexA)

1 `RecycleA ← `RecycleA + 1 ;
2 while

(
`RecycleA < `A

QVC

)
and (RA [`RecycleA] = M) do

3 `RecycleA ← `RecycleA + 1 ;
4 if `RecycleA = `A

QVC then
5 NextIndexA←⊥ ;
6 else
7 NextIndexA← IndexA [`RecycleA] ;
8 return Recycle;

Algorithm 18: Quantum-hash (Alice’s side)
Input:

(
RA, IndexA, `A

QVC, `RecycleA, R
)

Output: QHA
1 QHA← ∅ ;
2 for k = 1→ 10 do
3 Choose a fresh MES from “Quantum Hash” category, and let VA denote the

register containing Alice’s half of the state;

4 for j = 1→ 4r
(
`A

QVC − `RecycleA
)
do // Hashing blocks `RecycleA + 1 : `A

QVC

5 if R10i+k [j] = 1 and RA
[
`RecycleA + d j4re

]
6= M then

6 Apply (c-X)VAAb
, where b = 4r · IndexA

[
`RecycleA + b j4rc

]
+ (j mod 4r);

7 Apply the Fourier transform operator F on VA, measure it in the computational
basis and record the outcome in qh;

8 QHA← (QHA, qh);
9 return Quantum-hash;
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Algorithm 19: Q-syncMES (Alice’s side)
Input:

(
IndexA, `A

QVC,msg′,FullPA
)

Promise:
(
HMA, HM̃B, `MA, `M̃B

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1
)
,

`MA = `M̃B = i , `A
QVC <

˜̀B
QVC

Output:
(
`A

QVC,NewPauliA,FullPA
)

1 Let C0 be the communication register at the beginning of the current iteration
(which is in Alice’s possession) and for every j ∈ [r], let Cj denote the
communication register containing msg′(j), Bob’s j-th message in this iteration;

2 `A
QVC ← `A

QVC + 1;
3 Let E1E2 · · ·E4r be the registers with Alice that contain halves of the 4r MESs in

the block indexed by IndexA
[
`A

QVC

]
;

4 Apply
(c-Z)E2C0

(c-X)E1C0

5 For every j ∈ [r − 1], upon receiving Cj apply

(c-Z)E4j+2Cj
(c-X)E4j+1Cj

(
c-X−1

)
E4j−1Cj

(
c-Z−1

)
E4jCj

6 Upon receiving Cr apply (
c-X−1

)
E4r−1Cr

(
c-Z−1

)
E4rCr

// See Section 4.3.3 for the rationale and Bob’s analogue of above
steps

7 Apply the Fourier transform operator to E1, E2, · · · , E4r and measure them in the
computational basis. Store the measurement outcomes in (m1,m2) ∈ Σ4r;

8 RA
[
`A

QVC

]
← M;

9 NewPauliA← (m1,m2,⊥2r);
10 FullPA← (FullPA,NewPauliA);
11 return Q-syncMES;
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Algorithm 20: rewindRD (Alice’s side)
Input: (NewMetaA,RA, `RA, IndexA,FullPA)
Promise:

(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1,˜̀BQVC

)
,

`MA = `M̃B = i , (`RA,RA [1 : `RA]) 6=
(˜̀

RB, R̃B
[
1 : ˜̀RB

])
Output: (NewPauliA,FullPA,RA, `RA)

1 if NewMetaA = M and RA [`RA] = S then
2 Sequentially apply the Fourier transform operator to all the MESs in the block

indexed by IndexA [`RA] and measure them in the computational basis ;
3 Store the measurement outcomes in (m1,m2) ∈ Σ4r;
4 NewPauliA← (m1,m2,⊥2r);
5 FullPA← (FullPA,NewPauliA);
6 RA [`RA]← M;
7 `RA ← `RA − 1;
8 return rewindRD;

Algorithm 21: measuresyndrome (Alice’s side)
Input: (RA, `RA, IndexA,FullPA)
Promise:

(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1,˜̀BQVC

)
,

`MA = `M̃B = i , (`RA,RA [1 : `RA]) =
(˜̀

RB, R̃B
[
1 : ˜̀RB

])
,

QHA 6= QHB ′
Output: (NewPauliA,FullPA,RA, `RA)

1 if RA [`RA] = S then
2 Sequentially apply the Fourier transform operator to all the MESs in the block

indexed by IndexA [`RA] and measure them in the computational basis ;
3 Store the measurement outcomes in (m1,m2) ∈ Σ4r;
4 NewPauliA← (m1,m2,⊥2r);
5 FullPA← (FullPA,NewPauliA);
6 RA [`RA]← M;
7 `RA ← `RA − 1
8 return measuresyndrome;
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Algorithm 22: extendRD (Alice’s side)
Input: `RA

Promise:
(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1,˜̀BQVC

)
,

`MA = `M̃B = i , (`RA,RA [1 : `RA]) =
(˜̀

RB, R̃B
[
1 : ˜̀RB

])
,

QHA = QHB ′ , `RA < `A
QVC

Output: `RA

1 `RA ← `RA + 1;
2 return extendRD;

Algorithm 23: Q-rewindPD (Alice’s side)
Input:

(
HPA, `PA, HP̃B, `P̃B, H

′
P̃A
, `′

P̃A
, H ′PB, `

′
PB

)
Promise:

(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1,˜̀BQVC

)
,

`MA = `M̃B = i , (`RA,RA [1 : `RA]) =
(˜̀

RB, R̃B
[
1 : ˜̀RB

])
,

QHA = QHB ′ , `RA = `A
QVC ,(

HPA, HP̃B, `PA, `P̃B

)
6=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
.

Output:
(
`PA, `P̃B

)
1 if `PA 6= `′

P̃A
or `P̃B 6= `′PB then

2 if `PA > `′
P̃A

then
3 `PA ← `PA − r;
4 if `P̃B > `′PB then
5 `P̃B ← `P̃B − r;

6 else
7 if HPA 6= H ′

P̃A
then

8 `PA ← `PA − r;
9 if HP̃B 6= H ′PB then

10 `P̃B ← `P̃B − r;

11 return Q-rewindPD;
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Algorithm 24: Q-extendPD (Alice’s side)
Input:

(
`PA, `P̃B, P̃B, qMA, qM̃B,msg′

)
Promise:

(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1,˜̀BQVC

)
,

`MA = `M̃B = i , (`RA,RA [1 : `RA]) =
(˜̀

RB, R̃B
[
1 : ˜̀RB

])
,

QHA = QHB ′ , `RA = `A
QVC ,(

HPA, HP̃B, `PA, `P̃B

)
=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA < 6qMA · r or `P̃B < 6qM̃B · r.
Output:

(
`PA, P̃B, `P̃B

)
1 if `PA < 6qMA · r then
2 `PA ← `PA + r;
3 if `P̃B < 6qM̃B · r then
4 P̃B

[
`P̃B + 1 : `P̃B + r

]
← msg′;

5 `P̃B ← `P̃B + r;
6 return Q-extendPD;

Algorithm 25: Q-computejointstate (Alice’s side)
Input:

(
FullMA, M̃B,RA,FullPA, P̃B

)
Promise:

(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A
, `′MB,

˜̀B
QVC

)
,

`MA = `M̃B = i− 1 , (`RA,RA [1 : `RA]) =
(˜̀

RB, R̃B
[
1 : ˜̀RB

])
,

QHA = QHB ′ , `RA = `A
QVC ,(

HPA, HP̃B, `PA, `P̃B

)
=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA = 6qMA · r , `P̃B = 6qM̃B · r,
Output:

(
JS1A, JS2A,NewMetaA, ˜NewMetaB,Block,RewindExtend,PCorr, P̃Corr

)
1 Compute JS1A;
2 Compute JS2A;
3 Compute NewMetaA;
4 Compute ˜NewMetaB;
5 Compute RewindExtend;
6 Compute Block;
7 Compute PCorr;
8 Compute P̃Corr;

// Refer to Sections 4.3.5, 4.3.6 to see how these variables are
computed

9 return Q-computejointstate;
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Algorithm 26: Q-simulate (Alice’s side)
Input:(
`A

QVC, IndexA,FullPA, `PA, P̃B, `P̃B,NewMetaA,RewindExtend,Block,PCorr, P̃Corr
)

Promise:
(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=
(
H ′

M̃A
, H ′MB, `

′
M̃A

+ 1, `′MB + 1,˜̀BQVC

)
,

`MA = `M̃B = i , (`RA,RA [1 : `RA]) =
(˜̀

RB, R̃B
[
1 : ˜̀RB

])
,

QHA = QHB ′ , `RA = `A
QVC ,(

HPA, HP̃B, `PA, `P̃B

)
=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA = 6qMA · r , `P̃B = 6qM̃B · r,
Output:

(
`A

QVC,NewPauliA,FullPA, `PA, ˜NewPauliB, P̃B, `P̃B, `RA

)
1 `A

QVC ← `A
QVC + 1;

2 Continue the simulation of the noiseless protocol according to the output of
Q-computejointstate using the block of MESs indexed by IndexA

[
`A

QVC

]
;

3 NewPauliA← (⊥2r,⊥2r,PCorr);
4 FullPA← (FullPA,NewPauliA);
5 `PA ← `PA + 6r;
6 ˜NewPauliB ←

(
⊥2r,⊥2r, P̃Corr

)
;

7 P̃B ←
(

P̃B, ˜NewPauliB
)
;

8 `P̃B ← `P̃B + 6r;
9 `RA ← `RA + 1;

10 return Q-simulate;
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4.5 Analysis

To simplify the analysis of the algorithm, without loss of generality, we assume that the
error introduced by the adversary on the n′ message registers in Π′ is an arbitrary Pauli
error of weight at most εn′. We prove the correctness of the algorithm for any such error
syndrome, which by linearity implies the correctness of the algorithm against any adversary
defined in Section 2.2.2. In order to track the simulation progress and show the correctness
of the algorithm, we condition on some view of the local classical data recorded by Alice
and Bob.
Similar to Section 3.5, the analysis of Algorithm 14 is in terms of potential functions which
measure the correctness of the two players’ views of what has happened so far in the
simulation and quantify the progress in reproducing the joint state of the input protocol.
We recall the following definitions from Section 3.5:

mdA
+

def= the length of the longest prefix where MA and M̃A agree; (4.5)

mdB
+

def= the length of the longest prefix where MB and M̃B agree; (4.6)

mdA
−

def= max{`MA, `M̃A} −md
A
+ ; (4.7)

mdB
−

def= max{`MB, `M̃B} −md
B
+ ; (4.8)

pdA
+

def= b1
r
× the length of the longest prefix where PA and P̃A agreec; (4.9)

pdB
+

def= b1
r
× the length of the longest prefix where PB and P̃B agreec; (4.10)

pdA
−

def= 1
r

max{`PA, `P̃A} − pd
A
+ ; (4.11)

pdB
−

def= 1
r

max{`PB, `P̃B} − pd
B
+ . (4.12)

We recall the definition of g, b, u from Subsection 4.3.7:

g
def= the number of good blocks in JS2, (4.13)

b
def= the number of bad blocks in JS2, and (4.14)

u
def= |`A

QVC − `B
QVC| , (4.15)

We define

rd+ def= max{j : j ≤ min{`RA, `RB} , RA [1 : j] = RB [1 : j]
,Wk = 04r for all k ≤ j with RA [k] = S} ; (4.16)

rd−
def= max{`RA, `RB} − rd+ , (4.17)
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where W in Eq. 4.16 is the string corresponding to the error syndrome defined in Subsec-
tion 4.3.5. At the end of the i-th iteration, we let

ΦMD
def= 2i−mdA

+ + 3mdA
− −mdB

+ + 3mdB
− , (4.18)

ΦRD
def= `A

QVC + `B
QVC + 13rd− − 2rd+ , (4.19)

ΦPD
def= 6qMA + 6qMB − pdA

+ + pdA
− − pdB

+ + pdB
− , (4.20)

ΦQ
def= g − b− 9u , (4.21)

Φ def= ΦQ − ΦMD − ΦRD − ΦPD . (4.22)

The following lemma states an important property of potential functions ΦMD, ΦRD and
ΦPD defined above which we use in the analysis of the algorithm.

Lemma 4.5.1. Throughout the algorithm, it holds that

• ΦMD ≥ 0 with equality if and only if Alice and Bob have full knowledge of each other’s
metadata, i.e., mdA

+ = mdB
+ = i and mdA

− = mdB
− = 0.

• ΦRD ≥ 0 with equality if and only if Alice and Bob have used the same number of
MES blocks (`A

QVC = `B
QVC), their measurement pointers `RA and `RB agree and are

equal to `A
QVC, they fully agree on the recycling data (RA = RB) and Wk = 04r for all

k ≤ `A
QVC with RA [k] = S, i.e., `A

QVC = `B
QVC = rd+ and rd− = 0.

• ΦPD ≥ 0 with equality if and only if Alice and Bob have full knowledge of each other’s
Pauli data, i.e., pdA

+ = 6qMA, pdB
+ = 6qMB and pdA

− = pdB
− = 0.

Proof. The first statement follows from the property thatmdA
−,md

B
− ≥ 0 andmdA

+,md
B
+ ≤ i.

The second statement holds since rd− ≥ 0, rd+ ≤ min{`RA, `RB} and the property that
`RA ≤ `A

QVC and `RB ≤ `B
QVC. The third statement follows since pdA

−, pd
B
− ≥ 0, pdA

+ ≤ 6qMA
, and pdB

+ ≤ 6qMB.

In order to avoid ambiguity, whenever necessary we use a superscript i to indicate the
value of the variables of the algorithm at the end of the i-th iteration. For instance, we
denote Alice’s recycling data at the end of the i-th iteration by RAi. Before presenting the
analysis of Algorithm 14, we formally define successful recycling.

Definition 4.5.2. We say recycling is successful in the i-th iteration of Algorithm 14 if
the following hold:

• The algorithm does not abort in the i-th iteration, i.e., NextIndexAi,NextIndexBi 6=⊥,

• NextIndexAi = NextIndexBi,
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• The block of MES registers indexed by NextIndexAi are in the |φ0,0〉⊗4r state at the
beginning of the i-th iteration.

Note that the conditions of Definition 4.5.2 are all satisfied in the first LQVC iterations of
the algorithm as well. Note that if recycling is successful in the first i iterations of the
algorithm then `jRecycleA = `jRecycleB, for all j ≤ i and we have IndexAi = IndexBi. Moreover,
for every i ≥ LQVC, we have IndexAi [1 : LQVC] = IndexBi [1 : LQVC] = 1 : LQVC.
Proof Outline of Theorem 4.2.1. In order to prove successful simulation of an n-round
protocol, it suffices to show that Φ ≥ n/2r, at the end of the simulation. In Section 3.5 we
showed that in the teleportation-based protocol, except with exponentially small probability,
the total number of hash collisions is O (nε). Then, for sufficiently large number of iterations,
to prove the correctness it was sufficient to show that in any iteration with no error or
hash collision the potential function increases by at least one, while any iteration with
errors or hash collisions decreases the potential by at most some fixed constant. However,
this statement is not necessarily true for Algorithm 14 if the recycling of MESs has not
been successful in an earlier iteration. In fact, the potential function is defined in terms
of JS2 which is a valid representation of the joint state at any stage in the simulation
only if recycling has been successful so far. Therefore, to use such an argument, one needs
to prove successful recycling first. On the other hand, to prove successful recycling in an
iteration, we need to bound the number of iterations with a hash collision, as well as the
number of iterations dedicated to “recovery” from hash collisions and transmission errors.
Therefore, the analysis of the recycling-based protocol involves an inductive argument.
The analysis in this section involves constants

c1 < c2 < c3 < c4 < c5 < c6 < c7 < c8 < c9 ,

chosen such that ci is sufficiently large depending only on cj with j < i.

Definition 4.5.3. We say an iteration of Algorithm 14 suffers from a metadata hash
collision when HMA = HM̃A despite the fact that MA 6= M̃A, or HMB = HM̃B despite the
fact that MB 6= M̃B. Note that we distinguish between the above scenario and when, for
instance, HMA = H ′

M̃A
due to a transmission error on HM̃A, despite the two might have

similar effects.

The following lemma bounds the number of iterations with a metadata hash collision.

Lemma 4.5.4. The number of iterations of Algorithm 14 suffering from a metadata hash
collision is at most c1nε with probability at least 1− 2−Θ(nε).

Proof. We call an iteration a dangerous iteration of type I if mdA
− + mdB

− 6= 0, at the
beginning of the iteration. Note that metadata hash collisions can only occur in type I
dangerous iterations. Let dI denote the number of such iterations. It suffices to prove that

Pr (dI > c1nε) ≤ 2−Θ(nε) .
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Note that in any iteration mdA
− + mdB

− increases by at most 6. Moreover, in an iteration
with mdA

− + mdB
− 6= 0, if mdA

− + mdB
− decreases, it decreases by at least 1. Therefore, in

at least dI/7 iterations, mdA
− + mdB

− increases or remains unchanged at a nonzero value.
Note that mdA

− +mdB
− > 0 increases or remains unchanged only if a transmission error or

a metadata hash collision occurs. Moreover, when mdA
− + mdB

− increases from zero in an
iteration, it is due to a transmission error. The number of iterations is less than 2n. So
the total number of iterations with transmission errors is at most 2nε. This implies that
in all the remaining iterations, i.e., at least dI/7− 2nε iterations a metadata hash collision
occurs. Since the algorithm uses independent seeds in each iteration and the probability of
collision is chosen to be 0.1, the expected number of collisions is at most dI/10. If dI > c1nε
for a sufficiently large c1, then the Chernoff bound implies that the probability of having
so many collisions is at most 2−Θ(nε).

Definition 4.5.5. We refer to an iteration of Algorithm 14 as a recovery iteration of type
I if at least one of Alice or Bob conducts one of the cases i.A, i.B, ii.A, or ii.B.

We use the following lemma to bound the number of type I recovery iterations.

Lemma 4.5.6. Suppose that in the first i iterations of Algorithm 14, the number of
iterations suffering from a metadata hash collision is at most c1nε. Then the number of
type I recovery iterations in the first i iterations is at most c2nε.

Proof. Let
ΦI

def= u+ ΦMD .

By Lemma 4.5.1 and the definition of u in Eq. (4.15), ΦI is always non-negative and is
equal to zero if and only if Alice and Bob know each other’s full metadata and have used
the same number of MES blocks for QVC.
Note that if ΦI = 0 at the beginning of an iteration, then the iteration is a type I recovery
iteration only if a transmission error in communication of metadata messages occurs. The
total number of such iterations is at most 2nε.
Let βI denote the number of iterations in the first i iterations starting with ΦI > 0. Note
that in any iteration, ΦI increases or remains unchanged at a nonzero value only if a
metadata hash collision or a transmission error occurs. In each iteration, regardless of the
number of errors and collisions, ΦI increases by at most 23. Moreover, if ΦI decreases, it
decreases by at least 1. Assuming the number of metadata hash collisions is at most c1nε,
this implies that the number of iterations in which ΦI decreases is at most 23 (c1 + 2)nε.
So we have βI ≤ 24 (c1 + 2)nε.

Therefore, the total number of type I recovery iterations is at most c2nε, where c2
def=

24 (c1 + 2) + 2.

Definition 4.5.7. We say an iteration of Algorithm 14 suffers from a quantum hash
collision when recycling has been successful so far, Alice and Bob know each other’s
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metadata, have used the same number of MES blocks (`A
QVC = `B

QVC) and agree on their
measurement pointers and their recycling data up to the measurement pointers (`RA = `RB
and RA [1 : `RA] = RB [1 : `RB]) but despite the fact that there is an undetected quantum
error from earlier iterations (Wk 6= 04r for some k ≤ `RA with RA [k] = S), their quantum
hash values match, i.e., QHA = QHB. Note that we distinguish between the above scenario
and when QHA = QHB ′ due to a transmission error on QHB.

We use the following lemma to bound the number of iterations suffering from a quantum
hash collision.

Lemma 4.5.8. Suppose that recycling is successful in the first i iterations of Algorithm 14
and the number of iterations suffering from a metadata hash collision is at most c1nε. Then
the number of iterations suffering from a quantum hash collision in the first i iterations is
at most c3nε with probability at least 1− 2−Θ(nε).

Proof. We call an iteration a dangerous iteration of type II if rd− 6= 0, at the beginning of
the iteration. Note that quantum hash collisions can only occur in type II dangerous itera-
tions. Let dII denote the number of such iterations in the first i iterations of Algorithm 14.
It suffices to prove that

Pr (dII > c3nε) ≤ 2−Θ(nε) .

Note that in any iteration rd− increases by at most 2. Moreover, in an iteration with
rd− 6= 0, if rd− decreases, it decreases by at least 1. Therefore, in at least dII/3 iterations,
rd− increases or remains unchanged at a nonzero value. Note that, assuming successful
recycling in the previous iterations, rd− > 0 increases or remains unchanged in an iteration
only if

• A metadata hash collision or a transmission error on metadata messages (i.e., HkMA ,
HMA1 , HMA2 , Hk

M̃A
, HM̃A1

, HM̃A2
, HkMB , HMB1 , HMB2 , Hk

M̃B
, HM̃B1

, HM̃B2
) occurs,

or else,

• The iteration is a type I recovery iteration. Alice and Bob are still reconciling an
earlier inconsistency in their metadata and they are both in case i.A or case i.B, or
one of them is in case ii.A and the other one in case ii.B. Else,

• A transmission error on quantum hash values or a quantum hash collision occurs. At
least one party does not realize that rd− > 0 and conducts one of the cases v, vi.A,
vi.B, or vii.

Moreover, assuming successful recycling in the previous iterations, the value of rd− increases
from zero in an iteration only if

• A metadata hash collision occurs and Alice and Bob act based on incorrect estimates
of each other’s recycling data, or else,
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• A transmission error on metadata messages occurs, or else,

• A transmission error on quantum hash values occurs and only one party conducts
case iv, or else,

• A transmission error on the Pauli data messages (i.e., HkPA , HPA1 , HPA2 , Hk
P̃A
, HP̃A1

,
HP̃A2

, HkPB , HPB1 , HPB2 , Hk
P̃B
, HP̃B1

, HP̃B2
) occurs and one party conducts case

vi.A or vi.B while the other is in case vii. Else,

• A transmission error occurs on the communicated QVC messages when both parties
conduct case vii.

Assuming the number of metadata hash collisions is at most c1nε, by Lemma 4.5.6, the
total number of type I recovery iterations is at most c2nε. The total number of transmission
errors is at most 2nε. Therefore, in at least dII/3− (c1 + c2 + 2)nε iterations a quantum
hash collision occurs.
The shared random string used as the classical seed for quantum hashing is δ-biased
with δ = 2−Θ(n√ε). By Lemma 2.4.8, the seeds are also δΘ(1)-statistically close to being
Θ (Rtotal)-wise independent. Therefore, all hashing steps are statistically close to being
fully independent. Combined with Lemma 4.3.2, this implies that the expected number
of quantum hash collisions is at most 10−3dII. For sufficiently large c3, if dII > c3nε,
the Chernoff bound implies that the probability of having at least dII/3− (c1 + c2 + 2)nε
quantum hash collisions is at most 2−Θ(nε).

Definition 4.5.9. We refer to an iteration of Algorithm 14 as a recovery iteration of type
II if it is not a type I recovery iteration and at least one of Alice or Bob conducts one of
the cases iii, iv, or v.

We use the following lemma to bound the number of type II recovery iterations.

Lemma 4.5.10. Suppose that in the first i iterations of Algorithm 14, recycling is successful,
the number of iterations suffering from a metadata hash collision is at most c1nε and the
number of iterations suffering from a quantum hash collision is at most c3nε. Then the
total number of type II recovery iterations in the first i iterations is at most c4nε.

Proof. Note that by Lemma 4.5.1, ΦRD is always non-negative. If at the beginning of an
iteration ΦRD = 0, then the iteration is a type II recovery iteration only if

• ΦMD > 0 but due to a metadata hash collision or a transmission error on metadata
messages both Alice and Bob do not realize that. In this case they compute their
estimates of each other’s recycling data based on incorrect estimates of each other’s
metadata.

• ΦMD = 0 but a transmission error in communication of quantum hashes occurs.
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Therefore, in the first i iterations the total number of type II recovery iterations starting
with ΦRD = 0 is at most (c1 + 2)nε.
Let βRD denote the number of iterations starting with ΦRD > 0 in the first i iterations.
Assuming successful recycling in the preceding iterations, ΦRD > 0 increases or remains
unchanged in an iteration only if

• The iteration is a type I recovery iteration, or else,

• ΦMD > 0 but due to a metadata hash collision or transmission errors on metadata
messages, Alice and Bob don’t realize that and act based on their incorrect estimates
of each other’s recycling data.

• ΦMD = 0, i.e., Alice and Bob have correct estimates of each other’s recycling data
but a quantum hash collision or a transmission error on quantum hash values occurs.

Moreover, ΦRD increases from zero in an iteration only if

• A transmission error occurs, or else,

• A metadata hash collision occurs and the two parties act based on incorrect estimates
of each other’s recycling data.

Therefore, the number of iterations in the first i iterations with ΦRD increasing or re-
maining unchanged at a nonzero value is at most (c1 + c2 + c3 + 2)nε. Note that in each
iteration, regardless of the number of errors and collisions, ΦRD increases by at most
30. Moreover, if ΦRD decreases, it decreases by at least 1. This implies that the num-
ber of iterations in which ΦRD decreases is at most 30 (c1 + c2 + c3 + 2)nε. So, we have
βRD ≤ 31 (c1 + c2 + c3 + 2)nε.
Therefore, the total number of recovery iterations of type II in the first i iterations is at
most c4nε, where c4

def= 31 (c1 + c2 + c3 + 2) + (c1 + 2).

Definition 4.5.11. We say an iteration of Algorithm 14 suffers from a Pauli data hash
collision when recycling has been successful so far, Alice and Bob know each other’s
metadata, agree on the number of MES blocks they have used (`A

QVC = `B
QVC), agree on

their recycling data, their measurement pointers satisfy `RA = `RB = `A
QVC, all the non-

measured MES blocks are in the |φ0,0〉⊗4r state and HPA = HP̃A despite the fact that
PA 6= P̃A or HPB = HP̃B despite the fact that PB 6= P̃B. Note that we distinguish between
the above scenario and when for instance HPA = H ′

P̃A
due to a transmission error on HP̃A.

We use the following lemma to bound the number of iterations suffering from a Pauli data
hash collision.
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Lemma 4.5.12. Suppose that in the first i iterations of Algorithm 14, recycling is successful,
the number of iterations suffering from a metadata hash collision is at most c1nε and the
number of iterations suffering from a quantum hash collision is at most c3nε. Then the
number of iterations suffering from a Pauli data hash collision in the first i iterations is at
most c5nε with probability at least 1− 2−Θ(nε).

Proof. We call an iteration a dangerous iteration of type III if pdA
− + pdB

− 6= 0, at the
beginning of the iteration. Note that Pauli data hash collisions can only occur in type III
dangerous iterations. Let dIII denote the number of such iterations in the first i iterations
of Algorithm 14. We prove that

Pr (dIII > c5nε) ≤ 2−Θ(nε) .

Note that in any iteration pdA
−+ pdB

− increases by at most 8. Moreover, in an iteration with
pdA
− + pdB

− 6= 0, if pdA
− + pdB

− decreases, it decreases by at least 1. Therefore, in at least
dIII/9 iterations, pdA

− + pdB
− increases or remains unchanged at a nonzero value. Note that

when pdA
− + pdB

− > 0 increases or remains unchanged in an iteration, it is due to one of the
following reasons:

• The iteration is a type I recovery iteration, or else,

• The iteration is a type II recovery iteration, or else,

• A Pauli data hash collision or a transmission error on Pauli data messages (i.e., HPA,
`PA, HPB, `PB, HP̃B, `P̃B, HP̃A, `P̃A) occurs.

Moreover, pdA
− + pdB

− increases from zero in an iteration only if

• A metadata hash collision or transmission error on the metadata messages occurs, or
else,

• A transmission error on the quantum hash values occurs, or else,

• A transmission error on the Pauli data messages occurs, or else,

• Both parties conduct case vi.B and due to a transmission error, at least one of Alice
or Bob extends her/his estimate of the other party’s Pauli data incorrectly.

Assuming the number of iterations of Algorithm 14 suffering from a metadata hash col-
lision is at most c1nε and the number of iterations suffering from a quantum hash col-
lision is at most c3nε, the total number of type I and type II recovery iterations is at
most (c2 + c4)nε. The number of transmission errors is at most 2nε. Therefore, in at least
dIII/9− (c1 + c2 + c4 + 2)nε iterations a Pauli data hash collision occurs.
Since the algorithm uses independent seeds in each iteration and the probability of a collision
is chosen to be 0.1, the expected number of Pauli data hash collisions is at most dIII/10.
For sufficiently large c5, if dIII > c5nε, the Chernoff bound implies that the probability of
having so many Pauli data hash collisions in the first i iterations is at most 2−Θ(nε).
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Definition 4.5.13. We refer to an iteration of Algorithm 14 as a recovery iteration of
type III if it is not a type I or type II recovery iteration and at least one of Alice or Bob
conducts one of the cases vi.A or vi.B.

We use the following lemma to bound the number of type III recovery iterations.

Lemma 4.5.14. Suppose that in the first i iterations of Algorithm 14, recycling is successful
and the number of iterations suffering from metadata , quantum and Pauli data hash
collisions is at most c1nε, c3nε and c5nε, respectively. Then the total number of type III
recovery iterations in the first i iterations is at most c6nε.

Proof. Note that by Lemma 4.5.1, ΦPD is always non-negative and it is equal to zero if and
only if Alice and Bob have full knowledge of each other’s Pauli data. If at the beginning of
an iteration ΦPD = 0, then the iteration is a type III recovery iteration only if

• A transmission error occurs on the Pauli data messages, or else,

• A metadata hash collision or a transmission error on metadata messages occurs. In
this case at least one party incorrectly believes that his/her estimate of the other
party’s Pauli data is not full-length.

Therefore, in the first i iterations the total number of type III recovery iterations starting
with ΦPD = 0 is at most (c1 + 2)nε.
Let βPD denote the number of iterations starting with ΦPD > 0 in the first i iterations.
Note that in any iterations ΦPD > 0 increases or remains unchanged only if

• The iteration is a type I recovery iteration, or else,

• The iteration is a type II recovery iteration, or else,

• A Pauli data hash collision or a transmission error on Pauli data messages occurs.

Moreover, ΦPD increases from zero in an iteration only if

• A metadata hash collision or transmission error on the metadata messages occurs, or
else,

• The iteration is a type I recovery iteration in which one party conducts case ii.A and
the other case ii.B, or else,

• A transmission error on the quantum hash values occurs, or else,

• The iteration is a type II recovery iteration in which both parties conduct case iii or
both conduct case iv, or else,
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• A transmission error on the Pauli data messages occurs.

Therefore, the number of iterations in the first i iterations with ΦPD increasing or remaining
unchanged at a nonzero value is at most (c1 + c2 + c4 + c5 + 2)nε. Note that in each
iteration, regardless of the number of errors and collisions, ΦPD increases by at most 22.
Moreover, if ΦPD decreases, it decreases by at least 1. This implies that the number of
iterations in which ΦPD decreases is at most 22 (c1 + c2 + c4 + c5 + 2)nε. So, we have
βPD ≤ 23 (c1 + c2 + c4 + c5 + 2)nε.
Therefore, the total number of recovery iterations of type III in the first i iterations is at
most c6nε, where c6

def= 23 (c1 + c2 + c4 + c5 + 2) + (c1 + 2).

Let ωi denote the number of iterations suffering from a transmission error or a hash collision
in the first i iterations, plus the number of recovery iterations of type I, II, or III, in the
first i iterations. Note that the bounds and probabilities in Lemmas 4.5.4–4.5.14 are all
independent of the iteration number i. As a corollary we have:

Corollary 4.5.15. There exist q = 2−Θ(nε) and a constant c7 such that, for every i ∈
[Rtotal], assuming successful recycling in the first i iterations of Algorithm 14, except with
probability at most q, we have ωi ≤ c7nε.

The following lemma is the last ingredient we need to prove successful recycling in every
iteration of the simulation. Recall that RAi and RBi denote the recycling data of Alice
and Bob, respectively, at the end of the i-th iteration.

Lemma 4.5.16. Let t = c8nε where c8 > 3c7. Then for every i ∈ [Rtotal] where i ≥ t, if
recycling is successful in the first i− 1 iterations and ωi−1 ≤ c7nε, then:

1. RAi [1 : i− t] = RBi [1 : i− t], i.e., at the end of iteration i, the recycling data of
Alice and Bob agree in a prefix of length at least i− t.

2. RAi [1 : i− t] = RAi+1 [1 : i− t], i.e., the prefix of RA of length i − t does not get
modified in the next iteration. The same statement holds for RB.

3. For every k ∈ [i− t] such that RAi [k] = RBi [k] = S, we have Wk = 04r.

Proof. Part 1:
Toward contradiction, suppose that there exists t′ ∈ [t, i− 1] such that RAi [i− t′] 6=
RBi [i− t′]. Without loss of generality, assume that RAi [i− t′] = M and RBi [i− t′] = S.
Suppose that the last time Alice’s measurement pointer `RA was equal to i − t′ was t2
iterations earlier, i.e., iteration i− t2. In that iteration, `RA has distance t1 def= t′ − t2 from
i− t2, the iteration number. Note that the distance between the iteration number and `RA
increases only in (some) recovery iterations and it increases by at most 2: the distance
remains the same if Alice is in case v or case vii. Otherwise, it increases by 1 if `RA does not
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move and increases by 2 when it moves back. This implies that in the first i− t2 iterations,
there have been at least t1/2 recovery iterations. In the t2 iterations after that, there is an
inconsistency in the recycling data which does not get resolved. In any of these iterations
one of the following holds:

• A metadata hash collision or a transmission error on metadata messages occurs, or
else,

• The iteration is a type I recovery iteration and Alice and Bob are still trying to
reconcile an inconsistency in their metadata, or else,

• The iteration is a type II recovery iteration. In this case, no metadata transmission
error or collision occurs and the iteration is not a type I recovery iteration. So Alice
and Bob know each other’s recycling data and aware of the inconsistency, they are
trying to resolve it.

Therefore, in the first i− 1 iterations, the number of recovery iterations plus the number
of iterations suffering from a transmission error or a collision is at least

t1/2 + t2 − 1 ≥ t′/2− 1 ≥ t/2− 1 ≥ c8

2 nε− 1 ,

contradicting ωi−1 ≤ c7nε. Note that here we implicitly use the reasonable assumption that
nε is at least a constant.
Part 2:
Suppose that recycling is successful in the first i− 1 iterations and ωi−1 ≤ c7nε. Note that
by the same argument as in part 1, at the end of iteration i + 1, the difference between
the measurement pointers and the iteration number is at most 2ωi−1 + 4 ≤ 2c7nε+ 4 ≤ t.
Therefore, the prefixes of both RA and RB of length i− t do not get modified in the next
iteration.
Part 3:
Note that the difference between the iteration number and `A

QVC increases only in (some)
recovery iterations and it increases by at most 1: The difference remains the same if Alice is
in case ii.B or case vii. Otherwise, `A

QVC remains unchanged and the distance increases by 1.
The number of recovery iterations in the first i iterations is at most ωi−1 + 1 < t. Therefore,
at the end of the i-th iteration we have min{`A

QVC, `
B
QVC} > i − t. Toward contradiction,

suppose that there exists t′ ∈ [t, i− 1] such that RAi [i− t′] = RBi [i− t′] = S and Wi−t′ 6=
04r. This is due to one of the following scenarios:

• The corresponding block of MES registers has been used by both parties for commu-
nication using QVC, but in different iterations (out-of-sync QVC).

• It has been used in the same iteration by both parties for communication using QVC
but transmission errors have occurred on the messages.
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In any case, suppose that the last time one of the pointers `A
QVC or `B

QVC was equal to i− t′
was t2 iterations earlier, i.e., iteration i − t2 and without loss of generality, suppose that
`A

QVC is that pointer. In iteration i − t2, the pointer `A
QVC has distance t1 def= t′ − t2 from

i− t2, the iteration number. This implies that in the first i− t2 iterations, there have been
at least t1 recovery iterations. In the t2 iterations after that, the block of MES registers
indexed by IndexA [i− t′] are not measured by any of the parties. In any of these iterations
one of the following holds:

• A metadata hash collision or a transmission error on metadata messages occurs, or
else,

• The iteration is a type I recovery iteration and Alice and Bob are still trying to
reconcile an inconsistency in their metadata, or else,

• A quantum hash collision or a transmission error on quantum hash values occurs, or
else,

• The iteration is a type II recovery iteration. In this case, no metadata transmission
error or collision occurs and the iteration is not a type I recovery iteration. So Alice
and Bob know each other’s recycling data. So Alice and Bob are both be in case iii
or both in case iv.

The above argument implies that in the first i − 1 iterations, the number of recovery
iterations plus the number of iterations suffering from a transmission error or a collision is
at least

t1 + t2 − 1 = t′ − 1 ≥ t− 1 ≥ c8nε− 1 ,

contradicting ωi−1 ≤ c7nε.

We are now ready to prove that except with exponentially small probability recycling
is successful in every iteration of the algorithm. Recall that we denote Alice’s recycling
pointer at the end of iteration i by `iRecycleA. We use mA

i to denote the number of M
symbols in RAi

[
1 : `iRecycleA

]
. Similarly, `iRecycleB denotes Bob’s recycling pointer at the end

of iteration i and the number of M symbols in RBi
[
1 : `iRecycleB

]
is denoted by mB

i .

Lemma 4.5.17. Let LQVC = c9nε, where c9 > c7 + c8. Then with probability at least
1− 2−Θ(nε), recycling is successful throughout the execution of Algorithm 14.

Proof. The proof is based on induction on the iteration number i. Note that recycling
starts from iteration LQVC + 1.
Base case (i = LQVC + 1): Note that the conditions of Definition 4.5.2 are satisfied in the
first LQVC iterations of the algorithm and we have

IndexA [1 : LQVC] = IndexB [1 : LQVC] = 1 : LQVC .
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Therefore, by Corollary 4.5.15, except with probability at most q = 2−Θ(nε), we have ωLQVC ≤
c7nε. Assuming ωLQVC ≤ c7nε, by Lemma 4.5.16,

RALQVC+1 [1 : LQVC + 1− t] = RBLQVC+1 [1 : LQVC + 1− t] ,

and for every k ∈ [LQVC + 1− t] such that RALQVC+1 [k] = RBLQVC+1 [k] = S, we have
Wk = 04r. Note that the number of M symbols in RALQVC+1 [1 : LQVC + 1− t] and
RBLQVC+1 [1 : LQVC + 1− t] is at most the number of type I and type II recovery iterations
so far, hence at most

ωLQVC+1 ≤ ωLQVC + 1 ≤ c7nε+ 1 < LQVC + 1− t .

As shown in Part 3 of Lemma 4.5.16, at the end of iteration LQVC, we have

min
{
`A

QVC, `
B
QVC

}
> LQVC − t .

Therefore, after running the Recycle subroutine, the algorithm does not abort and at
the end of iteration LQVC + 1, the recycling pointers are equal, i.e., `LQVC+1

RecycleA = `
LQVC+1
RecycleB.

Together with the fact that IndexA [1 : LQVC] = IndexB [1 : LQVC], this implies that the
conditions of Definition 4.5.2 are satisfied. Therefore, there exists an event E of probability
at most q = 2−Θ(nε) such that if ¬E then,

• recycling is successful in iteration LQVC + 1,

• `LQVC+1
RecycleA = `

LQVC+1
RecycleB, and

• `LQVC+1
RecycleA = mA

LQVC+1 + 1 and `LQVC+1
RecycleB = mB

LQVC+1 + 1.

For LQVC < i ≤ Rtotal, let Ti be the following statement in terms of the iteration number i:

• Recycling is successful in the first i iterations of the algorithm,

• `iRecycleA = `iRecycleB, i.e., the recycling pointers are equal at the end of iteration i, and

• `iRecycleA = mA
i + i− LQVC and `iRecycleB = mB

i + i− LQVC.

Induction hypothesis: For LQVC < i ≤ Rtotal, there exists an event Ei of probability at
most (i− LQVC) · q such that if ¬Ei then Ti holds.
Inductive step: Assuming ¬Ei, by Corollary 4.5.15, except with probability at most q =
2−Θ(nε), we have ωi ≤ c7nε. Let E′ be the event that ωi > c7nε. Note that Pr (E′|¬Ei) ≤ q.
Suppose further that ¬E′. Since `iRecycleA = mA

i + i− LQVC, we have

i− t− `iRecycleA = LQVC − t−mA
i ≥ LQVC − t− ωi ≥ Ω(nε) .
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By induction hypothesis, we also have i − t − `iRecycleB ≥ Ω(nε). As shown in Part 3
of Lemma 4.5.16, at the end of iteration i, we have min

{
`A

QVC, `
B
QVC

}
> i − t. By part

1 of Lemma 4.5.16, we have RAi+1 [1 : i+ 1− t] = RBi+1 [1 : i+ 1− t]. Since ωi−1 ≤
ωi ≤ c7nε, by part 2 of Lemma 4.5.16, we have RAi+1 [1 : i− t] = RAi [1 : i− t] and
RBi+1 [1 : i− t] = RBi [1 : i− t]. Therefore, the algorithm does not abort in iteration
i + 1 and we have `i+1

RecycleA = `i+1
RecycleB. Moreover, `i+1

RecycleA = mA
i+1 + (i + 1) − LQVC

and `i+1
RecycleB = mB

i+1 + (i + 1) − LQVC. Note that since recycling is successful in the
first i iterations, at the beginning of iteration i + 1, we have IndexA = IndexB. So
NextIndexAi+1 = NextIndexBi+1 6=⊥, i.e., the first and second conditions of Definition 4.5.2
are satisfied for iteration i+ 1.
By part 3 of Lemma 4.5.16, for every k ∈ [i+ 1− t] such that RAi+1 [k] = RBi+1 [k] = S,
we have Wk = 04r. Note that in the strings IndexA and IndexB, while each index in [LQVC]
may appear several times before the recycling pointers, it can only appear at most once
after these pointers. Therefore, the block of MES registers indexed by NextIndexAi+1 is
indeed in the |φ0,0〉⊗4r state when it is recycled in iteration i+ 1 and the third condition of
Definition 4.5.2 is also satisfied.
For Ei+1

def= Ei ∨ E′, we have

Pr (Ei+1) ≤ Pr (Ei) + Pr (E′|¬Ei) ≤ (i− LQVC) · q + q = (i+ 1− LQVC) · q .

By the above argument, if ¬Ei+1 then Ti+1 holds. Note that for LQVC < i ≤ Rtotal, we have

(i− LQVC) · q = 2−Θ(nε) .

Lemma 4.5.18. Assuming successful recycling throughout the execution of Algorithm 14,
each iteration with no transmission error or hash collision increases the potential function
Φ defined in Eq. (4.22) by at least 1.

Proof. Note that in an iteration with no error or hash collision Alice and Bob agree on the
iteration type. Moreover, if Itertype = MD,RD or PD, they also agree on whether they
extend or rewind the data and if Itertype = MES (Case ii), then exactly one of them is in
sub-case A and the other one in sub-case B. We analyze the potential function in each case
keeping in mind the hierarchy of the cases; e.g., Case ii or later cases are encountered only
if Alice and Bob have full knowledge of each other’s metadata. Lemma 4.5.1 guarantees
that ΦMD = 0 on entering Case ii, ΦMD = ΦRD = 0 on entering Case vi and ΦMD = ΦRD =
ΦPD = 0 on entering Case vii.

• Alice and Bob are in Case i.A:

– ΦRD, ΦPD and ΦQ stay the same.
– i increases by 1.
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– mdA
+ and mdB

+ stay the same.
– None of mdA

− and mdB
− increases and at least one decreases by 1.

Therefore, ΦMD decreases by at least 3− 2 = 1 and Φ increases by at least 1.

• Alice and Bob are in Case i.B:

– ΦRD, ΦPD and ΦQ stay the same.
– i increases by 1.
– mdA

− and mdB
− stay at 0.

– At least one of `MA or `MB is smaller than i− 1; If only `MA < i− 1, then mdA
+

increases by 2, and mdB
+ by 1. The case where only `MB < i − 1 is similar. If

both are smaller than i− 1, then mdA
+ and mdB

+ both increase by 2.

Therefore, ΦMD decreases by at least 3− 2 = 1 and Φ increases by at least 1.

• Alice is in Case ii.A, Bob is in Case ii.B:

– ΦMD stays at 0.
– rd+ and rd− stay the same.
– `A

QVC stays the same and `B
QVC increases by 1.

– qMA stays the same and qMB increases by 1.
– pdA

+, pd
A
−, pd

B
+, pd

B
− stay the same.

– g stays the same, b increases by at most 1 and u decreases by 1.

Therefore, ΦRD, ΦPD and ΦQ increase by 1, 6 and at least 8, respectively. So Φ
increases by at least 1.

• Alice is in Case ii.B, Bob is in Case ii.A: This case is similar to the one above.

• Alice and Bob are in Case iii:

– ΦMD stays at 0.
– rd+, `A

QVC and `B
QVC stay the same.

– rd− decreases by 1.
– pdA

+, pd
A
−, pd

B
+, pd

B
− stay the same.

– qMA and qMB do not decrease. qMA increases by 1 if RA [`RA] = S. Similarly,
qMB increases by 1 if RB [`RB] = S.

– ΦQ stays the same.

Therefore, ΦRD decreases by 13 and ΦPD increases by at most 12. So Φ increases by
at least 1.
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• Alice and Bob are in Case iv:

– ΦMD stays at 0.
– rd+, `A

QVC and `B
QVC stay the same.

– rd− decreases by 1.
– pdA

+, pd
A
−, pd

B
+, pd

B
− stay the same.

– qMA and qMB do not decrease. They both increase by 1, if RA [`RA] = RB [`RB] =
S.

– ΦQ stays the same.

Therefore, ΦRD decreases by 13 and ΦPD increases by at most 12. So Φ increases by
at least 1.

• Alice and Bob are in Case v:

– ΦMD stays at 0.
– rd− stays at 0 and rd+ increases by 1.
– `A

QVC and `B
QVC stay the same.

– ΦPD and ΦQ stay the same.

Therefore, ΦRD decreases by 2 and Φ increases by 2.

• Alice and Bob are in Case vi.A:

– ΦMD and ΦRD stay at 0.
– pdA

+, pd
B
+, qMA, qMB stay the same.

– None of pdA
− and pdB

− increases and at least one decreases by 1.
– ΦQ stays the same.

Therefore, ΦPD decreases by at least 1. So Φ increases by at least 1.

• Alice and Bob are in Case vi.B:

– ΦMD and ΦRD stay at 0.
– qMA, qMB stay the same and pdA

−, pdB
− stay at 0.

– At least one of the following holds: `PA < 6qMA · r, in which case pdA
+ increases

by 1 (otherwise it remains unchanged), or `PB < 6qMB ·r, and then pdB
+ increases

by 1 (otherwise it remains unchanged).
– ΦQ stays the same.

Therefore, ΦPD decreases by at least 1. So Φ increases by at least 1.
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• Alice and Bob are in Case vii:

– ΦMD, ΦRD and ΦPD stay at 0.
– u stays at 0.
– If b 6= 0 then g stays the same and b decreases by 1, otherwise, b stays at 0 and
g increases by 1.

Therefore, ΦQ increases by 1 and so does Φ.

So assuming successful recycling throughout the execution of the algorithm, the potential
function Φ increases by at least 1 in every iteration with no transmission error or hash
collision.

Lemma 4.5.19. Assuming successful recycling throughout the execution of Algorithm 14,
each iteration of the algorithm, regardless of the number of hash collisions and transmission
errors, decreases the potential function Φ by at most 85.

Proof. In any iteration, i increases by 1, while g, mdA
+, mdB

+, rd+, pdA
+ and pdB

+ decrease
by at most 1; b, u, `A

QVC, `B
QVC, qMA and qMB increase by at most 1; mdA

− and mdB
− increase

by at most 3; rd− increases by at most 2; and pdA
− and pdB

− increase by at most 4. Hence,
ΦMD, ΦRD, ΦPD increase by at most 22, 30 and 22, respectively, and ΦQ decreases by at
most 11. So in total, Φ decreases by at most 85.

Finally, we are ready to prove the main result of this section.

Theorem 4.2.1 (Restated). Consider any n-round alternating communication protocol
Π in the plain quantum model, communicating messages over a noiseless channel with an
alphabet Σ of bit-size Θ (log n). Algorithm 14 is a quantum coding scheme which given Π,
simulates it with probability at least 1−2−Θ(nε), over any fully adversarial error channel with
alphabet Σ and error rate ε. The simulation uses n (1 + Θ (

√
ε)) rounds of communication,

and therefore achieves a communication rate of 1−Θ (
√
ε).

Proof. Let Rtotal =
⌈
n
2r

⌉
+ 86 (c1 + c3 + c5 + 2)nε. By Lemma 4.5.17, recycling is successful

throughout the execution of the algorithm with probability at least 1− 2−Θ(nε). Assuming
successful recycling, by Lemmas 4.5.4, 4.5.8 and 4.5.12, the total number of iterations with
a hash collision is at most c1 + c3 + c5 except with probability 2−Θ(nε). Since the number
of iterations is less than 2n, the total number of iterations with a transmission error is
at most 2nε. Therefore, by Lemma 4.5.18, in the remaining Rtotal − (c1 + c3 + c5 + 2)nε
iterations the potential function Φ increases by at least 1. The potential function decreases
in an iteration only if a hash collision or a transmission error occurs and by Lemma 4.5.19,
it decreases by at most 85. So at the end of the simulation, we have

g − b− u ≥ ΦQ ≥ Φ ≥ Rtotal − (c1 + c3 + c5 + 2)nε− 85 (c1 + c3 + c5 + 2)nε ≥ n

2r .

104



Therefore the simulation is successful with probability at least 1 − 2−Θ(nε). The cost of
entanglement distribution is Θ (n

√
ε). Moreover, the amount of communication in each

iteration is independent of the iteration type and is always (2r + Θ(1)): in every iteration
each party sends Θ(1) symbols to communicate the hash values and the value of the
pointers in line 17 of Algorithm 14; each party sends another r symbols either in line 21 of
Algorithm 14, if Itertype 6= SIM or in Algorithm 26. Hence, we have

Total number of communicated qudits = Θ
(
n
√
ε
)

+Rtotal · (2r + Θ(1))

= Θ
(
n
√
ε
)

+
(⌈

n

2r + Θ (nε)
⌉)

(2r + Θ(1))

= n
(
1 + Θ

(√
ε
))

.
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Chapter 5

Interactive coding over small
communication alphabets

In this chapter, we focus on the simulation of interactive communication over constant-size
alphabets.

5.1 Overview

5.1.1 Challenges in capacity approaching coding over small al-
phabets

In the large alphabet case, it is possible to send O (log n) bits of information by communi-
cating only a constant number of symbols. However, such a powerful resource is no longer
available to us when the communication alphabet is of constant size.

Exchanging length information to coordinate rewinding is inapplicable. In
noisy interactive communication based on the rewind-if-error paradigm, the idea is to
exchange summaries of the conversation at regular intervals and rewind the conversation
back to an earlier stage, whenever an inconsistency is detected. The rewinding subroutine
in this simple template, however, needs to be designed carefully in order to achieve a high
communication rate. A crucial property for the rewinding procedure is that the rewinding
length should be proportional to the amount of communication which triggers it. This
prevents the adversary from derailing the simulation by falsely triggering super-constant
rewinding steps while investing only a constant number of transmission errors each time.
The simplest way to achieve the property above is to rewind a constant number of steps each
time an inconsistency is detected. However, if Alice and Bob have transcripts of different
lengths and rewind the same number of steps each time, they do not get closer until they
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have rewound the correct prefix of their transcripts as well. Therefore, they first need to
learn which party is ahead, and then the party with the longer transcript has to rewind until
they have equally long transcripts. The adversary’s corruptions can introduce transcript
length differences of up to Θ (nε) steps between the two parties. Therefore, unless we use
a different approach, coordinating the rewinding steps seems to require communicating
logarithmic-size length information. When the communication alphabet is of constant size,
this corresponds to a logarithmic amount of communication for each rewinding step, which
leads to a vanishing simulation rate.

Long seeds needed for hashing. It is straightforward to see that the amount of com-
munication in each iteration of the simulation algorithm should not grow with n, the length
of the input protocol. To see this, let Rtotal denote the total number of iterations and m
be the number of qudits communicated per iteration. A single transmission error by the
adversary can make a whole iteration completely useless. The error budget of the adversary
thus suffices to corrupt εmRtotal iterations. Therefore, unless m < 1/ε, the adversary would
be able to stall the whole simulation by corrupting every iteration. The communication in
each iteration includes the hash values that Alice and Bob exchange in order to compare
their local data. So, these hash functions must have an output length of at most Oε (1)
symbols from the communication alphabet Σ, or equivalently, Oε (1) bits in the small
alphabet case.
The classical data that are compared through hashing are O (n) bits long. Intuitively, in
order to detect inconsistencies in such long strings with a nontrivial collision probability,
using hash values that are only Oε (1) bits long, Alice and Bob need to use a very long
random seed for each hashing step. In fact, a straightforward argument implies the following
lower bound on the length of the seed.

Lemma 5.1.1. [37] For any hash function with any nontrivial collision probability strictly
less than 1, the seed length s satisfies s ≥ log ` log|Σ|

o
, where ` log |Σ| is the bit-length of the

strings it hashes and o is the bit-length of the output.

For output length o ∈ Oε (1), the seed length has to grow as a logarithmic function of the
length of the strings to be hashed. In the plain communication model, however, Alice and
Bob need to establish their shared randomness through extra communication. This leads
to a vanishing simulation rate. One way to avoid using such long random seeds in each
iteration is to hash only a few recent blocks of the data. However, this only works well in
the random noise model. In the adversarial error case, the adversary can hide errors from
both parties for up to Θ (nε) iterations. Therefore, Alice and Bob need to hash a longer
suffix of length at least Ω (nε) of their data to ensure they can detect inconsistencies with
high probability.
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5.1.2 Meeting point-based rewinding

In this section we explain a rewinding mechanism introduced by Haeupler [37] which allows
the two parties to coordinate their rewinding actions without exchanging their transcript
length information. We first focus on a simplified scenario to introduce the main ideas
behind meeting point-based rewinding.
Suppose that Alice is given TA and Bob is given TB, where TA and TB are strings over
some finite alphabet. Let `+ be the length of the longest prefix in which TA and TB are
equal and let `− denote their disagreement length, i.e., `− = max {|TA| , |TB|} − `+. We
are interested in the typical scenario encountered in protocols based on the rewind-if-error
paradigm, where `− is small compared to `+. Alice and Bob need to agree on a meeting
point close to `+, up to which TA and TB match. To further simplify the task, suppose that
the two parties have access to a noiseless communication channel. In meeting point-based
rewinding, Alice and Bob use a rewinding step size k. The rewinding step size defines
meeting points on TA and TB that are multiples of k. Alice and Bob want to meet at
the same meeting point without having to communicate their transcript lengths. It is
straightforward to see that for k ≥ `−, Alice and Bob have at least one common meeting
point among their last two meeting points. Starting from k = 1, in each iteration Alice and
Bob use hashing to compare TA and TB up to the last two meeting points corresponding
to k. They repeat this process while increasing k by 1 in each iteration, until they find
a common meeting point to rewind to. We remark that comparing at least the last two
meeting points in every iteration is crucial to ensure that the rewinding process terminates
within `− iterations.
In Section 5.3, we explain how the rewinding scheme above is adapted to be used as a
subroutine in noisy interactive communication for synchronizing classical data.

5.1.3 Hashing with pseudo-random seeds

In the plain quantum communication model, in order to establish the shared randomness
and the MESs required for the simulation protocol, Alice locally creates sufficient copies
of the MES |φ0,0〉 and sends half of all the copies to Bob using a “good” quantum error
correcting code. A fraction of these MESs are measured in the computational basis to obtain
a shared random string used as the seed in the hashing process. The independent seeds
required in every iteration for hashing the classical data are Θ (log n) bits long. Therefore,
in the small alphabet case, the amount of communication required to establish such a long
uniformly random bit string is super-linear in n, leading to a vanishing communication rate.
We use Haeupler’s approach in the classical case [37] to circumvent this obstacle. Instead
of directly distributing such a large amount of randomness, we establish a much shorter
uniformly random string and then stretch it to a sufficiently long small bias pseudo-random
string, which is statistically indistinguishable from being independent. This is achieved
using the deterministic algorithm of Lemma 2.4.8. In order to compare the classical data
we use the following simple hash function:
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Definition 5.1.2. (Inner product hash function [37]) For input length parameter L
and output length parameter o, the inner product hash function

iphash : {0, 1}2oL × {0, 1}≤L → {0, 1}o

is defined as follows: Any input binary string X of length l ≤ L is first concatenated with
its length to obtain X̃ = (X, |X|) of length l̃ = l + dlog le ≤ 2L. Then given any binary
seed S of length 2oL, the i-th output bit is given by

(iphashS(X)) [i] def=
〈
X̃, S

[
i · 2L+ 1 : i · 2L+ l̃

]〉
, i ∈ {0 , . . . , o− 1} .

It is easy to see that the collision probability for a uniformly random seed is exactly 2−o.
Moreover, by Definition 2.4.2, if the seed is sampled from a δ-biased distribution then the
collision probability remains bounded by 2−o + δ. In our algorithm, we set o ∈ Θ (1) for a
constant collision probability. Hence, we need Θ (n)-bit long seeds for every hashing step.
The benefit of using the inner product hash function is the easier analysis when the seed is
replaced by a (pseudo-random) small-bias string, which allows us to translate the bias to
the outcome of the hashing steps.

5.2 Results

Our main results concerning noisy interactive quantum communication over constant-size
alphabets are coding schemes for simulation of noiseless interactive communication over
any fully adversarial channel of error-rate ε, in both the teleportation-based model and the
plain quantum model.

Theorem 5.2.1. Consider any n-round alternating communication protocol Π in the
teleportation-based model, designed for communication over a noiseless channel with an
alphabet Σ of constant size. We provide a computationally efficient coding scheme which
given Π, simulates it with probability at least 1− 2−Θ(nε), over any fully adversarial error
channel with alphabet Σ and error rate ε. The simulation uses n (1 + Θ (

√
ε)) rounds of

communication, and therefore achieves a communication rate of 1−Θ (
√
ε). Furthermore.

the computational complexity of the coding operations is O (n2).

Our main result in the plain model of quantum communication is the following:

Theorem 5.2.2. Consider any n-round alternating communication protocol Π in the plain
quantum model, communicating messages over a noiseless channel with a constant size
alphabet Σ. Algorithm 28 is a quantum coding scheme which given Π, simulates it with
probability at least 1− 2−Θ(nε), over any fully adversarial error channel with alphabet Σ and
error rate ε. The simulation uses n (1 + Θ (

√
ε)) rounds of communication, and therefore

achieves a communication rate of 1−Θ (
√
ε).

109



Note that in the classical setting with constant-size alphabet and no pre-shared randomness,
the conjectured optimal simulation rate is 1 − Θ (

√
ε) for oblivious channels and 1 −

Θ
(√

ε log log 1
ε

)
for fully adversarial channels [37]. Our simulation in the plain quantum

model outperforms the best known protocol in the corresponding classical setting. This
advantage may be interpreted as follows. When using quantum communication, Alice and
Bob can establish MESs and measure them to generate the hash seeds. One advantage of
establishing the shared randomness in this way is that the seeds remain unknown to the
adversary. Thus the adversary is not able to create hash collisions purposely. This is in
contrast to the classical case with no pre-shared randomness, where the seeds need to be
communicated over the classical channel and the adversary gets to know the seeds. The
knowledge of the seeds enables the adversary to introduce errors which remain undetected
with certainty. As a result, in Ref. [37] another layer of hashing is added to the algorithm for
the oblivious noise model to protect against fully adversarial noise, dropping the simulation
rate from 1−Θ (

√
ε) to 1−Θ

(√
ε log log 1/ε

)
.

Since the steps in adapting the large alphabet simulation protocols to the small alphabet
case are similar in both communication models above, in the remainder of this chapter
we focus on the more involved recycling-based protocol for the plain quantum model. We
remark that the same modifications and a similar analysis can be used for the teleportation-
based model to prove Theorem 5.2.1.

5.3 Description of Protocol

The structure of our simulation protocol in the plain quantum communication model over
small alphabets is quite similar to the large alphabet case. Alice and Bob maintain the same
classical data structure to keep track of the evolution of their joint state. They distribute a
sufficient amount of entanglement at the beginning of the protocol using standard quantum
error correction. The shared entanglement is partially used as a source of randomness in
comparing the local data in each iteration. The two parties prevent the adversary from
irreversibly corrupting the simulation of the input protocol by protecting their messages
using QVC. As before, quantum hashing is used to detect any errors introduced by the
adversary on the QVC messages. The MES pairs used in QVC are recycled and reused as
needed using the machinery introduced in Subsection 4.3.1. However, as mentioned earlier,
synchronizing the classical data is more involved when the communication alphabet is of
constant size. In this section, we only focus on the modifications that are necessary in order
to use the simulation protocol of Chapter 4 in the small alphabet case. In particular, we
explain how the meeting point-based rewinding scheme introduced by Haeupler [37] can be
adapted to be used as a subroutine in our simulation protocol. For a detailed description
of the remaining steps of the algorithm, please refer to Section 4.3.
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5.3.1 Meeting point-based rewinding in noisy interactive com-
munication

In Section 5.1.2, we provided a high level description of meeting point-based rewinding
when a noiseless communication channel is available. In this section, we revisit meeting
point-based rewinding and discuss the necessary changes for the scheme to be used in
interactive communication against adversarial noise.
Alice and Bob compare their classical data in every iteration by exchanging the correspond-
ing hashes and conduct the rewinding subroutine whenever they detect an inconsistency. In
the rewinding subroutine, Alice and Bob maintain step sizes kA and kB, respectively, which
they increase in each rewinding iteration until they find a common meeting point. Once
they find such a meeting point, they rewind back and reset their step sizes to 1. When
communicating over a noisy channel, however, corruptions may cause only one party to
rewind, potentially increasing the disagreement length `− and/or decreasing `+. In such
a scenario, the two parties will also get out-of-sync in their rewinding step sizes. Recall
that the adversary can cause a transcript disagreement of length `− ∈ Ω (nε). Therefore,
kA and kB can be very large and in order to keep them synchronized, Alice and Bob cannot
send them directly in each iteration. Instead, the parties use hashing to compare their step
sizes and reset them if they detect too many discrepancies. We refer to this as a status
reset due to a mismatch transition. Alice and Bob maintain mismatch count variables, EA
and EB, respectively, to keep track of the number of iterations in which they have observed
non-matching step size hashes. Alice resets kA and EA once EA is greater than kA/2.
Similarly, Bob does a status reset once EB is greater than kB/2. This ensures that the
number of corruptions the adversary needs to invest to falsely trigger a mismatch transition
is proportional to the amount of communication spent while increasing the corresponding
step size to its value before the transition.
Now, with a procedure for the parties to agree on the same rewinding step size k, we explain
how they decide when to rewind to a meeting point. As explained earlier, a communication
efficient rewinding scheme against adversarial noise needs to guarantee that a long rewinding
step cannot be triggered by a small amount of communication. Therefore, Alice and Bob
need to compare their meeting points multiple times to gain enough confidence before
rewinding. In particular, we need the number of meeting point hash comparisons to be
proportional to the rewinding length, i.e., proportional to k. In order to achieve this, for
every kA, a “coarse-grained” step size k̂A

def= 2blog kAc is defined and Alice’s meeting points
are defined as multiples of k̂A instead of kA. Similarly, Bob’s meeting points are now defined
as multiples of k̂B

def= 2blog kBc. In each rewinding iteration with consistent step size hashes,
Alice and Bob compare hashes of their data up to their last two meeting points. We refer
to this phase of the rewinding subroutine as the voting phase. Alice and Bob maintain a
vote count variable for each of their meeting points. They vote for a meeting point each
time it appears to match one of the other party’s meeting points. A party rewinds back
to a meeting point if it receives at least 80 percent of all the possible votes at the current
coarse-grained step size k̂, i.e., 0.8× k̂/2 = 0.4k̂ votes. After rewinding back, the step size,
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the mismatch count variable, and the vote count variables of the transitioning party (or
parties) get reset. We refer to this as a status reset due to a meeting point transition.

5.3.2 Entanglement distribution and generating the pseudo-random
seed

As in the large alphabet case, at the outset of the simulation, Alice and Bob use Algorithm 12
to share Θ(n

√
ε) copies of the MES |φ0,0〉. The shared MESs are used as follows:

• Θ (n
√
ε) MESs are used in pairs to serve as the key for encryption of messages using

QVC. They are divided into LQVC = Θ (nε) blocks of 2r MES pairs, where r = Θ( 1√
ε
).

In each block the MES pairs are implicitly numbered from 1 to 2r. The odd-numbered
pairs are used in QVC to send messages from Alice to Bob and the even-numbered
pairs are used to send messages from Bob to Alice.

• Θ(n
√
ε) MESs are reserved to be used in quantum hashing.

• The remaining Θ(n
√
ε) MESs are measured in the computational basis by both parties

to obtain a common random string to be used as the seed for classical and quantum
hashing.

Quantum hashing in each iteration of the algorithm requires independent and uniformly
random Θ (rLQVC)-bit seeds, with r ∈ Θ (1/

√
ε) and LQVC ∈ Θ (nε). Moreover, hashing

the classical data using the inner product hash function of Definition 5.1.2 requires inde-
pendent Θ (n)-bit uniformly random seeds. To avoid distributing Rtotal ·Θ (rLQVC + n) =
Θ (n
√
ε) Θ (n

√
ε+ n) = Θ (n2√ε) i.i.d. random bits directly, Alice and Bob measure

Θ (n
√
ε) MESs in the computational basis and record the binary representation of the

outcomes in R′. Then they use the deterministic algorithm of Lemma 2.4.8 with δ =
2−Θ(n√ε), to stretch their shared uniformly random string R′ to a δ-biased binary string of
length Θ (n2√ε). The pseudo-random string is divided into two part: The classical seed
R = R1 · · ·R10Rtotal used in quantum hashing, where each Rj is of length 4rLQVC; and the
seed S = S1 · · ·S12Rtotal used by iphash, where each Sj is of length Θ (n).

5.3.3 Summary of main steps

In Algorithm 27, we summarize the outline of the steps which are followed by the two
parties in the simulation. The hierarchy of the steps are the same as before and Alice and
Bob skip one step to the next only if the goal of the step has been achieved through the
previous iterations.
Note that, except for the rewinding subroutines for the metadata and the Pauli data, the
algorithms mentioned in each step are the same subroutines presented in Section 4.4.2.
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Algorithm 27:Main steps in one iteration of the simulation for the small alphabet
recycling-based model

1 Agree on the history of the simulation contained in metadata, i.e., ensure
FullMA = M̃A and FullMB = M̃B. This involves
Algorithm 33—rewindMD-small-alphabet and Algorithm 6—extendMD.

2 Synchronize the number of MES blocks used in QVC, in particular, ensure
`A

QVC = ˜̀B
QVC and `B

QVC = ˜̀A
QVC. This is done via Algorithm 19—Q-syncMES.

3 Agree on the measurement pointers and the recycling data up to the pointers, in
particular, ensure (`RA,RA [1 : `RA]) =

(˜̀
RB, R̃B

[
1 : ˜̀RB

])
and

(`RB,RB [1 : `RB]) =
(˜̀

RA, R̃A
[
1 : ˜̀RA

])
. This involves Algorithm 20—rewindRD.

4 Ensure no undetected quantum error from earlier rounds exists. This is done by
ensuring QHA = QHB and involves Algorithm 21—measuresyndrome.

5 Ensure `RA = `A
QVC and `RB = `B

QVC. This is achieved via
Algorithm 22—extendRD.

6 Agree on Pauli data, in particular, ensure FullPA = P̃A and FullPB = P̃B. This is
done via Algorithm 34—rewindPD-small-alphabet and
Algorithm 24—Q-extendPD.

7 Compute the best guess for JS1 and JS2. If there are any “bad” blocks in the guess
for JS2, reverse the last bad block of unitary operations. I.e., implement quantum
rewinding so that b = 0 in JS2. This is done in Algorithm 26—Q-simulate.

8 If no “bad” blocks remain, implement the next block of rounds of the original
protocol. This results in an increase in g in JS2, and is also done through
Algorithm 26—Q-simulate.
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5.4 Algorithm

5.4.1 Data structure

In addition to the variables introduced in Subsection 4.4.1, Alice and Bob maintain rewind-
ing data which they use to coordinate the rewinding process when they reconcile inconsis-
tencies in their metadata or Pauli data.

• Metadata rewinding variables: Alice’s rewinding step size corresponding to MA
is denoted by kMA. In the rewinding subroutine, kMA either increases by 1 or gets
reset to the value 1 (when a status reset occurs). We define k̂MA

def= 2blog kMAc. The two
meeting points corresponding to k̂MA at the beginning of each iteration are defined as
mp1MA

def= k̂MAb `MA
k̂MA
c and mp2MA

def= mp1MA− k̂MA. We denote by MA1 and MA2 the
prefixes of MA (or equivalently FullMA) of lengths mp1MA and mp2MA, respectively,
i.e., MA1

def= MA [1 : mp1MA] and MA2
def= MA [1 : mp2MA]. Bob’s variables kM̃A,

mp1M̃A, mp2M̃A, M̃A1, and M̃A2 corresponding to M̃A are defined similarly. At the
beginning of every iteration, Alice and Bob exchange hash values corresponding to
their rewinding step sizes and local data up to the meeting points. Following our
convention, we use H with the corresponding variable as a subscript to denote the
hash values, e.g., HkMA is the hash value corresponding to kMA. The variables with
a superscript ′ denote the received data after transmission over the noisy channel,
e.g., H ′kMA

denotes what Bob receives when Alice sends HkMA . Alice’s mismatch
count variable EMA keeps track of iterations with non-matching step sizes. In the
rewinding subroutine, Alice increases EMA by 1 whenever HkMA 6= H ′k

M̃A
. Otherwise,

if HkMA = H ′k
M̃A

, she enters the meeting point voting phase. We denote Alice’s vote
count variables corresponding to MA1 and MA2 by vMA1 and vMA2 , respectively. Each
vote count increases by 1 in the voting phase, if the corresponding hash value matches
one of the meeting point hashes she receives from Bob. The variables vMA1 , vMA2 , and
EMA get reset to 0 with each status reset. Alice’s rewinding data corresponding to
M̃B and Bob’s rewinding data corresponding to M̃A and MB are defined and updated
similarly.

• Pauli data rewinding variables: These variables are defined in the same way as
the metadata rewinding data. The only difference is that the unit length in defining
the meeting points is now a block of length r. For instance, Alice’s meeting points
on PA are now multiples of k̂PAr instead of k̂PA and her two closest meeting points
corresponding to coarse-grained step size k̂PA are now defined asmp1PA

def= k̂PArb `PA
k̂PAr
c

and mp2PA
def= mp1PA − k̂PAr.
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5.4.2 Pseudo-code

This section contains the pseudo-code for the main algorithm and the subroutines that are
different from those presented in Section 4.4.2, for the large alphabet case.

Algorithm 28: Q-Main-small-alphabet (Alice’s side)
Input: n round protocol Π in plain quantum model over constant-size alphabet Σ

1 Q-Initialization-small-alphabet;
2 For i = 1→ Rtotal

3 if i ≤ LQVC then
4 NextIndexA← i; // No recycling in first LQVC iterations

5 else
6 Recycle;
7 if NextIndexA =⊥ then
8 Abort;

9 IndexA← (IndexA,NextIndexA);
10 RA← (RA, S);

B computing hash values
11

(
HkMA , Hk

M̃B
, HkPA , Hk

P̃B

)
←(

hS12i−11 (kMA) , hS12i−10

(
kM̃B

)
, hS12i−9 (kPA) , hS12i−8

(
kP̃B

))
;

12 (mp1MA,mp2MA,MA1,MA2, HMA1 , HMA2)←
MPhash (kMA, `MA, S12i−7, S12i−6,MA, 1);

13
(
mp1M̃B,mp2M̃B, M̃B1, M̃B2, HM̃B1

, HM̃B2

)
←

MPhash
(
kM̃B, `M̃B, S12i−5, S12i−4, M̃B, 1

)
;

14 (mp1PA,mp2PA,PA1,PA2, HPA1 , HPA2)←
MPhash (kPA, `PA, S12i−3, S12i−2,PA.r);

15
(
mp1P̃B,mp2P̃B, P̃B1, P̃B2, HP̃B1

, HP̃B2

)
←

MPhash
(
kP̃B, `P̃B, S12i−1, S12i, P̃B, r

)
;

16 Quantum-hash;
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Algorithm 28: Q-Main-small-alphabet (Alice’s side, cont. from previous page)
17

18 Send(
HkMA , HMA1 , HMA2 , Hk

M̃B
, HM̃B1

, HM̃B2
,QHA, HkPA , HPA1 , HPA2 , Hk

P̃B
, HP̃B1

, HP̃B2

)
;

19 Receive(
H ′k

M̃A
, H ′M̃A1

, H ′M̃A2
, H ′kMB

, H ′MB1 , H
′
MB2 ,QHB ′, H ′k

P̃A
, H ′P̃A1

, H ′P̃A2
, H ′kPB

, H ′PB1 , H
′
PB2

)
;

B Determining iteration type
20 Q-Preprocess-small-alphabet;
21 if Itertype 6= SIM then
22 Send msg;
23 Receive msg′;

// messages are communicated alternately

B Case i.A
24 if Itertype = MD and RewindExtend = R then
25 rewindMD-small-alphabet;

B Case i.B
26 else if Itertype = MD and RewindExtend = E then
27 extendMD;

B Case ii.A
28 else if Itertype = MES and NewMetaA = C then
29 return;

B Case ii.B
30 else if Itertype = MES and NewMetaA = 0ED then
31 Q-syncMES;

B Case iii
32 else if Itertype = RD and RewindExtend = R then
33 rewindRD;

B Case iv
34 else if Itertype = QH then
35 measuresyndrome;

B Case v
36 else if Itertype = RD and RewindExtend = E then
37 extendRD;
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Algorithm 28: Q-Main-small-alphabet (Alice’s side, cont. from previous page)
38

B Case vi.A
39 else if Itertype = PD and RewindExtend = R then
40 rewindPD-small-alphabet;

B Case vi.B
41 else if Itertype = PD and RewindExtend = E then
42 extendPD;

B Case vii
43 else
44 Q-Simulate;

45 return Q-Main-small-alphabet;

Algorithm 29: Q-Preprocess-small-alphabet (Alice’s side)
Input: 

HMA, `MA, HM̃B, `M̃B, HPA, `PA, HP̃B, `P̃B,QHA
H ′

M̃A
, `′

M̃A
, H ′MB, `

′
MB, H

′
P̃A
, `′

P̃A
, H ′PB, `

′
PB,QHB ′

FullMA, `A
QVC, M̃B,RA, `RA,FullPA, P̃B


Output:(

Itertype,RewindExtend,NewMetaA,FullMA, `MA, ˜NewMetaB, M̃B, `M̃B,msg
)

1 if (kMA, HkMA , HMA1) =
(

1, H ′k
M̃A
, H ′

M̃A1

)
and(

kM̃B, Hk
M̃B
, HM̃B1

)
=
(
1, H ′kMB

, H ′MB1

)
and `MA = `M̃B = i− 1 then

2 Compute ˜̀B
QVC, R̃B, ˜̀RB, qM̃B;

B Processing Metadata
B Case i.A

3 if (kMA, HkMA , HMA1) 6=
(

1, H ′k
M̃A
, H ′

M̃A1

)
or(

kM̃B, Hk
M̃B
, HM̃B1

)
6=
(
1, H ′kMB

, H ′MB1

)
then

4 Itertype ← MD;
5 RewindExtend ← R;
6 NewMetaA← C;
7 FullMA← (FullMA,NewMetaA);
8 msg ← dummy message of length r;
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Algorithm 29: Q-Preprocess-small-alphabet (Alice’s side, cont. from previous
page)

B Case i.B
9 else if (`MA < i− 1) or

(
`M̃B < i− 1

)
then

10 Itertype ← MD;
11 RewindExtend ← E;
12 NewMetaA← C;
13 FullMA← (FullMA,NewMetaA);
14 if `MA < i− 1 then
15 msg ← encodeMD (FullMA [`MA + 1, `MA + 2]); // Encode MD in Σr

16 else
17 msg ← dummy message of length r;

B Comparing number of used MES blocks
B Case ii.A

18 else if `A
QVC >

˜̀B
QVC then

19 Itertype ← MES;
20 NewMetaA← C;
21 FullMA← (FullMA,NewMetaA);
22 `MA ← `MA + 1;
23 ˜NewMetaB ← 0ED;
24 M̃B ←

(
M̃B, ˜NewMetaB

)
;

25 `M̃B ← `M̃B + 1;
26 msg ← dummy message of length r;

B Case ii.B

27 else if `A
QVC <

˜̀B
QVC then

28 Itertype ← MES;
29 NewMetaA← 0ED;
30 FullMA← (FullMA,NewMetaA);
31 `MA ← `MA + 1;
32 ˜NewMetaB ← C;
33 M̃B ←

(
M̃B, ˜NewMetaB

)
;

34 `M̃B ← `M̃B + 1;
35 msg ← dummy message of length r;
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Algorithm 29: Q-Preprocess-small-alphabet (Alice’s side, cont. from previous
page)

B Processing recycling data
B Case iii

36 else if (`RA,RA [1 : `RA]) 6=
(˜̀

RB, R̃B
[
1 : ˜̀RB

])
then

37 Itertype ← RD;
38 RewindExtend ← R;
39 if `RA > ˜̀

RB then
40 NewMetaA← M;
41 ˜NewMetaB ← C;
42 else if `RA < ˜̀

RB then
43 NewMetaA← C;
44 ˜NewMetaB ← M;
45 else
46 NewMetaA← M;
47 ˜NewMetaB ← M;
48 FullMA← (FullMA,NewMetaA);
49 `MA ← `MA + 1;
50 M̃B ←

(
M̃B, ˜NewMetaB

)
;

51 `M̃B ← `M̃B + 1;
52 msg ← dummy message of length r;

B Case iv
53 else if QHA 6= QHB ′ then
54 Itertype ← QH;
55 NewMetaA← M;
56 FullMA← (FullMA,NewMetaA);
57 `MA ← `MA + 1;
58 ˜NewMetaB ← M;
59 M̃B ←

(
M̃B, ˜NewMetaB

)
;

60 `M̃B ← `M̃B + 1;
61 msg ← dummy message of length r;
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Algorithm 29: Q-Preprocess-small-alphabet (Alice’s side, cont. from previous
page)

B Case v
62 else if `RA < `A

QVC then
63 Itertype ← RD;
64 RewindExtend ← E;
65 NewMetaA← C′;
66 FullMA← (FullMA,NewMetaA);
67 `MA ← `MA + 1;
68 ˜NewMetaB ← C′;
69 M̃B ←

(
M̃B, ˜NewMetaB

)
;

70 `M̃B ← `M̃B + 1;
71 msg ← dummy message of length r;

B Processing Pauli data
B Case vi.A

72 else if (kPA, HkPA , HPA1) 6=
(

1, H ′k
P̃A
, H ′

P̃A1

)
or(

kP̃B, Hk
P̃B
, HP̃B1

)
6=
(
1, H ′kPB

, H ′PB1

)
then

73 Itertype ← PD;
74 RewindExtend ← R;
75 NewMetaA← C;
76 FullMA← (FullMA,NewMetaA);
77 `MA ← `MA + 1;
78 ˜NewMetaB ← C;
79 M̃B ←

(
M̃B, ˜NewMetaB

)
;

80 `M̃B ← `M̃B + 1;
81 msg ← dummy message of length r;

B Case vi.B
82 else if (`PA < 6qMA · r) or

(
`P̃B < 6qM̃B · r

)
then

83 Itertype ← PD;
84 RewindExtend ← E;
85 NewMetaA← C;
86 FullMA← (FullMA,NewMetaA);
87 `MA ← `MA + 1;
88 ˜NewMetaB ← C;
89 M̃B ←

(
M̃B, ˜NewMetaB

)
;

90 `M̃B ← `M̃B + 1;
91 if `PA < 6qMA · r then
92 msg ← FullPA [`PA + 1, `PA + r]
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Algorithm 29: Q-Preprocess-small-alphabet (Alice’s side, cont. from previous
page)

B Case vii
93 else
94 Q-Computejointstate;
95 FullMA = (FullMA,NewMetaA);
96 `MA ← `MA + 1;
97 M̃B ←

(
M̃B, ˜NewMetaB

)
;

98 `M̃B ← `M̃B + 1;
99 return Q-Preprocess-small-alphabet;

Algorithm 30: Q-Initialization-small-alphabet (Alice’s side)
1 Initialize

LQVC ← Θ (nε) ;
r ← Θ (1/

√
ε) ;

Rtotal ← dn/2r + Θ(nε)e ;
t← Θ (nε) ;
kMA, kM̃B, kPA, kP̃B ← 1 ;
EMA, EM̃B, EPA, EP̃B ← 0 ;
vMA1 , vMA2 , vM̃B1

, vM̃B2
, vPA1 , vPA2 , vP̃B1

, vP̃B2
← 0 ;

`MA, `M̃B, `PA, `P̃B, `
A
QVC, `RA, `RecycleA ← 0 ;

FullMA, M̃B,FullPA, P̃B,RA, IndexA← ∅ ;
2 h← iphash function from Definition 5.1.2 with L = Θ(n), o = Θ(1), s = Θ(n) ;
3 Robust Entanglement Distribution ; // Distribute Θ (n

√
ε) MESs

4 Reserve LQVC · 4r MES pairs to be used as QVC encryption keys ;
5 Reserve 10Rtotal MESs to be used in quantum hashing ;
6 Measure the remaining Θ (n

√
ε) MESs in the computational basis and record the

binary representation of the outcomes in R′ ;
7 Stretch R′ to a δ-biased pseudo-random string of length Θ (Rtotal (rLQVC + n))

using the deterministic algorithm of Lemma 2.4.8 where δ = 2−Θ(nr ) ;
8 Divide the pseudo-random string into S = S1 · · ·S12Rtotal and R = R1 · · ·R10Rtotal ;

// 12Rtotal seeds of length Θ (n) bits used by iphash
// 10Rtotal seeds of length 4rLQVC bits used in quantum hashing

9 return Q-Initialization-small-alphabet;
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Algorithm 31: MPhash(k, `, S1, S2, T, θ)
1 k̂ ← 2blog kc;
2 mp1← k̂θ

⌊
`
k̂θ

⌋
;

3 mp2← mp1− k̂θ;
4 T1 ← T [1 : mp1];
5 T2 ← T [1 : mp2];
6 H1 ← hS1 (T1);
7 H2 ← hS2 (T2);
8 return (mp1,mp2, T1, T2,H1,H2);

Algorithm 32: MPrewind(E,k,Hk,H
′
k,H1,H2,H

′
1,H

′
2,mp1,mp2, v1, v2, `)

1 k̂ ← 2blog kc;
2 if Hk 6= H ′k then
3 E ← E + 1;

B Voting phase
4 else
5 if H1 ∈ {H ′1, H ′2} then
6 v1 ← v1 + 1;
7 else if H2 ∈ {H ′1, H ′2} then
8 v2 ← v2 + 1;

B Transition phase
9 if E > k/2 then

10 Reset Status: k,E, v1, v2 ← 0; // Mismatch transition

11 else if k = k̂ then
12 if v1 ≥ 0.4k̂ then
13 `← mp1;
14 Reset Status: k,E, v1, v2 ← 0; // Meeting point transition

15 else if v2 ≥ 0.4k̂ then
16 `← mp2;
17 Reset Status: k,E, v1, v2 ← 0; // Meeting point transition

18 else
19 v1, v2 ← 0;

// Disagreement length is too long for current rewinding step
size

20 k ← k + 1;
21 return (E,k, v1, v2, `);
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Algorithm 33: rewindMD-small-alphabet (Alice’s side)
Input: EMA, kMA, HkMA , H

′
k

M̃A
, HMA1 , HMA2 , H

′
M̃A1

, H ′
M̃A2

,mp1MA,mp2MA, vMA1 , vMA2 , `MA

EM̃B, kM̃B, Hk
M̃B
, H ′kMB

, HM̃B1
, HM̃B2

, H ′MB1 , H
′
MB2 ,mp1M̃B,mp2M̃B, vM̃B1

, vM̃B2
, `M̃B


Promise: (kMA, HkMA , HMA1) 6=

(
1, H ′k

M̃A
, H ′

M̃A1

)
or(

kM̃B, Hk
M̃B
, HM̃B1

)
6=
(
1, H ′kMB

, H ′MB1

)
Output:

(
EMA, kMA, vMA1 , vMA2 , `MA, EM̃B, kM̃B, vM̃B1

, vM̃B2
, `M̃B

)
1 if (kMA, HkMA , HMA1) 6=

(
1, H ′k

M̃A
, H ′

M̃A1

)
then

2 (EMA, kMA, vMA1 , vMA2 , `MA)← MPrewind
(
EMA, kMA, HkMA , H

′
k

M̃A
, HMA1 ,

. HMA2 , H
′
M̃A1

, H ′
M̃A2

,mp1MA,mp2MA, vMA1 , vMA2 , `MA
)
;

3 if
(
kM̃B, Hk

M̃B
, HM̃B1

)
6=
(
1, H ′kMB

, H ′MB1

)
then

4
(
EM̃B, kM̃B, vM̃B1

, vM̃B2
, `M̃B

)
← MPrewind

(
EM̃B, kM̃B, Hk

M̃B
, H ′kMB

, HM̃B1
,

. HM̃B2
, H ′MB1 , H

′
MB2 ,mp1M̃B,mp2M̃B, vM̃B1

, vM̃B2
, `M̃B

)
;

5 return rewindMD-small-alphabet;

Algorithm 34: rewindPD-small-alphabet (Alice’s side)
Input: EPA, kPA, HkPA , H

′
k

P̃A
, HPA1 , HPA2 , H

′
P̃A1

, H ′
P̃A2

,mp1PA,mp2PA, vPA1 , vPA2 , `PA

EP̃B, kP̃B, Hk
P̃B
, H ′kPB

, HP̃B1
, HP̃B2

, H ′PB1 , H
′
PB2 ,mp1P̃B,mp2P̃B, vP̃B1

, vP̃B2
, `P̃B


Promise: (kPA, HkPA , HPA1) 6=

(
1, H ′k

P̃A
, H ′

P̃A1

)
or(

kP̃B, Hk
P̃B
, HP̃B1

)
6=
(
1, H ′kPB

, H ′PB1

)
Output:

(
EPA, kPA, vPA1 , vPA2 , `PA, EP̃B, kP̃B, vP̃B1

, vP̃B2
, `P̃B

)
1 if (kPA, HkPA , HPA1) 6=

(
1, H ′k

P̃A
, H ′

P̃A1

)
then

2 (EPA, kPA, vPA1 , vPA2 , `PA)← MPrewind
(
EPA, kPA, HkPA , H

′
k

P̃A
, HPA1 , HPA2 ,

. H ′
P̃A1

, H ′
P̃A2

,mp1PA,mp2PA, vPA1 , vPA2 , `PA
)
;
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Algorithm 34: rewindPD-small-alphabet (Alice’s side, cont. from previous
page)
3 if

(
kP̃B, Hk

P̃B
, HP̃B1

)
6=
(
1, H ′kPB

, H ′PB1

)
then

4
(
EP̃B, kP̃B, vP̃B1

, vP̃B2
, `P̃B

)
← MPrewind

(
EP̃B, kP̃B, Hk

P̃B
, H ′kPB

, HP̃B1
, HP̃B2

,

. H ′PB1 , H
′
PB2 ,mp1P̃B,mp2P̃B, vP̃B1

, vP̃B2
, `P̃B

)
;

5 return rewindPD-small-alphabet;

5.5 Analysis

As in the large alphabet case, our analysis relies on a potential function argument. In order
to track the simulation progress and show the correctness of the algorithm, we condition on
some view of the local classical data recorded by the two parties. Without loss of generality,
as in Section 4.5, we analyze the algorithm assuming that the error introduced by the
adversary on the n′ message registers exchanged during the simulation is an arbitrary Pauli
error of weight at most εn′.
The overall proof structure is exactly the same as the large alphabet case. Using an
inductive argument, we show that recycling is successful throughout the execution of the
algorithm. Moreover, we show that the number of iterations with a hash collision and the
number of recovery iterations are both of the same order as the number of transmission
errors introduced by the adversary, i.e., O (nε). The proof then proceeds by showing that in
every iteration, the potential function Φ increases by at least 1, if no error or hash collision
occurs; while it decreases by at most a constant otherwise. For Rtotal sufficiently large, we
show that once the algorithm terminates, the potential function Φ is large enough to imply
successful simulation.
The overall potential function Φ is defined as

Φ def= ΦQ − ΦMD − ΦRD − ΦPD , (5.1)

where ΦQ and ΦRD are defined as in Section 4.5. The potential functions ΦMD and ΦPD,
however, are modified to measure the progress in synchronizing the metadata and the Pauli
data using meeting point-based rewinding.
We recall the following definitions from Section 4.5:

mdA
+

def= the length of the longest prefix where MA and M̃A agree; (5.2)

mdB
+

def= the length of the longest prefix where MB and M̃B agree; (5.3)

mdA
−

def= max{`MA, `M̃A} −md
A
+; (5.4)

mdB
−

def= max{`MB, `M̃B} −md
B
+; (5.5)

pdA
+

def= b1
r
× the length of the longest prefix where PA and P̃A agreec; (5.6)
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pdB
+

def= b1
r
× the length of the longest prefix where PB and P̃B agreec; (5.7)

pdA
−

def= 1
r

max{`PA, `P̃A} − pd
A
+; (5.8)

pdB
−

def= 1
r

max{`PB, `P̃B} − pd
B
+; (5.9)

rd+ def= max{j : j ≤ min{`RA, `RB} , RA [1 : j] = RB [1 : j]
,Wk = 04r for all k ≤ j with RA [k] = S}; (5.10)

rd−
def= max{`RA, `RB} − rd+; (5.11)

where W in Eq. (5.10) is the string corresponding to the error syndrome defined in Subsec-
tion 4.3.5. Also, recall that

g
def= the number of good blocks in JS2, (5.12)

b
def= the number of bad blocks in JS2, and (5.13)

u
def= |`A

QVC − `B
QVC|. (5.14)

The potential functions ΦMD and ΦPD now involve new variables which allow us to track
the progress made in meeting point-based rewinding. We define

kA
MD

def= kMA + kM̃A; (5.15)

kB
MD

def= kMB + kM̃B; (5.16)

EA
MD

def= EMA + EM̃A; (5.17)

EB
MD

def= EMB + EM̃B. (5.18)

Similarly,

kA
PD

def= kPA + kP̃A; (5.19)

kB
PD

def= kPB + kP̃B; (5.20)

EA
PD

def= EPA + EP̃A; (5.21)

EB
PD

def= EPB + EP̃B. (5.22)

We introduce variables BV A
MD, BV B

MD, BV A
PD, and BV B

PD which keep track of the number
of iterations with a bad voting step. These variables account for the errors and collisions
happening in the voting phase of the subroutine MPrewind. In each iteration, BV A

MD
increases by 1 if both Alice and Bob conduct the subroutine MPrewind on the rewinding
data corresponding to MA and M̃A, respectively, and for some j ∈ {1, 2}, at least one of
the following happens:

• MAj /∈
{
M̃A1, M̃A2

}
but Alice increases vMAj in the voting phase,
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• M̃Aj /∈ {MA1,MA2} but Bob increases vM̃Aj
in the voting phase,

• MAj ∈
{
M̃A1, M̃A2

}
but despite conducting the voting phase, Alice does not increase

vMAj ,

• M̃Aj ∈ {MA1,MA2} but despite conducting the voting phase, Bob does not increase
vM̃Aj

.

We reset BV A
MD to 0 whenever a status reset occurs on the rewinding data corresponding

to MA or M̃A. The variables BV B
MD, BV A

PD, and BV B
PD are defined similarly. Note that

the values of these variables are not known to either party.
We also define the variables BI A

PD and BI B
PD to facilitate the analysis of the algorithm. In

each iteration, the variable BI A
PD increases by 1 if exactly one of the following occurs:

• Alice conducts the subroutine MPrewind on the rewinding data corresponding to MA.

• Bob conducts the subroutine MPrewind on the rewinding data corresponding to M̃A.

We reset BI A
PD to 0 whenever a status reset occurs on the rewinding data corresponding to

MA or M̃A. The variable BI B
PD is defined similarly.

Finally, we are ready to define the components of the potential function Φ. Let

1 < λ1 < λ2 < λ3 < λ4 < λ5 ,

be constants chosen such that λk is sufficiently large depending only on λj with j < k. At
the end of the i-th iteration, we let

ΦMD
def= ΦA

MD + ΦB
MD , (5.23)

where

ΦA
MD

def=



i−mdA
+ + λ2md

A
− − λ1

(
kA

MD − 2
)

+ λ4E
A
MD + λ5BV A

MD , if kMA = kM̃A

(5.24a)
i−mdA

+ + λ2md
A
− + 0.9λ3

(
kA

MD − 2
)
− λ3E

A
MD + λ5BV A

MD , if kMA 6= kM̃A

(5.24b)

ΦB
MD

def=



i−mdB
+ + λ2md

B
− − λ1

(
kB

MD − 2
)

+ λ4E
B
MD + λ5BV B

MD , if kMB = kM̃B

(5.25a)
i−mdB

+ + λ2md
B
− + 0.9λ3

(
kB

MD − 2
)
− λ3E

B
MD + λ5BV B

MD , if kMB 6= kM̃B

(5.25b)
Similarly, for constants

1 < η1 < η2 < η3 < η4 < η5 < η6 ,
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chosen such that ηk is sufficiently large depending only on ηj with j < k, we define

ΦPD
def= ΦA

PD + ΦB
PD , (5.26)

where

ΦA
PD

def=



6qMA − pdA
+ + η2pd

A
− − η1

(
kA

PD − 2
)

+ η4E
A
PD + η5BV A

PD + η6BI A
PD ,

if kPA = kP̃A (5.27a)
6qMA − pdA

+ + η2pd
A
− + 0.9η3

(
kA

PD − 2
)
− η3E

A
PD + η5BV A

PD + η6BI A
PD ,

if kPA 6= kP̃A (5.27b)

ΦB
PD

def=



6qMB − pdB
+ + η2pd

B
− − η1

(
kB

PD − 2
)

+ η4E
B
PD + η5BV B

PD + η6BI B
PD ,

if kPB = kP̃B (5.28a)
6qMB − pdB

+ + η2pd
B
− + 0.9η3

(
kB

PD − 2
)
− η3E

B
PD + η5BV B

PD + η6BI B
PD ,

if kPB 6= kP̃B (5.28b)
We remark that the definitions above for ΦMD and ΦPD are modified versions of a similar
potential function appearing in Ref. [37]. Our definition slightly simplifies the proof and
in the case of ΦPD allows us to deal with out-of-sync rewinding scenarios which we will
discuss in detail.
Finally, ΦRD and ΦQ are defined as

ΦRD
def= `A

QVC + `B
QVC + 13rd− − 2rd+ , (5.29)

ΦQ
def= g − b− 9u . (5.30)

In order to avoid ambiguity, we may use a superscript i to indicate the value of the variables
of the algorithm at the end of the i-th iteration. For instance, we denote Alice’s recycling
data at the end of the i-th iteration by RAi. Our analysis in this section involves constants

c1 < c2 < c3 < c4 < c5 < c6 < c7 < c8 < c9 ,

chosen such that ci is sufficiently large depending only on cj with j < i.

Lemma 5.5.1. Throughout the algorithm, we have

• ΦMD ∈ −O(nε).

• ΦRD ≥ 0 with equality if and only if Alice and Bob have used the same number of MES
blocks (`A

QVC = `B
QVC), their measurement pointers `RA and `RB agree, they fully agree

on the recycling data (RA = RB), and Wk = 04r for all k ≤ `A
QVC with RA [k] = S,

i.e., `A
QVC = `B

QVC = rd+ and rd− = 0.
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• ΦPD ∈ −O(nε).

Proof. The variables appearing in the potential function ΦA
MD are always non-negative.

Moreover, at the end of the i-th iteration we always have mdA
+ ≤ i, EMA ≤ kMA/2, and

EM̃A ≤ kM̃A/2. This implies that, at the end of any iteration, if kMA 6= kM̃A, then

ΦA
MD ≥ 0.9λ3

(
kA

MD − 2
)
− λ3E

A
MD ≥ λ3

(
0.9kA

MD − 0.5kA
MD − 1.8

)
≥ −λ3 ,

where the last inequality follows since kA
MD ≥ 2. Let λ2 = 8λ1 and suppose that kMA =

kM̃A = k for some k ≥ 1. Then ΦA
MD < 0 implies that k > 4mdA

−. However, the rewinding
step size cannot grow so large compared to mdA

− unless too many transmission errors occur.
Note that, in every iteration, the variables kMA and kM̃A each either increase by 1, or get
reset to 1, or remain unchanged at 1. Therefore, when kMA = kM̃A = k, in the last k
iteration both parties have had matching step sizes, increasing from 1 to k. So kMA and
kM̃A can be so large compared to mdA

− only if in at least 0.2 of the iterations in which the
step sizes increased from 2blogmdA

−c+1 to 2blg kc, the step size hashes or the meeting point
hashes were corrupted to appear non-matching. Since the total number of errors is at most
2nε, this implies that

2nε ≥ 0.2
(
2blg kc − 2blogmdA

−c+1
)
≥ 0.2

(
k/2− 2mdA

−

)
.

Hence, we have
ΦA

MD ≥ λ1
(
8mdA

− − 2k
)
≥ −40λ1nε .

Similarly, one can show that ΦB
MD ≥ −40λ1nε, concluding the proof of the first statement.

The second statement holds since rd− ≥ 0, rd+ ≤ min{`RA, `RB} and the property that
`RA ≤ `A

QVC and `RB ≤ `B
QVC.

Finally, we prove the last statement. Note that for Pauli data we have pdA
+ ≤ 6qMA and

pdB
+ ≤ 6qMB. Moreover, at the end of every iteration, we always have EPA ≤ kPA/2, and

EP̃A ≤ kP̃A/2. Therefore, when kPA 6= kP̃A,

ΦA
PD ≥ 0.9η3

(
kA

PD − 2
)
− η3E

A
PD ≥ η3

(
0.9kA

PD − 0.5kA
PD − 1.8

)
≥ −η3 ,

where the last inequality holds since kA
PD ≥ 2.

Suppose that kPA = kP̃A = k for some k ≥ 1. For η4 sufficiently large compared to η1, if
EA

PD > kA
PD/200, then ΦA

PD ≥ 0. Suppose that EA
PD ≤ kA

PD/200 and let η2 = 16η1. Note
that ΦA

PD < 0 implies that k > 8pdA
−. Similar to the argument used for the first statement,

we show that the step sizes kPA and kP̃A cannot get too large under these conditions unless
too many transmission errors occur. However, the proof is more complicated now since we
no longer have the guarantee that kPA and kP̃A have been equal in the last k iterations.
In fact, unlike kMA and kM̃A, for the Pauli data, the step sizes kPA and kP̃A may remain
unchanged at a value greater than 1 in an iteration.
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We prove that k ≤ 50nε, then we have

ΦA
PD ≥ −2η1k ≥ −100η1nε .

If k ≤ 10nε then we are done. Suppose that k > 10nε. Consider the last iteration in which
at least one of kPA or kP̃A were reset. Note that in each of the following iterations the
difference between kPA and kP̃A has either remained the same or changed by 1. In particular,
the distance decreases by 1 only if the party with the smaller step size increases his/her step
size by 1, while the step size for the other party remains the same. But this can happen
only if a transmission error occurs. Let d be the maximum difference between kPA and kP̃A
after the last time any of them were reset. Note that at least d transmission errors must
have happened to decrease their difference to zero eventually. Let k̂ = 2bkc. Consider the
first iteration starting with kPA, kP̃A ≥ k̂/2. Without loss of generality, suppose that Alice
was the second party to reach the step size k̂/2. In this iteration, the difference between
kPA and kP̃A was at most d. Therefore, in at least k̂/2 − d of the following iterations we
have k̂PA = k̂P̃A = k̂/2. Moreover, pdA

− has remained the same in these iterations. Note
that

k̂/2 ≥ k/4 > 2pdA
− ≥ 2blog pdA

−c+1 .

Therefore, in at least k̂/2 − d iterations with k̂PA = k̂P̃A = k̂/2, the step size has been
sufficiently large compared to pdA

− to guarantee the existence of at least one matching
meeting point. Alice did not reset her step size when kPA reached the value k̂, which means
that her number of votes for the meeting point was strictly less than 0.8k̂/2. In at most
EMA iterations Alice has not entered the voting step. Let d′ be the number of iterations
in which Alice entered the voting step in the subroutine MPrewind but Bob’s hash value
corresponding to the correct meeting point was corrupted to appear non-matching. Then
we have (

k̂/2− d
)
− EMA − d′ < 0.8k̂/2 .

Since EPA ≤ EA
PD ≤ k̂/50, this implies that 0.08k̂ < d + d′ ≤ 2nε. Hence, we have

k ≤ 2k̂ < 50nε.
Similarly, one can prove that ΦB

PD ≥ −100η1nε, which concludes the proof of the last
statement.

Definition 5.5.2. We say an iteration of Algorithm 28 suffers from a metadata hash
collision if any of the following happens:

• HkMA = Hk
M̃A

despite kMA 6= kM̃A,

• HMA1 = HM̃Aj
despite MA1 6= M̃Aj, for j ∈ {1, 2},

• HMA2 = HM̃Aj
despite MA2 6= M̃Aj, for j ∈ {1, 2},

• HkMB = Hk
M̃B

despite kMB 6= kM̃B,
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• HMB1 = HM̃Bj
despite MB1 6= M̃Bj, for j ∈ {1, 2},

• HMB2 = HM̃Bj
despite MB2 6= M̃Bj, for j ∈ {1, 2},

Note that we distinguish between, for instance, the first scenario above and when HkMA =
H ′k

M̃A
due to a transmission error on Hk

M̃A
, despite the two might have similar effects.

We recall the definition of successful recycling from Section 4.5.

Definition 5.5.3. We say recycling is successful in the i-th iteration of Algorithm 28, if
the following hold:

• The algorithm does not abort in the i-th iteration, i.e., NextIndexAi,NextIndexBi 6=⊥,

• NextIndexAi = NextIndexBi,

• The block of MES registers indexed by NextIndexAi are in the |φ0,0〉⊗4r state at the
beginning of the i-th iteration.

The conditions of Definition 5.5.3 are all satisfied in the first LQVC iterations of the algorithm
as well. Note that if recycling is successful in the first i iterations of the algorithm then
`jRecycleA = `jRecycleB, for all j ≤ i and we have IndexAi = IndexBi. Moreover, for every
i ≥ LQVC, we have IndexAi [1 : LQVC] = IndexBi [1 : LQVC] = 1 : LQVC.
We use the same definition for quantum hash collision as in Section 4.5:

Definition 5.5.4. We say an iteration of Algorithm 28 suffers from a quantum hash
collision when recycling has been successful so far, Alice and Bob know each other’s
metadata, have used the same number of MES blocks (`A

QVC = `B
QVC) and agree on their

measurement pointers and their recycling data up to the measurement pointers (`RA = `RB
and RA [1 : `RA] = RB [1 : `RB]) but despite the fact that there is an undetected quantum
error from earlier iterations (Wk 6= 04r for some k ≤ `RA with RA [k] = S), their quantum
hash values match, i.e., QHA = QHB. Note that we distinguish between the above scenario
and when QHA = QHB ′ due to a transmission error on QHB.

Definition 5.5.5. We say an iteration of Algorithm 28 suffers from a Pauli data hash
collision when recycling has been successful so far, Alice and Bob know each other’s
metadata, agree on the number of MES blocks they have used (`A

QVC = `B
QVC), agree on

their recycling data, their measurement pointers satisfy `RA = `RB = `A
QVC, and all the

non-measured MES blocks are in the |φ0,0〉⊗4r state but any of the following happens:

• HkPA = Hk
P̃A

despite kPA 6= kP̃A,

• HPA1 = HP̃Aj
despite PA1 6= P̃Aj, for j ∈ {1, 2},
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• HPA2 = HP̃Aj
despite PA2 6= P̃Aj, for j ∈ {1, 2},

• HkPB = Hk
P̃B

despite kPB 6= kP̃B,

• HPB1 = HP̃Bj
despite PB1 6= P̃Bj, for j ∈ {1, 2},

• HPB2 = HP̃Bj
despite PB2 6= P̃Bj, for j ∈ {1, 2}.

We define ΨA
MD, ΨB

MD, and ΨMD at the end of the i-th iteration as follows:

ΨA
MD

def= i−mdA
+ +mdA

− +
(
kA

MD − 2
)
, (5.31)

ΨB
MD

def= i−mdB
+ +mdB

− +
(
kB

MD − 2
)
, (5.32)

ΨMD
def= ΨA

MD + ΨB
MD . (5.33)

Note that we always have ΨA
MD,ΨB

MD ≥ 0, and hence ΨMD ≥ 0.

Lemma 5.5.6. Each iteration of Algorithm 28, regardless of the number of hash collisions
and transmission errors, increases the potential functions ΦA

MD and ΦB
MD by at most a

constant. Moreover, in any iteration with no transmission errors or hash collisions,

• if ΨMD = 0 at the beginning of the iteration then ΦMD remains the same,

• otherwise, if ΨA
MD > 0 then ΦA

MD decreases by at least 1. Similarly, if ΨB
MD > 0 then

ΦB
MD decreases by at least 1.

Proof. First note that in an iteration with no transmission errors, if ΨMD = 0 at the
beginning of the iteration, then Alice and Bob do not conduct the subroutine MPrewind on
the rewinding data corresponding to MA and M̃A, respectively. In this case, the iteration
number, mdA

+, and mdB
+ each increase by 1, while the remaining variables appearing in

ΦMD remain unchanged. Hence, ΦMD remains the same.
In the remainder of the proof, we focus on ΦA

MD. The potential function ΦB
MD behaves

similarly. We consider all the remaining possible scenarios in the iteration at hand. We
denote by mdA

+, mdA
−, kMA, kM̃A, EMA, EM̃A, and BV A

MD the values at the beginning of the
iteration and denote by mdA

+, mdA
−, kMA, kM̃A, EMA, EM̃A, and BV A

MD the values at the
end of the iteration.

• Scenario 1: Alice and Bob do not conduct the subroutine MPrewind on the rewinding
data corresponding to MA and M̃A, respectively: In this case, at the beginning of
the iteration, we have kMA = kM̃A = 1, HkMA = H ′k

M̃A
, HMA1 = H ′

M̃A1
, Hk

M̃A
= H ′kMA

,
and HM̃A1

= H ′MA1 . The variables kMA and kM̃A remain unchanged, and EA
MD, BV A

MD
remain 0. The remaining variables appearing in ΦA

MD vary by at most a constant.
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Hence, regardless of the number of errors and hash collisions, ΦA
MD increases by at

most a constant. If the iteration is error and collision free and ΨA
MD > 0, then we have

mdA
− = 0 and mdA

+ < i − 1 at the beginning of the iteration. Both parties conduct
Case i.B, the iteration number increases by 1, mdA

+ increases by 2, and the remaining
variables remain unchanged. Therefore, ΦA

MD decreases by at least 1.

In the remaining scenarios, at least one of Alice or Bob conducts the subroutine MPrewind
on the rewinding data corresponding to MA or M̃A, respectively.

• Scenario 2: No status reset on the variables corresponding to MA and M̃A occurs:
In this scenario, all the variables appearing in ΦA

MD change by at most a constant and
so does ΦA

MD. If the iteration has no errors or hash collisions then both parties con-
duct Case i.A. The variables BV A

MD,md
A
−,md

A
+ remain unchanged while the iteration

number, kMA, and kM̃A increase by 1. If kMA = kM̃A at the beginning of the iteration
then EA

MD remains unchanged. Therefore, ΦA
MD decreases by at least 2λ1 − 1, which

is at least 1 for sufficiently large λ1. Otherwise, if kMA 6= kM̃A then EA
MD increases by

2, leading to a potential decrease by at least 2 (λ3 − 0.9λ3)− 1 = 0.2λ3 − 1, which is
at least 1 for sufficiently large λ3.

• Scenario 3: kMA 6= kM̃A and due to a mismatch transition or a meeting point
transition, exactly one status reset on the variables corresponding to MA or M̃A
occurs: Without loss of generality, suppose that Alice does the status reset. We
consider the following two possibilities:

◦ kMA = kM̃A = 1: This can only happen in an iteration starting with kM̃A = 1
in which Bob does not conduct MPrewind on the rewinding data corresponding
to M̃A. Note that in this case EM̃A = 0. Bob’s variables kM̃A and EM̃A remain
unchanged. The variable mdA

+ does not decrease due to Bob’s actions, while he
increases mdA

− by at most 2. On the other hand, Alice’s variables kMA, EMA, and
BV MA get reset. The variable mdA

+ decreases by at most 2kMA due to Alice’s
actions and she increases mdA

− by at most 2kMA. The variable BV A
MD gets reset

to 0. Therefore, we have

∆ΦA
MD ≤ 1 + 2kMA + λ2 max{2kMA, 2} − 0.9λ3 (kMA − 1) + λ3EMA

≤ 1− kMA [0.9λ3 − 0.5λ3 − 2λ2 − 2] + 0.9λ3 − 0.5λ3

= 1 + 0.4λ3 − kMA [0.4λ3 − 2λ2 − 2] ,

where the inequality holds since at the beginning of every iteration we always
have EMA ≤ 0.5kMA−0.5. Since kMA ≥ 2, for sufficiently large λ3, ΦA

MD decreases
by at least 1.
◦ kMA 6= kM̃A: In this case kM̃A increases by 1, while EM̃A increases by at most 1.

Moreover, Bob’s actions do not have any effect on the value of mdA
+ and mdA

−.
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So Bob’s contribution increases ΦA
MD by at most 0.9λ3. Using a similar argument

as in the above case, Alice’s contribution to ∆ΦA
MD is at most

0.4λ3 − kMA [0.4λ3 − 2λ2 − 2] ,

which is a decreasing function of kMA for sufficiently large λ3, and is equal to
2λ2 + 2 for kMA = 1. Therefore, regardless of the number of errors and hash
collisions, we have

∆ΦA
MD ≤ 0.9λ3 + 2λ2 + 2 + 1 .

Suppose that the iteration has no transmission errors or hash collisions. Then
kM̃A and EM̃A increase by 1. Therefore, Bob’s contribution decreases ΦA

MD by
at least 0.1λ3. If kMA ≥ 2 then Alice’s contribution also decreases ΦA

MD by at
least a constant. Therefore, ΦA

MD decreases by at least 1. Otherwise, if kMA = 1
at the beginning of the iteration, Alice’s contribution increases ΦA

MD, but this
is dominated by the decrease due to Bob’s contribution. In more detail, in this
case Alice’s variable EMA is 0 at the beginning of the iteration and it remain
the same, kMA remains at 1, mdA

+ decreases by at most 2, and mdA
− increases by

at most 2. Therefore, ΦA
MD decreases by at least 0.1λ3− 2λ2− 2− 1, which is at

least 1 for sufficiently large λ3.

• Scenario 4: kMA 6= kM̃A and status resets occur on both sides due to mismatch or
meeting point transitions: At the end of the iteration we have kMA = kM̃A = 1 and
EA

MD = BV A
MD = 0. At the beginning of every iteration, we have EMA ≤ 0.5kMA− 0.5

and EM̃A ≤ 0.5kM̃A−0.5 and therefore, EA
MD ≤ 0.5kA

MD−1. Moreover, mdA
+ decreases

by at most 2 max{kMA, kM̃A} ≤ 2kA
MD and similarly, mdA

− increases by at most 2kA
MD.

Hence, we have

∆ΦA
MD ≤ 1 + 2kA

MD + λ2
(
2kA

MD

)
− 0.9λ3

(
kA

MD − 2
)

+ λ3E
A
MD

≤ −kA
MD (0.9λ3 − 0.5λ3 − 2λ2 − 2) + 1.8λ3 − λ3 + 1

≤ −0.4λ3 + 6λ2 + 7 ,

where the last inequality follows since kA
MD ≥ 3. Thus, ΦA

MD deceases by at least 1 for
sufficiently large λ3.

• Scenario 5: kMA = kM̃A = k and at least one status reset due to a mismatch
transition occurs: Note that this can only happen if due to transmission errors EA

MD
increases despite having matching step sizes. We show that ΦA

MD increases by at
most a constant in this scenario. Suppose without loss of generality that a mismatch
transition occurs on Alice’s side. The variable BV A

MD gets reset to 0. This can only
contribute to decreasing ΦA

MD. Alice’s EMA gets reset to 0 due to the mismatch
transition, which implies that EMA + 1 > k/2. So EMA ≥ 0.5k− 0.5 at the beginning
of the iteration and resetting EMA leads to a decrease by 0.5λ4 (k − 1) in ΦA

MD. Bob’s
EM̃A gets reset or increases by at most 1. Note that in any case this cannot increase

133



ΦA
MD. The remaining variables change by at most 2k while being weighted by smaller

constants. In particular, the iteration number increases by 1 and mdA
+ and mdA

−
change by at most 2k. Alice’s kMA gets reset which increases ΦA

MD by λ1 (k − 1) and
Bob’s kM̃A gets reset or increases by at most 1, which increases ΦA

MD by less than
(λ1 + 0.9λ3) k. Therefore, we have

∆ΦA
MD ≤ 1 + 2k + λ2 (2k) + (2λ1 + 0.9λ3) k − 0.5λ4 (k − 1) .

If k > 1 then for λ4 sufficiently large, the potential function ΦA
MD decreases by at

least 1. The case of k = 1 is trivial since all the variables change by at most some
constant and so does ΦA

MD.

• Scenario 6: kMA = kM̃A = k, exactly one status reset occurs, and the reset is due
to a meeting point transition: Without loss of generality, we assume that Alice does
the transition. Note that in this case kMA and kM̃A have been equal in the last k
iterations while increasing from 1 to k.
First, suppose that kMA 6= kM̃A. Then kM̃A increases to k + 1, which increases ΦA

MD
by less than (0.9λ3 + λ1) k. Bob’s EM̃A increases by at most 1, but due to the re-
weighting this does not increase ΦA

MD. Finally, Bob’s actions do not have any effect
on mdA

+ and mdA
−. Alice’s EMA gets reset to 0, kMA gets reset to 1, the iteration

number increases by 1, BV A
MD gets reset to 0, and the remaining variables change by

at most 2k.
If the meeting point to which Alice backtracks does not match any of Bob’s meeting
points in the current iteration then, in the last k/2 iterations, Alice has incorrectly
increased her vote count for this meeting point at least 0.8k/2 times. This implies
that BV A

MD ≥ 0.4k. Therefore, for sufficiently large λ5, the decrease in ΦA
MD due to

resetting BV A
MD dominates any other potential change and ΦA

MD decreases by at least
1.
Otherwise, if the meeting point to which Alice backtracks does indeed match one of
Bob’s meeting points in the current iteration, then Bob should have also backtracked
to the same meeting point. The fact that Bob does not have enough votes for the
meeting point implies that EM̃A + BV A

MD > 0.2 (k/2). Therefore, the decrease due to
the re-weighting of EM̃A and resetting BV A

MD dominates all other potential changes.
In more detail, we have:

◦ If EM̃A ≥ k/20 then the decrease by at least (λ4 + λ3)EM̃A due to the re-
weighting of EM̃A dominates the potential change due to i, mdA

+, mdA
−, and kA

MD.
Moreover, resetting EMA and BV A

MD does not increases ΦA
MD. Hence, regardless

of the number of errors and collisions, we have

∆ΦA
MD ≤ 1 + 2k + λ2 (2k) + [λ1 (k − 1) + (0.9λ3 + λ1) (k)]− (λ4 + λ3)EM̃A

≤ − [λ4/20− 0.85λ3 − 2λ2 − 2λ1 − 2] k + 1 .
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Therefore, for sufficiently large λ4, the potential function ΦA
MD decreases by at

least 1.
◦ If EM̃A < k/20 then BV A

MD is at least 0.1k − k/20 = 0.05k. Therefore, for
sufficiently large λ5, the decrease in ΦA

MD due to resetting BV A
MD dominates any

other potential change and ΦA
MD decreases by at least 1.

It remains to consider the case where kMA = kM̃A = 1. In the scenario we are
considering, no status reset occurs on Bob’s side in the current iteration. So kM̃A = 1
only if k = 1 and Bob does not conduct the subroutine MPrewind on the rewinding
data corresponding to M̃A. But this can only happen if a transmission error or a
hash collision occurs. In this case, all the variables change by at most a constant and
therefore, so does ΦA

MD.

• Scenario 7: kMA = kM̃A = k and status resets occur on both sides due to meeting
point transitions: In this case, the variables EA

MD,BV A
MD get reset to 0. Therefore,

any change in these variables can only decrease ΦA
MD. The variables kMA and kM̃A get

reset to 1. This increases ΦA
MD by 2λ1 (k − 1). The remaining variables change by at

most 2k. We consider the following different possibilities:

◦ mdA
− 6= 0: In the last k/2 iterations, at least one party has incorrectly voted more

than 0.8 (k/2) times for a meeting point that does not match any of the other
party’s meeting points in the current iteration. Therefore, we have BV A

MD ≥ 0.4k
and for sufficiently large λ5, the decrease due to resetting BV A

MD dominates any
other change in the potential function and ΦA

MD decreases by at least 1.
◦ mdA

− = 0 and k < 8mdA
−: In this case ΦA

MD decreases by at least

−1− 2k + λ2md
A
− − 2λ1 (k − 1) ≥ [λ2/8− 2λ1 − 2] k − 1 ,

which is at least 1 for sufficiently large λ2 and every k ≥ 1.
◦ mdA

− = 0 and k ≥ 8mdA
−: First note that if EA

MD ≥ k/100 then the decrease due
to resetting EA

MD guarantees an overall decrease by at least 1, for large enough
λ4. Suppose that EA

MD < k/100. Recall that if kMA = kM̃A ≥ 2blogmdA
−c+1 then

Alice and Bob have at least one matching meeting point. Moreover, k ≥ 8mdA
−

implies that k/4 ≥ 2blogmdA
−c+1. This implies that Alice and Bob should have

backtracked to a matching meeting point earlier. In particular, in at least 0.2
of the iterations in which kMA and kM̃A have increased from 2blogmdA

−c+1 to k/2,
i.e., in at least 0.2 (k/4) iterations, the vote counts for their matching meeting
points have not increased. So BV A

MD ≥ 0.05k−EA
MD ≥ 0.04k and for sufficiently

large λ5, the decrease due to resetting BV A
MD guarantees an overall decrease in

ΦA
MD by at least 1.

This completes the proof.
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The following lemma bounds the number of iterations with a metadata hash collision.

Lemma 5.5.7. The number of iterations of Algorithm 28 suffering from a metadata hash
collision is at most c1nε with probability at least 1− 2−Θ(nε).

Proof. We call an iteration a dangerous iteration of type I if at the beginning of the iteration,
either mdA

− + mdB
− 6= 0 or kA

MD + kB
MD > 4. Note that metadata hash collisions can only

occur in these iterations. Let hMD denote the total number of iterations with a metadata
hash collision and dI denote the total number of type I dangerous iterations. It suffices to
prove that

Pr (dI > c1nε) ≤ 2−Θ(nε) .

Note that in type I dangerous iterations ΨMD > 0. Therefore, by Lemma 5.5.6, in these
iterations ΦA

MD decreases by at least 1, if no error or collision occurs while it increases by at
most a fixed constant c+

MD otherwise. Hence, the total change in ΦMD in type I dangerous
iterations is at most c+

MD (hMD + 2nε)− (dI − hMD − 2nε). In iterations that are not type
I dangerous, ΦMD increases only if a transmission error occurs. Moreover, if the iteration
is error free then ΦMD remains unchanged when ΨMD = 0, and it decreases by at least 1
otherwise. The total contribution of non-dangerous iterations to the final value of ΦMD is
thus at most c+

MD (2nε). By Lemma 5.5.1, ΦMD is bounded below by a value in −O (nε).
Therefore, we have

(
1 + c+

MD

)
hMD − dI ∈ −O (nε). For sufficiently large c1, if dI > c1nε

then hMD ≥ dI
2(1+c+

MD) . However, for collision probability p = 2−o satisfying p < 1
20(1+c+

MD) ,
the probability of having such a large fraction of collisions during the dangerous iterations is
very small. In particular, hash collisions are 2−Θ(n√ε)-statistically close to being dominated
by independent Bernoulli(p) variables. Together with the Chernoff bound this implies that
the probability of having such a large deviation from the expected number of collisions is
at most 2−Θ(nε).

Definition 5.5.8. We refer to an iteration of Algorithm 28 as a recovery iteration of type
I if at least one of Alice or Bob conducts one of the cases i.A, i.B, ii.A, or ii.B.

We use the following lemma to bound the number of type I recovery iterations.

Lemma 5.5.9. Suppose that in the first i iterations of Algorithm 28, the number of
iterations suffering from a metadata hash collision is at most c1nε. Then the number of
type I recovery iterations in the first i iterations is at most c2nε.

Proof. Let

ΦI
def= ΦMD + u ,

ΨI
def= ΨMD + u .

By Lemma 5.5.1 and the definition of u in Eq. (5.14), we always have ΦI ∈ −O (nε).
Moreover, ΨI is always non-negative and is equal to zero if and only if kMA = kM̃A = kMB =
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kM̃B = 1, Alice and Bob know each other’s full metadata and have used the same number
of MES blocks for QVC.
Note that if ΨI = 0 at the beginning of an iteration, then the iteration is a type I recovery
iteration only if a transmission error in communication of metadata messages occurs. The
total number of such iterations is thus at most 2nε.
Let βI denote the number of iterations in the first i iterations starting with ΨI > 0. We prove
an upper bound on βI. In any iteration, u increases by at most 1. Hence, by Lemma 5.5.6,
in each iteration, regardless of the number of errors and collisions, ΦI increases by at most
some fixed constant.
In iterations starting with ΨI = 0, the potential function ΦI remains the same unless a
transmission error occurs. Therefore, the accumulated potential in such iterations is at
most O (nε).
In iterations starting with ΨI > 0, the potential function ΦI increases only if a transmission
error or a metadata hash collision occurs. Assuming that the total number of metadata hash
collisions is at most c1nε, such iterations increase ΦI by at most O (nε). In the remaining
iterations, i.e., the iterations starting with ΨI > 0 in which no errors or metadata hash
collisions occur, the potential function ΦI decreases by at least 1. But ΦI ≥ −O (nε) implies
that the number of such iterations is also at most O (nε).
Therefore, the total number of type I recovery iterations in the first i iterations is at most
c2nε, for sufficiently large c2.

We use the following lemma to bound the number of iterations suffering from a quantum
hash collision. The proof is similar to that of Lemma 4.5.8 in the large alphabet case. We
repeat the proof with the notations of the small alphabet case.

Lemma 5.5.10. Suppose that recycling is successful in the first i iterations of Algorithm 28
and the number of iterations suffering from a metadata hash collision is at most c1nε. Then
the number of iterations suffering from a quantum hash collision in the first i iterations is
at most c3nε with probability at least 1− 2−Θ(nε).

Proof. We call an iteration a dangerous iteration of type II if rd− 6= 0, at the beginning of
the iteration. Note that quantum hash collisions can only occur in type II dangerous itera-
tions. Let dII denote the number of such iterations in the first i iterations of Algorithm 28.
It suffices to prove that

Pr (dII > c3nε) ≤ 2−Θ(nε) .

Note that in any iteration rd− increases by at most 2. Moreover, in an iteration with
rd− 6= 0, if rd− decreases, it decreases by at least 1. Therefore, in at least dII/3 iterations,
rd− increases or remains unchanged at a nonzero value. Note that, assuming successful
recycling in the previous iterations, rd− > 0 increases or remains unchanged in an iteration
only if
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• A metadata hash collision or a transmission error on metadata messages (i.e., HkMA ,
HMA1 , HMA2 , Hk

M̃A
, HM̃A1

, HM̃A2
, HkMB , HMB1 , HMB2 , Hk

M̃B
, HM̃B1

, HM̃B2
) occurs,

or else,

• The iteration is a type I recovery iteration. Alice and Bob are still reconciling an
earlier inconsistency in their metadata and they are both in case i.A or case i.B, or
one of them is in case ii.A and the other one in case ii.B. Else,

• A transmission error on quantum hash values or a quantum hash collision occurs. At
least one party does not realize that rd− > 0 and conducts one of the cases v, vi.A,
vi.B, or vii.

Moreover, assuming successful recycling in the previous iterations, the value of rd− increases
from zero in an iteration only if

• A metadata hash collision occurs and Alice and Bob act based on incorrect estimates
of each other’s recycling data, or else,

• A transmission error on metadata messages occurs, or else,

• A transmission error on quantum hash values occurs and only one party conducts
case iv, or else,

• A transmission error on the Pauli data messages (i.e., HkPA , HPA1 , HPA2 , Hk
P̃A
, HP̃A1

,
HP̃A2

, HkPB , HPB1 , HPB2 , Hk
P̃B
, HP̃B1

, HP̃B2
) occurs and one party conducts case

vi.A or vi.B while the other is in case vii. Else,

• A transmission error occurs on the communicated QVC messages when both parties
conduct case vii.

Assuming the number of metadata hash collisions is at most c1nε, by Lemma 5.5.9, the
total number of type I recovery iterations is at most c2nε. The total number of transmission
errors is at most 2nε. Therefore, in at least dII/3− (c1 + c2 + 2)nε iterations a quantum
hash collision occurs.
The shared random string used as the classical seed for quantum hashing is δ-biased
with δ = 2−Θ(n√ε). By Lemma 2.4.8, the seeds are also δΘ(1)-statistically close to being
Θ (Rtotal)-wise independent. Therefore, all hashing steps are statistically close to being
fully independent. Combined with Lemma 4.3.2, this implies that the expected number
of quantum hash collisions is at most 10−3dII. For sufficiently large c3, if dII > c3nε,
the Chernoff bound implies that the probability of having at least dII/3− (c1 + c2 + 2)nε
quantum hash collisions is at most 2−Θ(nε).

Definition 5.5.11. We refer to an iteration of Algorithm 28 as a recovery iteration of type
II if it is not a type I recovery iteration and at least one of Alice or Bob conducts one of
the cases iii, iv, or v.
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We use the following lemma to bound the number of type II recovery iterations.

Lemma 5.5.12. Suppose that in the first i iterations of Algorithm 28, recycling is successful,
the number of iterations suffering from a metadata hash collision is at most c1nε and the
number of iterations suffering from a quantum hash collision is at most c3nε. Then the
total number of type II recovery iterations in the first i iterations is at most c4nε.

Proof. Note that by Lemma 5.5.1, ΦRD is always non-negative. If at the beginning of an
iteration ΦRD = 0, then the iteration is a type II recovery iteration only if

• ΨMD > 0 but due to a metadata hash collision or a transmission error on metadata
messages both Alice and Bob do not realize that. In this case they compute their
estimates of each other’s recycling data based on incorrect estimates of each other’s
metadata.

• ΨMD = 0, i.e., Alice and Bob have correct estimates of each other’s recycling data
but a transmission error in communication of quantum hashes occurs.

Therefore, in the first i iterations the total number of type II recovery iterations starting
with ΦRD = 0 is at most (c1 + 2)nε.
Let βRD denote the number of iterations starting with ΦRD > 0 in the first i iterations.
Assuming successful recycling in the preceding iterations, ΦRD > 0 increases or remains
unchanged in an iteration only if

• The iteration is a type I recovery iteration, or else,

• ΨMD > 0 but due to a metadata hash collision or transmission errors on metadata
messages, Alice and Bob don’t realize that and act based on their incorrect estimates
of each other’s recycling data.

• ΨMD = 0, i.e., Alice and Bob have correct estimates of each other’s recycling data
but a quantum hash collision or a transmission error on quantum hash values occurs.

Moreover, ΦRD increases from zero in an iteration only if

• A transmission error occurs, or else,

• A metadata hash collision occurs and the two parties act based on incorrect estimates
of each other’s recycling data.

Therefore, the number of iterations in the first i iterations with ΦRD increasing or re-
maining unchanged at a nonzero value is at most (c1 + c2 + c3 + 2)nε. Note that in each
iteration, regardless of the number of errors and collisions, ΦRD increases by at most
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30. Moreover, if ΦRD decreases, it decreases by at least 1. This implies that the num-
ber of iterations in which ΦRD decreases is at most 30 (c1 + c2 + c3 + 2)nε. So, we have
βRD ≤ 31 (c1 + c2 + c3 + 2)nε.
Therefore, the total number of recovery iterations of type II in the first i iterations is at
most c4nε, where c4

def= 31 (c1 + c2 + c3 + 2) + (c1 + 2).

We define ΨA
PD, ΨB

PD, and ΨPD as follows:

ΨA
PD

def= 6qMA − pdA
+ + pdA

− +
(
kA

PD − 2
)
, (5.34)

ΨB
PD

def= 6qMB − pdB
+ + pdB

− +
(
kB

PD − 2
)
, (5.35)

ΨPD
def= ΨA

PD + ΨB
PD . (5.36)

Note that we always have ΨA
PD,ΨB

PD ≥ 0, and hence ΨPD ≥ 0. The following lemma
characterizes the behaviour of ΦPD in each iteration under different possible scenarios. The
analyses of the first 5 scenarios are along similar lines as those appearing in Lemma 5.5.6.
However, the last two scenarios are more involved. Introducing the variables BI A

PD and
BI B

PD facilitates the analysis.

Lemma 5.5.13. Each iteration of Algorithm 28, regardless of the number of hash collisions
and transmission errors, increases the potential functions ΦA

PD and ΦB
PD by at most a

constant. Moreover, in any iteration with no transmission errors or hash collisions that is
not a type I or type II recovery iteration,

• if ΨPD = 0 at the beginning of the iteration then ΦPD remains the same,

• otherwise, if ΨA
PD > 0 then ΦA

PD decreases by at least 1. Similarly, if ΨB
PD > 0 then

ΦB
PD decreases by at least 1.

Proof. First note that in an iteration with no transmission errors or hash collisions that
is not a type I or type II recovery iteration, if ΨPD = 0 at the beginning of the iteration,
then both Alice and Bob conduct Case vii. In this case, the variables qMA and qMB increase
by 1, while pdA

+ and pdB
+ increase by 6. The remaining variables appearing in ΦPD remain

unchanged. Hence, ΦPD remains the same.
In the remainder of the proof, we focus on ΦA

PD. The potential function ΦB
PD behaves

similarly. We consider all the remaining possible scenarios in the iteration at hand. We
denote by pdA

+, pdA
−, kPA, kP̃A, EPA, EP̃A, and BV A

PD the values at the beginning of the
iteration and denote by pdA

+, pdA
−, kPA, kP̃A, EPA, EP̃A, and BV A

PD the values at the end of
the iteration.

• Scenario 1: Alice and Bob do not conduct the subroutine MPrewind on the rewind-
ing data corresponding to PA and P̃A, respectively: In this case, all the variables
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appearing in ΦA
PD vary by at most a constant. Hence, regardless of the number of

errors and hash collisions, ΦA
PD increases by at most a constant. If the iteration is not

a type I or type II recovery iteration, has no errors or hash collisions, and starts with
ΨA

PD > 0, then we have pdA
− = 0 and pdA

+ < 6qMA at the beginning of the iteration.
Both parties conduct Case vi.B and pdA

+ increases by 1 while the remaining variables
remain unchanged. Therefore, ΦA

PD decreases by at least 1.

In the remaining scenarios, at least one of Alice or Bob conducts the subroutine MPrewind
on the rewinding data corresponding to PA or P̃A, respectively.

• Scenario 2: No status reset on the variables corresponding to PA and P̃A occurs:
In this scenario, all the variables appearing in ΦA

PD change by at most a constant
and so does ΦA

PD. If the iteration has no transmission errors or hash collisions and
is not a type I or type II recovery iterations then both parties conduct Case vi.A.
The variables BI A

PD, BV A
PD, pdA

−, pdA
+, and qMA remain unchanged while kPA and

kP̃A increase by 1. If kPA = kP̃A at the beginning of the iteration then EA
PD remains

unchanged. Therefore, ΦA
PD decreases by at least 2η1, which is at least 1 for sufficiently

large η1. Otherwise, if kPA 6= kP̃A then EA
MD increases by 2, leading to a potential

decrease by at least 2 (η3 − 0.9η3) = 0.2η3, which is at least 1 for sufficiently large η3.

• Scenario 3: kPA 6= kP̃A and due to a mismatch or meeting point transition, exactly
one status reset on the variables corresponding to PA or P̃A occurs: Suppose that
Alice does the status reset. We consider the following two possibilities:

◦ kPA = kP̃A = 1: This can only happen in an iteration starting with kP̃A = 1 in
which Bob does not conduct MPrewind on the rewinding data corresponding to
P̃A. The variable qMA remains the same. Note that in this case, EP̃A = 0. Bob’s
variables kP̃A, and EP̃A remain unchanged. The variable pdA

+ does not decrease
due to Bob’s actions, while he increases pdA

− by at most 1. On the other hand,
Alice’s variables kPA, EPA, and the variables BV A

PD, BI A
PD get reset. Due to

Alice’s actions, pdA
+ decrease by at most 2kPA and pdA

− increases by at most 2kPA.
Therefore, we have

∆ΦA
PD ≤ 2kPA + η2 max{2kPA, 1} − 0.9η3 (kPA − 1) + η3EPA

≤ −kPA [0.9η3 − 0.5η3 − 2η2 − 2] + 0.9η3 − 0.5η3

= 0.4η3 − kPA [0.4η3 − 2η2 − 2] ,

where the inequality holds since at the beginning of every iteration we always
have EPA ≤ 0.5kPA − 0.5. Since kPA ≥ 2, for sufficiently large η3, ΦA

PD decreases
by at least 1.
◦ kPA 6= kP̃A: If Bob conducts the subroutine MPrewind on the rewinding data

corresponding to P̃A then kP̃A increases by 1, while EP̃A increases by at most 1.
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Otherwise, kP̃A remains unchanged at a value greater than 1 and EP̃A remains
the same. In any case, kP̃A and EP̃A increase by at most 1. Moreover, Bob’s
actions do not have any effect on the value of pdA

+ and pdA
−. So Bob’s contribution

increases ΦA
PD by at most 0.9η3. Using a similar argument as in the above case,

Alice’s contribution to ∆ΦA
PD is at most

0.4η3 − kPA [0.4η3 − 2η2 − 2] ,

which is a decreasing function of kPA and is equal to 2η2 + 2 when kPA = 1.
Therefore, regardless of the number of errors and hash collisions, ΦA

PD increases
by at most

0.9η3 + 2η2 + 2 .

Suppose that the iteration is not a type I or type II recovery iteration and
has no transmission errors or hash collisions. Then kP̃A and EP̃A increase by
1. Therefore, Bob’s contribution decreases ΦA

PD by 0.1η3. If kPA ≥ 2 then
Alice’s contribution also decreases ΦA

PD by at least a constant. Therefore, ΦA
PD

decreases by at least 1. Otherwise, if kPA = 1 at the beginning of the iteration,
Alice’s contribution increases ΦA

PD, but it is dominated by the decrease due to
Bob’s contribution. In more detail, in this case Alice’s variables EPA is 0 at
the beginning of the iteration and it remains the same, kPA remains at 1, pdA

+
decreases by at most 2, and pdA

− increases by at most 2. Therefore, ΦA
PD decreases

by at least 0.1η3 − 2η2 − 2, which is at least 1 for sufficiently large η3.

If the status reset occurs on Bob’s side the proof would be similar with the role of
Alice and Bob switched, except in this case qMA increases by at most 1.

• Scenario 4: kPA 6= kP̃A and status resets occur on both sides on the variables
corresponding to PA and P̃A due to mismatch or meeting point transitions: In
this case, kPA = kP̃A = 1 and EA

PD = BV A
PD = BI A

PD = 0. At the beginning of
every iteration, we have EPA ≤ 0.5kPA − 0.5 and EP̃A ≤ 0.5kP̃A − 0.5 and therefore,
EA

PD ≤ 0.5kA
PD − 1. Moreover, pdA

+ decreases by at most 2 max{kPA, kP̃A} ≤ 2kA
PD

and similarly, pdA
− increases by at most 2kA

PD. The variable qMA remains unchanged.
Hence, we have

∆ΦA
PD ≤ 2kA

PD + η2
(
2kA

PD

)
+ 0.9η3

(
kA

PD − 2
)
− η3E

A
PD

≤ −kA
PD (0.9η3 − 0.5η3 − 2η2 − 2) + 1.8η3 − η3

≤ −0.4η3 + 6η2 + 6 ,

where the last inequality follows since kA
PD ≥ 3. Thus, ΦA

PD deceases by at least 1 for
sufficiently large η3.

• Scenario 5: kPA = kP̃A = k and at least one status reset due to a mismatch transition
occurs: Note that this can only happen if due to transmission errors EA

PD increases
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despite having matching step sizes. We show that ΦA
PD increases by at most a constant

in this scenario.
Suppose that a mismatch transition occurs on Alice’s side. The variables BV A

PD and
BI A

PD get reset to 0. This can only contribute to decreasing ΦA
PD. Alice’s EPA gets

reset to 0, which implies that EPA + 1 > k/2. So EPA ≥ 0.5k − 0.5 at the beginning
of the iteration and resetting EPA leads to a decrease by 0.5η4 (k − 1) in ΦA

PD. Bob’s
EP̃A gets reset or increases by at most 1. Note that in any case this cannot increase
ΦA

PD. The remaining variables change by at most 2k while being weighted by smaller
constants. In particular, qMA stays the same and pdA

+ and pdA
− change by at most 2k.

Alice’s kPA gets reset which increases ΦA
PD by η1 (k − 1) and Bob’s kP̃A gets reset or

increases by at most 1, which increases ΦA
PD by less than (η1 + 0.9η3) k. Therefore,

we have

∆ΦA
MD ≤ 2k + η2 (2k) + (2η1 + 0.9η3) k − 0.5η4 (k − 1) .

If k > 1 then for η4 sufficiently large, the potential function ΦA
PD decreases by at least

1. The case of k = 1 is trivial since all the variables change by at most some constant
and so does ΦA

PD.
If no mismatch transition occurs on Alice’s side the proof would be similar with the
role of Alice and Bob switched, except in this case qMA increases by at most 1.

• Scenario 6: kPA = kP̃A = k, exactly one status reset occurs, and the reset is due
to a meeting point transition: Suppose that the meeting point transition occurs on
Alice’s side. Note that in this case it is not necessarily true that kPA and kP̃A have
been equal in the last k iterations while increasing from 1 to k. Therefore, the proof
is more involved compared to Scenario 6 in Lemma 5.5.6.
First, suppose that kPA 6= kP̃A. The variables BV A

PD and BI A
PD get reset to 0. In

the current iteration, if Bob conducts the subroutine MPrewind on the rewinding
data corresponding to P̃A then kP̃A increases by 1 and EP̃A increases by at most 1.
Otherwise, kP̃A remains unchanged at a value greater than 1, and EP̃A remains the
same. Due to re-weighting, an increase by at most 1 in kP̃A increases ΦA

PD by less
than (0.9η3 + η1) k. Due to the same reason, an increase by at most 1 in EP̃A does
not increase ΦA

PD. Finally, qMA remains the same, kPA gets reset to 1, EPA gets reset
to 0, and pdA

+ and pdA
− change by at most 2k.

If BI A
PD > k/100 then, for sufficiently large η6, the decrease due to resetting BI A

PD
dominates any other change in the potential function and ΦA

PD decreases by at least
1. Suppose that BI A

PD ≤ k/100.
Note that in each iteration after the last status reset, the distance between kPA and
kP̃A changes by at most 1. Moreover, in these iterations, the variable BI A

PD increases
by 1 whenever the distance changes. Since kPA = kP̃A at the beginning of the current
iteration, this implies that the maximum distance between kPA and kP̃A after the last
status reset was at most BI A

PD. We consider two case:

143



◦ The meeting point to which Alice backtracks does not match any of Bob’s
meeting points in the current iteration: Consider the iterations in which kPA ≥
k/2 has increased by 1. In these k/2 iterations, Alice has voted for this meeting
point at least 0.8k/2 times. In at most BI A

PD of these iterations kP̃A < k/2. So
Alice has voted for her meeting point at least 0.4k − BI A

PD times in iterations
with k̂P̃A = k̂PA = k/2. But in these iterations her meeting point does not
match any of Bob’s meeting points. The variable BV A

PD increases by 1 when
Alice votes for an incorrect meeting point except when Bob does not conduct
the subroutine MPrewind on the rewinding data corresponding to P̃A. Therefore,
BV A

PD ≥ 0.4k − 2BI A
PD ≥ 0.38k. For sufficiently large η5, the decrease in ΦA

PD
due to resetting BV A

PD dominates any other potential change and ΦA
PD decreases

by at least 1.
◦ The meeting point to which Alice backtracks does indeed match one of Bob’s

meeting points: In this case, Bob should have backtracked to the same meeting
point as well. Consider the iterations in which kP̃A ≥ k/2 has increased by 1.
Among these k/2 iterations, in at least k/2 − BI A

PD iterations kPA was also at
least k/2, i.e., k̂P̃A = k̂PA = k/2. In at least k/2−2BI A

PD of these iterations Alice
has conducted the subroutine MPrewind on the rewinding data corresponding
to PA. Therefore, the fact that Bob does not have enough votes for the meeting
point implies that

k/2− 2BI A
PD − EM̃A − BV A

PD < 0.8k/2 .

Therefore, EP̃A + BV A
PD > 0.1k − 0.02k = 0.08k and the decrease due to the

re-weighting of EP̃A or resetting BV A
PD dominates all other potential changes.

In more detail, we have:
� If EP̃A ≥ k/20 then the decrease due to the re-weighting of EM̃A dominates

the potential change due to mdA
+, mdA

−, and kA
PD. Moreover, resetting EPA,

BV A
PD, and BI A

PD does not increase ΦA
PD. Hence, we have

∆ΦA
PD ≤ 2k + η2 (2k) + [η1 (k − 1) + (0.9η3 + η1) (k)]

− (η4 + η3)EP̃A

≤ − [η4/20− 0.85η3 − 2η2 − 2η1 − 2] k ,

which is at most −1, for every k ≥ 1 and sufficiently large η4.
� If EP̃A < k/20 then BV A

PD is at least 0.08k − k/20 = 0.03k. Therefore, for
sufficiently large η5, the decrease in ΦA

PD due to resetting BV A
PD dominates

any other potential change and ΦA
PD decreases by at least 1.

It remains to consider the case where kPA = kP̃A = 1. In the scenario we are
considering, no status reset occurs on Bob’s side in the current iteration. So kP̃A = 1
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only if k = 1 and Bob does not conduct the subroutine MPrewind on the rewinding
data corresponding to P̃A. But this can only happen if a transmission error or a
hash collision occurs. In this case, all the variables change by at most a constant and
therefore, so does ΦA

PD.
If the meeting point transition occurs on Bob’s side the proof would be similar with
the role of Alice and Bob switched, except in this case qMA increases by at most 1.

• Scenario 7: kPA = kP̃A = k and status resets occur on both sides due to meeting
point transitions: In this case, the variables EA

PD,BV A
PD, and BI A

PD get reset to 0.
Therefore, any change in these variables can only decrease ΦA

PD. The variables kPA
and kP̃A get reset to 1. This increases ΦA

PD by 2η1 (k − 1). The remaining variables
change by at most 2k. First note that if BI A

PD > k/100 then, for sufficiently large
η6, the decrease due to resetting BI A

PD dominates any other change in the potential
function and ΦA

PD decreases by at least 1. Suppose that BI A
PD ≤ k/100. We consider

the following different possibilities:

◦ pdA
− 6= 0: In this case, at least one party has backtracked to a meeting point that

does not match any of the other party’s meeting points in the current iteration.
As argued in Scenario 6, we have BV A

PD ≥ 0.4k − 2BI A
PD ≥ 0.38k. Hence, for

sufficiently large η5, the decrease in ΦA
PD due to resetting BV A

PD dominates any
other potential change and ΦA

PD decreases by at least 1.
◦ pdA

− = 0 and k < 8pdA
−: In this case ΦA

MD decreases by at least

−2k + η2pd
A
− − 2η1 (k − 1) ≥ [η2/8− 2η1 − 2] k ,

which is at least 1 for sufficiently large η2 and every k ≥ 1.
◦ pdA

− = 0 and k ≥ 8pdA
−: In this case, Alice and Bob should have backtracked to a

matching meeting point earlier. First note that if EA
PD ≥ k/100 then the decrease

due to resetting EA
PD guarantees an overall decrease by at least 1, for large enough

η4. Suppose that EA
PD < k/100. Note that if k̂PA = k̂P̃A ≥ 2blog pdA

−c+1 at the
beginning of an iteration then Alice and Bob have at least one matching meeting
point. Moreover, k ≥ 8pdA

− implies that k/4 ≥ 2blog pdA
−c+1. Consider the first

iteration after the last status reset starting with kPA, kP̃A ≥ k/4. Without loss of
generality, suppose that kPA = k/4 at the beginning of this iteration. Note that
the maximum distance between kPA and kP̃A after the last status reset has been
at most BI A

PD. Therefore, in at least k/4 − BI A
PD iterations, k̂PA = k̂P̃A = k/4

and the variable kP̃A has increased by 1, i.e., Bob has conducted the subroutine
MPrewind on the rewinding data corresponding to P̃A. The fact that Bob did
not have enough votes for any of his meeting points when kP̃A reached the value
k/2 implies that(

k/4− BI A
PD

)
− EP̃A − BI A

PD − BV A
PD < 0.8 (k/4) .
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So we have BV A
PD > 0.02k and for sufficiently large η5, the decrease due to

resetting BV A
PD guarantees an overall decrease in ΦA

PD by at least 1.

This completes the proof.

We use the following lemma to bound the number of iterations suffering from a Pauli data
hash collision.

Lemma 5.5.14. Suppose that in the first i iterations of Algorithm 28, recycling is successful,
the number of iterations suffering from a metadata hash collision is at most c1nε and the
number of iterations suffering from a quantum hash collision is at most c3nε. Then the
number of iterations suffering from a Pauli data hash collision in the first i iterations is at
most c5nε with probability at least 1− 2−Θ(nε).

Proof. We call an iteration a dangerous iteration of type III if at the beginning of the
iteration, either pdA

− + pdB
− 6= 0 or kA

PD + kB
PD > 4. Note that Pauli data hash collisions

can only occur in these iterations. Let hPD denote the number of iterations in the first i
iterations suffering from a Pauli data hash collision. Let dIII denote the number of type III
dangerous iterations in the first i iterations. It suffices to prove that

Pr (dIII > c5nε) ≤ 2−Θ(nε) .

By the assumption, the number of iterations suffering from a metadata hash collision is
at most c1nε and the number of iterations suffering from a quantum hash collision is at
most c3nε. Therefore, by Lemmas 5.5.9 and 5.5.12, the total number of type I and type II
recovery iterations in the first i iterations is at most (c2 + c4)nε.

• In type III dangerous iterations ΨPD > 0. Therefore, by Lemma 5.5.13, in these
iterations ΦPD decreases by at least 1, if no error or hash collision occurs and the
iteration is not a type I or type II recovery iteration. In the remaining type III
dangerous iterations ΦPD increases by at most a fixed constant c+

PD.

• In iterations that are not type III dangerous, if no transmission error, metadata hash
collision or quantum hash collision occurs and the iteration is not a type I or type II
recovery iteration, then ΦMD remains unchanged when ΨMD = 0, and it decreases by
at least 1 when ΨMD > 0. Otherwise, ΦPD increases by at most c+

PD.

Hence, the accumulated potential ΦPD in the first i iterations is at most

c+
PD (hPD + (2 + c1 + c2 + c3 + c4)nε)− (dIII − hPD − (2 + c1 + c2 + c3 + c4)nε) .

By Lemma 5.5.1, ΦPD is bounded below by a value in −O (nε). Therefore, we have(
1 + c+

PD

)
hPD− dIII ∈ −O (nε). For sufficiently large c5, if dIII > c5nε then hPD ≥ dIII

2(1+c+
PD) .
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However, for collision probability p = 2−o satisfying p < 1
20(1+c+

PD) , the probability of
having such a large fraction of collisions during the dangerous iterations is very small. In
particular, hash collisions are 2−Θ(n√ε)-statistically close to being dominated by independent
Bernoulli(p) variables. Therefore, Chernoff bound implies that the probability of having
such a large number of collisions is at most 2−Θ(nε).

Definition 5.5.15. We refer to an iteration of Algorithm 28 as a recovery iteration of
type III if it is not a type I or type II recovery iteration and at least one of Alice or Bob
conducts one of the cases vi.A or vi.B.

The following lemma is used to bound the number of type III recovery iterations.

Lemma 5.5.16. Suppose that in the first i iterations of Algorithm 28, recycling is successful
and the number of iterations suffering from metadata, quantum, and Pauli data hash
collisions is at most c1nε, c3nε and c5nε, respectively. Then the total number of type III
recovery iterations in the first i iterations is at most c6nε.

Proof. Note that by Lemma 5.5.1, we always have ΦPD ∈ −O (nε). Moreover, ΨPD is
always non-negative and it is equal to zero if and only if kPA = kP̃A = kPB = kP̃B = 1 and
Alice and Bob have full knowledge of each other’s Pauli data.
If at the beginning of an iteration ΨPD = 0, then the iteration is a type III recovery iteration
only if

• A transmission error occurs on the Pauli data messages, or else,

• A metadata hash collision or a transmission error on metadata messages occurs. In
this case at least one party incorrectly believes that his/her estimate of the other
party’s Pauli data is not full-length.

Therefore, in the first i iterations the total number of type III recovery iterations starting
with ΨPD = 0 is at most (c1 + 2)nε.
Let βPD denote the number of iterations starting with ΨPD > 0 in the first i iterations.
We prove an upper bound on βPD. By Lemma 5.5.13, in each iteration, regardless of the
number of errors and collisions, ΦPD increases by at most some fixed constant. Moreover,
ΦPD increases only in type I or Type II recovery iterations or iterations with errors or hash
collisions. Therefore, by the assumption, the accumulated potential ΦPD in such iterations
is at most O (nε). In the remaining iterations starting with ΨPD > 0, the potential function
ΦPD decreases by at least 1. However, ΦPD ∈ −O (nε) implies that the number of such
iterations is also at most O (nε).
Therefore, the total number of type III recovery iterations in the first i iterations is at most
c6nε, for sufficiently large c6.
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As in the large alphabet case, we let ωi denote the number of iterations suffering from a
transmission error or a hash collision in the first i iterations, plus the number of recovery
iterations of type I, II, or III, in the first i iterations. Note that the constants and the
probabilities in Lemmas 5.5.7, 5.5.9, 5.5.10, 5.5.12, 5.5.14, and 5.5.16 are all independent
of the iteration number i. As a corollary we have:

Corollary 5.5.17. There exist q = 2−Θ(nε) and a constant c7 such that, for every i ∈ [Rtotal],
assuming successful recycling in the first i iterations of Algorithm 28, except with probability
at most q, we have ωi ≤ c7nε.

Next we prove that recycling is successful in every iteration of the simulation. First, we
need the following lemma. Recall that we use RA and RB with the iteration number i as
a super-script to denote their value at the end of the i-th iteration.

Lemma 5.5.18. Let t = c8nε where c8 > 3c7. Then for every i ∈ [Rtotal] where i ≥ t, if
recycling is successful in the first i− 1 iterations and ωi−1 ≤ c7nε, then:

1. RAi [1 : i− t] = RBi [1 : i− t], i.e., at the end of iteration i, the recycling data of
Alice and Bob agree in a prefix of length at least i− t.

2. RAi [1 : i− t] = RAi+1 [1 : i− t], i.e., the prefix of RA of length i − t does not get
modified in the next iteration. The same statement holds for RB.

3. For every k ∈ [i− t] such that RAi [k] = RBi [k] = S, we have Wk = 04r.

Proof. The proof is exactly the same as the proof of Lemma 4.5.16, but in terms of different
constants c1, . . . , c8 used in the current section.

Lemma 5.5.19. Let LQVC = c9nε, where c9 > c7 + c8. Then with probability at least
1− 2−Θ(nε), recycling is successful throughout the execution of Algorithm 28.

Proof. The exact same inductive argument used in Lemma 4.5.17 is applicable here, using
the constants c1, . . . , c9 of this section.

The following two lemmas characterize the behaviour of the overall potential function in
each iteration, assuming successful recycling in every iteration of the simulation.

Lemma 5.5.20. Assuming successful recycling throughout the execution of Algorithm 28,
each iteration of the algorithm, regardless of the number of hash collisions and transmission
errors, decreases the potential function Φ, defined in Eq. (5.1), by at most some fixed
constant c−.

Proof. By Lemmas 5.5.6 and 5.5.13, in each iteration, the potential functions ΦMD and
ΦPD increase by at most a fixed constant. Moreover, all the variables appearing in ΦRD and
ΦQ change by at most a constant. Therefore, in any iteration, regardless of the number of
errors and hash collisions, the potential function Φ decreases by at most some constant.
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Lemma 5.5.21. Assuming successful recycling throughout the execution of Algorithm 28,
each iteration with no transmission error or hash collision increases the potential function
Φ by at least 1.

Proof. Note that in an iteration with no error or hash collision Alice and Bob agree on the
iteration type. Moreover, if Itertype = MD,RD or PD, they also agree on whether they
extend or rewind the data and if Itertype = MES (Case ii), then exactly one of them is
in sub-case A and the other one in sub-case B. We analyze the potential function in each
case keeping in mind the hierarchy of the cases; e.g., Case ii or later cases are encountered
only if Alice and Bob have full knowledge of each other’s metadata. Note that ΨMD = 0
on entering Case ii, ΨMD = ΦRD = 0 on entering Case vi and ΨMD = ΦRD = ΨPD = 0 on
entering Case vii.

• Alice and Bob are both in Case i.A or both in Case i.B:

◦ ΨMD > 0, thus by Lemma 5.5.6, ΦMD decreases by at least 1.
◦ ΦRD, ΦPD and ΦQ stay the same.

Therefore, Φ increases by at least 1.

• Alice is in Case ii.A, Bob is in Case ii.B:

◦ ΨMD = 0, thus by Lemma 5.5.6, ΦMD stays the same.
◦ rd+ and rd− stay the same.
◦ `A

QVC stays the same and `B
QVC increases by 1.

◦ qMA stays the same and qMB increases by 1.
◦ All other variables appearing in ΦA

PD and ΦB
PD stay the same.

◦ g stays the same, b increases by at most 1, and u decreases by 1.

Therefore, ΦRD, ΦPD and ΦQ increase by 1, 6 and at least 8, respectively. So Φ
increases by at least 1.

• Alice is in Case ii.B, Bob is in Case ii.A: This case is similar to the one above.

• Alice and Bob are in Case iii:

◦ ΨMD = 0, thus by Lemma 5.5.6, ΦMD stays the same.
◦ rd+, `A

QVC and `B
QVC stay the same.

◦ rd− decreases by 1.
◦ qMA and qMB do not decrease. qMA increases by 1, if RA [`RA] = S. Similarly,
qMB increases by 1, if RB [`RB] = S.
◦ All other variables appearing in ΦA

PD and ΦB
PD stay the same.
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◦ ΦQ stays the same.

Therefore, ΦRD decreases by 13 and ΦPD increases by at most 12. So Φ increases by
at least 1.

• Alice and Bob are in Case iv:

◦ ΨMD = 0, thus by Lemma 5.5.6, ΦMD stays the same.
◦ rd+, `A

QVC and `B
QVC stay the same.

◦ rd− decreases by 1.
◦ qMA and qMB do not decrease. They both increase by 1, if RA [`RA] = RB [`RB] =

S.
◦ All other variables appearing in ΦA

PD and ΦB
PD stay the same.

◦ ΦQ stays the same.

Therefore, as in Case iii, ΦRD decreases by 13 and ΦPD increases by at most 12. So
Φ increases by at least 1.

• Alice and Bob are in Case v:

◦ ΨMD = 0, thus by Lemma 5.5.6, ΦMD stays the same.
◦ rd− stays at 0 and rd+ increases by 1.
◦ `A

QVC and `B
QVC stay the same.

◦ ΦPD and ΦQ stay the same.

Therefore, ΦRD decreases by 2 and Φ increases by 2.

• Alice and Bob are both in Case vi.A or both in Case vi.B:

◦ ΨMD = 0, thus by Lemma 5.5.6, ΦMD stays the same.
◦ ΦRD stays at 0.
◦ ΨPD > 0, thus by Lemma 5.5.13, ΦPD decreases by at least 1.
◦ ΦQ stays the same.

Therefore, Φ increases by at least 1.

• Alice and Bob are in Case vii:

◦ ΨMD = 0, thus by Lemma 5.5.6, ΦMD stays the same.
◦ ΦRD stays at 0.
◦ ΨPD = 0, thus by Lemma 5.5.13, ΦPD stays the same.
◦ u stays at 0.
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◦ If b 6= 0 then g stays the same and b decreases by 1, otherwise, b stays at 0 and
g increases by 1.

Therefore, ΦQ increases by 1 and so does Φ.

So assuming successful recycling throughout the execution of the algorithm, the potential
function Φ increases by at least 1, in every iteration with no transmission error or hash
collision.

Finally, we are ready to prove our main result:

Theorem 5.2.1 (Restated). Consider any n-round alternating communication protocol
Π in the plain quantum model, communicating messages over a noiseless channel with a
constant size alphabet Σ. Algorithm 28 is a quantum coding scheme which given Π, simulates
it with probability at least 1−2−Θ(nε), over any fully adversarial error channel with alphabet
Σ and error rate ε. The simulation uses n (1 + Θ (

√
ε)) rounds of communication, and

therefore achieves a communication rate of 1−Θ (
√
ε).

Proof. Let Rtotal =
⌈
n
2r

⌉
+ αnε, where α is a sufficiently large constant to be determined.

By Lemma 5.5.19, recycling is successful throughout the execution of the algorithm with
probability at least 1 − 2−Θ(nε). Assuming successful recycling, by Lemmas 5.5.7, 5.5.10
and 5.5.14, the total number of iterations with a hash collision is at most (c1 + c3 + c5)nε
except with probability 2−Θ(nε). Since the number of iterations is less than 2n, the total
number of iterations with a transmission error is at most 2nε. Therefore, by Lemma 5.5.21,
in the remaining Rtotal − (c1 + c3 + c5 + 2)nε iterations the potential function Φ increases
by at least 1. The potential function decreases in an iteration only if a hash collision or a
transmission error occurs and by Lemma 5.5.20, it decreases by at most a fixed constant c−.
As shown in the proof of Lemma 5.5.1, ΦMD ≥ −80λ1nε, ΦRD ≥ 0, and ΦPD ≥ −200η1nε.
For α def= (c− + 1) [c1 + c3 + c5 + 2] + 80λ1 + 200η1, at the end of the simulation, we have

g − b− u ≥ ΦQ ≥ Φ− (80λ1 + 200η1)nε
≥ [Rtotal − (c1 + c3 + c5 + 2)nε]− c− (c1 + c3 + c5 + 2)nε− (80λ1 + 200η1)nε

≥ n

2r .

Therefore, the simulation is successful with probability at least 1 − 2−Θ(nε). The cost of
entanglement distribution is Θ (n

√
ε). Moreover, the amount of communication in each

iteration is independent of the iteration type and is always (2r + Θ(1)): in every iteration
each party sends Θ(1) symbols to communicate the hash values in line 18 of Algorithm 28;
each party sends another r symbols either in line 22 of Algorithm 28, if Itertype 6= SIM or
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in Algorithm 26, i.e., the Q-simulate subroutine. Hence, we have

Total number of communicated qudits = Θ
(
n
√
ε
)

+Rtotal · (2r + Θ(1))

= Θ
(
n
√
ε
)

+
(⌈

n

2r + Θ (nε)
⌉)

(2r + Θ(1))

= n
(
1 + Θ

(√
ε
))

.
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Chapter 6

Conclusions and outlook

6.1 Summary

In this thesis, we have studied simulation of noiseless two-party interactive quantum com-
munication via low noise channels. A lower bound of 1−Θ(

√
ε) on the optimal achievable

communication rate is proved in the plain model of quantum communication against adver-
sarial noise of rate ε. To achieve this goal, we first studied the teleportation-based model in
which the parties have access to free entanglement and the communication is over a noisy
classical channel. In this model, we showed the same lower bound of 1 − Θ(

√
ε) in the

large alphabet case. Then we adapted the framework developed for the teleportation-based
model to the plain quantum model in which the parties do not have access to pre-shared
entanglement and communicate over a noisy quantum channel. We showed how quantum
Vernam cipher can be used in the interactive communication setting to efficiently recycle
and reuse entanglement, allowing us to simulate any input protocol with an overhead of
only 1 + Θ(

√
ε). Finally, we combined our framework with meeting point-based rewinding

to extend our results to constant-size communication alphabets. Our coding scheme beats
the currently best known overhead of 1 − O(

√
ε log log 1/ε), in the corresponding plain

classical model, which is also conjectured to be optimal in [37].

6.2 Implications of our results

In this work, we have studied the capacity of noisy quantum channels to implement two-
way communication. In particular, we studied the ability of quantum channels to simulate
interactive two-party communication, with the channel available in both directions, but
without any assistance by side resources, e.g., classical side channels. As discussed in
Section 1.1.4, this can be seen as a generalization of channel coding. Quantum effects give
rise to surprising phenomena which make it more challenging to characterize the capacity of
quantum channels for reliable communication compared to their better understood classical
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counterparts. For example, the qubit erasure channel with erasure probability 1
2 has no

one-way quantum capacity [7]. But when the channel can be used in either direction, noisy
backwards classical communication becomes possible, and one can show a lower bound of
1
10 on the capacity [7, 49]. A similar effect happens to the qubit depolarizing channel [8, 16].
Thus, comparing memoryless channels in the classical and the quantum setting, the one-
way capacity of a classical channel is always an upper bound on its two-way capacity,
while this does not necessarily hold for all quantum channels. These effects enrich the
subject but also add to the challenge of determining the capacity of quantum channels for
reliable communication. Not much is known about the two-way quantum capacity. For
general memoryless quantum channels, the two-way capacity is only known to be upper
bounded by the entanglement-assisted quantum capacity QE [9, 10], which is equal to
the quantum feedback capacity [12]. This bound is not tight (for example, for very noisy
qubit depolarizing channel, the two-way capacity vanishes but QE > 0). As discussed in
Section 1.2.1, coding seems much harder in the interactive setting and our work presents
important progress in the low-noise regime. For the qubit depolarizing channel with noise
rate ε, in the low noise regime, the one-way capacity is 1−H (ε) + ε log 3 + O (ε2) [48]. We
have established an achievable rate of 1−Θ (

√
ε) against adversarial noise for interactive

communication. If our conjectured optimality holds, in this case the interactive capacity
will be lower than one-way capacity in the dependence on ε.
A further implication of our result is that quantum communication complexity is very robust
against transmission noise at low error rates. In particular, for alternating protocols like
those considered in this paper and most known protocols in the communication complexity
setting, the overhead factor goes to one as the noise goes to zero, allowing one to get the
full quantum advantage whenever such an advantage can be obtained.

6.3 Open questions

This relatively new area of research is still vastly unexplored. Here we present a few
interesting research directions to pursue following this work.

Interactive capacity of quantum channels. Two questions stem directly from our
work. First, we conjecture that a rate of 1 − O (

√
ε) is optimal, up to leading order in

dependence on ε. Is this conjecture true, and if so, what is the constant hidden in the O
notation? Second, what is the optimal rate of communication in the high noise regime, for
large ε?
The interactive capacity of a channel can be defined as the optimal asymptotic rate of
simulating noiseless interactive communication over the noisy channel. The only non-trivial
upper bound on the interactive capacity of channels is due to Kol and Raz [46] in the
classical setting. They prove a tight upper bound on the interactive capacity of the binary
symmetric channel by studying the communication cost of the pointer jumping game–a
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well-studied problem in communication complexity–over this noisy channel. Computing
this function requires a high level of interaction in the quantum setting [45], making it a
“hard” task to achieve over noisy quantum channels and a promising candidate to study.
The heart of the difficulty in proving such a result lies in the fact that as opposed to what
is usually satisfactory in the (noiseless) communication complexity setting where we prove
bounds that are tight up to multiplicative constants, here we need to prove a bound that
is tight up to second order terms, while the communication is over a noisy channel.

Adaptive simulation of non-alternating protocols. Another important direction is
concerning the fact that our coding scheme assumes that the protocol to be simulated is
alternating, i.e., Alice and Bob alternate in sending qudits to each other. We believe that a
lot of the machinery that we have developed should transpose very well to the more general
setting where the protocol to be simulated has a more general structure, potentially with
messages constructed from different number of qudits in different rounds. As discussed in
Ref. [37], for such protocols in order to achieve a high communication rate it is necessary
to use adaptive simulation protocols. In an adaptive protocol, the communication order
is not predetermined and each party independently determines whether to speak or listen
in the next round according to their view of the simulation. When the parties’ views of
the simulation differ this can lead to communication rounds in which both parties speak or
listen simultaneously. The channel’s behaviour must be carefully defined in each of these
scenarios.

Interactive quantum communication against insertion-deletion errors. In the
current work, we already have to deal with many types of synchronization errors at the
teleportation, Quantum Vernam Cipher and quantum hashing level. An interesting question
from this perspective is: what about synchronization errors over the channel itself?
Synchronization errors arising in data transmission are modeled by insertion-deletion chan-
nels. This error model, which has gained considerable attention in recent years, is a
generalization of the better-understood model of corruption errors. Recently, there has
been much interest in the classical interactive coding literature towards such type of er-
rors [19, 39, 62]. In particular, Haeupler and Shahrasbi [38] introduced synchronization
strings, novel combinatorial structures which were used to devise coding schemes against
insertion-deletion errors for interactive classical communication [39] and later, for one-way
quantum communication [47]. Inspired by these recent developments, we believe that
our framework can be adapted to design an algorithm for protecting interactive quantum
communication against adversarial insertion-deletion errors.

Multiparty noisy interactive quantum communication. A natural extension of the
task considered in this work is multiparty distributed computation over arbitrary networks
with noisy communication links. A naive strategy in the multiparty setting would be to
break any given input protocol designed for noiseless communication into sub-protocols
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between pairs of adjacent parties and then simulate every sub-protocol using a two-party
interactive coding scheme. However, this approach runs into several fundamental problems.
Each outgoing message of a party is a function of the received messages from all other
parties in earlier rounds. As a result, a local error over a communication link in any part
of the network can propagate throughout the network after some rounds of communication.
Therefore, every locally detected error must be signaled to the other parties to trigger
a global rewind. This would require a synchronization mechanism to maintain a global
view of the simulation with some reasonable delay at every node. Depending on the
topology of the underlying network, several algorithms have been proposed to coordinate
the simulation (see, e.g., [54, 2]). We believe that the framework we have developed can
be used to translate these ideas to the quantum setting and reproduce many of the known
classical results. However, it would be more interesting to investigate whether purely
quantum effects that are not available in the classical setting can be utilized to design new
algorithms.

Private noisy interactive quantum communication. Consider two parties Alice and
Bob who given access to a noisy communication channel wish to compute a function f(x, y)
of their respective private inputs x and y, while preserving their privacy in an information
theoretic sense; that is, they do not want to reveal any information about their inputs to
each other beyond what they learn from f(x, y). Surprisingly, Gelles, Sahai, and Wadia [34]
show that in the classical setting, it is not always possible to simultaneously achieve privacy
and error-resilience against adversarial noise. Another no-go result [24] in this direction
has been shown for “knowledge-preserving” simulation of interactive protocols against
adversarial noise, where the goal is for the encoded protocol to carry the same amount of
information as the original protocol.
Does quantum communication allow one to evade the classical no-go results obtained for
private interactive communication in the cryptographic settings above? As we have seen in
this work, the unique properties of quantum information can be helpful in the interactive
communication setting, since we were able to achieve a higher communication rate over
fully adversarial binary channels in the plain model than the conjectured upper bound in
the corresponding plain classical setting.

Fully fault-tolerant interactive quantum communication. Considering a larger
fault-tolerant setting due to the inherently fragile nature of quantum data, can we perform
high rate interactive quantum communication when the local quantum computations are
also noisy?

Many other interesting directions of research in the quantum setting stem from recent
exciting developments in the classical setting, for example [13, 15, 14, 32, 33, 35, 17, 36,
28, 30, 40, 5]. We believe that our framework should be extendable to the study of many
of these problems in the quantum setting.
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