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RÉSUMÉ

La théorie de l’information quantique s’est développée à une vitesse fulgurante au cours

des vingt dernières années, avec des analogues et extensions des théorèmes de codage

de source et de codage sur canal bruité pour la communication unidirectionnelle. Pour la

communication interactive, un analogue quantique de la complexité de la communication

a été développé, pour lequel les protocoles quantiques peuvent performer exponentielle-

ment mieux que les meilleurs protocoles classiques pour certaines tâches classiques. Ce-

pendant, l’information quantique est beaucoup plus sensible au bruit que l’information

classique. Il est donc impératif d’utiliser les ressources quantiques à leur plein potentiel.

Dans cette thèse, nous étudions les protocoles quantiques interactifs du point de vue

de la théorie de l’information et étudions les analogues du codage de source et du codage

sur canal bruité. Le cadre considéré est celui de la complexité de la communication :

Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantité

de communication échangée, sans égard au coût des calculs locaux. Nos résultats sont

séparés en trois chapitres distincts, qui sont organisés de sorte à ce que chacun puisse

être lu indépendemment.

Étant donné le rôle central qu’elle occupe dans le contexte de la compression inter-

active, un chapitre est dédié à l’étude de la tâche de la redistribution d’état quantique.

Nous prouvons des bornes inférieures sur les coûts de communication nécessaires dans

un contexte interactif. Nous prouvons également des bornes atteignables avec un seul

message, dans un contexte d’usage unique.

Dans un chapitre subséquent, nous définissons une nouvelle notion de complexité

de l’information quantique. Celle-ci caractérise la quantité d’information, plutôt que de

communication, qu’Alice et Bob doivent échanger pour calculer une tâche bipartie. Nous

prouvons beaucoup de propriétés structurelles pour cette quantité, et nous lui donnons

une interprétation opérationnelle en tant que complexité de la communication quantique

amortie. Dans le cas particulier d’entrées classiques, nous donnons une autre caractéri-

sation permettant de quantifier le coût encouru par un protocole quantique qui oublie de

l’information classique. Deux applications sont présentées : le premier résultat général



de somme directe pour la complexité de la communication quantique à plus d’une ronde,

ainsi qu’une borne optimale, à un terme polylogarithmique près, pour la complexité de la

communication quantique avec un nombre de rondes limité pour la fonction « ensembles

disjoints ».

Dans un chapitre final, nous initions l’étude de la capacité interactive quantique pour

les canaux bruités. Étant donné que les techniques pour distribuer de l’intrication sont

bien étudiées, nous nous concentrons sur un modèle avec intrication préalable parfaite

et communication classique bruitée. Nous démontrons que dans le cadre plus ardu des

erreurs adversarielles, nous pouvons tolérer un taux d’erreur maximal de 1/2− ε , avec

ε > 0 arbitrairement petit, et ce avec un taux de communication positif. Il s’ensuit que

les canaux avec bruit aléatoire ayant une capacité positive pour la transmission unidirec-

tionnelle ont une capacité positive pour la communication interactive quantique.

Nous concluons avec une discussion de nos résultats et des directions futures pour

ce programme de recherche sur une théorie de l’information quantique interactive.

Mots clés : Théorie des codes, compression, complexité de la communication,

somme directe, ensembles disjoints, complexité de l’information, théorie de l’in-

formation à usage unique, calcul et information quantiques, redistribution d’états

quantiques.
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ABSTRACT

Quantum information theory has developed tremendously over the past two decades,

with analogues and extensions of the source coding and channel coding theorems for

unidirectional communication. Meanwhile, for interactive communication, a quantum

analogue of communication complexity has been developed, for which quantum proto-

cols can provide exponential savings over the best possible classical protocols for some

classical tasks. However, quantum information is much more sensitive to noise than

classical information. It is therefore essential to make the best use possible of quantum

resources.

In this thesis, we take an information-theoretic point of view on interactive quantum

protocols and study the interactive analogues of source compression and noisy channel

coding. The setting we consider is that of quantum communication complexity: Alice

and Bob want to perform some joint quantum computation while minimizing the re-

quired amount of communication. Local computation is deemed free. Our results are

split into three distinct chapters, and these are organized in such a way that each can be

read independently.

Given its central role in the context of interactive compression, we devote a chapter

to the task of quantum state redistribution. In particular, we prove lower bounds on its

communication cost that are robust in the context of interactive communication. We also

prove one-shot, one-message achievability bounds.

In a subsequent chapter, we define a new, fully quantum notion of information cost

for interactive protocols and a corresponding notion of information complexity for bipar-

tite tasks. It characterizes how much quantum information, rather than quantum commu-

nication, Alice and Bob must exchange in order to implement a given bipartite task. We

prove many structural properties for these quantities, and provide an operational inter-

pretation for quantum information complexity as the amortized quantum communication

complexity. In the special case of classical inputs, we provide an alternate characteriza-

tion of information cost that provides an answer to the following question about quantum

protocols: what is the cost of forgetting classical information? Two applications are pre-



sented: the first general multi-round direct-sum theorem for quantum protocols, and a

tight lower bound, up to polylogarithmic terms, for the bounded-round quantum com-

munication complexity of the disjointness function.

In a final chapter, we initiate the study of the interactive quantum capacity of noisy

channels. Since techniques to distribute entanglement are well-studied, we focus on a

model with perfect pre-shared entanglement and noisy classical communication. We

show that even in the harder setting of adversarial errors, we can tolerate a provably

maximal error rate of 1/2− ε , for an arbitrarily small ε > 0, at positive communication

rates. It then follows that random noise channels with positive capacity for unidirectional

transmission also have positive interactive quantum capacity.

We conclude with a discussion of our results and further research directions in inter-

active quantum information theory.

Keywords: Coding Theory, Compression, Communication Complexity, Direct

Sum, Disjointness, Information Complexity, One-Shot Information Theory, Quan-

tum Computation and Information, Quantum State Redistribution.
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NOTATION

Quantum Theory; Section 2.1.

A,B,C, . . . Quantum systems, and associated Hilbert spaces.

|A| Dimension of quantum system A.

AB Tensor product space A⊗B.

R Usually reserved for a purifying quantum system.

X ,Y,Z Classical systems.

D(A) Set of density operators on quantum system A.

H (A) Set of pure states on quantum system A.

C (A,B) Set of quantum channels from D(A) to D(B).

C (A) C (A, A).

U (A, B) Set of isometries from D(A) to D(B).

U (A) Set of unitaries on D(A).

ρA,σA,θ A, · · · Density operators in D(A).

TrB(ρ
AB) Partial trace over B system. The resulting state is denoted ρA.

Tr¬A(ρ
AB) TrB(ρ

AB).

|ψ〉A, |φ〉A, · · · Pure states in H (A).

|ρ〉AR Purification of ρA.

N A→B,M A→B Channels in C (A,B).

N2 ◦N1 Composition of channels N1 and N2.

U,V Isometries.

IA Identity on system A.

UA→BE
N Isometric extension of channel N A→B.

O† Adjoint of operator O.

∆B Measurement channel on D(B).

Tε Depolarizing channel of parameter ε .

X,Z Pauli operators.



Quantum Information Theory; Section 2.2.

‖O‖1 Trace norm of operator O.

‖ρA−σA‖1 Trace distance between ρA and σA.

‖N −M ‖� Diamond norm between N and M .

log Base 2 logarithm.

H(A)ρ von Neumann entropy of ρA. If A is classical, Shannon entropy.

H(p) Binary Shannon entropy, with p ∈ [0,1].

H(A|B)ρ Conditional entropy of ρAB.

I(A;B)ρ Mutual information of ρAB. If A is classical, Holevo information.

I(A;B|C) Conditional quantum mutual information of ρABC.

One-Shot Quantum Information Theory; Section 3.2.

P(A) Set of positive semi-definite operators on A.

D≤(A) Set of sub-normalized states on A.

F(ρ,σ) Fidelity between ρ and σ .

F̄(ρ,σ) Generalized fidelity between ρ and σ .

P(ρ,σ) Purified distance between ρ and σ .

Bε(ρ) ε-ball around ρ .

D(ρ‖σ) Relative entropy of ρ with respect to σ

Dmax(ρ‖σ) Max-relative entropy of ρ with respect to σ .

Hmin(A|B)ρ Conditional min-entropy of ρAB.

Hmax(A|B)ρ Conditional max-entropy of ρAB.

Imax(A;B)ρ Max-information of ρAB.

Dε
max(ρ‖σ) Smooth max-relative entropy of ρ with respect to σ .

Hε
min(A|B)ρ Smooth Conditional min-entropy of ρAB.

Hε
max(A|B)ρ Smooth Conditional max-entropy of ρAB.

Iε
max(A;B)ρ Smooth max-information of ρAB.

δI(A;B)(ρ,σ) |I(A;B)ρ − I(A;B)σ |.
R Quantum state redistribution channel, with implicit A,B,C systems.
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Quantum Communication Complexity and Models of Communica-

tion; Sections 2.3 and 2.4.

T Classical relation.

X ,Y,ZA,ZB Input and output sets for classical relations.

Ain,Bin,Aout ,Bout Input and output registers for quantum tasks and protocols.

Π Quantum protocol, usually in the hybrid model. Also used to represent

the channel in C (AinBin,AoutBout) implemented by the protocol Π.

Πν Quantum protocol, usually in the randomized model and with underly-

ing distribution ν .

ΠCB Quantum protocol in the Cleve-Buhrman model.

µ Input distribution on X×Y .

ρµ Representation of µ as a quantum state in D(AinBin). Often, µ is left

implicit.

ρ General input state.

Π(x,y) Output, in D(AoutBout), of protocol Π on input (x,y).

Pe(Π,µ) Probability of error of Π on µ , for some implicit relation T .

(T,µ,ε) Distributional classical task of implementing relation T on input distri-

bution µ with average error at most ε .

T (T,µ,ε) Set of all protocols in the hybrid model implementing (T,µ,ε).

T M(T,µ,ε) Restriction of T (T,µ,ε) to M-message protocols.

(T,ε) Worst-case classical task of implementing relation T with error at most

ε on all inputs.

T (T,ε) Set of all protocols in the randomized model implementing (T,ε).

⊗i(Ti,µi,εi) Product task of implementing each of (Ti,µi,εi) in parallel.

(T,µ,ε)⊗n ⊗n
i=1(T,µ,ε).

xiv



Quantum Communication Complexity and Models of Communica-

tion; Continued.

(N ,ρ,ε) Quantum task of implementing channel N on input state ρ with error

at most ε .

T (N ,ρ,ε) Set of all protocol in the hybrid model implementing (N ,ρ,ε).

Ai,Bi,Ci Registers of a protocol after message i has been sent.

A′,B′ Leftover registers, beside Aout ,Bout , at the end of a protocol.

TA,TB Register holding the pre-shared entanglement ψ in a protocol.

U1, · · · ,UM+1 Unitaries defining a protocol.

QCC(Π) Quantum communication cost of protocol Π.

QCCA→B(Π) Quantum communication cost from Alice to Bob.

QCC(T,µ,ε) Quantum communication complexity of task (T,µ,ε).

QCCM(T,µ,ε) M-message quantum communication complexity of (T,µ,ε).

AQCC(T,µ,ε) Amortized quantum communication complexity of (T,µ,ε)

Quantum Information Complexity; Section 4.2.

QIC(Π,ρ) Quantum information cost of hybrid protocol Π on input state ρ .

QICR(Πν ,ρ) Quantum information cost of randomized protcol Πν on input state ρ .

QICCB(ΠCB,ρ) Quantum information cost of protcol ΠCB in the Cleve-Buhrman model

on input state ρ .

QIC(T,µ,ε) Quantum information complexity of task (T,µ,ε).

QICM(T,µ,ε) M-message quantum information complexity of task (T,µ,ε).

QIC(T,ε) Quantum information complexity of task (T,ε).

QICD(T,ε) Max-distributional quantum information complexity of task (T,ε).

QIC(⊗i(Ti,εi)) Quantum information complexity of product task ⊗i(Ti,εi).

QIC×(⊗i(Ti,εi)) Product quantum information complexity of product task ⊗i(Ti,εi).

xv



Interactive Quantum Capacity; Sections 5.2 and 5.3.

sA,sB History of Alice and Bob.

` Magnitude of error for a guess about an history.

L(s,si) Equals ` for a guess si about history s.

Σ Alphabet of a tree code.

α Distance parameter of a tree code.

εα 1−α .

E,D Encoding and decoding functions for a tree code.

Ē Extension of E to strings.

∆(e1,e2) Hamming distance between e1 and e2.

Bi Encoding function for the ith message of a blueberry code.

B Concatenation of the Bi’s.

Γ Alphabet of a blueberrry code.

β Erasure parameter of a blueberry code.

εβ 1−β .

Fq,N Basis for operators acting on N systems of dimension q.

Eδ ,q,N Elements of Fq,N of weight at most δN.

|ψinit〉 Input state for the protocol to be simulated.

|ψ ′init〉 Version of |ψinit〉 input to the simulation protocol.∣∣ψ f inal
〉

Final state for the protocol to be simulated.

M Π Quantum instrument M with black-box access to protocol Π.

Q Simulation protocol in the quantum model.

S Simulation protocol in the shared entanglement model.

A Adversary.

A Set of adversaries.

QΠ(A(|ψinit〉)) Output of simulator Q run against adversary A on input |ψinit〉.
QΠ(A) Channel implemented by running Q against A.

A Q
δ ,q,N′ Class of adversaries in quantum model with error rate bounded by δ .

A S
δ ,q,N′ Analogue of A Q

δ ,q,N′ in the shared entanglement model.
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CHAPTER 1

INTRODUCTION

1.1 Information Theory

One of the cornerstones of the 20th century was the development of information

theory by Shannon [118]. In a single paper, Shannon laid the ground for a revolution

in communication technology. His two quintessential theorems, the noiseless and noisy

coding theorems, changed forever the way we approached compression and error correc-

tion codes. The noiseless coding theorem considers the setting in which a source emits

messages from some set, each with some a priori probability. The theorem then states

that a single quantity, depending only on these probabilities and not on the underlying

messages, characterizes the optimal asymptotic rate for communicating many emissions

of that source. This optimal rate is the entropy of the source. Based on the entropy,

we can define further quantities with operational relevance, a prominent example being

the mutual information between two random variables. Shannon’s noisy coding theo-

rem then characterizes the maximum rate at which it is possible to communicate over

a noisy channel in terms of such a mutual information: the maximum over all possi-

ble input distributions of the mutual information between this input distribution and the

induced distribution at the channel’s output. These give neat characterizations of opera-

tional tasks in terms of simple quantities derived from Shannon’s entropy. An excellent

introduction to the field of information theory is Ref. [49].

1.2 Communication Complexity

In modern days, with the advent of fast internet communication, mobile phones,

and multi-processor personal computers, new challenges emerge for communication in

interactive settings. Indeed, a lot of modern communication is highly interactive, often

arising as an integral part of computational processes. Communication complexity was

introduced by Abelson [2] for computation over reals and then adapted to computation



over booleans by Yao [138] in order to study questions in distributed computation and

circuit complexity. It has found applications in proving lower bounds in various models

of computation. The basic setting is the following: Alice and Bob want to compute

a joint function of their respective inputs while minimizing the communication they

must exchange in order to do so. It is an idealized setting in which local computation

is deemed free. It is one of the few models of computation for which it is possible

to prove unconditional lower bounds. A typical example, and probably the one most

studied, of a function in this setting is the disjointness function. Viewing Alice’s and

Bob’s input as subsets of {1,2, · · · ,n− 1,n}, this function asks whether these sets are

disjoint. Its bounded error classical communication complexity is linear [86]. In general,

interaction plays an important role in communication complexity: for any given number

of rounds, there exist functions for which a single additional round of interaction enables

an exponential saving in communication [106]. An excellent introduction to the field of

communication complexity is Ref. [92].

1.3 Interactive Information Theory

The works of Shannon and his successors consider the case of unidirectional com-

munication, and this paradigm is only well-motivated when we can afford to wait and

communicate large blocks of data at once. In the highly interactive regime, in which we

might want to run long protocols, but only once, we do not want to use compression and

error correction codes designed to work in the unidirectional setting, since these will in

general have parameters that are far from optimal in this interactive setting, and might

impose an intolerable lag. Recent years have seen a flurry of results in classical inter-

active information and coding theory, for both compression [10, 33, 36, 38] and error

correction [27, 35, 90, 114]. In particular, it has been shown that even under a constant

rate of adversarial error, a constant factor overhead is sufficient to robustly implement

interactive protocols [114]. Even more recently, some works have addressed the question

of interactive channel capacity: the highest communication rate attainable over a given

noisy channel for robustly implementing interactive protocols [90]. Also, compression
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results are directly related to a generalization of Shannon’s entropy to the interactive set-

ting, termed information complexity. For a given interactive task, it has been shown that

the information complexity corresponds to the amortized communication complexity of

the task, i.e. the minimum amount of interactive communication per copy required for

implementing such a task many times in parallel [33, 36]. Moreover, this information

complexity paradigm can be used to show powerful communication complexity lower

bounds. For example, it has recently been used to tightly characterize, up to second or-

der in the input length, the communication complexity of the disjointness function [38].

Such a tight characterization seemed out of reach not so long ago, and witness the power

of information-theoretic techniques to solve problems in communication complexity.

Other problems for which information complexity has found many applications are the

direct sum and direct product questions in communication complexity. The direct sum

question asks if solving n copies of a task in parallel can be done more efficiently than

by solving it n times sequentially, while the related direct product question asks whether

the probability of successfully solving all n copies of a task in parallel, when given n

times the resources required to solve it once, decays exponentially in n. An excellent

introduction to the field of interactive information theory is Ref. [34].

1.4 Quantum Information Theory

As much as the work of Shannon led to what might be called the information age

in the second half of the 20th century, it might well be that the 21st century will be

the quantum age. Indeed, with the invention of quantum key distribution by Bennett

and Brassard [13], promising unconditionally secure cryptography, and the discovery

by Shor [120] of a quantum algorithm capable of breaking the computational hardness

assumptions used in most modern day cryptographic systems, there has been a lot of

interest and developments in recent years toward harnessing the power of quantum in-

formation processing. A quantum theory of information has been developed [18, 19, 53,

73, 99, 115, 116, 122], with many exciting results, in which the counterpart to Shan-

non’s entropy is the von Neumann entropy. This quantum information theory is still
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far less understood than its classical counterpart [56, 69], with such surprising effects

as the superactivation of quantum capacity for channels that each have zero quantum

capacity when used separately [123]. Recently, a lot of research effort has focused on

so-called one-shot quantum information theory, in which we are interested in the amount

of resources required to implement a single copy of a task (see Refs [111, 126] and ref-

erence therein). An excellent introduction to the field of quantum information theory is

Ref. [133].

1.4.1 Quantum State Redistribution

One task in quantum information theory is particularly relevant in this thesis: quan-

tum state redistribution. In quantum state redistribution as considered in Refs [54, 100,

140], there are 4 systems of interest: the A system held by Alice, the B system held

by Bob, the C system that is to be transmitted from Alice to Bob, and the R system that

holds a purification of the state in the ABC registers. The goal is to transmit the C register

from Alice to Bob, up to some small overall error on the global state, while minimiz-

ing communication. It is the most general protocol for noiseless quantum coding. This

protocol is also tightly linked to the notion of quantum information cost of interactive

protocols, discussed in Section 1.6.1. While bounds on the asymptotic cost to perform

this task have been known since the work of Devetak and Yard [54, 140], until recently

no interesting bounds were known for the cost of performing state redistribution in a

one-shot setting. We study this question in this thesis.

1.5 Quantum Communication Complexity

What happens in the setting of communication complexity if we allow Alice and

Bob to exchange quantum rather than classical bits? Such a quantum model of commu-

nication complexity was defined by Yao [139], some fifteen years after the introduction

of the classical model. He used it as a tool to prove lower bounds on quantum circuit

complexity. A different model for quantum communication complexity was introduced

by Cleve and Buhrman [47], in which we allow Alice and Bob to pre-share a large
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entangled state of their choice, but in which, once the protocol starts, they can only ex-

change classical bits. They proved that their model is more powerful than Yao’s classical

model, at least by one classical bit. Due to teleportation [15], this model is at least as

powerful as Yao’s quantum model, up to a multiplicative factor of two, but it is an im-

portant open question to determine whether the two models are essentially equivalent.

For both quantum models, it is known that there exists partial functions for which the

quantum communication complexity can be exponentially lower than the classical com-

munication complexity [42], even in the bounded error setting [109]. However, it is still

unknown whether such a gap exists for a total function. Note that at least a polynomial

gap exists in such a case, a typical example being the disjointness function for which the

quantum communication complexity is Θ(
√

n) [1, 42, 110], a quadratic improvement

over the classical communication complexity. Concerning the power of interaction, a

single more round of quantum interaction can also enable exponential savings [88]. An

excellent introduction to the field of quantum communication complexity is Ref. [30].

1.6 Interactive Quantum Information Theory

With the flurry of important results in classical communication complexity due to

interactive information theory, we would expect similar developments for an interactive

theory of quantum information. However, until recently, it was unclear whether results

similar to those for classical interactive information theory would hold in the quantum

setting, where there is no direct analog of a protocol transcript. In particular, all clas-

sical error correction procedures for interactive protocols that achieve constant commu-

nication rate make heavy use of the transcript in multiple ways. Perhaps even worse,

for noiseless coding, even the very definition of the classical information complexity is

based on the underlying protocol transcript. Two recent results find ways around such

problems, and constitute the core of this thesis.
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1.6.1 Quantum Information Complexity

As said above, the definition of classical information complexity is directly related to

the notion of the transcript of a protocol: a conditional mutual information between the

transcript and the inputs. Since there is no direct analogue to the notion of a transcript

for quantum protocols, it is not even clear a priori whether there exists a meaningful

quantum generalization of this notion (see Open Problem 9 in Ref. [33]). Some pre-

vious attempts were made to define sensible notions of quantum information complex-

ity [79, 81], with applications to quantum communication complexity lower bounds. In

particular, Ref. [81] obtains a beautiful proof of the bounded round complexity of dis-

jointness, however with a quadratic gap remaining for the round dependence compared

with the best known upper bound [1]. An important drawback of these previous notions

of quantum information complexity is that they have an explicit round dependence be-

fore yielding a communication lower bound, and as such they were probably limited to

applications in a bounded round setting. The new notion of quantum information com-

plexity avoids these problems by providing a novel interpretation of the classical infor-

mation complexity, linking it to the task of noisy channel simulation with feedback and

side information [19, 100]. A quantum generalization follows by making the link to the

fully quantum analog of this task, which is equivalent to state redistribution [100, 134].

This definition is the first to apply to fully quantum inputs, and might find applications

in studying quantum communication complexity of fully quantum tasks. It gets an op-

erational interpretation as the amortized quantum communication complexity, i.e. the

optimal rate of quantum communication for implementing many copies of a task, in

the asymptotic limit. Moreover, it directly provides a lower bound on communication,

independent of the number of rounds. It also provides an answer to the following im-

portant question about reversible quantum protocols: what is the quantum cost of for-

getting classical information? This new notion of quantum information complexity has

already found an application in proving the first general multi-round direct sum theo-

rem in quantum communication complexity [129]. It has also been used to provide a

tight lower bound (up to polylogarithmic terms) of the bounded round quantum com-
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munication complexity of disjointness [40]. Both of these had been long standing open

problems [81, 82].

1.6.2 Interactive Quantum Capacity

For highly interactive protocols, standard error correction techniques do not apply.

We cannot wait for large blocks of data to accumulate before transmission, and if we

do employ standard error correcting codes to transmit each message separately, then the

code length must increase with the length of the protocol and rates of communication go

to 0 asymptotically. The techniques developed classically for interactive coding do not

seem to be applicable in the quantum setting due to the no-cloning theorem [55, 136],

which forbids keeping a copy of previous states of the protocol to then go back to them

if some quantum information is destroyed by noise. Moreover, in protocols in the Cleve-

Buhrman model, even though the communication is classical, the irreversibility of quan-

tum measurements performed to produce this classical information also seem to prevent

the parties from backtracking to an earlier point in the protocol if noisy communication

is detected after a measurement has been performed based on such erroneous informa-

tion. Thus, for this problem also it is not even clear a priori that it is possible to simulate

interactive quantum protocols with positive communication rate in the low noise regime,

let alone in the very noisy regime.

By taking the approach to map every protocol into a reversible form, for example

by using pseudo-measurements instead of actual measurements, it is possible to develop

a representation for noisy quantum protocols that avoids these problems, and achieves

positive communication rate while tolerating positive adversarial error rate [31]. A corol-

lary is that for high random noise, any channel with positive capacity for quantum data

transmission also has positive interactive quantum capacity. That is, even the hardest

interactive quantum tasks can be implemented over noisy channels with only constant

overhead (constant in the protocol length, not in the level of noise). This shows that

quantum communication complexity is robust under most natural models of noisy quan-

tum communication, another long standing open problem [104].
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1.7 Outline of this Thesis

The aim of this thesis is to present in a coherent way a theory of quantum information

for interactive protocols. The problems of noiseless compression and noisy channel

coding for interactive quantum protocols are studied in separate chapters. Also, since it

plays such an important role in the definition of quantum information cost of interactive

protocols, we devote a separate chapter to the study of quantum state redistribution. Each

of these three chapters contains mostly new contributions. These chapters are organized

in such a way that each can be read independently.

In more detail, the next chapter provides the necessary preliminaries for the remain-

der of the thesis. After a brief introduction to quantum theory mainly to set the notation,

we recall necessary notions from quantum information theory before providing precise

definitions for the models of interactive quantum communication that we study.

In Chapter 3, quantum state redistribution is studied at length. A formal definition for

the task is provided. Note that this is the only chapter requiring notions of one-shot quan-

tum information theory, so the necessary notions are presented in it. The main results

in that chapter are from a collaboration with Mario Berta and Matthias Christandl [23].

We give upper and lower bounds on the amount of quantum communication required to

perform the task of quantum state redistribution in a one-shot setting. Our bounds are in

terms of smooth conditional min- and max- entropies, and the smooth max-information.

The protocol for the upper bound has a clear structure, building on the work of Oppen-

heim [107]: it decomposes the quantum state redistribution task into two simpler quan-

tum state merging tasks by introducing a coherent relay. There remains a gap between

our upper and lower bounds. This gap vanishes in the independent and identical (iid)

asymptotic limit and the remaining terms can then be rewritten as a quantum conditional

mutual information, thus yielding an alternative proof of optimality of this communica-

tion rate for iid asymptotic quantum state redistribution. Other new results of interest

in this chapter are a proof that the lower bound on the communication required from

Alice to Bob is robust in a multi-round scenario, along with a weaker upper bound on

the one-shot communication cost in terms of conditional quantum mutual information.
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This last bound is sufficient to prove the first general multi-round direct sum theorem for

quantum communication complexity in Chapter 4, and is from Ref. [129]

In Chapter 4, we introduce new, fully quantum notions of quantum information cost

and complexity. These are the first such notions to simultaneously be direct lower bound

on communication while also being additive. They are the quantum analogues to the

quantities that have found multiple applications recently in classical communication

complexity. We prove many important properties for these quantities, and provide an

operational interpretation for quantum information complexity as the amortized quan-

tum communication complexity in a distributional setting. That is, the quantum infor-

mation complexity of a task is exactly equal to the asymptotic quantum communication

complexity per copy for this task. This is a result from Ref. [129]. By providing a

general protocol compression result and using Yao’s Min-Max theorem, we obtain the

first general multi-round direct sum theorem for quantum communication complexity,

a result from Ref. [129]. In the case of classical inputs, we also present an alternative

characterization of quantum information cost that quantifies the cost for a protocol to

forget classical information. This result is part of work in progress with Mathieu Lau-

rière [94]. Finally, a high level overview is presented on another application of these

new notions to provide a tight lower bound, up to polylogarithmic terms, on the bounded

round quantum communication complexity of disjointness. This is joint work with Mark

Braverman, Ankit Garg, Young Kun Ko and Jieming Mao [40]. Note that many of the

properties of quantum information complexity proved in that chapter are due to this col-

laboration.

Finally, in Chapter 5, we initiate the study of the interactive quantum capacity of

noisy channels. Most of the material in that chapter is from a collaboration with Gilles

Brassard, Ashwin Nayak, Alain Tapp and Falk Unger [31]. We focus on the noisy ana-

logue to the Cleve-Buhrman model of quantum communication complexity, with perfect

pre-shared entanglement and noisy classical communication. We can then extend our

results to other models of noisy communication, since techniques to distribute entangle-

ment are well-studied. Our simulation strategy has a far higher communication rate than

a naive one that encodes separately each particular round of communication to achieve
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comparable success. Such a strategy would have a communication rate going to 0 in

the worst interaction case as the length of the protocols increases. This contrasts with

our strategy, which has a communication rate proportional to the capacity of the chan-

nel used. To avoid problems due to irreversibility of quantum measurements, we first

have Alice and Bob purify all of their actions. Then, the idea that we exploit is to have

Alice and Bob teleport a virtual communication register to each other, and keep track

of errors in the communication of the teleportation measurement outcomes. We show

how to use this technique along with ideas from classical interactive coding to tolerate

a maximal fraction 1/2− ε , for an arbitrarily small ε > 0, of adversarial error while

achieving strictly positive communication rates. This requires the development of new

bounds on classical interactive codes. Note that in this model, the naive strategy would

not work for any constant fraction of errors. A corollary is that in the very noisy regime,

channels with non-zero capacity for unidirectional transmission have non-zero capacity

for interactive communication. Thus, only constant overhead is required (constant in the

amount of communication of protocols, not in the noise parameter), and quantum com-

munication complexity is robust under noisy communication. Another finding that is

perhaps surprising is that there exists quantum channels with zero forward capacity that

can implement interactive communication without requiring assistance by pre-shared

entanglement or a classical side-channel.

We conclude with a discussion of our results, and discuss further directions for this

research program.
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CHAPTER 2

PRELIMINARIES

In this chapter, we review the different notions of quantum theory, quantum informa-

tion theory and quantum communication complexity that are required in the remainder

of this thesis.

2.1 Quantum Theory

We briefly review the quantum formalism, mainly to set notation; for a more thorough

treatment, we refer the interested reader to good introductions in a quantum information

theory context [105, 131, 133].

2.1.1 Quantum Systems

Let us first consider the case of general quantum systems; we restrict our study to fi-

nite dimensional systems. For every quantum system A, we associate a finite dimensional

Hilbert space, which by a slight abuse of notation we also denote by A. The dimension

of A is denoted |A|. The state of quantum system A is represented by a density oper-

ator ρA, a positive semi-definite operator over the Hilbert space A with unit trace. We

denote by D(A) the set of all density operators representing states of system A. Com-

posite quantum systems are associated with the (Kronecker) tensor product space of the

underlying spaces, i.e., for systems A and B, the allowed states of the composite system

A⊗B are (represented by) the density operators in D(A⊗B). We use the shorthand AB

for A⊗B. Given a bipartite state ρAB ∈ D(AB), it is said to be separable if there exists

a decomposition of the form ρAB = ∑i p(i) ·σA
i ⊗θ B

i for a probability distribution p and

states σi ∈D(A),θi ∈D(B). If ρAB is not separable, it is said to be entangled. The evo-

lution of a quantum system A is represented by a completely positive, trace preserving

linear map (CPTP map) N A such that if the state of the system was ρ ∈ D(A) before

evolution through N A, the state of the system is N A(ρ) ∈D(A) after. If the system A



is clear from context, we might drop the superscript. We refer to such maps as quantum

channels, and to the set of all channels acting on A as C (A). An important quantum

channel, which we consider in our study of noisy interactive quantum communication,

is the qubit depolarizing channel Tε with depolarizing parameter 0 ≤ ε ≤ 1: it takes as

input a qubit ρ , and outputs a qubit Tε(ρ) = (1− ε)ρ + ε
I
2 , i.e., with probability 1− ε

it outputs ρ and with complementary probability ε it outputs a completely mixed state
I
2 , with I the identity operator.

We also consider quantum channels with different input and output systems; the

set of all quantum channels from a system A to a system B is denoted C (A,B). An

important operation on a composite system A⊗B is the partial trace TrB(ρ
AB), which

effectively derives the reduced or marginal state of the A subsystem from the quan-

tum state ρAB. Fixing an orthonormal basis {|i〉} for B, the partial trace is given by

TrB(ρ
AB) = ∑i(I⊗〈i |)ρ(I⊗|i〉), and this is a valid quantum channel in C (A⊗B,A).

Note that the action of TrB is independent of the choice of basis chosen to represent it,

so we unambiguously write ρA = TrB(ρ
AB). We might also use the notation Tr¬A = TrB

to express that we want to keep only the A register. For channels N1 ∈ C (A,B),N2 ∈
C (B,C), we denote their composition as N2◦N1 ∈C (A,C), with action (N2◦N1)(ρ)=

N2(N1(ρ)) on any state ρ ∈ D(A). We might drop the ◦ symbol if the composition is

clear from context. An important subset of C (A) is the set of unitary channels U (A), the

set of all maps U ∈C (A) with an adjoint map U† ∈C (A) such that U†◦U =U ◦U† = IA,

with IA the identity channel on A. More generally, if |B| ≥ |A|, we denote by U (A,B)

the set of isometric channels, i.e. the set of all maps V ∈ C (A,B) with an adjoint map

V † ∈ C (B,A) such that V † ◦V = IA.

An important special case for quantum states are the pure states, whose density oper-

ators have a special form: rank-one projectors |ψ〉〈ψ|. In such a case, a more convenient

notation is provided by the pure state formalism: a state is represented by the unit vector

|ψ〉 (up to an irrelevant complex phase) upon which the density operator projects. We

denote by H (A) the set of all such unit vectors (up to equivalence of global phase) in

system A. For isometric spaces A,A′, a maximally entangled state φ AA′ is a pure state sat-

isfying TrA′(φ
AA′) = IA

|A| . A particularly important characteristic of pure states is the fact
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that they do not share any correlations, classical or quantum, with any external system: if

ρA is a pure state and σAB is any extension of it, i.e. any state such that TrB(σ
AB) = ρA,

then σAB = ρA⊗σB. Pure state evolution is represented by an isometry UA→C acting on

|ψ〉A, denoted U |ψ〉A ∈H (C). Evolution of the B register of a state |ψ〉AB under the

action of an isometry UB→C is represented by (IA⊗UB→C) |ψ〉AB, for IA representing the

identity operator acting on the A system, and is denoted by the shorthand UB→C |ψ〉AB

for convenience. We occasionally drop the superscripts when the systems are clear from

context. The evolution under consecutive action of unitaries U j’s is denoted by:(
`

∏
j=1

U j

)
|ψ〉=U` · · ·U1 |ψ〉 . (2.1.1)

For a state ρA ∈ D(A), a purification is a pure state ρAR ∈ D(A⊗ R) satisfying

TrR(ρ
AR) = ρA. We then say that R is a purifying system for ρA. If R has dimension at

least that of A, then such a purification always exists. For a given R, all purifications are

equivalent up to a unitary on R, and more generally, if |R′| ≥ |R| and ρAR
1 ,ρAR′

2 are two

purifications of ρA, then there exists an isometry V R→R′
ρ such that ρAR′

2 = Vρ(ρ
AR
1 ). We

also consider purifications of channels: for a channel N ∈C(A,B), an isometric exten-

sion is an isometry UN ∈U (A,BE) with TrE(UN (ρA)) = N (ρA) for all ρA. Such an

extension always exists provided E is of dimension at least |A|2.

2.1.2 Classical Systems

We now consider the special case of classical systems. We represent a classical ran-

dom variable X with probability distribution pX by a density operator σX that is diago-

nal in a fixed (orthonormal) basis {|x〉}x∈X : σX = ∑x∈X pX(x)|x〉〈x|X . More generally,

subsystem B of ρBA is said to be classical if we can write ρBA = ∑b pB(b) · |b〉〈b|B⊗ρA
b

for some ρA
b ∈ D(A) and an orthonormal basis |b〉B. The state ρBA is then said to be a

classical-quantum state. An important example of a channel mapping a quantum system

to a classical one is the measurement channel ∆B, defined as ∆B(ρ) =∑b 〈b |ρ |b〉 ·|b〉〈b|B

for any ρ ∈D(B). An isometric extension is given by U∆ = ∑b |b〉B
′
|b〉B 〈b |B.
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Note that for any state ρ ∈D(B1B2CR) of the form

|ρ〉B1B2CR = ∑
b

√
pB(b) · |b〉B1 |b〉B2 |ρb〉CR, (2.1.2)

we have TrB2(ρ
B1B2CR)=∑b pB(b)·|b〉〈b|B1⊗|ρb〉〈ρb|CR and TrB2R(ρ

B1B2CR)=∑b pB(b)·
|b〉〈b|B1⊗ρC

b , with the state on B1 classical in both cases. Often, A,B,C, . . . will be used

to discuss general systems, while X ,Y,Z will be reserved for classical systems, or quan-

tum systems like B1 and B2 above that are classical once one of them is traced out, and

can be thought of as containing a quantum copy of the classical content of one another.

The extraction of classical information from a quantum system is represented by quan-

tum instruments: classical-quantum CPTP maps that take classical-quantum states on a

composite system X⊗A to classical-quantum states. Viewing classical random variables

as a special case of quantum systems, quantum instruments can be viewed as a special

case of quantum channels.

2.1.3 Teleportation and Pseudo-Measurements

Especially in the context of noisy interactive quantum communication, we make

heavy use of the teleportation protocol between Alice and Bob [15], which uses the

following resource state shared by Alice and Bob, called a Bell state: |Φ+〉TATB =

1√
2
(|00〉+ |11〉), with the qubit in the TA register held by Alice, and the qubit in the

TB register held by Bob. The teleportation protocol then uses one of these resource

states to teleport one qubit either from Alice to Bob, or from Bob to Alice. If Alice

wants to teleport a qubit |ψ〉 in the register C to Bob, with whom she shares a Bell

state, she applies a joint Bell measurement, which can perfectly distinguish the Bell

states {|Φxz〉 = 1√
2
(|0x〉+(−1)z |1x̄〉)}x,z∈{0,1}, to the registers CTA she holds, and ob-

tains uniformly random measurement outcomes xz ∈ {0,1}2. After this measurement,

the state in the TB register is XxZz |ψ〉, for X and Z the Pauli operators corresponding

to bit flip and phase flip in the computational (Z) basis, respectively. If Alice transmits

the two bits xz to Bob, he can then decode the state |ψ〉 on the TB register by applying

(XxZz)−1 = ZzXx. Note that X and Z anticommute: XZ = −ZX. Teleportation from
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Bob to Alice is performed similarly (EPR pairs are symmetric).

Another technique we use is that of making classical operations coherent: measure-

ments and classically-controlled operations are replaced by corresponding unitaries (and

ancilla register preparation). We call the coherent version of a measurement a pseudo-

measurement. Without loss in generality, it suffices to consider the measurement of a

single qubit in the standard basis {|0〉, |1〉}. This measurement corresponds to the in-

strument N defined by N (ρ) = 〈0 |ρ |0〉 |0〉〈0|+ 〈1 |ρ |1〉 |1〉〈1|. We replace this with

the action of the CNOT operation |0〉〈0| ⊗ I+ |1〉〈1| ⊗X on the qubit and a fresh an-

cillary qubit prepared in state |0〉, i.e., with the CPTP map N ′ defined by N ′(ρ) =

U(ρ⊗|0〉〈0|)U†, where U is the CNOT operation. The ancilla qubit may now be trans-

mitted instead of sending the classical outcome of the measurement N . Provided all

further operations on the two qubits are only controlled unitary operations (in which

the two qubits may only be control qubits), each separately behaves like the classical

measurement outcome. The advantage of this substitution is that unlike measurements,

pseudo-measurements are reversible. If it is later realized that a qubit should not have

been measured, the pseudo-measurement can be undone.

2.2 Quantum Information Theory

We need to compare quantum states and channels throughout this thesis, thus we

introduce a notion of distance for these. We are also interested in quantifying the infor-

mation content of different quantum systems, so we also introduce different measures of

information.

2.2.1 Distance Measures

In order to compare quantum states, the notion of distance we use is the trace distance

‖ρA−σA‖1 between two arbitrary states ρA and σA, in which

‖OA‖1 = Tr((O†O)
1
2 ) (2.2.1)
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is the trace norm for operators on system A. We might drop the A superscript if the

system is clear from context. The trace distance has the operational interpretation to be

(four times) the best possible bias to distinguish between the two states ρA and σA, given

a single unknown copy of one of these two states. We use the following results about

trace distance. First, it is a metric, so it is symmetric in ρ,σ , non-negative, evaluate to

0 if and only if ρ = σ and it satisfies the triangle inequality. Moreover, it is monotone

under noisy channels: for any ρ1,ρ2 ∈D(A) and N ∈ C (A,B),

‖N (ρ1)−N (ρ2)‖1 ≤ ‖ρ1−ρ2‖1. (2.2.2)

For isometries, the inequality becomes an equality, a property called isometric invariance

of the trace distance. Hence, for any ρ1, ρ2 ∈D(A) and any U ∈U (A,B), we have

‖U(ρ1)−U(ρ2)‖1 = ‖ρ1−ρ2‖1. (2.2.3)

Also, the trace distance cannot change by adjoining an uncorrelated system: for any ρ1,

ρ2 ∈D(A), σ ∈D(B)

‖ρ1⊗σ −ρ2⊗σ‖1 = ‖ρ1−ρ2‖1. (2.2.4)

The trace distance obeys a joint linearity property: for a classical system X and two

states ρXA
1 = pX(x) · |x〉〈x|X ⊗ρA

1,x and ρXA
2 = pX(x) · |x〉〈x|X ⊗ρA

2,x,

‖ρ1−ρ2‖1 = ∑
x

pX(x)‖ρ1,x−ρ2,x‖1. (2.2.5)

To distinguish between quantum channels with arbitrary input, we first consider the

induced norm for quantum channels N ∈C (A,B): ‖N ‖=max{‖N (σ)‖1 : σ ∈D(A)}.
Correlations with another quantum system can help distinguish between quantum chan-

nels, so an appropriate norm to use to account for this is the diamond norm [4]: ‖N ‖�=
‖N ⊗ IR‖ for some reference system R of the same dimension as the input system A. For

two quantum channels N , M ∈C (A,B), ‖N −M ‖� has a useful operational interpre-
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tation; it is (four times) the best possible bias with which we can identify a uniformly

random (unknown) channel out of the two, when allowed only one use of the channel.

A further measure of distance between quantum states, the purified distance, is used

in our discussion of one-shot quantum state redistribution in Chapter 3. It is based on

the fidelity. Since both of these notions appear only in Chapter 3, they are defined in that

chapter.

2.2.2 Information Measures

In Chapter 3 and especially in Chapter 4, we make use of the following information

measures. The basic measure of information that we use is the von Neumann entropy,

defined for any state ρ ∈D(A) as

H(A)ρ =−Tr(ρ logρ),

in which we take the convention that 0 log0 = 0, justified by a continuity argument. The

logarithm log is taken in base 2. Note that H is invariant under isometries applied on ρ .

If the state to be evaluated is clear from context, we might drop the subscript. Also note

that if system A is classical, then we recover the Shannon entropy. Hence, for p ∈ [0,1],

we denote the binary Shannon entropy of p as H(p). Conditional entropy for a state

ρABC ∈D(ABC) is then defined as

H(A|B)ρ = H(AB)−H(B),

mutual information as

I(A;B)ρ = H(A)−H(A|B),

and conditional mutual information as

I(A;B|C)ρ = H(A|C)−H(A|BC).
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Note that mutual information and conditional mutual information are symmetric in in-

terchange of A,B, and invariant under a local isometry applied to A,B or C. If X is a

classical system, I(X ;B) is also called the Holevo information. For any pure bipartite

state ρAB ∈D(AB), the entropy on each subsystem is the same:

H(A) = H(B). (2.2.6)

For any tripartite pure state ρABC ∈ D(ABC), the conditional entropy satisfies a duality

relation:

H(A|B) =−H(A|C). (2.2.7)

For any four-partite pure state ρABCR ∈ D(ABCR), the conditional mutual information

satisfies the following relation:

I(C;R|B) = I(C;R|A). (2.2.8)

Since all purifications are equivalent up to an isometry on the purification registers, we

get that for any two pure states |φ〉ABCR′ and |ψ〉ABCR such that φ ABC = ψABC,

I(C;R′|B)φ = I(C;R|B)ψ . (2.2.9)

For a system A and any ρ ∈D(ABC), we have the bounds

0≤ H(A)≤ log |A|, (2.2.10)

−H(A)≤ H(A|B)≤ H(A), (2.2.11)

0≤ I(A;B)≤ 2H(A), (2.2.12)

0≤ I(A;B|C)≤ H(A)+H(A|C). (2.2.13)
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If X is a classical system, we get the tighter bounds

0≤ H(X |B), (2.2.14)

0≤ H(A|X), (2.2.15)

I(X ;B)≤ H(X), (2.2.16)

I(X ;B)≤ H(B), (2.2.17)

I(X ;B|C)≤ H(X |C). (2.2.18)

For general quantum systems A, B, C and D, the conditional mutual information satisfies

a chain rule: for any ρ ∈D(ABCD),

I(AB;C|D) = I(A;C|D)+ I(B;C|AD). (2.2.19)

For any product state ρA1B1C1A2B2C2 = ρ
A1B1C1
1 ⊗ρ

A2B2C2
2 , entropy is additive,

H(A1A2) = H(A1)+H(A2), (2.2.20)

and so conditional mutual information between product systems vanishes,

I(A1;A2|B1B2) = 0, (2.2.21)

and conditioning on a product system is useless,

I(A1;B1|C1A2) = I(A1;B1|C1). (2.2.22)

More generally,

I(A1A2;B1B2|C1C2) = I(A1;B1|C1)+ I(A2;B2|C2). (2.2.23)

Two important properties of the conditional mutual information are non-negativity and

the data processing inequality, both equivalent to a deep result in quantum information
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theory known as strong subadditivity [98]. For any ρ ∈ D(ABC) and N ∈ C (B,B′),

denote σ = N (ρ) and then

I(A;B|C)ρ ≥ 0, (2.2.24)

I(A;B|C)ρ ≥ I(A;B′|C)σ . (2.2.25)

It is also continuous [5]: for any two states ρ1, ρ2 ∈D(ABC) with ‖ρ1−ρ2‖1 ≤ ε ≤ 1,

it holds that

|H(A|B)ρ1−H(A|B)ρ2| ≤ 4ε logdim(A)+2H(ε), (2.2.26)

|I(A : B|C)ρ1− I(A : B|C)ρ2| ≤ 8ε logdim(A)+4H(ε), (2.2.27)

in which H(ε) is the binary entropy function. For classical systems, conditioning is

equivalent to taking an average: for any ρABCX = ∑x pX(x) · |x〉〈x|X ⊗ρABC
x with a clas-

sical system X and some appropriate ρx ∈D(ABC),

H(A|BX)ρ = ∑
x

pX(x) ·H(A|B)ρx , (2.2.28)

I(A;B|CX)ρ = ∑
x

pX(x) · I(A;B|C)ρx . (2.2.29)

For proofs of the statements in this section, we refer the reader to Ref. [133]. Further

measures of information, appropriate to study one-shot quantum information theory, are

used in Chapter 3. Since these only appear in Chapter 3, they are defined in that chapter.

2.3 Quantum Communication Complexity

In the Yao model for quantum communication complexity [139], Alice is given a

classical input x ∈ X , Bob a classical input y ∈ Y , and they want to compute a classical

relation T ⊂ X×Y ×ZA×ZB, with zA ∈ ZA and zB ∈ ZB the output of Alice and Bob, re-

spectively. These should satisfy the relation, i.e. (x,y,zA,zB) ∈ T . They want to do so by

communicating as few quantum bits as possible, without regard to the local computation
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cost. A special case of particular interest is that of computing a function f : X ×Y → Z

of their joint input (often X = Y = {0,1}n, Z = {0,1}). Often, we are only interested

in x ∈ X , y ∈ Y satisfying some promise P : X ×Y → {0,1}. A global quantum system

is split into three subsystems: the A register is the register held by Alice, the B register

is the one held by Bob, and the C register is the communication register, initially held

by Alice, and exchanged back-and-forth by Alice and Bob in each round. Our formal

description of the protocols in this model is based upon the one given in Ref. [91]. Note

that in this thesis, we are interested in more general models of communication, defined

is Section 2.4.1, which is not reflected in the paragraph below.

A length M protocol in the Yao model is defined by a sequence of unitaries U1, · · · ,
UM+1 in which, for i odd, Ui acts on the AC register, and for i even, Ui acts on the BC

register. Initially, all the qubits in the A, B, C registers are set to the all |0〉 state, except

for n qubits in the A register initially set to x ∈ X , and n in the B register set to y ∈ Y .

The number of qubits mA, mB ∈ N in the A and B registers is arbitrary (of course, mA,

mB ≥ n) and is not taken into account in the cost of the protocol. The complexity of the

Ui’s is also immaterial, since local computation is deemed free. However, the number

of qubits c in the C register is important and is taken into account in the communication

cost, which is M · c. The outcome of the protocol is obtained by measuring an appro-

priate number of qubits of the registers A and B of Alice and Bob, respectively, after

the application of UM+1. The protocol succeeds if the outcomes of both measurements

satisfy the relation, i.e. if the outcomes zA, zB satisfy (x,y,zA,zB) ∈ T . In the special case

of a binary function f , it succeeds if the outcomes of both measurements equal f (x,y)

with good probability, usually required to be a constant greater than 1/2, for any x, y

satisfying the promise.

Another model for quantum communication complexity is the one introduced by

Cleve and Buhrman [47]. In their model, communication is classical, but parties are

allowed to pre-share an arbitrary entangled quantum state at the outset of the protocol.

Note that a further variant on this model would be to allow for an unlimited supply

of entanglement; we do not elaborate on such a variant in this thesis. We can view

protocols in the Cleve-Buhrman model as a modification on those of Yao’s model in
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which the initial state |ψ〉 on the ABC register is arbitrary except for n qubits in each

of the A, B registers initialized to x, y respectively. Also, each qubit in the C register is

measured in the computational basis, and it is the outcome of these measurements that

is communicated to the other party. Note that by using pseudo-measurements instead of

actual measurements in each round, the parties can use quantum communication instead

of classical communication. Then the two models become almost identical, except for

the initial state, which is arbitrary in the Cleve-Buhrman model, and fixed to the all 0

state in the Yao model (not including each party’s classical input). In the context of noisy

interactive quantum communication, our simulation protocols consider general unitary

local processing but do not assume any particular form for the initial state. They then

work on this slight adaptation of the Cleve-Buhrman model as well as for Yao’s model

of quantum communication complexity.

We will mostly work in the hybrid model, which allows both pre-shared entan-

glement and quantum communication. This model is almost equivalent to the Cleve-

Buhrman model, at least in the case of a fixed order of communication. The fact that

quantum communication is used instead of classical communication could lead to an

improvement up to a factor of two of the communication complexity, due to superdense

coding [14], but no more, due to the teleportation protocol [15]. In the context of quan-

tum information complexity, this shared entanglement model is the natural analogue of

the framework for classical information complexity in which parties are allowed shared

randomness for free. It is thus natural to use this shared entanglement model rather than

the model introduced by Yao [139], in which parties locally initialize their registers. In

the context of noisy interactive communication, the hybrid model with quantum com-

munication is better suited as a noiseless model due to the fact that protocols can be

defined without irreversible measurements, and thus it is possible to backtrack to earlier

points in the protocol if required. However, for simulation over noisy channel, the use of

teleportation in a Cleve-Buhrman like model will arise as a natural model to overcome

noise.

We describe precisely the models of communication that we consider in Section 2.4.1,

but first let us describe what kind of tasks, classical and quantum, that we want to im-
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plement with such protocols, by considering only their input-output behaviour for now,

i.e. by viewing protocols as channels from their bipartite input to their bipartite output.

2.3.1 Classical Tasks

We consider the quantum communication complexity of two different kind of clas-

sical tasks: distributional tasks with fixed input distribution, and tasks with worst-case

error. In both, for a given bipartite relation T ⊂ X ×Y × ZA× ZB, Alice and Bob are

given input registers Ain, Bin containing their classical input x ∈ X ,y ∈ Y at the outset of

the protocol, respectively, and they output registers Aout , Bout containing their classical

output zA ∈ ZA, zB ∈ ZB at the end of the protocol, respectively, which should satisfy the

relation T . We generally allow for some small error ε in the output, which is formalized

below.

2.3.1.1 Distributional Tasks

In the distributional communication complexity setting, the inputs x and y are dis-

tributed according to some joint input distribution µ on X ×Y . This is represented by a

classical input state

ρµ = ∑
x∈X , y∈Y

µ(x,y) · |x〉〈x|Ain⊗|y〉〈y|Bin , (2.3.1)

in which we might drop the subscript µ if it is clear from context. Similarly the output

of the protocol Π on each input (x,y) is a classical state

Π(x,y) = ∑
zA∈ZA, zB∈ZB

pZAZB|X ,Y (zA,zB|x,y) · |zA〉〈zA|Aout ⊗|zB〉〈zB|Bout , (2.3.2)

and the error when implementing the relation T corresponds to the probability of failure

Pe(Π,µ) = ∑x,y µ(x,y)·PrΠ[
(
x,y,Π(x,y)

)
6∈ T ]. Note that we require the quantum pro-

tocol to implement a classical channel, i.e. we ask that the channel implemented by the

protocol be invariant under application of a measurement before and after the protocol,

so that Π = ∆AoutBout ◦Π◦∆AinBin .
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To keep track of correlations in this distributional setting, we introduce a purification

register R. For a classical input ρAinBin like the one we consider here, we can always take

this purification to be of the form

|ρ〉AinBinR = ∑
x,y

√
µ(x,y) · |x〉Ain |y〉Bin |xy〉R1 |xy〉R2 , (2.3.3)

for an appropriately chosen partition of R into R1, R2. We can think of R = R1R2

as containing quantum copies of the actual joint input to the protocol. Notice that if

R2 is traced out, then R1 is classical and contains a copy of the joint input. It can

then be used to compare input-output behaviour, and we can write more succinctly

Pe(Π,µ) =Prµ,Π[Π(ρAinBinR1) ∈ T ]. We say that a protocol Π for implementing rela-

tion T on input µ has average error at most ε ∈ [0,1] if Pe(Π,µ)≤ ε . Note that the idea

to purify classical inputs has already appeared in previous works in quantum complexity

theory, e.g. Ref. [85].

We are mostly interested in protocols in the hybrid model, as defined in Section 2.4.1.1,

to solve distributional classical tasks. We say that a protocol implements the task (T,µ,ε)

if it implements relation T on input distribution µ with error at most ε . The set of all

protocols in the hybrid model implementing (T,µ,ε) is denoted T (T,µ,ε). When re-

stricting this set to bounded round protocols with at most M messages, this is denoted

T M(T,µ,ε).

2.3.1.2 Worst-Case Tasks

We also consider tasks for worst-case inputs: the task (T,ε) is similar to the task

(T,µ,ε), but instead of requiring average error ε with respect to the input distribution µ ,

we require that for all inputs (x,y) ∈ X×Y satisfying some promise P : X×Y →{0,1},
the error is bounded by ε , i.e. Pe(Π,(x,y))≤ ε for each pair (x,y) satisfying P(x,y) = 1,

with

Pe(Π,(x,y)) = PrΠ[
(
x,y,Π(x,y)

)
6∈ T ]. (2.3.4)
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From now on, we will leave implicit the fact that we only consider pairs (x,y) satisfy-

ing some underlying promise. For technical reasons, for tasks with worst-case inputs,

we allow Alice and Bob to jointly sample which protocol they want to use. The cor-

responding model of communication is called the randomized model, and is defined in

Section 2.4.1.2. For this, they will share a finite random string r distributed according to

a probability distribution ν , and sample a protocol Πr according to ν . Such a randomized

protocol Πv will implement the average channel

Πν = ∑
r

ν(r)Πr. (2.3.5)

Correspondingly, the average error on any (x,y) is

Pe(Πν ,(x,y)) = ∑
r

ν(r)PrΠr [(x,y,Πr(x,y)) 6∈ T ]. (2.3.6)

The worst case error of a protocol Πν is Pw
e (Πν) = max(x,y)Pe(Πν ,(x,y)). We say

that a protocol for implementing relation T has worst-case error at most ε ∈ [0,1] if

Pw
e (Πν)≤ ε .

As said above, we are mostly interested in the randomized model, as defined in

Section 2.4.1.2, to solve classical tasks with worst-case error. We say that a protocol im-

plements the task (T,ε) if it implements relation T with worst-case error at most ε . The

set of all protocols in the randomized model implementing (T,ε) is denoted T (T,ε).

When restricting this set to bounded round protocols with at most M messages, this is

denoted T M(T,ε).

Note that allowing for such randomized protocols would be unnecessary in the distri-

butional setting. To see this, suppose that for some distribution ν on protocols and µ on

inputs, the probability of error satisfies ∑x,y,r µ(x,y) ·ν(r)PrΠr [(x,y,Πr(x,y)) 6∈ T ] = ε .

Then there must exists some r∗ such that ∑x,y µ(x,y)PrΠr∗ [(x,y,Πr∗(x,y)) 6∈ T ]≤ ε , and

it is sufficient to pick the corresponding protocol Πr∗ to achieve good average error under

this particular µ .
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2.3.2 Quantum Tasks

We also want to study in full generality the quantum communication complexity of

bipartite quantum channels on fixed input states. This is the generalization of distri-

butional communication complexity of classical functions to the fully quantum setting,

and contains as a special case the distributional quantum communication complexity of

classical functions as well as that of implementing bipartite unitary transformations. An

example of such a quantum task that was studied in Ref. [104] is the communication

complexity for implementing the distributed quantum Fourier transform. Another exam-

ple that will be of central importance in the study of quantum information complexity in

Chapter 4 is the communication task of quantum state redistribution, which is discussed

at length in Chapter 3.

The model for communication complexity of quantum tasks that we consider is

the following. For a given bipartite channel N ∈ C (AinBin,AoutBout) and input state

ρ ∈D(AinBin), Alice and Bob are given input registers Ain, Bin at the outset of the pro-

tocol, respectively, and they output registers Aout , Bout at the end of the protocol, respec-

tively, which should be in state N (ρ). We generally allow some small error ε in the

output, which is formalized as follows. A protocol Π is said to implement channel N

on input ρAinBin with error at most ε ∈ [0,2] if, for a purifying register R,

||Π(ρAoutBoutR)−N (ρAoutBoutR)||1 ≤ ε. (2.3.7)

The introduction of the reference system R is essential to ensure that the protocol pre-

serves any correlation the input state might have with any external systems as well as the

channel it is supposed to implement.

We are mostly interested in protocols in the hybrid model to solve such quantum

tasks. We say that a protocol implements the task (N ,ρ,ε) if it implements channel N

on input ρ with error at most ε . The set of all protocols in the hybrid model implementing

(N ,ρ,ε) is denoted T (N ,ρ,ε). When restricting this set to bounded round protocols

with at most M messages, this is denoted T M(N ,ρ,ε). Note that it will always be clear

from context whether we are discussing classical or quantum tasks.
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2.4 Interactive Quantum Protocols

We now formally introduce the different models of communication that are used

throughout this thesis, along with corresponding notions of quantum communication

complexity for classical and quantum tasks.

2.4.1 Models of Communication

We consider three different models of quantum communication: the hybrid model,

the randomized model, and the Cleve-Buhrman model.

2.4.1.1 Hybrid Model

Most of our discussions will concern the hybrid model with quantum communica-

tion and pre-shared entanglement. In this model, an M-message protocol Π for a given

task from input registers Ain, Bin to output registers Aout , Bout is defined by a sequence

of isometries U1, · · · , UM+1 along with a pure state ψ ∈D(TATB) shared between Alice

and Bob, for arbitrary finite dimensional registers TA, TB: the pre-shared entanglement.

We need M+1 isometries in order to have M messages since a first isometry is applied

before the first message is sent and a last one after the final message is received. In

the case of even M, for appropriate finite dimensional quantum memory registers A1,

A3, · · · , AM−1, A′ held by Alice, B2, B4, · · · , BM−2, B′ held by Bob, and quantum com-

munication registers C1, C2, C3, · · · , CM exchanged by Alice and Bob, we have U1 ∈
U (AinTA,A1C1), U2 ∈ U (BinTBC1,B2C2), U3 ∈ U (A1C2,A3C3), U4 ∈ U (B2C3,B4C4),

· · · , UM ∈U (BM−2CM−1,BoutB′CM), UM+1 ∈U (AM−1CM,AoutA′): see Figure 2.1. We

adopt the convention that, at the outset, A0 =AinTA, B0 =BinTB, for odd i with 1≤ i<M,

Bi = Bi−1, for even i with 1 < i ≤ M, Ai = Ai−1 and also BM = BM+1 = BoutB′, and

AM+1 = AoutA′. In this way, after application of Ui, Alice holds register Ai, Bob holds

register Bi and the communication register is Ci. In the case of an odd number of message

M, the registers corresponding to UM, UM+1 are changed accordingly. We slightly abuse

notation and also write Π to denote the channel in C (AinBin,AoutBout) implemented by
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the protocol, i.e. for any ρ ∈D(AinBin),

Π(ρ) = TrA′B′(UM+1UM · · ·U2U1(ρ⊗ψ)). (2.4.1)

Note that the A′ and B′ registers are the final memory registers that are being dis-

carded at the end of the protocol by Alice and Bob, respectively.

We have the following definition.

Definition 2.4.1. For a protocol Π defined as above, we define the quantum communi-

cation cost of Π as

QCC(Π) = ∑
i

log |Ci|.

Note that in general we do not require that |Ci|= 2k for some k ∈N, as is often done.

This will not affect our definition on information cost and complexity, but might affect

the quantum communication complexity by at most a factor of two, without affecting the

round complexity.

We sometimes distinguish between the communication from Alice to Bob and vice

versa. We then use the following definitions.

Definition 2.4.2. For a protocol Π defined as above, we define the quantum communi-

cation cost from Alice to Bob of Π as

QCCA→B(Π) = ∑
i odd

log |Ci|,

and the quantum communication cost from Bob to Alice of Π as

QCCB→A(Π) = ∑
i even

log |Ci|.

2.4.1.2 Randomized Model

We use a further variation of the hybrid model in which Alice and Bob are allowed to

pre-share randomness to jointly sample which protocol they use. Importantly, the order
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Figure 2.1: A protocol in the hybrid quantum communication model

of speech can depend on this randomness. This will be used in order to solve tasks on

worst case inputs. If they sample according to some distribution ν with finite support,

we denote the average protocol as Πν . The channel implemented by Πν is

Πν = ∑
r

ν(r) ·Πr, (2.4.2)

its quantum communication cost is defined as

QCC(Πν) = max
r:ν(r)>0

QCC(Πr), (2.4.3)

and the number of message M is defined as the maximum over the number of messages

Mr in any protocol Πr with ν(r)> 0. The choice to have worst-case instead of average-

case countability over the shared randomness for the communication cost of randomized

protocols is made in accordance with the standard corresponding classical definitions;

see Ref. [92] for a related discussion of why this does not have a substantial qualitative
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effect for a wide variety of tasks. As said above, we allow the order of speech to depend

on this public sampling. This is in order to allow for a bounded-round quantum analogue

of Yao’s Min-Max theorem without having to place a restriction on the communication

pattern for the bounded-round protocols; see Section 4.6.3.1. Note that in the special

case in which all protocols considered have the same communication pattern, that is, if

the communication registers Ci of all protocols have the same dimensions, then we could

implement the corresponding randomized protocol with an equivalent one in the hybrid

model by using shared entanglement to simulate the shared randomness. We will see that

in the context of quantum information complexity, we can implement any randomized

protocol in the hybrid model, without such a restriction on the communication patterns;

see Section 4.3.1.4 for a precise statement.

2.4.1.3 Cleve-Buhrman Model

One last model that we also consider is the one introduced by Cleve and Buhrman [47],

in which Alice and Bob pre-share entanglement but can only communicate classically

once the protocol starts. In this model, an M-message protocol Π for a given task from

input registers AinBin to output registers AoutBout is defined by a sequence of quantum

instruments M1, · · · , MM+1 along with a pure state ψ ∈D(TATB) shared between Alice

and Bob, for arbitrary finite dimensional registers TA, TB: the pre-shared entanglement.

In the case of even M, for appropriate finite dimensional quantum memory registers A1,

A3, · · · , AM−1, A′ held by Alice, B2, B4, · · · , BM−2, B′ held by Bob, classical mem-

ory registers MA
1 , MA

3 , · · · , MM−3, MA
M−1, MA

M held by Alice, MB
2 , MB

4 , · · · , MB
M−2, MB

M

held by Bob, and classical communication registers C1, C2, C3, · · · , CM exchanged by

Alice and Bob, we have M1 ∈ C (AinTA,A1MA
1 C1), M2 ∈ C (BinTBC1,B2MB

2 C2), M3 ∈
C (A1MA

1 C2,A3MA
3 C3), M4 ∈C (B2MB

2 C3,B4MB
4 C4), · · · , MM ∈C (BM−2MB

M−2CM−1,BoutB′MB
MCM),

MM+1 ∈ C (AM−1MA
M−1CM,AoutA′MA

M), in which the registers MA
j , MB

j contain classical

copies of the classical messages C1 through C j. In the case of an odd number of message

M, the registers corresponding to MM,MM+1 are changed accordingly.
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2.4.2 Classical Tasks

We consider the quantum communication complexity of many different classical

tasks: distributional tasks, worst-case tasks, and product tasks, both distributional and

worst-case.

2.4.2.1 Distributional Tasks

Recall that in the distributional setting, a classical task (T,µ,ε) consists of imple-

menting a relation T ⊂ X ×Y ×ZA×ZB on input distribution µ on X ×Y with average

error at most ε , and we denote the set of all protocols in the hybrid model implement-

ing the classical task (T,µ,ε) as T (T,µ,ε). If we restrict this set to bounded-round

protocols with at most M messages, we denote it as T M(T,µ,ε). We use the following

definitions.

Definition 2.4.3. For a classical task (T,µ,ε) and a bound M ∈ N on the number of

messages, we define the ε-error quantum communication complexity of T on input µ as

QCC(T,µ,ε) = min
Π∈T (T,µ,ε)

QCC(Π),

and the M-message, ε-error quantum communication complexity of T on input µ as

QCCM(T,µ,ε) = min
Π∈T M(T,µ,ε)

QCC(Π).

Note that these quantities are in general discontinuous in their parameters µ and

ε for a fixed relation T . Also note that no good bound is known on the size of the

entangled state that might be required to achieve these minima. See Ref. [101] for a

recent discussion on related issues in a different setting. We make the trivial remarks

that quantum communication complexity decreases as the error parameter increases, that

it vanishes for ε = 1, that it is bounded by log |Ain|+ log |Aout |, and that it also vanishes

for any fixed input (x,y). At ε = 1, it is because the error is saturated and so we can

consider a protocol that outputs anything without communication, while for fixed input
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it is because, in this distributional setting, if the input is known then a corresponding

output also is. In the special case of a single message, additional restrictions on Aout

might be needed in order for the quantum communication complexity to be well-defined.

Also, the quantum communication complexity without any restriction on the number of

messages is at most as large as the bounded round quantum communication complexity

for any bound M on the number of messages.

Remark 2.4.1. For any T , µ , ε , ε1, ε2, M, with 0≤ ε1 ≤ ε2 ≤ 1, the following holds:

QCC(T,µ,ε)≤ QCCM(T,µ,ε),

QCC(T,µ,ε2)≤ QCC(T,µ,ε1),

QCCM(T,µ,ε2)≤ QCCM(T,µ,ε1),

QCCM(T,µ,1) = 0.

If M ≥ 2,

QCCM(T,µ,0)≤ log |Ain|+ log |Aout |.

Also, for any ε ∈ [0,1], the following holds for any distribution µ with support of size

one:

QCCM(T,µ,ε) = 0.

2.4.2.2 Worst-Case Tasks

To solve a classical task with worst-case error (T,ε), which consists of implementing

a relation T ⊂ X×Y ×ZA×ZB with worst-case error at most ε , we also allow Alice and

Bob to jointly sample which protocol they use, i.e. they can use protocols in the random-

ized model. We denote by T (T,ε) the set of all randomized protocols implementing

task (T,ε), and by T M(T,ε) if we restrict this set to M-message protocols. We get the

following definitions.
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Definition 2.4.4. For a classical task (T,ε) and a bound M ∈ N on the number of mes-

sages, we define the ε-error quantum communication complexity of T as

QCC(T,ε) = min
Π∈T (T,ε)

QCC(Π),

and the M-message, ε-error quantum communication complexity of T as

QCCM(T,ε) = min
Π∈T M(T,ε)

QCC(Π).

We denote by DXY the set of all distributions over X ×Y . Note that it follows from

discussions in Section 2.3.1 and the above definitions that for any relation T , error ε and

number of message M, the following holds:

max
µ∈DXY

QCC(T,µ,ε)≤ QCC(T,ε), (2.4.4)

max
µ∈DXY

QCCM(T,µ,ε)≤ QCCM(T,ε). (2.4.5)

The reason why we allow Alice and Bob to use protocols in the randomized model to

solve tasks with worst-case error is to be able to prove the reverse inequalities (possibly

up to a discontinuity in the error parameter). See Section 4.6.3.1, which gives a quantum

analogue to Yao’s Min-Max theorem. We also get similar remarks as in the distributional

case.

Remark 2.4.2. For any T , ε , ε1, ε2, M, with 0≤ ε1 ≤ ε2 ≤ 1, the following holds:

QCC(T,ε)≤ QCCM(T,ε),

QCC(T,ε2)≤ QCC(T,ε1),

QCCM(T,ε2)≤ QCCM(T,ε1),

QCCM(T,1) = 0.
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If M ≥ 2,

QCCM(T,0)≤ log |Ain|+ log |Aout |.

2.4.2.3 Product Tasks

We are also interested in the quantum communication complexity of implementing

multiple classical tasks in parallel. A protocol Πn is said to compute the n-fold product

relation T1⊗ T2⊗ ·· · ⊗ Tn on input µn = µ1× µ2× ·· · × µn, each with corresponding

error εi if, for each i ∈ [n], the probability of failure for task i is at most εi. That is,

if we denote by (xi,yi) the ith coordinate of the input and by Πi
n the ith coordinate of

the output of Πn, corresponding to Ti, then it holds that Pi
e(Πn,µ

n)≤ εi for each i, with

Pi
e(Πn,µ

n) = ∑xn,yn µn(xn,yn)·PrΠn [
(
xi,yi,Π

i
n(x

n,yn)
)
6∈ Ti]. This error criterion corre-

sponds to the one achieved when sequentially implementing the n tasks (Ti,µi,εi) and,

even for the case of εi = ε for each i, this is weaker than demanding to simulate them

with overall error ε . Indeed, asking for overall error ε could correspond to a much

harder task. In particular, the direct product question, considering the particular case

Ti = T for each i, asks if this overall error goes to 1 exponentially fast in n if we do not

allow sufficiently more resources than for sequential implementation. Hence, if we want

to study amortized communication complexity with nontrivial error, we have to settle

for such a success parameter. We call ⊗i(Ti,µi,εi) a product classical task, and denote

T
(
⊗i (Ti,µi,εi)

)
the set of all protocols achieving the above goal of having error εi for

each corresponding task. When restricting this set to M-message protocols, we denote it

as T M(⊗i (Ti,µi,εi)
)
. We also specialize the definition to the special case in which we

are interested in implementing n times the same task, and in such a case we simply write

(T,µ,ε)⊗n for ⊗n
i=1(T,µ,ε). We have the following definitions.

Definition 2.4.5. For a product classical task ⊗i(Ti,µi,εi) and a bound M ∈ N on

the number of messages, we define the n-fold quantum communication complexity of
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⊗i(Ti,µi,εi) as

QCC
(
⊗i (Ti,µi,εi)

)
= min

Πn∈T (⊗i(Ti,µi,εi))
QCC(Πn),

and the M-message, n-fold quantum communication complexity of ⊗i(Ti,µi,εi) as

QCCM(⊗i (Ti,µi,εi)
)
= min

Πn∈T M(⊗i(Ti,µi,εi))
QCC(Πn).

Note that for all n,

QCC
(
⊗i (Ti,µi,εi)

)
≤∑

i
QCC(Ti,µi,εi), (2.4.6)

QCCM(⊗i (Ti,µi,εi)
)
≤∑

i
QCCM(Ti,µi,εi), (2.4.7)

as is made clear by running in parallel the n protocols achieving the minimum in the def-

inition of quantum communication complexity of (Ti,µi,εi). Restricting to performing

the same task, we have QCC((T,µ,ε)⊗n) ≤ nQCC(T,µ,ε). We define the amortized

quantum communication complexity AQCC(T,µ,ε) as the asymptotic cost per copy for

computing (T,µ,ε) n times in parallel.

Definition 2.4.6. For a classical task (T,µ,ε) and a bound M ∈ N on the number of

messages, we define the ε-error amortized quantum communication complexity of T on

input µ as

AQCC(T,µ,ε) = lim
n→∞

1
n

QCC((T,µ,ε)⊗n),

and the M-message, ε-error amortized quantum communication complexity of T on

input µ as

AQCCM(T,µ,ε) = lim
n→∞

1
n

QCCM((T,µ,ε)⊗n).

These limits are well-defined, and we will provide an information-theoretic charac-
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terization for them in Chapter 4.

We also have corresponding definitions for product classical tasks wih worst-case

error. With similar notation as above, the product task ⊗i(Ti,εi) requires that for each

i, for each global input (xn,yn), the error of a randomized protocol Πν satisfies ∑r ν(r)·
PrΠr [

(
xi,yi,Π

i
r(x

n,yn)
)
6∈ Ti]≤ εi. We denote T (⊗i(Ti,εi)) the set of all protocols in the

randomized model achieving the above goal of having error εi for each corresponding

task. When restricting this set to M-message protocols, we denote it as T M(⊗i(Ti,εi)).

We have the following definitions.

Definition 2.4.7. For a product classical task ⊗i(Ti,εi) and a bound M ∈N on the num-

ber of messages, we define the n-fold quantum communication complexity of ⊗i(Ti,εi)

as

QCC
(
⊗i (Ti,εi)

)
= min

Πn∈T (⊗i(Ti,εi))
QCC(Πn),

and the M-message, n-fold quantum communication complexity of ⊗i(Ti,εi) as

QCCM(⊗i (Ti,εi)
)
= min

Πn∈T M(⊗i(Ti,εi))
QCC(Πn).

Note that for all n,

QCC
(
⊗i (Ti,εi)

)
≤∑

i
QCC(Ti,εi), (2.4.8)

QCCM(⊗i (Ti,εi)
)
≤∑

i
QCCM(Ti,εi), (2.4.9)

as is made clear by running in parallel the n protocols achieving the minimum in the

definition of quantum communication complexity of (Ti,εi).

2.4.3 Quantum Tasks

We also study the quantum analogue of distributional classical tasks, along with the

product version of such tasks: quantum tasks with fixed input state.
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2.4.3.1 Tasks with Fixed Input State

Recall that a quantum task consists of implementing a channel N ∈C (AinBin,AoutBout)

on input ρ ∈ D(AinBin) with error at most ε ∈ [0,2]. It is denoted (N ,ρ,ε), and we

denote the set of all protocols in the hybrid model implementing the quantum task

(N ,ρ,ε) as T (N ,ρ,ε). If we want to restrict this set to bounded round protocols

with M messages, we write T M(N ,ρ,ε). The notion of quantum communication com-

plexity of a channel is defined as follows.

Definition 2.4.8. For a quantum task (N ,ρ,ε) and a bound M ∈ N on the number of

messages, we define the ε-error quantum communication complexity of N on input ρ

as

QCC(N ,ρ,ε) = min
Π∈T (N ,ρ,ε)

QCC(Π),

and the M-message, ε-error quantum communication complexity of N on input ρ as

QCCM(N ,ρ,ε) = min
Π∈T M(N ,ρ,ε)

QCC(Π).

Similarly to the case for quantum communication complexity of classical tasks, these

quantities are discontinuous in their parameters N ,ρ,ε , and other analogous remarks

hold. Also note that for pure states, the quantum communication vanishes. This is be-

cause, in this quantum analogue to the distributional setting, pure states have no correla-

tion with the outside world, so we can consider a protocol that is given, as entanglement

for the protocol, the output of the channel acting on the pure state, and outputs it without

communication.
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Remark 2.4.3. For any N , ρ , ε , ε1, ε2, M, with 0≤ ε1 ≤ ε2 ≤ 2, the following holds:

QCC(N ,ρ,ε)≤ QCCM(N ,ρ,ε),

QCC(N ,ρ,ε2)≤ QCC(N ,ρ,ε1),

QCCM(N ,ρ,ε2)≤ QCCM(N ,ρ,ε1),

QCCM(N ,ρ,2) = 0.

If M ≥ 2,

QCCM(N ,ρ,0)≤ log |Ain|+ log |Aout |.

Also, for any ε ∈ [0,2], the following holds for any pure state ρ:

QCCM(N ,ρ,ε) = 0.

2.4.3.2 Product Tasks

We are also interested in the quantum communication complexity of implementing

multiple quantum tasks in parallel. For channels N1, · · · , Nn, input states ρ1, · · · , ρn and

error parameters ε1, · · · , εn, we call⊗i(Ni,ρi,εi) a product quantum task. A protocol Πn

is said to implement the product quantum task ⊗(Ni,ρi,εi) if, for all i ∈ [n],

‖Tr¬(Ai
outBi

outRi) ◦Πn(⊗ jρ
A j

inB j
inR j

j )−Ni(ρ
Ai

inBi
inRi

i )‖1 ≤ εi. (2.4.10)

We have implicitly used the fact that it is possible to find a purification of ⊗ jρ
A j

inB j
in

j

with a decomposition of the purifying register R = R1⊗ ·· ·⊗Rn, and with ρi purified

by register Ri. Similarly to the classical setting, this error criterion corresponds to the

one achieved when sequentially implementing the n tasks (Ni,ρi,εi), and is weaker

than demanding to simulate it n times with overall error ε = mini εi. Once again, the

reason for this is that asking for overall error ε could be a much harder task. Indeed,

consider n times the same task with a purified input state that is exactly ε away, for
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some ε ∈ (0,1) in trace distance to a state which is product with respect to the AinBin−R

bipartite cut. Then, since the trace distance is monotone under noisy channels, the parties

can simulate the channel at zero communication cost and achieve error ε by taking, as

part of the entanglement of their protocol, the AoutBout registers of the channel acting on

that product state. Thus the quantum communication complexity is zero. We can then

also achieve the task of amortized quantum communication complexity with ε error in

each input at zero communication. However, using the operational interpretation of the

trace distance as the best bias in a distinguishability experiment, the amortized quantum

communication task in which we ask for overall error ε cannot be achieved at zero

communication cost, since having access to many instances of the output state leads to

exponentially better distinguishability whenever starting with distinguishability greater

than zero between the actual input and the product state [11]. Hence, if we want to study

amortized quantum communication complexity with non-trivial error, we have to settle

for such a success parameter.

We denote T (⊗i(Ni,ρi,εi)) the set of all protocols achieving the above goal of

having εi error in each corresponding output. When restricting this set to M-message

protocols, we denote it as T M(⊗i(Ni,ρi,εi)). If, for all i, (Ni,ρi,εi) = (N ,ρ,ε), we

may use the notation ⊗i(Ni,ρi,εi) = (N ,ρ,ε)⊗n. We have the following definitions.

Definition 2.4.9. For a product quantum task⊗(Ni,ρi,εi) and a bound M on the number

of messages, we define the n-fold quantum communication complexity of ⊗i(Ni,ρi,εi)

as

QCC(⊗i(Ni,ρi,εi)) = min
Πn∈T (⊗i(Ni,ρi,εi))

QCC(Πn),

and the M-message n-fold quantum communication complexity of ⊗i(Ni,ρi,εi) as

QCCM(⊗i(Ni,ρi,εi)) = min
Πn∈T M(⊗i(Ni,ρi,εi))

QCC(Πn),

Definition 2.4.10. For a quantum task (N ,ρ,ε) and a bound M on the number of mes-

sages, we define the ε-error amortized quantum communication complexity of N on
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input ρ as

AQCC(N ,ρ,ε) = lim
n→∞

1
n

QCC((N ,ρ,ε)⊗n),

and the M-message, ε-error amortized quantum communication complexity of N on

input ρ as

AQCCM(N ,ρ,ε) = lim
n→∞

1
n

QCCM((N ,ρ,ε)⊗n).

Note that for all n, QCCM((N ,ρ,ε)⊗n) ≤ nQCCM(N ,ρ,ε), as is made clear by

running n times in parallel a protocol achieving the minimum in the definition of the

quantum communication complexity. Hence, the amortized quantum communication

complexity is bounded by the quantum communication complexity. The aim of the direct

sum question is to provide the reverse inequality.
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CHAPTER 3

QUANTUM STATE REDISTRIBUTION

3.1 Introduction

Quantum state redistribution is the most general noiseless coding task in unidirec-

tional quantum information theory. It is also of fundamental importance in the context

of quantum information complexity. We study in this chapter the amount of resources

required to implement quantum state redistribution in a one-shot setting.

3.1.1 The Information Processing Task

In the task of quantum state redistribution, we are interested in the amounts of quan-

tum communication and entanglement that are required to transmit part of the system of

one party to another party who possesses some side information about this system. It is

required that all correlations, including those with any external system, are maintained.

More precisely, consider two parties Alice and Bob, with Alice initially holding the A

and C registers, and Bob holding the B register. The goal is then for Alice to transmit the

C register to Bob. If we consider a reference register R holding a purification of the ABC

systems, then the global state on ABCR is uncorrelated with any other external system,

and it is sufficient to insure that correlations are maintained across these systems. Please

refer to Section 3.2.3 for a formal description.

In the independent and identical (iid) asymptotic version, Alice and Bob want to

perform this task on blocks of n identical states, for n large, and we are interested in the

best asymptotic rates achievable. Luo and Devetak [100] proved a converse theorem in

the iid asymptotic regime, stating that the quantum communication rate q and the sum

of the entanglement consumption rate e and the quantum communication rate q must be

at least

q≥ 1
2

I(C;R|B) and e+q≥ H(C|B) . (3.1.1)



Subsequently, Devetak and Yard [54, 140] proved that these rates are also achievable

and hence fully characterize the achievable rate region for iid asymptotic quantum state

redistribution. Note that since the overall state ρABCR for quantum state redistribution is

pure, we have the symmetry in A–B,

I(C;R|B)ρ = I(C;R|A)ρ . (3.1.2)

Later, the achievability proofs for quantum state redistribution were significantly simpli-

fied by Oppenheim [107] and independently by Ye, Bai and Wang [141]. State redistri-

bution can be seen as the most general bipartite noiseless coding problem, and indeed,

other noiseless quantum coding primitives such as Schumacher source coding [115],

quantum state merging [74, 75] (including fully quantum Slepian-Wolf [3]), and state

splitting [3] can be obtained by considering the case of trivial AB, A or B system, re-

spectively. Quantum state redistribution can also be understood as the fully quantum

analogue of the tensor power input reverse Shannon theorem [20, 22] with feedback to

the sender and side information at the receiver [100, 134].

In recent years, there has been some effort on finding good bounds for the one-shot

version of these results (see, e.g., [21, 22, 43, 51, 58, 59] and references therein). In the

one-shot setting, instead of being interested in iid asymptotic rates, we are interested in

the cost of achieving these tasks when only a single copy of the input state is available.

Useful bounds are often stated in terms of so-called smooth conditional entropies (see

the theses of Renner [111] and Tomamichel [126], as well as references therein).

3.1.2 Link to Interactive Protocols

In our study of quantum information complexity in Chapter 4, we take the following

view on interactive protocols in the hybrid communication model. The isometries Ui the

parties apply locally correspond to channels, the output of which is to be transmitted to

the other party. The task of compressing messages to their information content is then

naturally associated with the task of optimally simulating the corresponding channel.

But as said above, channel simulation with side-information at the receiver and coherent
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feedback to the sender is equivalent to quantum state redistribution, so that this task will

be of fundamental importance in our study of compression of interactive protocols.

3.1.3 Overview of Results

Most of the results in this chapter are based on a collaboration with Mario Berta

and Matthias Christandl [23]. We are interested in finding good bounds for the quantum

communication cost of one-shot quantum state redistribution in terms of smooth condi-

tional entropies. Our main result states that it is possible to implement quantum state

redistribution for a pure quantum state ρABCR up to error ε , for ε > 0, with quantum

communication cost at most

1
2
(
Hε

max(C|B)ρ −Hε
min(C|BR)ρ

)
+O

(
log(1/ε)

)
, (3.1.3)

when free entanglement assistance is available. Note that both the conditional min- and

max-entropy terms appearing in (3.1.3) are smoothed, notwithstanding the fact that it is

in general unknown how to simultaneously smooth marginals of overlapping quantum

systems (see, e.g., [57] and references therein). For the special case of iid asymptotic

resources, this allows us to recover the optimal quantum communication rate (3.1.1) by

means of the fully quantum asymptotic equipartition property for smooth conditional

entropies [127].

We also state lower bounds in terms of smooth conditional min- and max-entropies,

and smooth max-information. However, our achievability bound (3.1.3) only matches

these lower bounds in an iid asymptotic scenario. We then also speculate on how to

improve the bound (3.1.3) with the help of embezzling entangled quantum states [130]

along with some of the ideas in [22].

Using the substate theorem of Jain, Radhakrishnan and Sen [78, 80, 83], we also

obtain a one-shot bound in terms of conditional quantum mutual information, however

with a 1/ε2 dependence on the allowed error ε . This bound finds an application in

Section 4.6 to prove the first multi-round general direct sum theorem in quantum com-

munication complexity, through the notion of quantum information complexity. This
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result is from Ref. [129].

Since quantum state redistribution plays a fundamental role in the definition of quan-

tum information cost of interactive protocols, we also show that the lower bounds extend

to multi-round protocols. Thus, the definition of quantum information cost is robust for

interactive communication in this sense.

Organization: This chapter is structured as follows. In Section 3.2, we introduce

our notation and state the definitions of the relevant smooth entropy measures and of the

quantum state redistribution task. We then present our converse bounds in Section 3.3.

Our achievability bounds are presented in Section 3.4, which begins with a discussion

of the work of Oppenheim [107], arguing that quantum state redistribution can be opti-

mally decomposed into two applications of quantum state merging. We end with some

conclusions.

3.2 One-Shot Quantum Information Theory

In order to study one-shot quantum state redistribution, we require new notions of

distance and information more appropriate in the one-shot setting. We also state some

useful properties for these, and provide a formal definition for one-shot quantum state

redistribution.

3.2.1 Information and Distance Measures

For one-shot information measures, we also require smooth versions, optimized over

an ε-ball around the state under consideration. We later define an appropriate notion of

distance in order to do so, but first we extend the definition of quantum states to allow

for subnormalized states, in order to define ε-ball of sub-normalized states. The set

of linear, nonnegative operators is denoted by P(A). We denote by D≤(A) the set of

sub-normalized states on A, i.e., the set of operators ρA ∈P(A) that are positive semi-

definite, denoted ρ ≥ 0, and have trace at most one. The set of normalized states is still

denoted by D(A). Given a multipartite state ρAB ∈ D≤(AB), we write ρA = TrB[ρ
AB]

for the reduced state on the system A. A purification of state ρ ∈ D≤(A) is a rank one
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operator ρAR such that TrR(ρ
AR) = ρA.

The relative entropy of ρ ∈D≤(A) with respect to σ ∈P(A) is defined as

D(ρ‖σ) = Tr(ρ logρ)−Tr(ρ logσ). (3.2.1)

Note that we can rewrite the conditional entropy of A given B for ρ ∈D(AB) as

H(A|B)ρ =−D(ρAB‖IA⊗ρ
B) (3.2.2)

=− inf
σB∈D(B)

D(ρAB‖IA⊗σ
B). (3.2.3)

The max-relative entropy of ρ ∈D≤(A) with respect to σ ∈P(A) is defined as

Dmax(ρ‖σ) = inf
{

λ ∈ R : 2λ
σ ≥ ρ

}
. (3.2.4)

The conditional min-entropy of A given B for ρAB ∈D≤(AB) is defined as

Hmin(A|B)ρ =− inf
σ∈D(B)

Dmax

(
ρ

AB‖IA⊗σ
B
)
. (3.2.5)

The conditional max-entropy of A given B for ρAB ∈D≤(AB), with purification ρABR ∈
D≤(ABR) for some system R, is defined as

Hmax(A|B)ρ =−Hmin(A|R)ρ . (3.2.6)

Note that this definition does not depend on the choice of the purification. The max-

information that B has about A for ρAB ∈D≤(AB) is defined as

Imax(A : B)ρ = inf
σ∈D(B)

Dmax

(
ρ

AB‖ρA⊗σ
B
)
. (3.2.7)

To define smooth entropy measures, an optimization over a set of nearby states is per-

formed. The distance measure used is the purified distance [128], defined for ρ,σ ∈
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D≤(A) as

P(ρ,σ) =
√

1− F̄2(ρ,σ) , (3.2.8)

in which the generalized fidelity F̄ is defined in terms of the fidelity F , with F(ρ,σ) =

‖√ρ
√

σ‖1, as

F̄(ρ,σ) = F(ρ,σ)+
√

(1−Tr(ρ))(1−Tr(σ)) . (3.2.9)

We then define an ε-ball around ρ ∈D≤(A) as

Bε(ρ) = {ρ̄ ∈D≤(A) : P(ρ, ρ̄)≤ ε} . (3.2.10)

For ε ≥ 0, the smooth max-relative entropy of ρ ∈D≤(A) with respect to σ ∈P(A) is

then defined as

Dε
max(ρ‖σ) = inf

ρ̄∈Bε (ρ)
Dmax(ρ‖σ) . (3.2.11)

For ε ≥ 0, the smooth conditional min-entropy of A given B for ρAB ∈ D≤(AB) is then

defined as

Hε
min(A|B)ρ = sup

ρ̄∈Bε (ρAB)

Hmin(A|B)ρ̄ , (3.2.12)

and the smooth conditional max-entropy as

Hε
max(A|B)ρ = inf

ρ̄∈Bε (ρAB)
Hmax(A|B)ρ̄ . (3.2.13)

The smooth max-information that B has about A for ρAB ∈D≤(AB) is defined as

Iε
max(A : B)ρ = inf

ρ̄∈Bε (ρAB)
Imax(A : B)ρ̄ . (3.2.14)
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3.2.2 Properties

We make use of the following properties of the purified distance and the above infor-

mation measures.

The properties of the purified distance that we use are proved in [126, 128]. First, it

is a metric, so it is symmetric in ρ,σ , non-negative, evaluate to 0 if and only if ρ = σ

and it satisfies the triangle inequality. Moreover, it is monotone under noisy channels:

for any ρ1, ρ2 ∈D≤(A) and N ∈ C (A,B),

P(N (ρ1),N (ρ2))≤ P(ρ1,ρ2). (3.2.15)

For isometries, the inequality becomes an equality, a property called isometric invariance

of the purified distance. Also, the purified distance remains invariant when adjoining an

uncorrelated system: for any ρ1, ρ2 ∈D≤(A), σ ∈D≤(B)

P(ρ1⊗σ ,ρ2⊗σ) = P(ρ1,ρ2). (3.2.16)

The purified distance is related to the trace distance through a generalization of the

Fuchs-van de Graaf inequalities [63]: for any ρ1, ρ2 ∈D≤(A) , it holds that

1
2
‖ρ1−ρ2‖1 ≤ P(ρ1,ρ2)≤

√
2‖ρ1−ρ2‖1. (3.2.17)

In the case that Tr(ρ1) = Tr(ρ2), we can strengthen this to P(ρ1,ρ2) ≤
√
‖ρ1−ρ2‖1.

We also make use of the following variant of Uhlmann’s theorem.

Lemma 3.2.1. Let ρ1, ρ2 ∈D≤(A) have purifications ρ
AR1
1 , ρ

AR2
2 , with |R1| ≤ |R2|. Then,

there exists an isometry V R1→R2 such that

P
(
ρ

A
1 ,ρ

A
2
)
= P

(
V
(
ρ

AR1
1
)
,ρAR2

2

)
. (3.2.18)

The following bound holds on the smooth max-information [22, Lemma B.9].
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Lemma 3.2.2. Let ε ≥ 0 and ρABC ∈D(ABC). Then, we have

Iε
max(A : BC)ρ ≤ Iε

max(A : B)ρ +2log |C| . (3.2.19)

We also need the same type of bound for smooth conditional min-entropy.

Lemma 3.2.3. Let ε ≥ 0 and ρABC ∈D(ABC). Then, we have

Hε
min(A|B)ρ ≤ Hε

min(A|BC)ρ +2log |C| . (3.2.20)

Note that by duality, a similar result holds for smooth conditional max-entropy. The

max-information and the min-entropy are monotone under local operations [22, 126].

That is, they satisfy a data processing inequality: for any ε ≥ 0, ρ ∈D≤(AB) and N ∈
C (B,C),

Hε
min(A|B)ρ ≤ Hε

min(A|C)N (ρ), (3.2.21)

Iε
max(A;B)ρ ≥ Iε

max(A;C)N (ρ). (3.2.22)

They are left invariant under appending an uncorrelated system to one subsystem: for

any ε ≥ 0,ρ ∈D≤(AB) and σ ∈D≤(C),

Hε
min(A|B)ρ = Hε

min(A|BC)ρ⊗σ , (3.2.23)

Iε
max(A;B)ρ = Iε

max(A;BC)ρ⊗σ . (3.2.24)

For the von Neumann mutual information, we introduce the following parameter for

any two states ρ1, ρ2 ∈D(AB) that are close:

δI(A;B)(ρ1,ρ2) = |I(A;B)ρ1− I(A;B)ρ2|. (3.2.25)

By continuity, the following holds when ε = ‖ρ1−ρ2‖1 is small enough:

δI(A;B)(ρ1,ρ2)≤ 8ε log |A|+4H2(ε). (3.2.26)
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3.2.3 Definition of Quantum State Redistribution

The fully quantum task of state redistribution plays a central role in our develop-

ments, and can be formulated as a quantum task. We have the following definition.

Definition 3.2.1. We say that the bipartite channel R ∈ C (AinBin,AoutBout) implements

state redistribution on input ρAinBin , with Ain = AC, Bin = B, Aout = A, Bout = BC: it

implements the identity channel on such a state and such a partition of the input-output

registers, i.e. it transfers the C part of ρ from Alice to Bob. We say that a protocol Π is

an ε-error state redistribution protocol for ρABC if Π ∈T (R,ρ,ε).

When only EPR pairs are consumed as pre-shared entanglement, and possibly some

EPR pairs are generated, it makes sense to also speak of the net entanglement cost of a

protocol. This is the difference between the number of pairs consumed vs. the number

of pairs generated. The net cost can be negative if a protocol generates more pairs than

it consumes. For a protocol Π consuming ec EPR pairs as pre-shared entanglement

and generating eg EPR pairs, up to error ε , when run on input ρ , we denote the net

entanglement consumption cost as e(Π,ρ,ε) = ec− eg.

3.3 Converse Bounds

We first state lower bounds on the amount of quantum communication required to

implement quantum state redistribution. These are called converse bounds in the infor-

mation theory literature. We first prove such bounds for one-message protocols, and then

prove that these bounds also hold for multi-round protocols, in an interactive setting.

3.3.1 Single-Round Protocols

We provide lower bounds on the amount of communication required for one-shot

state redistribution. They do not match the upper bound given in the direct coding theo-

rem in general, but in the asymptotic regime they also simplify to the conditional mutual

information I(C;R|B)ρ .
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Proposition 3.3.1. Let ε1, ε2 ≥ 0 and ρ ∈D(ABC) with purifying register R. Then, for

every one-message protocol Π∈T (R,ρ,ε1), the quantum communication cost is lower

bounded by

QCC(Π)≥ 1
2

Iε1+ε2
max (R;BC)ρ −

1
2

Iε2
max(R;B)ρ , (3.3.1)

QCC(Π)≥ 1
2

Hε2
min(R|B)ρ −

1
2

Hε1+ε2
min (R|BC)ρ , (3.3.2)

QCC(Π)≥ 1
2

Hε1+ε2
max (R|B)ρ −

1
2

Hε2
max(R|BC)ρ , (3.3.3)

QCC(Π)≥ 1
2

I(R;C|B)ρ −
1
2

max
σ∈Bε1(ρ)

δI(R;BC)(ρ,σ), (3.3.4)

and the same bounds hold for B replaced with A.

Note that the first bound is optimal in the case of a trivial B register, for state split-

ting, while the corresponding bound with A replacing B is optimal in the case of a trivial

A register, for state merging. Also note that, in contrast to the direct coding bound, the

time-reversal symmetry between the A,B systems is not apparent here. Finally, note that

these bounds hold irrespective of the kind of entanglement used.

Proof. (Proposition 3.3.1) Similar to the proof of the optimal bound on state splitting in

[22], we look at the correlations between Bob and the reference register. To be able to

use Lemma 3.2.2, we look at the max-information that Bob has about R at the end of any

protocol for quantum state redistribution. A one-message protocol for state redistribution

necessarily has the following structure: local operations on Alice’s side, followed by

communication from Alice to Bob, and then local operations on Bob’s side. In more

detail:

General protocol Π for input ρABCR using entanglement φ T in
A T in

B

1. Alice holds the A, C, T in
A systems at the outset, and Bob the B, T in

B systems.
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2. Alice applies a local operation on the ACT in
A registers. Her registers are then

T out
A A′Q. The joint state is σT out

A A′QBT in
B R.

3. Alice transmits the Q register to Bob.

4. Bob applies a local operation on QBT in
B . His registers are then T out

B B′C′. The

joint state is θ T out
A T out

B A′B′C′R.

– The requirement is that the A′B′C′R part is ε1-close to ρA′B′C′R =

IABC→A′B′C′(ρABCR) in purified distance.

For the bound in terms of max-information, consider a state θ̂ A′B′C′R ∈D≤(A′B′C′R)

such that P(θ A′B′C′R, θ̂ A′B′C′R) ≤ ε2 and Iε2
max(R;B′C′)θ = Imax(R;B′C′)

θ̂
. Such a state

must exist by the definition of smoothing and the properties of the purified distance.

Then P(ρA′B′C′R, θ̂ A′B′C′R) ≤ ε1 + ε2 by the triangle inequality since θ A′B′C′R must be

ε1-close to ρA′B′C′R. We get the following chain of inequalities

Iε1+ε2
max (R;BC)ρ ≤ Imax(R;B′C′)

θ̂
(3.3.5)

= Iε2
max(R;B′C′)θ (3.3.6)

≤ Iε2
max(R;QBT in

B )σ (3.3.7)

≤ Iε2
max(R;BT in

B )σ +2log |Q| (3.3.8)

= Iε2
max(R;BT in

B )ρ⊗φ +2log |Q| (3.3.9)

= Iε2
max(R;B)ρ +2log |Q| , (3.3.10)

in which the first inequality follows by definition of smooth max-information and mono-

tonicity of purified distance, since θ A′B′C′R is within distance ε1 of ρA′B′C′R, the first

equality is by the choice of θ̂ , the second inequality is because the max-information is

monotone under local operations, the third inequality follows by Lemma 3.2.2, the sec-

ond equality is because local operations of Alice do not change the max-information of

Bob about the reference, and the last is because φ T in
A T in

B is uncorrelated to ρABCR.
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For the bound in terms of conditional min-entropy, we similarly get, by taking an

appropriate θ̂ and using an unlockability property of min-entropy (Lemma 3.2.3),

Hε1+ε2
min (R|BC)ρ ≥ Hmin(R|B′C′)θ̂

(3.3.11)

= Hε2
min(R;B′C′)θ (3.3.12)

≥ Hε2
min(R|QBT in

B )σ (3.3.13)

≥ Hε2
min(R|BT in

B )σ −2log |Q| (3.3.14)

= Hε2
min(R|BT in

B )ρ⊗φ −2log |Q| (3.3.15)

= Hε2
min(R|B)ρ −2log |Q| . (3.3.16)

For the bound in terms of the conditional max-entropy, we obtain the bound with the A

system instead of B by using the duality relation of conditional min- and max-entropy.

For the bound in terms of von Neumann mutual information, we get, similarly to the

derivation for max-information and using the definition of δI(R;BC)(θ ,ρ) along with the

chain rule for conditional quantum mutual information,

I(R;BC)ρ −δI(R;B′C′)(θ ,ρ)≤ I(R;BC)θ (3.3.17)

≤ I(R;QBT in
B )σ (3.3.18)

= I(R;BT in
B )σ + I(R;Q|BT in

B )σ (3.3.19)

≤ I(R;BT in
B )σ +2log |Q| (3.3.20)

= I(R;BT in
B )ρ⊗φ +2log |Q| (3.3.21)

= I(R;B)ρ +2log |Q|. (3.3.22)

We then get the remaining bounds by interchanging the A and B systems in those already

proved, and by using the symmetry of state redistribution under time reversal.

3.3.2 Multi-Round Protocols

Note that asymptotic quantum state redistribution composes perfectly. That is, given

any decomposition C = D1D2 · · ·Dd , the total asymptotic cost for transmitting C in a
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single message versus transmitting it in d successive messages from Alice to Bob is

the same: I(C;R|B) = I(D1;R|B) + I(D2;R|BD1) + · · ·+ I(Dd;R|BD1 · · ·Dd−1). This

follows from the chain rule for conditional quantum mutual information. By allowing

back-communication, we could hope to improve on this. This is impossible: we show

that even if there is back-communication from Bob to Alice, multiple messages cannot

decrease the total asymptotic cost of communication from Alice to Bob.

Proposition 3.3.2. Let ε1, ε2 ≥ 0 and ρ ∈ D(ABC) with purification register R. Then,

for every M-message protocol Π ∈ T (R,ρ,ε1), the quantum communication cost from

Alice to Bob is lower bounded by

QCCA→B(Π)≥ 1
2

Iε1+ε2
max (R;BC)ρ −

1
2

Iε2
max(R;B)ρ , (3.3.23)

QCCA→B(Π)≥ 1
2

Hε2
min(R|B)ρ −

1
2

Hε1+ε2
min (R|BC)ρ , (3.3.24)

QCCA→B(Π)≥ 1
2

Hε1+ε2
max (R|B)ρ −

1
2

Hε2
max(R|BC)ρ , (3.3.25)

QCCA→B(Π)≥ 1
2

I(R;C|B)ρ −
1
2

max
σ∈Bε1(ρ)

δI(R;BC)(ρ,σ), (3.3.26)

and the same bounds hold for B replaced with A.

Note that there is no dependence on the number M of messages in these lower

bounds.

Proof. The proof is similar to the one in the single round case. Hence, we only write

down the details for the bound in terms of max-information. We consider an M-message

protocol in the hybrid model, for the case of even M (the case of odd M follows simi-

larly). We use the following notation: ρ0 = ρABCR⊗φ TATB , ρ1 = U1(ρ0), ρ2 = U2(ρ1),

· · · , ρM+1 = UM+1(ρM). It must hold that P(ρABCR
M+1 ,ρABCR) ≤ ε1. Consider a state

θ̂ ABCR ∈D≤(ABCR) such that P(ρABCR
M+1 , θ̂ ABCR)≤ ε2 and Iε2

max(R;BC)ρM+1 = Imax(R;BC)
θ̂

.

Such a state must exist by the definition of smoothing and the properties of the purified

distance. Then P(ρABCR, θ̂ ABCR)≤ ε1 + ε2 by the triangle inequality. We get the follow-
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ing chain of inequalities:

Iε1+ε2
max (R;BC)ρ ≤ Imax(R;BC)

θ̂

= Iε2
max(R;BC)ρM+1

= Iε2
max(R;BC)ρM

≤ Iε2
max(R;CM−1BM−2)ρM−1

≤ Iε2
max(R;BM−2)ρM−1 +2log |CM−1|

= Iε2
max(R;BM−2)ρM−2 +2log |CM−1|

≤ Iε2
max(R;CM−3BM−4)ρM−3 +2log |CM−1|

≤ · · ·

≤ Iε2
max(R;C1B0)ρ1 +2 ∑

i≥1
log |C2i+1|

≤ Iε2
max(R;B0)ρ1 +2 ∑

i≥0
log |C2i+1|

= Iε2
max(R;BTB)ρ0 +2QCCA→B(Π)

= Iε2
max(R;B)ρ +2QCCA→B(Π).

The first inequality follows by definition of smooth max-information and monotonic-

ity of purified distance. The first equality is by the choice of θ̂ , and the second because

UM+1 is applied on Alice’s side. The second inequality is because the max-information is

monotone under local operations, and the third inequality follows by Lemma 3.2.2. The

third equality is because local operations of Alice do not change the max-information of

Bob about the reference, and the following sequence of inequality follows by applying

the last few ones repeatedly. The last inequality follows by Lemma 3.2.2, the follow-

ing equality is by definition of B0 and QCCA→B(Π), and the last is because φ T in
A T in

B is

uncorrelated to ρABCR.
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3.4 Achievability Bounds

We now give upper bounds on the amount of quantum communication required to

implement quantum state redistribution. The achievability part of a coding theorem is

called the direct coding theorem in the information theory literature. We first present

the approach we take, then present our smooth entropy bounds, and finally use these to

derive bounds in terms of conditional quantum mutual information.

3.4.1 Decoupling Approach to State Redistribution

We want to make use of the following observation of Oppenheim [107]: quantum

state redistribution can be optimally decomposed into two applications of quantum state

merging by introducing a coherent relay, through which all communication is relayed

and possibly modified, and applying an ebit repackaging sub-protocol. In more detail,

we consider four distinct parties, each holding a register. Charlie holds register C, that he

wants to transmit to Bob, who holds register B, and to do so he may use help from Alice

acting as a coherent relay, who holds register A. The state ρ in registers ABC is purified

by state |ρ〉ABCR with the R register held by some reference party. The goal is to transmit

C to Bob while minimizing the communication from Alice to Bob, and while keeping

the overall correlation with the reference. No direct communication between Charlie

and Bob is allowed. We might also keep track of communication between Charlie and

Alice, as well as of the entanglement consumption and generation between both Charlie

and Alice, and Alice and Bob, but here our main focus is the communication between

Alice and Bob. A key observation is that applying a single decoupling unitary at Char-

lie’s side suffices to generate two hypothetical state merging protocols. Firstly, the state

merging protocol that directly transmits the C register to Bob while considering both the

A and R registers as reference. In an iid asymptotic setting, this state merging protocol

requires quantum communication rate of 1
2 I(C;AR) and generates ebits between Charlie

and Bob at a rate 1
2 I(C;B). Secondly, if we instead consider the state merging protocol

that transmits the C register to Alice, this requires communication of 1
2 I(C;RB) qubits

between Charlie and Alice, and generates 1
2 I(C;A) ebits between Charlie and Alice. As
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Oppenheim noted, this pure state entanglement between Alice and Charlie should not

be communicated to Bob. The state redistribution protocol that uses Alice as a coherent

relay then runs as follows.

Charlie merges his state with Alice’s, generating 1
2 I(C;A) ebits between them. Alice

then replaces these ebits by some pre-shared ebits between her and Bob. This is the ebit

repackaging sub-protocol, which effectively acts as a communication of I(C;A) qubits

between Charlie and Bob in the direct merging protocol. Alice then transmits the re-

maining qubits required to complete the direct merging protocol between Charlie and

Bob. A communication of

1
2

I(C;AR)− 1
2

I(C;A) =
1
2

I(C;R|B) (3.4.1)

is required to achieve this, which is asymptotically optimal (3.1.1). We formalize this

idea below while using it in a one-shot setting and expressing the relevant bounds in

terms of smooth conditional entropies.

Following the decoupling approach to quantum information theory [58, 59, 70],

quantum state merging is conveniently understood in terms of decoupling theorems.

Here we first restate the central decoupling theorem of [22] in terms of smooth con-

ditional min-entropy.

Theorem 3.4.1. [22, Theorem III.1] For ε > 0, ρAR ∈D≤(AR), and any decomposition

A = A1A2, if

log |A1| ≤
1
2

log |A|+ 1
2

Hmin(A|R)ρ − log
1
ε
, (3.4.2)

then

∫
U (A)

∥∥∥TrA2

[
UA→A1A2

(
ρ

AR)]−π
A1⊗ρ

R
∥∥∥

1
dU ≤ ε , (3.4.3)

where dU is the Haar measure over the unitaries on system A, normalized to
∫

dU = 1,

and πA1 is the completely mixed state on A1.
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For our purpose we need the following bi-decoupling result in terms of smooth con-

ditional entropies, a direct generalization of Theorem 3.4.1. 1

Corollary 3.4.1. For any ε1, ε2 > 0, ρ
CR1
1 ∈ D≤(CR1),ρ

CR2
2 ∈ D≤(CR2) and any de-

composition C =C1C2C3, if

log |C1| ≤
1
2

log |C|+ 1
2

Hmin(C|R1)ρ1− log
1
ε1

(3.4.4)

and

log |C2| ≤
1
2

log |C|+ 1
2

Hmin(C|R2)ρ2− log
1
ε2

, (3.4.5)

then there exists a unitary UC→C1C2C3 such that

∥∥∥TrC2C3

[
U
(
ρ

CR1
1
)]
−π

C1⊗ρ
R1
1

∥∥∥
1
≤ 3ε1 (3.4.6)

and

∥∥∥TrC1C3

[
U
(
ρ

CR2
2
)]
−π

C2⊗ρ
R2
2

∥∥∥
1
≤ 3ε2 . (3.4.7)

Proof. By Markov’s inequality, if the condition on |C1|, |C2| are satisfied, then Theo-

rem 3.4.1 says that the probability over the Haar measure on U (C) that ‖TrC2C3[U(ρCR1
1 )]−

πC1⊗ρ
R1
1 ‖1≥ 3ε1 is at most 1

3 , and similarly for ‖TrC1C3[U(ρCR2
2 )]−πC2⊗ρ

R2
2 ‖1≥ 3ε2,

so by the union bound theorem there is at least probability 1
3 that none of these is satis-

fied, and then the condition of the corollary are satisfied for all corresponding U’s.

3.4.2 Smooth Entropy Bounds

We obtain the following direct coding theorem for one-shot quantum state redistri-

bution.

1. A similar bi-decoupling result appears in [141], with bounds in terms of register dimensions instead
of smooth conditional entropies. It would be possible to apply ideas similar to theirs to obtain a different
coding theorem achieving the same achievability bound (3.1.3) for one-shot quantum state redistribution.
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Theorem 3.4.2. Let ε1, ε2 ≥ 0, ε3, ε4 > 0, and ρABC ∈D(ABC) purified by ρABCR with

purifying register R. Then, there exists a one-message protocol Π ∈ T (R,ρ,ε ′), with

ε ′ = 8ε1 +2ε2 +4
√

3ε3 +
√

3ε4, satisfying

QCC(Π)≤ 1
2

Hε1
max(C|B)ρ −

1
2

Hε2
min(C|BR)ρ + log

1
ε3

+ log
1
ε4

+2 . (3.4.8)

Moreover, Π only uses EPR states as pre-shared entanglement and also generates EPR

pairs. The net entanglement consumption cost e(Π,ρ,ε ′) satisfies

e(Π,ρ,ε ′)≤ 1
2

Hε1
max(C|B)ρ +

1
2

Hε2
min(C|BR)ρ − log

1
ε3

+ log
1
ε4

+1 . (3.4.9)

Proof. We first prove the theorem for the special case ε1 = ε2 = 0. In Corollary 3.4.1,

we take R1 = BR, R2 = AR, ρ1 = ρCBR, ρ2 = ρCAR,

log |C1|=
⌊

1
2

log |C|+ 1
2

Hmin(C|BR)ρ − log
1
ε3

⌋
, (3.4.10)

log |C2|=
⌊

1
2

log |C|+ 1
2

Hmin(C|AR)ρ − log
1
ε4

⌋
, (3.4.11)

and then there exists a unitary UC→C1C2C3 satisfying

∥∥∥TrC2C3

[
U
(
ρ

CBR)]−π
C1⊗ρ

BR
∥∥∥

1
≤ 3ε3 and

∥∥∥TrC1C3

[
U
(
ρ

CAR)]−π
C2⊗ρ

AR
∥∥∥

1
≤ 3ε4 .

(3.4.12)

We transform these in purified distance bounds using the generalized Fuchs-van der

Graaf inequality:

P
(

TrC2C3

[
U
(
ρ

CBR)],πC1⊗ρ
BR
)
≤
√

3ε3, (3.4.13)

P
(

TrC1C3

[
U
(
ρ

CAR)],πC2⊗ρ
AR
)
≤
√

3ε4 . (3.4.14)

Let A′, A′′ be isomorphic to A, B′′′ be isomorphic to B, C′, C′′′ be isomorphic to C, and

C′′2 , C′′3 be isomorphic to C2, C3, respectively. Then, Uhlmann’s theorem tells us that
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there exist isometries

VC2C3A→A1A′C′
1 and VC1C3B→B2B′′′C′′′

2 (3.4.15)

satisfying

P
(

V1U
(
ρ

ABCR), |φ1〉〈φ1|A1C1⊗ IAC→A′C′(
ρ

ABCR))= P
(

TrC2C3

[
U
(
ρ

CBR)],πC1⊗ρ
BR
)

(3.4.16)

P
(

V2U
(
ρ

ABCR), |φ2〉〈φ2|B2C2⊗ IBC→B′′′C′′′(
ρ

ABCR))= P
(

TrC1C3

[
U
(
ρ

CAR)],πC2⊗ρ
AR
)
.

(3.4.17)

Let TA,TB be isomorphic to A1, C1, respectively, and denote by

ÛC→TBC′′2C′′3 , V̂C′′2C′′3 A′′→TAA′C′

1 and V̂ TBC′′3 B→B2B′′′C′′′

2 (3.4.18)

a version of U that maps register C into registers TBC′′2C′′3 , a version of V1 that maps

registers C′′2C′′3 A′′ into registers TAA′C′, and a version of V2 that maps registers TBC′′3 B into

registers B2B′′′C′′′, respectively. Also let M TAA′C′ be a channel performing a projective

measurement onto the image of V̂1, and mapping everything outside this image to some

fixed state φ
TAA′C′
M in it. Then there exists an inverse V̂ †

1 on the image satisfying V̂ †
1 V̂1 =

V̂ †
1 M V̂1 = IC′′2C′′3 A′′ . We can now define our one-shot state redistribution protocol Π (also

see Figure 3.1):

Protocol Π for input ρABCR using ebits φ
TATB
1

1. Charlie applies U on register C, keeps register C1, and transmits the C2,C3

registers to Alice.

2. Alice applies V1 on C2C3A, obtains registers A1A′C′, and then uses TA instead

of A1; she performs M on TAA′C′ to apply V̂ †
1 and obtains registers A′′C′′2C′′3 .

3. Alice transmits the C′′3 register to Bob.

4. Bob applies V̂2 on TBC′′3 B and obtains registers B2B′′′C′′′.
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Figure 3.1: Protocol for quantum state redistribution from ebit repackaging.
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– The B′′′, C′′′ output registers held by Bob correspond to the B,C input registers,

respectively, while the A′′ output register held by Alice corresponds to the A

input register. Together with the untouched reference register R, these should

be close to ρABCR.

– The A1C1 registers should be close to the maximally entangled state |φ1〉A1C1 =

ITATB→A1C1 |φ1〉TATB shared between Alice and Charlie, while the C′′2 B2 regis-

ters should be close to the maximally entangled state |φ2〉C
′′
2 B2 shared between

Alice and Bob, with Alice holding the C′′2 share.

Note that Charlie only communicates with Alice, and the only register effectively

transmitted between Alice and Bob is the C′′3 register, which is of the same size as the C3

register. We then have the following bound on the communication:

QCC(Π) = log |C3|= log |C|− log |C2|− log |C1| (3.4.19)

≤−1
2

Hmin(C|AR)ρ −
1
2

Hmin(C|BR)ρ + log
1
ε4

+ log
1
ε3

+2

(3.4.20)

=
1
2

Hmax(C|B)ρ −
1
2

Hmin(C|BR)ρ + log
1
ε3

+ log
1
ε4

+2 . (3.4.21)

Note that this protocol is EPR-based, i.e., the only pre-shared entanglement it uses are

EPR pairs. The consumption and generation of EPR pairs can also be easily com-

puted from the above dimensions. The consumption is log |TA| = log |C1| ≤ 1
2 log |C|+

1
2Hmin(C|BR)ρ − log 1

ε3
EPR pairs, and the number of EPR pairs generated is log |C′′2 |=

log |C2| ≥ 1
2 log |C|+ 1

2Hmin(C|AR)ρ − log 1
ε4
−1. The net entanglement cost e(Π,ρ,ε ′)
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is then bounded by

e(Π,ρ,ε ′) = log |C1|− log |C2| (3.4.22)

≤1
2

Hmin(C|BR)ρ − log
1
ε3
− 1

2
Hmin(C|AR)ρ + log

1
ε4

+1 (3.4.23)

=
1
2

Hmax(C|B)ρ +
1
2

Hmin(C|BR)ρ − log
1
ε3

+ log
1
ε4

+1 . (3.4.24)

It is left to verify that the final state is close enough to ρABCR. We prove a stronger result,

that the global final state is close to ρABCR⊗φ
A1C1
1 ⊗φ

C′′2 B2
2 . This is the criteria normally

used in EPR-based state-redistribution. We first use the triangle inequality to obtain the

following 4 terms:

P
(

V̂2V̂−1
1 MV1U

(
ρ

ABCR⊗φ
TATB
1

)
,

IABC→A′′B′′′C′′′(
ρ

ABCR⊗φ
A1C1
1 ⊗φ

C′′2 B2
2

))
≤ P

(
V̂2V̂−1

1 MV1U
(
ρ

ABCR⊗φ
TATB
1

)
,

V̂2V̂−1
1 M IAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

))
+P
(

V̂2V̂−1
1 M IAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

)
,

V̂2V̂−1
1 IAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

))
+P
(

V̂2V̂−1
1 IAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

)
,

V̂2SWAPC1↔TBIAC2C3TA→A′′C′′2C′′3 A1U
(
ρ

ABCR⊗φ
TATB
1

))
+P
(

V̂2SWAPC1↔TBIAC2C3TA→A′′C′′2C′′3 A1U
(
ρ

ABCR⊗φ
TATB
1

)
,

IABC→A′′B′′′C′′′(
ρ

ABCR⊗φ
A1C1
1 ⊗φ

C′′2 B2
2

))
. (3.4.25)
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To bound the first term, we have

P
(

V̂2V̂−1
1 MV1U

(
ρ

ABCR⊗φ
TATB
1

)
,V̂2V̂−1

1 M IAC→A′C′(
ρ

ABCR⊗φ
A1C1
1 ⊗φ

TATB
1

))
≤ P

(
V1U

(
ρ

ABCR⊗φ
TATB
1

)
, IAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

))
(3.4.26)

= P
(

V1U
(
ρ

ABCR), IAC→A′C′(
ρ

ABCR⊗φ
A1C1
1

))
(3.4.27)

≤
√

3ε3 . (3.4.28)

The first inequality is by monotonicity of the purified distance, the first equality is be-

cause appending an uncorrelated system does not change the distance, and finally the

last inequality is by combining (3.4.13) and (3.4.16). For the second term, we have

P
(

V̂2V̂−1
1 M IAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

)
,

V̂2V̂−1
1 IAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

))
≤ P

(
M IAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

)
, IAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

))
≤ P

(
M IAC→A′C′(

ρ
ABCR⊗φ

TATB
1

)
,M V̂1ÛIA→A′′(

ρ
ABCR))

+P
(
M V̂1ÛIA→A′′(

ρ
ABCR), IAC→A′C′(

ρ
ABCR⊗φ

TATB
1

))
≤ P

(
IAC→A′C′(

ρ
ABCR⊗φ

TATB
1

)
,V̂1ÛIA→A′′(

ρ
ABCR))

+P
(

V̂1ÛIA→A′′(
ρ

ABCR), IAC→A′C′(
ρ

ABCR⊗φ
TATB
1

))
≤ 2
√

3ε3 . (3.4.29)

The first inequality is by monotonicity of the purified distance, the second by the triangle

inequality and because appending an uncorrelated system does not change the distance,

the third by monotonicity and because M V̂1 = V̂1, and finally the last inequality is by

combining (3.4.13) and (3.4.16) twice after relabelling systems. For the third term, we
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have

P
(

V̂2V̂−1
1 IAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

)
,

V̂2SWAPC1↔TBIAC2C3TA→A′′C′′2C′′3 A1U
(
ρ

ABCR⊗φ
TATB
1

))
= P

(
SWAPA1C1↔TATBIAC→A′C′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

TATB
1

)
,

SWAPA1C1↔TATBV̂1SWAPC1↔TBIAC2C3TA→A′′C′′2C′′3 A1U
(
ρ

ABCR⊗φ
TATB
1

))
(3.4.30)

= P
(

IAC→A′C′(
ρ

ABCR⊗φ
A1C1
1 ⊗φ

TATB
1

)
,V1U

(
ρ

ABCR⊗φ
TATB
1

))
(3.4.31)

= P
(

IAC→A′C′(
ρ

ABCR⊗φ
A1C1
1

)
,V1U

(
ρ

ABCR)) (3.4.32)

≤
√

3ε3 . (3.4.33)

The first equality is by isometric invariance, the second is because SWAPA1C1↔TATB leaves

the first state invariant and also because

SWAPA1C1↔TATBV̂C′′2C′′3 A′′→TAA′C′

1 SWAPC1↔TBIAC2C3TA→A′′C′′2C′′3 A1

= ITATBC1VC2C3A→A1A′C′
1 (3.4.34)

the next is because appending uncorrelated systems does not change the distance, and

finally the last inequality is by combining (3.4.13) and (3.4.16). For the fourth term, we
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have

P
(

V̂2SWAPC1↔TBIAC2C3TA→A′′C′′2C′′3 A1U
(
ρ

ABCR⊗φ
TATB
1

)
,

IABC→A′′B′′′C′′′(
ρ

ABCR⊗φ
A1C1
1 ⊗φ

C′′2 B2
2

))
= P

(
IA′′C′′2→AC2V̂2SWAPC1↔TBIAC2C3TA→A′′C′′2C′′3 A1U

(
ρ

ABCR⊗φ
TATB
1

)
,

IA′′C′′2→AC2IABC→A′′B′′′C′′′(
ρ

ABCR⊗φ
A1C1
1 ⊗φ

C′′2 B2
2

))
(3.4.35)

= P
(

ITATB→A1C1V2U
(
ρ

ABCR⊗φ
TATB
1

)
,

IBC→B′′′C′′′(
ρ

ABCR⊗φ
A1C1
1 ⊗φ

C2B2
2

))
(3.4.36)

= P
(

V2U
(
ρ

ABCR),
IBC→B′′′C′′′(

ρ
ABCR⊗φ

C2B2
2

))
(3.4.37)

≤
√

3ε4 . (3.4.38)

The first equality is just a system relabelling, the second is because

IA′′C′′2→AC2V̂ TBC′′3 B→B2B′′′C′′′

2 SWAPC1↔TBIAC2C3TA→A′′C′′2C′′3 A1

= IAC2ITATB→A1C1VC1C3B→B2B′′′C′′′
2 (3.4.39)

the third is because appending an uncorrelated system does not change the distance and

finally the last inequality is by combining (3.4.14) and (3.4.17). Putting these four

bounds together, we get the stated bound for ε1,ε2 = 0, and this completes the proof

for this case.

We can now prove the smooth entropy version of the theorem by extending the above

argument to the states achieving the extremum in the smooth entropies. Let ωABCR
1 ∈

D≤(ABCR) be such that P(ω1,ρ) ≤ ε1 and Hε1
min(C|BR)ρ = Hmin(C|BR)ω1 . Similarly,

let ωABCR
2 ∈ D≤(ABCR) be such that P(ω2,ρ) ≤ ε2 and Hε2

max(C|B)ρ = Hmax(C|B)ω2 ,

and consider a purification ω
ABCRS2
2 . In Corollary 3.4.1, we take R1 = BR, R2 = ARS2,
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ρ1 = ωCBR
1 , ρ2 = ω

CARS2
2 ,

log |C1|=
⌊

1
2

log |C|+ 1
2

Hmin(C|BR)ω1− log
1
ε3

⌋
(3.4.40)

log |C2|=
⌊

1
2

log |C|+ 1
2

Hmin(C|ARS2)ω2− log
1
ε4

⌋
, (3.4.41)

and then there exists a unitary UC→C1C2C3 satisfying

∥∥∥TrC2C3

[
U
(
ω

CBR
1
)]
−π

C1⊗ω
BR
1

∥∥∥
1
≤ 3ε3 (3.4.42)∥∥∥TrC1C3

[
U
(
ω

CARS2
2

)]
−π

C2⊗ω
ARS2
2

∥∥∥
1
≤ 3ε4 . (3.4.43)

Transforming these in purified distance bounds, we get

P
(

TrC2C3

[
U
(
ω

CBR
1
)]
,πC1⊗ω

BR
1

)
≤
√

3ε3 (3.4.44)

P
(

TrC1C3

[
U
(
ω

CAR
2
)]
,πC2⊗ω

AR
2

)
≤
√

3ε4 , (3.4.45)

in which we also used monotonicity of the purified distance under partial trace of S2 and

the fact that in each purified distance, the two states have the same trace. Since

P(ωABCR
1 ,ρABCR)≤ ε1 and P(ωABCR

2 ,ρABCR)≤ ε2 , (3.4.46)

the triangle inequality along with monotonicity of the purified distance and the fact that

appending uncorrelated systems does not increase distance imply the bounds

P
(

TrC2C3

[
U
(
ρ

CBR)],πC1⊗ρ
BR
)
≤
√

3ε3 +2ε1 (3.4.47)

P
(

TrC1C3

[
U
(
ρ

CAR)],πC2⊗ρ
AR
)
≤
√

3ε4 +2ε2 . (3.4.48)

Considering systems A′, A′′, B′′′, C′, C′′′, C′′2 , C′′3 , TA, TB as above, Uhlmann’s theorem

tells us that there exist partial isometries

VC2C3A→A1A′C′
1 and VC1C3B→B2B′′′C′′′

2 (3.4.49)
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satisfying

P
(

V1U
(
ρ

ABCR), |φ1〉〈φ1|A1C1⊗ IAC→A′C′(
ρ

ABCR))= P
(

TrC2C3

[
U
(
ρ

CBR)],πC1⊗ρ
BR
)

(3.4.50)

P
(

V2U
(
ρ

ABCR), |φ2〉〈φ2|B2C2⊗ IBC→B′′′C′′′(
ρ

ABCR))= P
(

TrC1C3

[
U
(
ρ

CAR)],πC2⊗ρ
AR
)
.

(3.4.51)

Also consider

ÛC→TBC′′2C′′3 , V̂C′′2C′′3 A′′→TAA′C′

1 and V̂ TBC′′3 B→B2B′′′C′′′

2 , (3.4.52)

the versions of U,V1,V2 acting on the corresponding registers, as in the ε1, ε2 = 0 case,

as well as the channel M TAA′C′ performing a projective measurement onto the image of

V̂1 as above. We can then take the smooth version of our one-shot state redistribution

protocol Π to be formally defined as the non-smooth version above, but using these U ,

V1, M , V̂1, V̂2 instead. We then have the following bound on the communication:

QCC(Π) = log |C3|= log |C|− log |C2|− log |C1| (3.4.53)

≤−1
2

Hmin(C|ARS2)ω2−
1
2

Hmin(C|BR)ω1 + log
1
ε4

+ log
1
ε3

+2

(3.4.54)

=
1
2

Hmax(C|B)ω2−
1
2

Hmin(C|BR)ω1 + log
1
ε3

+ log
1
ε4

+2 (3.4.55)

=
1
2

Hε2
max(C|B)ρ −

1
2

Hε1
min(C|BR)ρ + log

1
ε3

+ log
1
ε4

+2 . (3.4.56)

Similarly, we have the following bound on the net entanglement cost e(Π,ρ,ε ′):

e(Π,ρ,ε ′) = log |C1|− log |C2| (3.4.57)

≤1
2

Hε2
max(C|B)ρ +

1
2

Hε1
min(C|BR)ρ − log

1
ε3

+ log
1
ε4

+1 . (3.4.58)

Is left to verify that the final state is close enough to ρABCR. The analysis is the same
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as in the ε1,ε2 = 0 case, with the bounds (3.4.13) and (3.4.14) replaced by (3.4.47) and

(3.4.48), yielding the desired bound

P
(

V̂2V̂−1MV1U
(
ρ

ABCR⊗φ
TATB
1

)
, IABC→A′′B′′′C′′′(

ρ
ABCR⊗φ

A1C1
1 ⊗φ

C′′2 B2
2

))
≤ 8ε1 +2ε2 +4

√
3ε3 +

√
3ε4 . (3.4.59)

Note however that it is possible for the above bound to not be tight in general (at

least if we allow arbitrary shared entanglement). This can be seen by considering the sit-

uation where the B register is trivial, which corresponds to state splitting, and for which

it is known [22] that we can succeed with communication Iε
max(C;R)ρ using entangle-

ment embezzling states [130]. Entanglement embezzling states are states from which a

variable number of near-perfect EPR pairs can be extracted while only slightly modify-

ing the state. The communication achieved in this way can be much smaller than the

bound we provide for some states ρ . We provide an alternate protocol, using entangle-

ment embezzling states rather than standard maximally entangled states, which achieves

a communication rate that is upper bounded by the smooth max-information, up to small

additive terms, in the case that either the A or the B register is trivial, and so this protocol

has optimal communication for the special cases of state merging and state splitting.

The idea for the protocol with embezzling states is borrowed from [22], and is the

following. At the outset of the protocol, before applying the above protocol as a sub-

protocol, we first perform a coherent projective measurement in the eigenbasis of the

C system, and discard the portion with eigenvalues smaller than |C|2. To each other

measurement outcome, we associate the remaining conditional state to a branch of the

computation, with the state in branch i denoted ρi. We then coherently apply the above

EPR-based protocol on each branch using an entanglement embezzling state between

Charlie and Alice, and another between Alice and Bob, to provide the necessary EPR

pairs, as well as to absorb any EPR pair created, up to small error. Different amounts of

EPR pairs are generated and consumed on each branch, hence the need for entanglement
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embezzling states. We also transmit the register containing the coherent measurement

outcomes, to make it possible to undo these. This procedure then flattens the eigenvalue

spectra on the C system, hence the min- and max-entropies Hε
min(C)ρi , Hε

max(C)ρi are

both equal to the rank of ρC
i , up to a small error. This allows us to replace the max-

entropy term by a min-entropy term when the B register is trivial, and similarly when A

is trivial, and in such a case we can use the lemmas given in [22] to relate this to smooth

max-information, and obtain a provably optimal rate. See [22] for a formal definition of

the ρi’s. In general, the communication grows as

1
2

max
i

(
Hε

max(C|B)ρi−Hε
min(C|BR)ρi

)
(3.4.60)

up to small additive terms. This is however not optimal in general, and it is still un-

clear whether this can be of any help for obtaining tight bounds for state redistribution

(cf. Section 3.5). An approach that might hold some promise could be to allow for in-

teraction in the state redistribution protocol. For example, in a two-message protocol in

which Bob speaks first, this would then allow Bob to also do some preprocessing similar

to what Alice does here, and possibly obtain improved flattening in the general case. 2

3.4.3 Conditional Mutual Information Bounds

The fully quantum asymptotic equipartition property [126, 127] enables us to re-

cover the previously known optimal asymptotic bounds in terms of conditional mutual

information.

Theorem 3.4.3 (Fully Quantum Asymptotic Equipartition Property [126, 127]). For any

ε , there exists n0 such that for any n ≥ n0 and any state ρAB with purifying register R,

the following holds:

1
n

Hε
min(A

⊗n|B⊗n)≥ H(A|B)− δ (ε,v)√
n

,

2. Using the pre-processing from [22] would only amount to a sub-linear communication cost from
Bob to Alice, and thus vanishing back communication cost in the iid asymptotic setting.
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in which δ (ε,v) = 4logv
√

log(2/ε2) and v =
√

2Hmax(A|B)+
√

2Hmax(A|R)+1.

To be able to compress a protocol proportionally to its quantum information cost in

Chapter 4, we show how to compress a single message down to a communication cost

proportional to its conditional mutual information, as in asymptotic state redistribution.

Entanglement is deemed free for the compression.

The idea is to apply the above achievability bound along with the substate theorem

of Jain, Radhakrishnan and Sen [78, 80, 83] to obtain a bound on one-shot state redis-

tribution in terms of von Neumann conditional mutual information. This can then be

applied iteratively in order to get bounded-round protocol compression proportional to

the information cost. Let us first restate the substate theorem in the form that we will

use.

Theorem 3.4.4 (Substate theorem [78, 80, 83]). For ρ ∈D(A),σ ∈P(A) and ε ∈ (0,1),

Dε
max(ρ‖σ)≤ 1

ε2 (D(ρ‖σ)+1)+ log
(
1/(1− ε

2)
)
.

Note that the square factor here is due to a difference in the distance function used

compared to the one of [78] (we use the purified distance, they use its square). The

smoothing parameter then changes accordingly. Smoothing is also done over a larger

set here, since we allow for subnormalized states, and as a consequence it is possible

that smooth max-relative entropy is slightly smaller according to our definition than to

the one of Ref. [78]. This is however not an issue, since the smoothing is in the correct

direction for the inequality in the substate theorem.

This leads to a lower bound on the conditional min-entropy, or equivalently, by the

duality relations, to an upper bound on the conditional max-entropy, in terms of the

conditional von Neumann entropy for a normalized state ρ:

Lemma 3.4.1. For ρ ∈D(AB) and ε ∈ (0,1),

Hε
min(A|B)ρ ≥

1
ε2 (H(A|B)ρ −1)− log(1/(1− ε

2)).
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Proof. This is a direct consequence of the substate theorem:

Hε
min(A|B)ρ = sup

ρ̄AB∈Bε (ρAB)

Hmin(A|B)ρ̄

= sup
ρ̄AB∈Bε (ρAB)

(− inf
σB∈D(B)

Dmax(ρ̄
AB‖IA⊗σB)

≥ sup
ρ̄AB∈Bε (ρAB)

(−Dmax(ρ̄
AB‖IA⊗ρ

B))

=−Dε
max(ρ

AB‖IA⊗ρ
B)

≥−(D(ρAB‖IA⊗ρ
B)+1)/ε

2− log(1/(1− ε
2))

= (H(A|B)ρ −1)/ε
2− log(1/(1− ε

2)).

We get the following bound in terms of von Neumann conditional mutual information

for one-shot state redistribution.

Lemma 3.4.2. For all ε ∈ (0,1/2),ρ ∈D(ABC) with purifying register R, there exists a

one-message protocol Π ∈T (R,ρ,ε) with quantum communication satisfying

QCC(Π)≤61
ε2 I(C;R|B)ρ +

242
ε2 +16.

Proof. We take ε1 = ε2 = ε/11 > 0 and ε3 = ε4 = (ε1)
2/75 in Theorem 3.4.2, so ε ′ =

8ε1+2ε2+4
√

3ε3+
√

3ε4 = ε . Note that for x≥ 4, 2 logx≤ x, and for y∈ (1,2), logy≤
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1. Then

QCC(Π)≤1
2

Hε1
max(C|B)ρ −

1
2

Hε1
min(C|BR)ρ +2log

1
ε3

+2

=− 1
2

Hε1
min(C|AR)ρ −

1
2

Hε1
min(C|BR)ρ +2log

1
ε2

1
+2log75+2

≤1
2
(−H(C|AR)ρ +1)/ε

2
1 +

1
2

log(1/(1− ε
2
1 )

+
1
2
(−H(C|BR)ρ +1)/ε

2
1 +

1
2

log(1/(1− ε
2
1 )+2log

1
ε2

1
+13+2

=
1

2ε2
1

I(C;R|B)ρ +1/ε
2
1 +2log

1
ε2

1
+ log(1/(1− ε

2
1 )+15

≤ 1
2ε2

1
I(C;R|B)ρ +2/ε

2
1 +16

=
61
ε2 I(C;R|B)ρ +242/ε

2 +16.

3.5 Conclusion

Let us conclude with a discussion of our results and some further research directions.

3.5.1 Discussion

We have proved that one-shot quantum state redistribution of ρABCR up to error ε can

be achieved at communication cost at most

1
2
(
Hε

max(C|B)ρ −Hε
min(C|BR)ρ

)
+O

(
log(1/ε)

)
, (3.5.1)

when free entanglement assistance is available (independently, this bound has also been

derived by Datta, Hsieh and Oppenheim [52]). The structure of the protocol achieving

this performs a decomposition of state redistribution into two state merging protocols.

Such a decomposition was proposed in [107] in order to achieve asymptotically tight

rates. Note that we could alternatively use a decomposition into a state merging and a
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state splitting protocol, as proposed in [141], to achieve similar bounds. An important

technical ingredient for our proof is the bi-decoupling lemma that we prove as an exten-

sion of the well-known decoupling theorem [22]. A similar lemma was derived in [141],

with bounds in terms of dimensions rather than conditional min-entropies. This lemma

states that for two states on the same system C, there exists at least one unitary on C that

acts as a decoupling unitary for both states simultaneously, when parameters are appro-

priately chosen. Perhaps surprisingly, this idea allows us to smooth both the conditional

min- and max- entropy terms appearing in our bounds, notwithstanding the fact that it

is in general unknown how to simultaneously smooth marginals of overlapping quantum

systems (see, e.g., [57] and references therein).

3.5.2 Open Questions

However, it is known from the work on one-shot state merging and splitting [22]

that, for arbitrary shared entanglement, the bound (3.4.8) can in general not be optimal,

and in fact for some states the achievable communication can be substantially lower. An

interesting open problem is to obtain a tight characterization of the minimal quantum

communication cost. Recent works on the Rényi generalizations of conditional mutual

information in the quantum regime [24] might shed some light on this question. In

particular, it would be of interest to link some version of our improved bound (3.4.60) to

a smooth version of the conditional max-information from Ref. [24],

Imax(C;R|B)ρ = Dmax

(
ρ

CBR∥∥(ρBR)1/2(
ρ

B)−1/2
ρ

BC(
ρ

B)−1/2(
ρ

BR)1/2
)
. (3.5.2)

In turn this would also shine some light on the Rényi generalizations of the conditional

mutual information in Ref. [24].

In a recent work, Anshu, Devabathini and Jain [6] obtain tight bounds on quantum

state redistribution, up to a small additive term. Another interesting open question, stated

in [6], is whether it is possible to achieve quantum state redistribution in a different

setting, in which we allow variable length protocols, possibly interactive, and we are

interested in the average classical cost of communication when allowing for arbitrary
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entanglement assistance. Note that for the classical analogue of this task, Braverman

and Rao [36] give such a protocol that has average cost exactly equal to the conditional

mutual information, up to second order. However, the protocol in Ref. [36] is highly

interactive. Could we hope for something similar in the quantum setting? Note that to

obtain such a result even in the much simpler case of source coding would already be

quite surprising, due to the fact that this variable-length code would have to leak at most

a negligible amount of information about the underlying quantum state.
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CHAPTER 4

QUANTUM INFORMATION COMPLEXITY

4.1 Introduction

The area of classical information complexity has been thriving recently. We briefly

introduce it, discuss some previous attempts at generalizing it to the quantum setting,

and then present the new notion we study in this chapter.

4.1.1 Classical Information Complexity

The paradigm of information complexity has been quite successful recently in classi-

cal communication complexity. What started out as a useful tool for proving communi-

cation complexity lower bounds has recently developed into an important subfield of its

own. The definition of information cost, the sum of the mutual information between the

protocol transcript and each party’s input conditional on the other party’s input, makes

it possible to bring powerful tools from information theory to study interactive com-

munication. Many recent results show that this paradigm has enabled researchers to

tackle questions that seemed out of reach not so long ago, like an exact characterization

by Braverman, Garg, Pankratov, and Weinstein [38] of the communication complexity of

the disjointness function, as well as direct sum and direct product results [10, 36, 39, 84].

See Ref. [34] for a recent survey.

The classical notion of information cost was introduced by Chakrabarti, Shi, Wirth

and Yao [46], who used it to derive a direct sum result for the simultaneous message

passing model. The notion they introduced is similar to what is known today as the

external information cost. A notion similar to what is now known as the internal infor-

mation cost was later introduced by Bar-Yossef, Jayram, Kumar and Sivakumar [9] to

take advantage of a direct sum property of information for composite problems that de-

compose into simpler ones, like the disjointness function in term of the AND function.

In Ref. [68], Harsha, Jain, McAllester and Radhakrishnan obtain a direct sum result for



multi-round protocols run on product distributions using a notion of external informa-

tion cost. The modern notions of external and internal information costs were formally

introduced by Barak, Braverman, Chen and Rao [10], in which they prove general direct

sum theorems for randomized communication complexity.

For input random variables X and Y of Alice and Bob, respectively, shared random-

ness R, private randomness SA,SB available to Alice and Bob, respectively, and protocol

transcript Π(X ,Y,R,SA,SB), the internal and external information costs are defined, re-

spectively, as

ICint(Π,µ) = I(X ;Π|Y R)+ I(Y ;Π|XR), (4.1.1)

ICext(Π,µ) = I(XY ;Π|R). (4.1.2)

Note that we have used Π to represent both the protocol and the protocol transcript, while

µ is the prior distribution on the inputs X ,Y . An interpretation of internal information

cost is as the amount of information about Alice’s input leaked to Bob plus the amount

of information about Bob’s input leaked to Alice, while for the external information cost

it is as the amount of information about the joint input of Alice and Bob leaked to an

external observer.

Subsequent work by Braverman and Rao [36] provided an operational interpretation

of internal information complexity as the amortized distributional communication com-

plexity, i.e. the communication complexity per copy for computing n copies of a task

in parallel, in the asymptotic limit of large n. They also provide a general direct sum

theorem for bounded round communication complexity (that does not maintain round

complexity however). Braverman [33] provides a similar operational interpretation of a

prior-free version of information complexity as the amortized randomized communica-

tion complexity. He also lists several interesting open questions related to information

complexity, one of which is to develop a quantum analog of information complexity. He

asks whether the inherent reversibility of quantum computing, among other properties of

quantum information, will impose a limit on the potential applications of such a quantity.

Note that our results finally settle this: a notion of quantum information complexity with
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a similar operational interpretation and similar potential for applications as the classical

one can indeed be defined.

4.1.2 Previous Notions of Quantum Information Cost

In the quantum setting, many difficulties are immediately apparent in trying to gen-

eralize the classical definition. Firstly, by the no-cloning theorem [55, 136], there is no

direct analogue for quantum communication of the notion of a transcript, available to

all parties and containing all previous messages. In the entanglement-assisted model,

we can replace quantum communication by twice as much classical communication, by

using teleportation [15]. However, if we consider the transcript obtained by replacing

quantum communication by classical communication in this way, this transcript will be

completely uncorrelated to the corresponding quantum messages and to the inputs. In-

deed, the classical messages sent in the teleportation protocol are uniformly random.

A possible way around this might be to try to adapt the classical definition by mea-

suring the correlations between the inputs and the whole state, after reception of each

message, of the receiving party, i.e. the Holevo information in each round. We can then

even sum over the information contained in all messages. This yield a sensible notion of

quantum information cost which is partly classical, and a similar quantity was used by

Jain, Radhakrishnan and Sen to obtain a beautiful proof of a lower bound on the bounded

round quantum communication complexity of the disjointness function [81]. A further

variation on this was used by Jain and Nayak to obtain a lower bound for a variant of the

Index function [79]. Works on direct sum results for a single round of communication

also consider related notions [7, 77, 82].

However, these partly classical notions of quantum information cost all suffer from

the drawback that they are only a lower bound on the communication cost once they

have been divided by the number of messages, and already in this sense they do not

provide the right quantum generalization of information complexity. Even if these def-

initions can be successful for obtaining interesting results in a bounded round scenario,

it is quite plausible that they are also limited to such applications. Indeed, given these

previous definitions of quantum information cost, it is quite easy to find particular in-
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puts and protocols with M messages and quantum communication cost C such that the

quantum information cost is as large as M ·C. In hindsight, comparing these with the

notion that we introduce, we can say that this is partly due to the fact that they do not

take into consideration the available quantum side information. Then, the corresponding

notion of quantum information complexity does not have the clear operational interpre-

tation of classical information complexity as the amortized communication complexity,

and is probably restricted to applications in bounded round scenarios. However, there

is no straightforward way to take into consideration quantum side information; quan-

tum information quantities, and quantum correlations more specifically, often behave

counterintuitively, and we will need to make a substantial detour in order to find the

appropriate way to account for quantum side information while maintaining quantum

correlations in protocols.

4.1.3 Overview of Results

We propose a new, fully quantum notion of quantum information cost, and a corre-

sponding notion of complexity. These are the first fully quantum definitions for such

quantities. In particular, the notion of cost applies to arbitrary bipartite quantum pro-

tocols that are run on arbitrary bipartite quantum inputs, and the notion of complexity

applies to arbitrary quantum tasks on arbitrary quantum input. Of particular interest in

the setting of quantum communication complexity that we focus on in this work is the

case of quantum protocols implementing classical tasks, e.g. evaluating arbitrary bi-

partite classical functions or relations on arbitrary bipartite input distributions below a

specified error bound. However, the notion could also find applications for fully quantum

tasks.

4.1.3.1 Quantum Information Complexity and Amortized Communication

To arrive at the new definition of quantum information complexity, we propose a new

interpretation of the classical internal information cost. Indeed, if we view each message

generation in a protocol as a channel, then the information cost can be seen to be equal to
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the sum of the asymptotic costs of simulating many copies of each such channel with side

information at the receiver and feedback to the sender [100], a task related to the reverse

Shannon theorem [3, 19, 20, 22, 68, 135], with application in particular in the setting of

rate distortion theory with side-information at the receiver [137]. Using known bounds

for this task [100], this yields a strengthening of the classical amortized communication

result for bounded round complexity [36]. That is, we prove a bounded round variant

of the result of Braverman and Rao relating amortized communication and information

complexity.

In the fully quantum setting, channel simulation, with side information at the re-

ceiver and with environment given as feedback to the sender, is equivalent to the state

redistribution task [54, 100, 134, 140]. This insight leads to the new, fully quantum defi-

nitions of information cost and complexity, and the link between state redistribution and

protocol compression is then apparent. These new definitions are the firsts to simulta-

neously satisfy all of the properties that we state as desirable for these quantum notions.

We prove many important structural properties for them, and in particular we prove the

following. Please refer to Section 4.2 for formal definitions of the M-message quantum

information complexity QICM of a task and of a product task.

Theorem 4.1.1. For any classical task (T,µ,ε), product task ⊗i(Ti,µi,εi), protocol Π

and number of message M,

QIC(Π,µ)≤ QCC(Π),

QICM(T,µ,ε) = AQCCM(T,µ,ε),

QICM( n⊗
i=1

(Ti,µi,εi)
)
=

n

∑
i=1

QICM(Ti,µi,εi).

4.1.3.2 Alternative Characterization for Classical Inputs

Our definition of quantum information cost is stated, for an arbitrary bipartite state

ρAinBin , as a sum of terms measuring the correlations between the messages Ci and a

purifying system R for ρ . While this may seem natural for a quantum input, when the

input state is a classical distribution, we could argue that it might be more natural to
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measure correlations between the messages and the classical input of the sender of this

message, as in classical information cost. We can take R to be a quantum copy of the

joint input of Alice and Bob and then expand the corresponding cost for each message to

indeed get a term measuring correlations with the classical input of the sender, plus an

additional remainder term measuring correlations with the classical input of the receiver.

This additional term would always be zero for classical protocols, whereas in general for

quantum protocols it can be non-zero. We show that it has an operational interpretation

as the amount of information about the receiver’s input the sender of the message is

forgetting. These results are from a collaboration with Mathieu Laurière [94].

4.1.3.3 Protocol Compression and Direct Sum

We present the first general direct sum theorem for quantum communication com-

plexity that holds for more than a single round of communication. A direct sum theorem

states that to compute n tasks simultaneously requires as much resources as the amount

of the given resource required for computing them separately. By a general direct sum

theorem, we mean one that holds for arbitrary relations on arbitrary inputs. The di-

rect sum question, and the related direct product question, are of central importance

in the different models of communication complexity, and in computational complex-

ity in general. They have been the subject of a lot of attention in recent years. Many

results have been obtained for different models of classical communication complexity

(see e.g. Refs [10, 36, 39, 84] and references therein). Progress for quantum commu-

nication complexity has been slower, with most results focusing on a single round of

communication [7, 12, 77, 82]. Some notable exceptions for the multi-round case are

the work of Klauck, Špalek and de Wolf [89] in which they derive a direct product the-

orem for disjointness, and the works of Shaltiel [117], Lee, Shraibman and Špalek [95],

and Sherstov [119] deriving direct product theorems for functions for which particular

lower bound methods known as the discrepancy or generalized discrepancy method are

tight. Even for a single round of communication, a general direct sum theorem was only

proved earlier this year, using techniques much different from ours [7]. Previous to that

work, techniques were restricted to proving results for the restricted case of product in-
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puts [82]. As a corollary of our results, we also obtain slightly improved parameters for

the direct sum theorem of Ref. [7], for the single round case.

To obtain our direct sum theorem, we first prove a protocol compression result stating

that we can compress a single copy of a bounded round protocol proportionally to its

information cost. An important ingredient in this proof is a single-message one-shot

state redistribution protocol. A state redistribution protocol on input state ρABC, with the

A and C registers initially held by Alice, and the B register held by Bob, is a protocol

that effectively transmits the C register to Bob while keeping the overall correlation

with a purifying register R, up to some small error ε . We use the new achievability

bound in Lemma 3.4.2 for a communication cost proportional to the conditional mutual

information, as in asymptotic state redistribution. Our compression protocol applies this

single message compression iteratively, and satisfies the following. Recall that we also

denote by Π the channel in C (AinBin,AoutBout) implemented by protocol Π.

Lemma 4.1.1. For each M-message protocol Π, input ρAinBin with purifying register R,

and error parameter ε , there exists an M-message compression protocol Π′ ∈T (Π,ρ,ε)

satisfying

QCC(Π′) ∈ O
(M2

ε2

(
QIC(Π,ρ)+M

))
.

By combining this protocol compression result with many properties of quantum

information complexity in Theorem 4.1.1 above, we can obtain a direct sum theorem for

bounded round quantum communication complexity that holds for all quantum tasks.

Note that the theorem holds in the model in which we allow for arbitrary pre-shared

entanglement. For concreteness, we state the result for classical relations.

Theorem 4.1.2. For any product task ⊗(Ti,εi), error parameters ε ′ ∈ (0,1/2) and any

number of message M,

QCCM( n⊗
i=1

(Ti,εi)
)
∈Ω

( n

∑
i=1

(
(

ε ′

M
)2QCCM(Ti,εi + ε

′)−M
))

.
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4.1.3.4 Bounded Round Disjointness

A further application of the quantum information complexity paradigm is in obtain-

ing tight lower bound for quantum communication complexity of specific functions. We

provide such an example by studying the bounded round quantum communication com-

plexity of disjointness. The quantum communication complexity of disjointness, like

its classical analogue, has a rich history. While classically a linear amount of com-

munication is required to solve this problem, it was shown by Buhrman, Cleve and

Widgerson [42] that a distributed variant of Grover’s search algorithm [26, 66] could

be applied to obtain a quadratic saving, up to a logarithmic term. This was further im-

proved by Høyer and de Wolf [76], and finally the optimal bound of O(
√

n) was shown

to be achievable by Aaronson and Ambainis [1]. Meanwhile, Razborov [110] had proved

such a tight lower bound of Ω(
√

n). But it should be noted that all known protocols were

highly interactive, and it was proved by Buhrman and de Wolf [41], based on Nayak’s

bound on random access codes [102], that any one-message protocol must have linear

communication. A natural question is then: what is the quantum communication com-

plexity of disjointness when restricting to protocols with only M messages?

The previously best known lower bound for this problem was from the work of Jain,

Radhakrishnan and Sen [81], who derived a bound of Ω(n/M2 +M) on the quantum

communication complexity of M-message protocols solving disjointness on n bits. They

also made the remark that the optimal protocol of Aaronson and Ambainis implies a

O(n/M +M) upper bound. Their approach can be seen as using a different notion of

quantum information complexity, and reducing the quantum information complexity of

disjointness to that of the AND function. They then obtain a Ω(1/M) lower bound for

AND with their notion of quantum information complexity. However, their notion of

quantum information cost can be as high as M ·C for some protocols communicating

a total of C qubits, so they lose a factor of 1/M when going from information back to

communication.

Using our notion of quantum information complexity, it is possible to obtain a sim-

ilar reduction from disjointness to AND. Moreover, since our notion is directly a lower
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bound on communication, independently of the number of rounds, it seems at first sight

that we can get a 1/M improvement for a lower bound on the communication complex-

ity for disjointness. However, like the classical information cost, our notion of quantum

information cost is defined in terms of a conditional quantum mutual information while

theirs was in term of an Holevo information. The conditional quantum mutual infor-

mation is notoriously hard to lower bound [98], though a recent breakthrough result by

Fawzi and Renner [60] might find applications in the context of quantum information

complexity. However, such a direct approach has not yet led to an improvement over

the bound of Ref. [81]. With Mark Braverman, Ankit Garg, Young Kun Ko and Jiem-

ing Mao [40], we have been able to obtain a tight lower bound, up to polylogarithmic

terms, of Ω̃(n/M+M) with an alternative approach. The idea we use is to reduce back

the quantum information complexity of AND to that of disjointness. By showing that

the generalized discrepancy method yields a lower bound on the quantum information

complexity of binary functions, we can then complete the argument. We give a high

level overview of the proof in Section 4.7. Along the way to proving this result, we need

to prove many more important properties of quantum information complexity, which

appear throughout this chapter.

Organization: This Chapter is structured as follows: in section 4.2, we propose a

different perspective on classical information complexity and its link to amortized com-

munication, leading to our definition of quantum information cost and complexity. Sec-

tion 4.3 states many properties of the newly defined quantities that prove useful in order

to obtain the operational interpretation as amortized quantum communication complex-

ity as well as the direct sum theorem, and some more that were developed in Ref. [40]

in order to prove the lower bound for disjointness. In Section 4.4, we argue that study-

ing quantum information complexity in the hybrid model is sufficient. In Section 4.5,

we present an alternative characterization of quantum information cost when inputs are

classical. In Section 4.6, we prove the operational interpretation of quantum information

complexity as the amortized quantum communication complexity, and show an addi-

tional one-shot compression result leading to our bounded round direct sum theorem. In

Section 4.7, we present a high-level overview of the optimal lower bound for bounded
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round quantum communication complexity of disjointness. We conclude with a discus-

sion of our results, potential applications and further research directions.

4.2 Definition of Quantum Information Complexity

In this section, we present our new notion of quantum information cost, and the

corresponding notion of quantum information complexity. These are the first quantum

notions for such quantities to simultaneously possess an additivity property while being

direct lower bounds on quantum communication. Quantum information complexity of

a task possesses an operational interpretation as the amortized quantum communication

complexity of the task, giving a quantum analogue to the result of Braverman and Rao

for classical information complexity [36].

4.2.1 A Different Perspective on Classical Information Cost

As we argued in the introduction, the usual definition of classical information cost

does not seem to yield itself to a straightforward quantum generalization that would

maintain most of its desirable properties. We give an alternate, but equivalent, character-

ization of the classical information cost for which we can give a quantum generalization

that will share a lot of the properties of its classical analogue.

The main difference from the standard definition is not so much in the formal rewrit-

ing of this definition, which to some extent was already implicitly used in previous proofs

of some properties of the classical information cost [33, 36] and is simply an application

of the chain rule and basic properties of conditional mutual information. It is rather in the

interpretation of every message transmission as the simulation of a channel (the genera-

tion of the message from the input, previous messages, and randomness) with feedback

to the sender and side information at the receiver, a variant of the setting of the classical

reverse Shannon theorem studied in the information theory literature [19, 20, 68, 100].

Using the same notation as in (4.1.1) for ICint but now distinguishing between the
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messages Mi of the transcript Π, we can see that

ICint(Π,µ) = I(MB
1 ;XRA|Y RB) (4.2.1)

+ I(MA
2 ;Y MB

1 RB|XMA
1 RA)

+ I(MB
3 ;XMA

2 MA
1 RA|Y MB

2 MB
1 RB)+ · · · ,

in which we distinguish between Alice’s and Bob’s copy of the public randomness R and

messages Mi. Note that this is easily seen to be equivalent to the standard definition for

ICint given in the introduction by using the fact that MA
i ,M

B
i and RA,RB are just copies

of one another. However, the above rewriting has a clear operational interpretation. In-

deed, the above characterization comes from viewing each conditional message C|X in

the protocol as a channel in which the output C is sent over a noiseless channel to a re-

ceiver who has side information S about the input X to the channel, but for which also a

copy CF of the output is given as feedback to the sender. As noted above, the problem of

simulating the sending of the output of a channel with feedback has been studied in the

literature under the name of classical reverse Shannon theorem [19, 20, 68]. When there

is side information S at the receiver, I(C;X |S) characterizes the amount of information

that needs to be sent over the noiseless channel from sender to receiver, and it is shown

in Ref. [100] that asymptotically, this quantity characterizes the optimal (unidirectional)

classical communication rate for this task when sufficient shared randomness is avail-

able. In Ref. [36], a rejection sampling protocol is used to perform a similar task in a

one-shot setting, but such that the same communication efficiency is achieved on aver-

age, up to lower order terms. A caveat is that their protocol to do so is interactive, while

the one in Ref. [100] is not. Thus, we can combine the above characterization and the

result of Ref. [100] to obtain a simulation protocol for amortized communication that

asymptotically achieves communication at the information cost of the protocol, while

keeping the same round complexity, and error parameter arbitrarily close to the original

one. Details on how to extend this to a direct coding theorem for multi-round protocols

that maintains round complexity follow along similar lines as in the quantum setting.

Combining this with the direct sum property for information complexity from Ref. [36],
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which also maintains round complexity, we get the following theorem, in which ICM
int

and ACCM are the bounded round internal information complexity and amortized com-

munication complexity for classical protocols, respectively, defined analogously to the

quantum quantities.

Theorem 4.2.1. For a classical task (T,µ,ε) and any bound M ∈ N on the number of

messages,

ACCM(T,µ,ε) = ICM
int(T,µ,ε).

4.2.2 Quantum Information Cost of a Protocol

Given the alternate characterization of the classical information cost in the preceding

section, it is possible to define an analogous notion of quantum information cost for

quantum protocols. A potential problem is that we cannot keep a copy of a channel

input and output at the sender. As already noted, the fully quantum task analogous to

channel simulation with feedback to the sender and side information at the receiver is

equivalent to quantum state redistribution, and avoids this problem as follows.

4.2.2.1 Quantum State Redistribution

In quantum state redistribution, there are 4 systems of interest. At the outset of

the protocol, the A,C systems are in the possession of Alice, and would be for us the

coherent feedback of the channel and the output to be transmitted, respectively, while

Bob holds the side information B, and the ABC joint system is purified by a reference

register R that no party has access to. Thus, the only system changing hands is the C

subsystem that is to be transmitted from Alice to Bob. Recall the definition for quantum

state redistribution stated in Chapter 3.

Definition 4.2.1. We say that the bipartite channel R ∈ C (AinBin,AoutBout) implements

state redistribution on input ρAinBin , with Ain = AC, Bin = B, Aout = A, Bout = BC: it

implements the identity channel on such a state and such a partition of the input-output
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registers, i.e. it transfers the C part of ρ from Alice to Bob. We say that a protocol Π is

an ε-error state redistribution protocol for ρABC if Π ∈T (R,ρ,ε).

It is proved in [54, 140] that this can be accomplished, in the limit of asymptotically

many copies of this task and with free entanglement assistance, at a communication

cost of 1
2 I(R;C|B) qubits per copy. The following variant follows from developments in

Chapter 3.

Theorem 4.2.2 ([54, 140]). For all ρ ∈ D(ABC) and δ > 0, there exists c > 0, n0 ∈ N

such that for all n ≥ n0, there exists a one-message protocol Πn ∈ T (R⊗n,ρ⊗n,2−cn)

satisfying

QCC(Πn)≤n
(
I(C;R|B)+δ

)
.

4.2.2.2 Quantum Information Cost in the Hybrid Model

Now, in analogy with our rewriting of the classical information cost in (4.2.1), we

define the quantum information cost of a protocol, and the corresponding notion of

quantum information complexity of a relation, in the following way, by considering

the sum of the asymptotic communication costs. Note that throughout this chapter, ex-

cept when explicitly mentioned, all protocols are in the hybrid model. This is justified

in Section 4.4. Please refer to Section 2.4.1 for the definition of a protocol Π and its

corresponding registers. Recall that register R is the purifying register for input state

ρ ∈D(AinBin).

Definition 4.2.2. For a protocol Π and an input state ρ , we define the quantum informa-

tion cost of Π on input ρ as

QIC(Π,ρ) = ∑
i≥1, odd

1
2

I(Ci;R|Bi)+ ∑
i≥1, even

1
2

I(Ci;R|Ai).

Note that even for protocols with communication, the quantum information cost on

pure state input is zero, since the purifying register R is trivial in such a case.
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Due to the the fact that on pure four-partite states ρABCR, it holds that I(C;R|B) =
I(C;R|A), we get the following alternate characterizations.

Lemma 4.2.1. For a protocol Π and an input state ρ ,

QIC(Π,ρ) = ∑
i≥1

1
2

I(Ci;R|Bi)

= ∑
i≥1

1
2

I(Ci;R|Ai).

4.2.2.3 Quantum Information Cost in the Randomized Model

For worst-case classical tasks, T (T,ε) and T M(T,ε) are sets of protocols in the ran-

domized model. In fact, Corollary 4.3.1 tells us that it is sufficient to consider protocols

in the hybrid model, which are equivalently described as protocols Πν in the random-

ized model with ν having support of size 1. Mainly for convenience in notation, we

nevertheless provide a definition valid for all protocols in the randomized model.

Definition 4.2.3. For a protocol Πν in the randomized model and an input state ρ , we

define the quantum information cost of Πν on input ρ as

QICR(Πν ,ρ) = ∑
r

ν(r) ·QIC(Πr,ρ).

4.2.3 Quantum Information Complexity of Classical Tasks

We consider the quantum information complexity of two different kinds of classical

tasks: distributional tasks and worst-case tasks.

4.2.3.1 Distributional Quantum Information Complexity

When considering classical inputs in the distributional setting, we noted in Sec-

tion 2.3.1 that the purification register can be thought of as containing a (quantum) copy

of the classical input. The definition of quantum information cost is however invariant

under the choice of R and corresponding purification. We define the quantum informa-

tion complexity for classical tasks in the following way.
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Definition 4.2.4. For a classical task (T,µ,ε) and a number of message M, we define

the ε-error quantum information complexity of T on input µ as

QIC(T,µ,ε) = inf
Π∈T (T,µ,ε)

QIC(Π,µ),

and the M-message, ε-error quantum information complexity of T on input µ as

QICM(T,µ,ε) = inf
Π∈T M(T,µ,ε)

QIC(Π,µ).

For a product task
⊗

i(Ti,µi,εi), we have

QIC
( n⊗

i=1

(Ti,µi,εi)
)
= inf

Π∈T (⊗i(Ti,µi,εi))
QIC(Π,⊗iµi),

QICM( n⊗
i=1

(Ti,µi,εi)
)
= inf

Π∈T M(⊗i(Ti,µi,εi))
QIC(Π,⊗iµi).

Using properties that are satisfied by these definitions and that are stated in the next

section, we get the operational interpretation for quantum information complexity as

the amortized quantum communication complexity, i.e. the second statement in Theo-

rem 4.1.1. An unbounded round variant of this result also holds. See Section 4.6.1 for a

proof of these statements.

Note that taking an infimum has already been proven to be necessary for the un-

bounded round definition in the analogous classical context [38]. The reason is that

an infinite sequence of protocols, using more and more rounds, might indeed be neces-

sary to asymptotically approach the quantum information complexity, with each message

containing an infinitesimal amount of information.

Taking an infimum might also be necessary in the bounded round setting, but for a

different reason: an infinite sequence of protocol might also be necessary, with larger

and larger entanglement registers. This is somewhat related to the fact that no good

bounds are known on the amount of entanglement required for the best protocols; see

Ref. [101] and references therein for related discussions.
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4.2.3.2 Prior-free Quantum Information Complexity

We want to define a sensible notion of quantum information complexity for prior-free

classical tasks. As in the classical setting [33], there are two sensible orderings for the

optimization over inputs and protocols. We provide the two corresponding definitions

and later investigate the link between them in Section 4.3.2.4: it turns out that we can

almost reverse the quantifiers.

Definition 4.2.5. For a classical task (T,ε) and a number of message M, the ε-error

max-distributional quantum information complexity of T is

QICD(T,ε) = max
µ∈DXY

QIC(T,µ,ε),

and the M-message, ε-error max-distributional quantum information complexity of T is

QICM
D (T,ε) = max

µ∈DXY
QICM(T,µ,ε).

Definition 4.2.6. For a classical task (T,ε) and a number of message M, the ε-error

quantum information complexity of T is

QIC(T,ε) = inf
Π∈T (T,ε)

max
µ∈DXY

QIC(Π,µ),

and the M-message, ε-error quantum information complexity of T is

QICM(T,ε) = inf
Π∈T M(T,ε)

max
µ∈DXY

QIC(Π,µ).

It holds that QICD(T,ε)≤ QIC(T,ε) and QICM
D (T,ε)≤ QICM(T,ε).

For product tasks, there are two possible sets of distributions over which we can

optimize. Given relations Ti with input sets Xi and Yi, denote D×XnY n the set of all product

distributions over Xn×Y n = (X1×·· ·×Xn)×(Y1×·· ·×Yn), while DXnY n is the set of all

distributions, possibly non-product, over Xn×Y n. Taking Definition 4.2.6 as our basis,

we get the following definitions.
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Definition 4.2.7. For a product classical task⊗i(Ti,εi) and a number of message M, the

product quantum information complexity of ⊗(Ti,εi) is

QIC×(⊗i(Ti,εi)) = inf
Πn∈T (⊗i(Ti,εi))

max
µn∈D×XnY n

QIC(Πn,µ
n),

and the M-message product quantum information complexity of ⊗i(Ti,εi) is

QICM
× (⊗i(Ti,εi)) = inf

Πn∈T M(⊗i(Ti,εi))
max

µn∈D×XnY n

QIC(Πn,µ
n).

Definition 4.2.8. For a product classical task⊗i(Ti,εi) and a number of message M, the

quantum information complexity of ⊗i(Ti,εi) is

QIC(⊗i(Ti,εi)) = inf
Πn∈T (⊗i(Ti,εi))

max
µn∈DXnY n

QIC(Πn,µ
n),

and the M-message quantum information complexity of ⊗i(Ti,εi) is

QICM(⊗i(Ti,εi)) = inf
Πn∈T M(⊗i(Ti,εi))

max
µn∈DXnY n

QIC(Πn,µ
n).

We later study the link between these definitions: optimizing over product or arbi-

trary distributions is in fact equivalent.

4.2.4 Quantum Information Complexity of Quantum Tasks

For quantum tasks, the notion of quantum information complexity is defined as fol-

lows.

Definition 4.2.9. For a quantum task (N ,ρ,ε) and a number of message M, we define

the ε-error quantum information complexity of N on input ρ as

QIC(N ,ρ,ε) = inf
Π∈T (N ,ρ,ε)

QIC(Π,ρ),
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and the M-message, ε-error quantum information complexity of N on input ρ as

QICM(N ,ρ,ε) = inf
Π∈T M(N ,ρ,ε)

QIC(Π,ρ).

The quantum information complexity of quantum tasks also has an operational inter-

pretation as the amortized quantum communication complexity; see Section 4.6.1.

4.3 Properties of Interactive Quantum Information

We investigate in more detail the properties of the newly defined quantum infor-

mation cost and complexity. In particular, we show that they are direct lower bounds

on communication, that they are asymptotic upper bounds on communication, that they

satisfy an additivity as well as a subadditivity property, are convex and continuous in

the error parameter, and concave and continuous in the input. We also show that when

composing protocols, side-information can only decrease quantum information cost, and

provide a first round-independent lower bound on quantum information cost.

Since a variety of quantum tasks can be defined, with error parameter ranging from

a classical probability of failure to fully quantum distance notions, we first derive most

results for protocols. Such results are usually more versatile; in particular, they can

be applied in a similar fashion to prove results about quantum protocols implementing

classical and fully quantum tasks. These results about protocols usually maintain the

round complexity. For properties of quantum information complexity, we can then ob-

tain bounded-round variants. For worst-case classical tasks, we also prove that we may

almost reverse the quantifiers in the definition of quantum information complexity, and

that the error can be decreased without increasing the information cost too much.

These lemmata share some similarities with those in foundational works on classical

information complexity [33, 36], but there are some particular difficulties associated to

the fact that we are handling quantum registers. In particular, we must be careful when

conditioning on quantum registers and evaluating quantum information quantities. In

general, quantum conditional mutual information does not have the interpretation as an

average over possible values of the side information. Moreover, the no-cloning theorem
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forbids copying of quantum states, so we can only evaluate information quantities on

registers that can be defined at the same moment in time. It then becomes important

to keep track of all registers in a purification of a protocol, to split purifications of pre-

shared entangled states in the appropriate way, and to properly set them such that we can

take classical average when appropriate.

4.3.1 Interactive Protocols

We first study properties of the quantum information cost of protocols. Except when

explicitly mentioned, all protocols are in the hybrid model.

4.3.1.1 Quantum Information Lower Bounds Communication

In this section, we make the important remark that in any protocol, the quantum

information cost is non-negative and, more importantly, is a lower bound on the quantum

communication cost. This holds when considering the quantum information cost with

respect to any input state. This follows from the fact that for any quantum state ρBCR,

0≤ 1
2 I(C;R|B)≤ log |C|. Applying this to all terms in the quantum information cost

versus all terms in the quantum communication cost, we get the result.

Lemma 4.3.1. For any protocol Π and input state ρ , the following holds:

0≤ QIC(Π,ρ)≤ QCC(Π).

For protocols in the randomized model, information also lower bounds communica-

tion, which can be shown by using a convexity argument and the above result.

Lemma 4.3.2. For any protocol Πν in the randomized model and any input state ρ , the

following holds:

0≤ QICR(Πν ,ρ)≤ QCC(Πν).
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4.3.1.2 Quantum Information Upper Bounds Amortized Communication

We also state a weak converse result to the above one: the quantum information cost

is an upper bound on the amortized quantum communication cost. This is a consequence

of the link between our notion of information cost and asymptotic bounds on quantum

state redistribution [54, 140].

Lemma 4.3.3. For any M-message protocol Π, any input state ρAinBin and any δ >

0, there exists c > 0, n0 ∈ N such that for all n ≥ n0, there exists a protocol Πn ∈
T M(Π⊗n,ρ⊗n,2−cn) satisfying

1
n

QCC(Πn)≤ QIC(Π,ρ)+δ .

Proof. Given any M-message protocol Π and any state ρAinBinR with purification register

R, let ρ
A1C1B1R
1 =U1(ρ⊗ψ), ρ

A2C2B2R
2 =U2(ρ1), · · · , ρ

AMCMBMR
M =UM(ρM−1). Then, for

any δ > 0, take ε = 2−cn and Qi =
1
2 I(Ci;R|Bi)+

δ

2M = 1
2 I(Ci;R|Ai)+

δ

2M , and for each

i let ni
0 be the corresponding n0 for error ε

M in Theorem 4.2.2, and take n′0 = max{ni
0}

and n0 = max(n′0,
2M
δ
). Then for any n ≥ n0, we have a one-message quantum state re-

distribution protocol Πi ∈ T (R⊗n
i ,ρ⊗n

i ,ε/M) satisfying QCC(Πi) = dQine. We define

the following protocol Πn starting from the protocol Π. The state ψ is the shared entan-

glement used in Π, and its isometries are U1, U2, · · · , UM, UM+1. For each i, the state φi

is the shared entanglement used in the quantum state redistribution protocol Πi, and its

isometries are V i
1, V i

2. Note that for even i, we will act V i
1 on Bob’s side and V i

2 on Alice’s

side.

Protocol Πn on input σ in registers A⊗n
in , B⊗n

in of Π⊗n

– Take entangled state ψ̂ = ψ⊗n⊗φ1⊗·· ·⊗φM.

– Take unitaries Û1 =V 1
1 ◦U

⊗n
1 , Û2 =V 2

1 ◦U
⊗n
2 ◦V 1

2 , · · · , ÛM =V M
1 ◦U

⊗n
M ◦V

M−1
2 ,

ÛM+1 =U⊗n
M+1 ◦V M

2 .

– Take as output the A⊗n
out , B⊗n

out registers of Π⊗n.
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Note that the communication cost of Πn satisfies

QCC(Πn) = ∑
i

log |Ĉi|

= ∑
i
dQine

≤ n
(
∑
i≥1

1
2

I(Ci;R|Bi)+
Mδ

2M
+

M
n

)
≤ n(QIC(Π,ρ)+δ ).

This is also a M-message protocol, so is left to bound the error on input σ = ρ⊗n to make

sure that Πn ∈T (Π⊗n,ρ⊗n,ε). We have

‖Πn(ρ
⊗n)−Π

⊗n(ρ⊗n)‖= ‖Tr¬A⊗n
outB

⊗n
out

U⊗n
M+1V M

2 V M
1 U⊗n

M V M−1
2 · · ·V 1

1 U⊗n
1 (ρ⊗n⊗ ψ̂)

−Tr¬A⊗n
outB

⊗n
out

U⊗n
M+1U⊗n

M · · ·U
⊗n
1 (ρ⊗n⊗ψ

⊗n)‖

= ‖Tr¬A⊗n
outB

⊗n
out

U⊗n
M+1ΠMU⊗n

M ΠM−1 · · ·Π1U⊗n
1 (ρ⊗n⊗ψ

⊗n)

−Tr¬A⊗n
outB

⊗n
out

U⊗n
M+1U⊗n

M · · ·U
⊗n
1 (ρ⊗n⊗ψ

⊗n)‖

≤ ‖Tr(A′)⊗n(B′)⊗n U⊗n
M+1ΠM · · ·Π2U⊗n

2 Π1(ρ
⊗n
1 )

−Tr(A′)⊗n(B′)⊗n U⊗n
M+1ΠM · · ·Π2U⊗n

2 (ρ⊗n
1 )‖

+‖Tr(A′)⊗n(B′)⊗n U⊗n
M+1ΠMU⊗n

M ΠM−1 · · ·Π3U⊗n
3 Π2(ρ

⊗n
2 )

−Tr(A′)⊗n(B′)⊗n U⊗n
M+1ΠMU⊗n

M ΠM−1 · · ·Π3U⊗n
3 (ρ⊗n

2 )‖

+ · · ·

+‖Tr(A′)⊗n(B′)⊗n U⊗n
M+1ΠMU⊗n

M ΠM−1(ρ
⊗n
M−1)

−Tr(A′)⊗n(B′)⊗n U⊗n
M+1ΠMU⊗n

M (ρ⊗n
M−1)‖

+‖Tr(A′)⊗n(B′)⊗n U⊗n
M+1ΠM(ρ⊗n

M )

−Tr(A′)⊗n(B′)⊗n U⊗n
M+1(ρ

⊗n
M )‖

≤ ‖Π1(ρ
⊗n
1 )− (ρ⊗n

1 )‖

+‖Π2(ρ
⊗n
2 )− (ρ⊗n

2 )‖

+ · · ·
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+‖ΠM−1(ρ
⊗n
M−1)− (ρ⊗n

M−1)‖

+‖ΠM(ρ⊗n
M )− (ρ⊗n

M )‖

≤M
ε

M

= ε.

The first equality is by definition, the second one by taking the channel view for the

protocols Πi, since the corresponding A′i, B′i left at the end of these are traced out, and

only U i
1, U i

2 act on φ i, the first inequality is by the triangle inequality and by definition

of the ρi’s, the second inequality is due to the monotonicity of trace distance under noisy

channels, and the next is because Πi ∈T (R⊗n
i ,ρ⊗n

i ,ε/M).

4.3.1.3 Additivity

The quantum information complexity of tasks satisfies an exact direct sum property

on product inputs. This follows from two technical lemmata about the additivity of

quantum information cost of protocols. Remember that for a protocol Π, we also denote

by Π the channel implemented by the protocol.

Lemma 4.3.4. For any M-message protocol Π and any input states ρ1 ∈D(A1
inB1

in) and

ρ2 ∈D(A2
inB2

in), there exist M-message protocols Π1,Π2 satisfying for all σ1 and σ2

Π
1(σ1) = TrA2

outB2
out
◦Π(σ1⊗ρ2),

Π
2(σ2) = TrA1

outB1
out
◦Π(ρ1⊗σ2),

QIC(Π1,ρ1)+QIC(Π2,ρ2) = QIC(Π,ρ1⊗ρ2).

Proof. Given Π, we define the protocols Π1,Π2 in the following way. Let ψTATB be the

entangled state used in the Π protocol.

Protocol Π1 on input σ1

1. Let ρ
A2

inB2
inR2

2 be a purification of ρ2. The entangled state for the protocol will
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be ρ2⊗ψ , with the A2
in, R2, TA registers given to Alice, and the B2

in, TB registers

given to Bob.

2. Using the ρ2 state given as pre-shared entanglement to simulate the other input,

run protocol Π on input σ1⊗ρ2.

3. Take as output the A1
outB

1
out output registers.

Protocol Π2 on input σ2

1. Let ρ
A1

inB1
inR1

1 be a purification of ρ1. The entangled state for the protocol will

be ρ1⊗ψ , with the A1
in, TA registers given to Alice, and the B1

in, R1, TB registers

given to Bob.

2. Using the ρ1 state given as pre-shared entanglement to simulate the other input,

run protocol Π on input ρ1⊗σ2.

3. Take as output the A2
outB

2
out output registers.

By the definitions of protocols Π1 and Π2, the channels they implement are Π1(σ1)=

TrA2
outB2

out
◦Π(σ1⊗ρ2) and Π2(σ2) = TrA1

outB1
out
◦Π(ρ1⊗σ2), respectively. Also, Π1 and

Π2 are M-message protocols, so is left to analyse their quantum information costs on

input ρ1, ρ2, respectively. Note that R1R2 is a purifying register for ρ1⊗ρ2. By definition

and the structure of the protocols,

2QIC(Π1,ρ1) = I(C1;R1|B0)+ I(C2;R1|A1R2)+ · · · ,

2QIC(Π2,ρ2) = I(C1;R2|B0R1)+ I(C2;R2|A1)+ · · · ,

and we get by rearranging terms and using the chain rule

2QIC(Π1,ρ1)+2QIC(Π2,ρ2) = I(C1;R1R2|B0)+ I(C2;R1R2|A1)+ · · ·

= 2QIC(Π,ρ1⊗ρ2).
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Lemma 4.3.5. For any two protocols Π1 and Π2 with M1 and M2 messages, respectively,

there exists an M-message protocol Π, satisfying Π = Π1⊗Π2, M = max(M1,M2), such

that the following holds for any input states ρ1, ρ2:

QIC(Π,ρ1⊗ρ
2) = QIC(Π1,ρ1)+QIC(Π2,ρ2).

Proof. Given protocols Π1 and Π2, we assume without loss of generality that M1 ≥M2,

and we define the protocol Π in the following way.

Protocol Π on input σ

1. Take as input the registers A1
in, B1

in, A2
in, B2

in of both Π1 and Π2

2. Run protocols Π1,Π2 in parallel for M2 messages on corresponding input reg-

isters until Π2 has finished.

3. Finish running protocol Π1.

4. Take as output the registers A1
out , B1

out , A2
out , B2

out of both Π1 and Π2.

By the definition of protocol Π, the channel it implements is Π = Π1⊗Π2, and

the number of messages satisfies M = max(M1,M2), so is left to analyse its quantum

information cost on input σ = ρ1⊗ ρ2. The first thing to notice is that we can find a

purification of ρ1⊗ρ2 that is also in product form, i.e. there exists a purification with the

purifying system R = R1⊗R2 and such that (ρ1⊗ρ2)
A1

inB1
inA2

inB2
inR = ρ

A1
inB1

inR1

1 ⊗ρ
A2

inB2
inR2

2 .

Also note that throughout the protocol, due to the structure of Π2 and the fact that the

input ρ1⊗ρ2 is in product form, any registers corresponding to Π1 stays in product form
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with any register corresponding to Π2. Then

2QIC(Π,ρ1⊗ρ2) = I(C1
1C2

1 ;R1R2|B1
1B2

1)+ I(C1
2C2

2 ;R1R2|A1
2A2

2)

+ · · ·+ I(C1
M2

C2
M2

;R1R2|A1
M2

A2
M2
)

+ I(C1
M2+1;R1R2|B1

M2
B2

M2
)+ · · ·+ I(C1

M1
;R1R2|A1

M1
A2

M2
)

= I(C1
1 ;R1|B1

1)+ I(C1
2 ;R1|A1

2)+ · · ·+ I(C1
M1

;R1|A1
M1
)

+ I(C2
1 ;R2|B2

1)+ I(C2
2 ;R2|A2

2)+ · · ·

= 2QIC(Π1,ρ1)+2QIC(Π2,ρ2).

The first equality is by definition of quantum information cost of Π, and due to its parallel

structure, the second equality is because registers of Π1,Π2 are in product form, and then

the last equality follows from definition and the structure of Π.

In general, inputs are not necessarily in product form. Then, the following subaddi-

tivity result holds.

Lemma 4.3.6 (Subadditivity). For any two protocols Π1, Π2 with M1, M2 messages, re-

spectively, there exists a M-message protocol Π, satisfying Π=Π1⊗Π2, M =max(M1,M2),

such that the following holds for any joint input state ρ12 ∈D(A1
inB1

inA2
inB2

in):

QIC(Π,ρ12)≤ QIC(Π1,ρ1)+QIC(Π2,ρ2),

with ρ1 = TrA2
inB2

in
(ρ12) and ρ2 = TrA1

inB1
in
(ρ12).

Proof. The protocol Π is as in Lemma 4.3.5: simply run Π1,Π2 in parallel.

Protocol Π on input σ

1. Take as input the registers A1
in, B1

in, A2
in, B2

in of both Π1 and Π2

2. Run protocols Π1,Π2 in parallel for M2 messages on corresponding input reg-

isters until Π2 has finished.

3. Finish running protocol Π1.
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4. Take as output the registers A1
out , B1

out , A2
out , B2

out of both Π1 and Π2.

By the definition of Π, the channel that it implements is Π = Π1⊗Π2, and the num-

ber of messages satisfies M = max(M1,M2), so is left to analyse its quantum information

cost on input ρ12. Let R12 be a purifying register such that ρ
A1

inB1
inA2

inB2
inR12

12 is a pure state.

Also, denote the purified joint state in round i as (ρ i
12)

A1
i B1

i C1
i A2

i B2
i C2

i R12 , and the local state

for protocol Π1 as

(ρ i
1)

A1
i B1

i C1
i = TrA2

i B2
i C2

i R12
((ρ i

12)
A1

i B1
i C1

i A2
i B2

i C2
i R12), (4.3.1)

and similarly for that of protocol Π2. Notice that for all i, (ρ i
1)

A1
i B1

i C1
i is purified by

(ρ i
1)

A1
i B1

i C1
i A2

inB2
inR12 ⊗ φ

T 2
A T 2

B
2 , with A2

inB2
inR12 the registers of state ρ12 before application

of the unitaries corresponding to Π1, and φ2 the pure entangled state used in Π2. If we

denote, for i≥M2+1, A2
i =A2

M2
, B2

i =B2
M2

, then by the definition of QIC and application

of chain rule,

2 ·QIC(Π,ρ12) =
M2

∑
i=1, i odd

I(C1
i C2

i ;R12|B1
i B2

i )ρ12 +
M2

∑
i=1, i even

I(C1
i C2

i ;R12|A1
i A2

i )ρ12

+
M1

∑
i=M2+1, i odd

I(C1
i ;R12|B1

i B2
i )ρ12 +

M1

∑
i=M2+1, i even

I(C1
i ;R12|A1

i A2
i )ρ12

=
M2

∑
i=1, i odd

I(C2
i ;R12|B1

i B2
i C1

i )ρ12 +
M2

∑
i=1, i even

I(C2
i ;R12|A1

i A2
i C1

i )ρ12

+
M1

∑
i=1, i odd

I(C1
i ;R12|B1

i B2
i )ρ12 +

M1

∑
i=1, i even

I(C1
i ;R12|A1

i A2
i )ρ12.

Now for protocol Π1, as noted above, the registers A2
inB2

inR12T 2
A T 2

B purify (ρ i
1)

A1
i B1

i C1
i

for all i, so
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2 ·QIC(Π1,ρ1) =
M1

∑
i=1, i odd

I(C1
i ;A2

inB2
inR12T 2

A T 2
B |B1

i )ρ1 +
M1

∑
i=1, i even

I(C1
i ;A2

inB2
inR12T 2

A T 2
B |A1

i )ρ1

=
M1

∑
i=1, i odd

I(C1
i ;A2

i B2
i C2

i R12|B1
i )ρ12 +

M1

∑
i=1, i even

I(C1
i ;A2

i B2
i C2

i R12|A1
i )ρ12

=
M1

∑
i=1, i odd

I(C1
i ;B2

i |B1
i )ρ12 +

M1

∑
i=1, i even

I(C1
i ;A2

i |A1
i )ρ12

+
M1

∑
i=1, i odd

I(C1
i ;R12|B1

i B2
i )ρ12 +

M1

∑
i=1, i even

I(C1
i ;R12|A1

i A2
i )ρ12

+
M1

∑
i=1, i odd

I(C1
i ;A2

i C2
i |B1

i B2
i R12)ρ12 +

M1

∑
i=1, i even

I(C1
i ;B2

i C2
i |A1

i A2
i R12)ρ12

≥
M1

∑
i=1, i odd

I(C1
i ;R12|B1

i B2
i )ρ12 +

M1

∑
i=1, i even

I(C1
i ;R12|A1

i A2
i )ρ12,

in which the first equality is by definition, the second is by isometric invariance of

the conditional quantum mutual information (CQMI), the third by the chain rule for

CQMI, and the inequality is by non-negativity of CQMI. Similarly for protocol Π2, with

a slightly different application of the chain rule, we get

2 ·QIC(Π2,ρ2) =
M2

∑
i=1, i odd

I(C2
i ;A1

inB1
inR12T 1

A T 1
B |B2

i )ρ2 +
M2

∑
i=1, i even

I(C2
i ;A1

inB1
inR12T 1

A T 1
B |A2

i )ρ2

=
M2

∑
i=1, i odd

I(C2
i ;A1

i B1
i C1

i R12|B2
i )ρ12 +

M2

∑
i=1, i even

I(C2
i ;A1

i B1
i C1

i R12|A2
i )ρ12

=
M2

∑
i=1, i odd

I(C2
i ;B1

i C1
i |B2

i )ρ12 +
M2

∑
i=1, i even

I(C2
i ;A1

i C1
i |A2

i )ρ12

+
M2

∑
i=1, i odd

I(C2
i ;R12|B1

i B2
i C1

i )ρ12 +
M2

∑
i=1, i even

I(C2
i ;R12|A1

i A2
i C1

i )ρ12

+
M2

∑
i=1, i odd

I(C2
i ;A1

i |B1
i B2

i C1
i R12)ρ12 +

M2

∑
i=1, i even

I(C2
i ;B2

i |A1
i A2

i C1
i R12)ρ12

≥
M2

∑
i=1, i odd

I(C2
i ;R12|B1

i B2
i C1

i )ρ12 +
M2

∑
i=1, i even

I(C2
i ;R12|A1

i A2
i C1

i )ρ12.
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The result then follows by comparing terms.

4.3.1.4 Convexity, Concavity and Continuity

We now show that quantum information cost is convex in the protocol parameter,

concave in the input state parameter, and also continuous in the input state.

Lemma 4.3.7 (Convexity in Protocol). For any p ∈ [0,1], any two protocols Π1, Π2

with M1, M2 messages, respectively, there exists an M-message protocol Π satisfying

Π = pΠ1+(1− p)Π2, M = max(M1,M2), such that the following holds for any state ρ:

QIC(Π,ρ) = pQIC(Π1,ρ)+(1− p)QIC(Π2,ρ).

Proof. Given Π1, Π2, we assume without loss of generality that M1 ≥M2, and we define

Π in the following way:

Protocol Π on input ρ

1. The entangled state ψ contains many parts: it contains both entangled states

ψ1,ψ2 for the corresponding protocols Π1, Π2, it contains selector registers in

state
∣∣σp
〉
=
√

p |1〉SA |1〉SB +
√

1− p |2〉SA |2〉SB , and it contains padding pure

states to feed as input to the protocol that is not selected, held in registers

DA,DB.

2. Coherently control, according to the selector registers, what to input into the

two protocols: on control set to 1, input state ρ into protocol Π1 and the

padding pure state into protocol Π2 , and vice-versa on control set to 2.

3. Run protocols Π1,Π2 in parallel for M2 messages on given input until Π2 has

finished.

4. Finish running protocol Π1.

5. Coherently control what to output: on control set to 1, take as output the

Aout ,Bout registers of protocol Π1, and on control set to 2, take those of proto-

col Π2.
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Note that by the structure of the above protocol and because the selector registers

are traced out at the end, the output is of the form Π(ρ) = pΠ1(ρ) + (1− p)Π2(ρ),

and Π is an M-message protocol. We must now verify that the quantum information

cost satisfies the stated property. First note that if Alice’s registers are traced out, then

Bob’s selector register is effectively a classical register, and similarly for Alice’s selector

register if Bob’s registers are traced out. Also note that throughout the protocol, due

to the structure of Π, conditional on some classical state of the selector register, the

reference register R can only be correlated with registers in the corresponding protocol

Π1 or Π2. Also, still conditional on some classical state of the selector register, any

register corresponding to Π1 is in product form with any register corresponding to Π2.

Then

2QIC(Π,ρ) = I(C1
1C2

1 ;R|BinDBT 1
B T 2

B SB)+ I(C1
2C2

2 ;R|A1
2A2

2SA)

+ · · ·+ I(C1
M2

C2
M2

;R|A1
M2

A2
M2

SA)

+ I(C1
M2+1;R|B1

M2+1B2
M2

SB)+ · · ·+ I(C1
M1

;R|A1
M1

A2
M2

SA)

= p(I(C1
1C2

1 ;R|BinDBT 1
B T 2

B (SB = 1))+ I(C1
2C2

2 ;R|A1
2A2

2(SA = 1))

+ · · ·+ I(C1
M2

C2
M2

;R|A1
M2

A2
M2
(SA = 1))

+ I(C1
M2+1;R|B1

M2+1B2
M2
(SB = 1))+ · · ·+ I(C1

M1
;R|A1

M1
A2

M2
(SA = 1)))

+(1− p)(I(C1
1C2

1 ;R|BinDBT 1
B T 2

B (SB = 2))+ I(C1
2C2

2 ;R|A1
2A2

2(SA = 2))

+ · · ·+ I(C1
M2

C2
M2

;R|A1
M2

A2
M2
(SA = 2))

+ I(C1
M2+1;R|B1

M2+1B2
M2
(SB = 2))+ · · ·+ I(C1

M1
;R|A1

M1
A2

M2
(SA = 2)))

= p(I(C1
1 ;R|B1

inT 1
B (SB = 1))+ I(C1

2 ;R|A1
2(SA = 1))+ · · ·+ I(C1

M1
;R|A1

M1
(SA = 1)))

+(1− p)(I(C2
1 ;R|B2

inT 2
B (SB = 2))+ I(C2

2 ;R|A2
2(SA = 2))+ · · ·)

= p ·2QIC(Π1,ρ)+(1− p) ·2QIC(Π2,ρ).

The first equality is by definition of quantum information cost of Π, and due to its par-

allel structure, the second equality uses the above remark about the selector register of

one party being classical when the registers of the other party are traced out, along with
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a convex rewriting of conditional mutual information, the third equality uses the above

remark about the product structure of R and the registers corresponding to Π1, Π2, re-

spectively, depending on the classical state of the selector register, and the last equality

is due to the fact that conditional on some classical state of the selector register, the state

in the registers considered is the same as the one in the corresponding protocol.

In light of the above lemma, it holds that in the context of quantum information com-

plexity, considering protocols in the hybrid model instead of protocols in the randomized

model is sufficient. We have the following corollary.

Corollary 4.3.1. For any M-message protocol Πν in the randomized model, there is an

M-message protocol Π in the hybrid model such that for any ρ it holds that

Π = Πν ,

QIC(Π,ρ) = QICR(Πν ,ρ).

Proof. If ν has support of size 1, then this is immediate. If it has support of size 2, the

protocol from Lemma 4.3.7 will do. Otherwise, use the lemma recursively.

We now show that quantum information is concave in its input state parameter, while

a subsequent lemma gives a bound on how far it is from being convex.

Lemma 4.3.8 (Concavity in input). For any p ∈ [0,1], define ρ = p ·ρ1+(1− p) ·ρ2 for

any two input states ρ1, ρ2. Then the following holds for any protocol Π:

QIC(Π,ρ)≥ pQIC(Π,ρ1)+(1− p)QIC(Π,ρ2).

Proof. Let R be a register holding a purification of ρ1 and ρ2, then we can purify ρ with

two copies S1,S2 of a selector reference register, such that

|ρ〉AinBinRS1S2 =
√

p |ρ1〉AinBinR |1〉S1 |1〉S2 +
√

1− p |ρ2〉AinBinR |2〉S1 |2〉S2 .
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We can then expand each term in the quantum information cost as

I(Ci;RS1S2|Bi)ρ = I(Ci;S1|Bi)ρ + I(Ci;R|BiS1)ρ + I(Ci;S2|BiRS1)ρ .

The result follows by summing over all rounds since

I(Ci;R|BiS1)ρ = pI(Ci;R|Bi)ρ1 +(1− p) I(Ci;R|Bi)ρ2,

and the remainder terms are non-negative.

Lemma 4.3.9 (Quasi-convexity in input). For any p ∈ [0,1], define ρ = p ·ρ1+(1− p) ·
ρ2 for any two input states ρ1, ρ2. Then the following holds for any M-message protocol

Π:

QIC(Π,ρ)≤ pQIC(Π,ρ1)+(1− p)QIC(Π,ρ2)+MH(p).

Proof. The result follows from the proof of the above lemma and by noting that H(S1) =

H(S2) = H(p) upper bounds the two remainder terms in each of the M messages. In-

deed, S1 is classical if S2 is traced out, and vice versa, so I(Ci;S1|Bi)ρ ≤ H(S1) and

I(Ci;S2|BiRS1)ρ = I(Ci;S2|Ai)ρ ≤ H(S2).

Note that since entropy is concave, i.e. H(B|X) ≤ H(B), the above lemma can also

be extended to arbitrary convex combinations of states. Combining the two previous

lemmata, we can prove continuity in the input.

Lemma 4.3.10 (Continuity in input). The quantum information cost for M-message

protocols is uniformly continuous in the input state. This holds uniformly over all M-

message protocols with input D(AinBin). That is, for all M, Ain, Bin, and ε > 0, there

exists δ ∈ (0,1/2) such that for all ρ1 and ρ2 that are δ -close and all M-message proto-

cols Π,

|QIC(Π,ρ1)−QIC(Π,ρ2)| ≤ ε.

105



Proof. Since we are using the trace distance as a measure of distance, this follows by

finding the closest purification between ρ1 and ρ2. This can be done up to error O(
√

δ )

by using the Fuchs-van de Graaf inequalities (see Eq. 3.2.17) and the characterization of

fidelity as the maximum overlap between purifications. Remember that quantum infor-

mation cost is invariant under the choice of purification. Then continuity of the condi-

tional quantum mutual information M-times yields ε ∈O(M ·
√

δ ·(log |Ain|+ log |Bin|)+
MH(

√
δ )). This bound is independent of µ1,µ2, depends on Π only through M and

log |Ain|, log |Bin|, and goes to zero as δ does, so the result follows.

However, this is not sufficient for an application of continuity needed in the result

about disjointness in Section 4.7, due to the
√

δ terms appearing instead of δ : see

Lemma 4.7.6. We prove a tighter result, with
√

δ replaced by δ .

Let’s start with the case ρ1 = (1−δ ′)ρ2 +δ ′σ , for δ ′ ∈ (0,1/2) and some state σ .

Note that this case is sufficient for classical inputs: for δ -close distributions we can

always find such a rewriting. Then by the lemma about quasi-convexity in the input,

we get QIC(Π,ρ1) ≤ (1− δ ′)QIC(Π,ρ2)+ δ ′QIC(Π,σ)+MH(δ ′). By concavity in

the input and non-negativity, we also get (1− δ ′)QIC(Π,ρ2) ≤ QIC(Π,ρ1). It follows

that |QIC(Π,ρ1)−QIC(Π,ρ2)| ≤ δ ′ ·M · (log |Ain|+ log |Bin|)+MH(δ ′), since H(R)≤
log |Ain|+ log |Bin|.

Now, for general ρ1 and ρ2 that are δ -close, we use a trick from Alicki and Fannes [5].

Write θ = (1−δ )ρ1+ |ρ1−ρ2|, σ1 =
1
δ
|ρ1−ρ2|, σ2 =

1−δ

δ
(ρ1−ρ2)+

1
δ
|ρ1−ρ2|, with

|O|= (O†O)1/2 for an operator O. It then holds that θ = (1−δ )ρ1+δσ1 = (1−δ )ρ2+

δσ2. The desired result then follows by the triangle inequality and the special case above:

|QIC(Π,ρ1)−QIC(Π,ρ2)| ≤ |QIC(Π,ρ1)−QIC(Π,θ)|+ |QIC(Π,θ)−QIC(Π,ρ2)| ≤
2δ ·M · (log |Ain|+ log |Bin|)+2MH(δ ).

4.3.1.5 Composition of Protocols

The following lemmata show that when running a protocol as a subroutine, classical

side information can be conditioned on, and more generally quantum side information

can be safely discarded without increasing quantum information cost.

106



Definition 4.3.1. Let ρAinBinOAOB be a state with purification register R and of the form

|ρ〉AinBinOAOBR = ∑
o

pO(o) |o〉OA |o〉OB |ρo〉AinBinR,

for some distribution pO and states ρo. Also let Π be an M-message protocol acting

on input registers Ain,Bin. Then we define the quantum information cost of Π on ρ

conditional on O as

QIC(Π,ρ|O) = ∑
i>0, odd

I(Ci;R|BiOB)+ ∑
i>0, even

I(Ci;R|AiOA).

The next lemma follows directly from the definition and Eq. (2.2.29).

Lemma 4.3.11. In the setting of Definition 4.3.1,

QIC(Π,ρ|O) = ∑
o

pO(o)QIC(Π,ρo).

The next lemma follows from definitions and the fact that we can implement an

identity channel with the trivial protocol that does not communicate at all.

Lemma 4.3.12. In the setting of Definition 4.3.1, define σA′inB′in = ρAinBinOAOB , with A′in =

AinOA and B′in = BinOB. Then there exists an M-round protocol Π′ satisfying

Π
′ = Π⊗ IOAOB,

QIC(Π′,σ) = QIC(Π,ρ|O).

In the case of arbitrary quantum side information, we get the lemma below. It follows

from subadditivity, the fact that quantum information cost is invariant under the choice

of purification and the fact that we can implement an identity channel with the trivial

protocol that does not communicate at all.

Lemma 4.3.13. Let Π be an M-round protocol acting on input registers Ain, Bin, let

ρAinBin and σA′inB′in be states with A′in = AinÃ and B′in = BinB̃ for some arbitrary finite-

dimensional registers Ã, B̃, and such that TrÃB̃(σ) = ρ . Then there exists an M-message
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protocol Π′ satisfying

Π
′ = Π⊗ IÃB̃,

QIC(Π′,σ)≤ QIC(Π,ρ).

4.3.1.6 Round-Independent Lower Bound

The link between each term in the quantum information cost and the task of quantum

state redistribution suggests that the following relation should hold for the information

Bob has about R:

∑
i≥0

I(R;C2i+1|B2i+1)−∑
i≥1

I(R;C2i|B2i) = I(R;BoutB′)− I(R;Bin).

We prove the following stronger result.

Lemma 4.3.14. Given a protocol Π, a state ρ with purifying register R having an arbi-

trary decomposition R = RaRbRc, the following holds:

∑
i≥0

I(Ra;C2i+1|RbB2i+1)−∑
i≥1

I(Ra;C2i|RbB2i) = I(Ra;BoutB′|Rb)− I(Ra;Bin|Rb).

Proof. We will prove that

I(Ra;B2k+1C2k+1|Rb) = ∑
0≤i≤k

I(Ra;C2i+1|RbB2i+1)− ∑
1≤i≤k

I(Ra;C2i|RbB2i)+ I(Ra;Bin|Rb)

by induction on k. If M is odd, the result follows since Bob receives the last mes-

sage and I(Ra;BoutB′|Rb) = I(RA;BMCM|Rb). If M is even and Bob sends the last mes-

sage, the result follows since BM = BoutB′ and I(Ra;BM|Rb) = I(Ra;BM−1CM−1|Rb)−
I(Ra;CM|RbBM) by using the chain rule and isometric invariance for BM−1CM−1 →
BMCM. Now for the induction, the base case follows from

I(Ra;B1C1|Rb) = I(Ra;B1|Rb)+ I(Ra;C1|RbB1)

= I(Ra;Bin|Rb)+ I(Ra;C1|RbB1),
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in which the first equality is by the chain rule and the second is because B1 = B0 = BinTB

along with the fact that TB is product to Ra,Rb and Bin.

Now for the induction step, we have

I(Ra;B2k+3C2k+3|Y ) = I(Ra;B2k+3|Rb)+ I(Ra;C2k+2|RbB2k+2)

+ I(Ra;C2k+3|RbB2k+3)− I(Ra;C2k+2|RbB2k+2)

= I(Ra : B2k+2C2k+2|Rb)+ I(Ra;C2k+3|RbB2k+3)

− I(Ra;C2k+2|RbB2k+2)

= I(Ra : B2k+1C2k+1|Rb)+ I(Ra;C2k+3|RbB2k+3)

− I(Ra;C2k+2|RbB2k+2),

in which the first equality is by the chain rule and also by adding and subtracting the

same term, the second is also by the chain rule and because B2k+3 = B2k+2, and the third

is by isometric invariance on B2k+1C2k+1→ B2k+2C2k+2. The induction step follows by

comparing terms.

A similar result holds for Alice.

Corollary 4.3.2. Given a protocol Π, a state ρ with purifying register R having an

arbitrary decomposition R = RaRbRc, the following holds:

∑
i≥0

I(Ra;C2i+2|RbA2i+2)−∑
i≥0

I(Ra;C2i+1|RbA2i+1) = I(Ra;AoutA′|Rb)− I(Ra;Ain|Rb).

Combining the above two results, we get the following lower bound on quantum in-

formation cost, stated as a difference between the amount of correlations of the reference

with the output and the input.

Corollary 4.3.3. Given a protocol Π, a state ρ with purifying register R having an
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arbitrary decomposition R = RaRbRc, the following holds:

QIC(Π,ρ)≥ I(Ra;AoutA′|Rb)− I(Ra;Ain|Rb),

QIC(Π,ρ)≥ I(Ra;BoutB′|Rb)− I(Ra;Bin|Rb),

QIC(Π,ρ)≥ I(Ra;AoutA′|Rb)− I(Ra;Ain|Rb)

+ I(Ra;BoutB′|Rb)− I(Ra;Bin|Rb).

Note that the first two inequalities are not subsumed by the third: the difference on

the right hand side could be negative in these.

4.3.2 Classical Tasks

From the properties about the quantum information cost of protocols we proved in

the previous section, we can derive many corresponding properties for classical tasks.

4.3.2.1 Quantum Information Lower Bounds Communication

The result that quantum information complexity lower bounds quantum communica-

tion complexity follows by taking infimum on both sides in Lemma 4.3.1.

Lemma 4.3.15. For any product task ⊗i(Ti,µi,εi) and number of message M,

0≤ QIC(⊗i(Ti,µi,εi))≤ QCC(⊗i(Ti,µi,εi)),

0≤ QICM(⊗i(Ti,µi,εi))≤ QCCM(⊗i(Ti,µi,εi)).

4.3.2.2 Additivity

Quantum information complexity satisfies an exact direct sum property, a conse-

quence of the following additivity property. For two product tasks S1 =
⊗s1

i=1(Ti,µi,εi),

S2 =
⊗s1+s2

j=s1+1(Tj,µ j,ε j), define the product task S1⊗ S2 =
⊗s1+s2

k=1 (Tk,µk,εk). We get

the following result.
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Lemma 4.3.16. For any two product classical tasks S1 =
⊗s1

i=1(Ti,µi,εi),S2 =
⊗s1+s2

j=s1+1(Tj,µ j,ε j)

and any bound M ∈ N on the number of messages,

QIC(S1⊗S2) = QIC(S1)+QIC(S2),

QICM(S1⊗S2) = QICM(S1)+QICM(S2).

Proof. We first prove the ≤ direction. Let Π1 and Π2 be protocols succeeding at the

corresponding tasks S1, S2, and achieving, for an arbitrary small δ > 0, QIC(Π1,µ1⊗
·· · ⊗ µs1) ≤ QIC(S1) + δ ,QIC(Π2,µs1+1⊗ ·· · ⊗ µs1+s2) ≤ QIC(S2) + δ , respectively.

Taking the corresponding protocol Π from Lemma 4.3.5, its induced channel succeeds

at the product task S1⊗S2, and we get

QIC(S1⊗S2)≤ QIC(Π,µ1⊗·· ·⊗µs1⊗µs1+1⊗·· ·⊗µs1+s2)

= QIC(Π1,µ1⊗·· ·⊗µs1)+QIC(Π2,µs1+1⊗·· ·⊗µs1+s2)

≤ QIC(S1)+QIC(S2)+2δ .

Now for the ≥ direction, let Π be a protocol succeeding at the product task and

achieving QIC(Π,µ1⊗ ·· ·⊗ µs1 ⊗ µs1+1⊗ ·· ·⊗ µs1+s2) ≤ QIC(S1⊗ S2)+ δ for an ar-

bitrary small δ > 0. Taking the corresponding protocols Π1,Π2 from Lemma 4.3.4 for

tasks S1, S2, their induced channels succeed at their respective task, and we get

QIC(S1)+QIC(S2)

≤ QIC(Π1,µ1⊗·· ·⊗µs1)+QIC(Π2,µs1+1⊗·· ·⊗µs1+s2)

= QIC(Π,µ1⊗·· ·⊗µs1⊗µs1+1⊗·· ·⊗µs1+s2)

≤ QIC(S1⊗S2)+δ .

Keeping tracks of rounds, we also get the bounded round result.

An induction then yields the following corollary.

Corollary 4.3.4. For a product task ⊗i(Ti,µi,εi) and any bound M ∈ N on the number
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of messages, the following holds:

QIC(⊗i(Ti,µi,εi)) = ∑
i

QIC(Ti,µi,εi),

QICM(⊗i(Ti,µi,εi)) = ∑
i

QICM(Ti,µi,εi).

Combining the above corollary with Lemma 4.3.15, we get the following.

Corollary 4.3.5. For a product task ⊗i(Ti,µi,εi) and any bound M ∈ N on the number

of messages, the following holds:

∑
i

QIC(Ti,µi,εi)≤ QCC(⊗i(Ti,µi,εi)),

∑
i

QICM(Ti,µi,εi)≤ QCCM(⊗i(Ti,µi,εi)).

4.3.2.3 Convexity and Continuity

We now show that quantum information complexity is convex in the error param-

eter. A corollary is that it is continuous in the error parameter. Recall that quantum

information complexity is non-increasing in the error parameter.

Lemma 4.3.17. For any T , µ , ε1, ε2, M1, M2 and p ∈ [0,1], if we define ε = pε1 +(1−
p)ε2, M = max(M1,M2), then the following holds:

QIC(T,µ,ε)≤ pQIC(T,µ,ε1)+(1− p)QIC(T,µ,ε2),

QICM(T,µ,ε)≤ pQICM1(T,µ,ε1)+(1− p)QICM2(T,µ,ε2).

Proof. Let Π1 and Π2 be protocols satisfying, for i∈{1,2}, Πi ∈T (T,µ,εi),QIC(Πi,µ)≤
QIC(T,µ,εi)+ δ for an arbitrary small δ > 0, and take the corresponding protocol Π

of Lemma 4.3.7. By linearity of expectation, protocol Π successfully accomplishes its

task of achieving average error ε . We must now verify that the quantum information cost
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satisfies the convexity property:

QIC(T,µ,ε)≤ QIC(Π,µ)

= pQIC(Π1,µ)+(1− p)QIC(Π2,µ)

≤ pQIC(T,µ,ε1)+(1− p)QIC(T,µ,ε2)+δ .

Keeping track of messages, we get the bounded round result.

Lemma 4.3.18 (Continuity in average error). Quantum information complexity is con-

tinuous in the error. This holds uniformly in the input. That is, for all T , M and ε , δ > 0,

there exists ε ′ ∈ (0,ε) such that for all ε ′′ ∈ (ε ′,ε) and all µ ,

|QIC(T,µ,ε ′′)−QIC(T,µ,ε)| ≤ δ ,

|QICM(T,µ,ε ′′)−QICM(T,µ,ε)| ≤ δ .

Proof. Note that we can drop the absolute values since quantum information complexity

is non-increasing in the error, i.e. QIC(T,µ,ε)≤ QIC(T,µ,ε ′′)≤ QIC(T,µ,ε ′). Using

Lemma 4.3.17 with ε1 = 0,ε2 = ε,ε ′ = pε for the current ε , we get

QIC(T,µ,ε ′′)≤ QIC(T,µ,ε ′)

≤ pQIC(T,µ,0)+(1− p)QIC(T,µ,ε)

≤ pQCC(T,0)+QIC(T,µ,ε).

Rearranging terms, we get

|QIC(T,µ,ε ′′)−QIC(T,µ,ε)| ≤ ε ′

ε
QCC(T,0).

This bound is independent of µ , and goes to zero as p and ε ′ do, so the result follows.

The bounded round result is proved in the same way, obtaining QCCM(T,0) in the final

bound instead.
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4.3.2.4 Prior-free Quantum Information Complexity

Many similar properties hold for worst-case tasks: quantum information complexity

lower bounds quantum communication complexity, it is convex in the error parameter,

and it is also continuous in the error parameter. In Theorem 4.3.1, we also prove that

we may almost reverse the quantifiers on protocols and inputs. First, we prove that

information lower bounds communication.

Lemma 4.3.19 (Information lower bounds communication). For any worst-case product

task ⊗i(Ti,εi) and number of message M,

0≤ QIC(⊗i(Ti,εi))≤ QCC(⊗i(Ti,εi)),

0≤ QICM(⊗i(Ti,εi))≤ QCCM(⊗i(Ti,εi)).

Proof. Let Π be a protocol implementing product task⊗i(Ti,εi) and satisfying QCC(Π)=

QCC(⊗i(Ti,εi)). We get the result by noting that QIC(⊗i(Ti,εi))≤maxµn∈DXnY n QIC(Π,µn)≤
QCC(Π). The bounded round result follows in the same way, by keeping tracks of mes-

sages.

For two product tasks S1 =
⊗s1

i=1(Ti,εi),S2 =
⊗s1+s2

j=s1+1(Tj,ε j), define the product

task S1⊗ S2 =
⊗s1+s2

k=1 (Tk,εk). We get the following additivity result, similar to Theo-

rem 4.2 in Ref. [33].

Lemma 4.3.20. For any two product classical tasks S1 =
⊗s1

i=1(Ti,εi), S2 =
⊗s1+s2

j=s1+1(Tj,ε j)

and any bound M ∈ N on the number of messages,

QIC(S1⊗S2) = QIC×(S1⊗S2)

= QIC(S1)+QIC(S2),

QICM(S1⊗S2) = QICM
× (S1⊗S2)

= QICM(S1)+QICM(S2).

Proof. We first prove the statement of the lemma for QIC××(S1⊗S2) instead of QIC×(S1⊗
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S2), with QIC××(S1⊗ S2) allowing for product distributions µ1⊗ µ2 in which µ1 is an

arbitrary distribution for the task S1 and similarly for µ2 and S2.

The inequality QIC(S1⊗ S2) ≥ QIC××(S1⊗ S2) follows from definition since the

maximization is over a larger set in QIC than in QIC××.

Then we prove that QIC××(S1⊗S2)≥QIC(S1)+QIC(S2). Let Π be a protocol suc-

ceeding at the product task S1⊗ S2 and achieving, for all µ1⊗ µ2, QIC(Π,µ1⊗ µ2) ≤
QIC×(S1⊗ S2)+ δ for an arbitrary small δ > 0. Fix any µ1, µ2, and take the corre-

sponding protocols Π1, Π2 from Lemma 4.3.4 for tasks S1, S2. They succeed at their

respective task, and we get for all µ1 and µ2

QIC(Π1,µ1)+QIC(Π2,µ2) = QIC(Π,µ1⊗µ2)

≤ QIC××(S1⊗S2)+δ .

Optimizing over µ1 and µ2, we get QIC(S1)+QIC(S2) ≤ QIC××(S1⊗ S2)+ δ , as de-

sired.

Finally, to prove that QIC(S1)+QIC(S2)≥QIC(S1⊗S2), let Π1 and Π2 be protocols

succeeding at the corresponding tasks S1, S2, and achieving, for an arbitrary small δ > 0

and all µ1, µ2, QIC(Π1,µ1) ≤ QIC(S1)+δ , QIC(Π2,µ2) ≤ QIC(S2)+δ , respectively.

Taking the corresponding protocol Π from Lemma 4.3.6, it succeeds at the product task

S1⊗S2, and we get, for any µ12 ∈DX2Y 2 and corresponding marginals µ1 ∈DX1Y1 , µ2 ∈
DX2Y2 ,

QIC(Π,µ12)≤ QIC(Π1,µ1)+QIC(Π2,µ2).

Maximizing over all µ12, we get the result

QIC(S1⊗S2)≤ QIC(S1)+QIC(S2)+2δ .

The result for QIC×× follows by taking δ to zero. Keeping tracks of rounds, we also get

the bounded round result.

To complete the proof of the lemma, we show that for any S =⊗s
i=1(Ti,εi), QIC(S) =
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QIC×(S) = ∑
s
i=1 QIC(Ti,εi). The inequality QIC(S) ≥ QIC×(S) follows from defini-

tion since the maximization is over a larger set in QIC than in QIC×. Then, the result

QIC(S) = ∑
s
i=1 QIC(Ti,εi) follows by induction on what we already proved.

Finally, we prove that QIC×(S)≥ ∑
s
i=1 QIC(Ti,εi) by induction on s. The base case

follows by definition. For the induction step, assume the result for s− 1 and let Π be

a protocol for the task S and achieving, for all ⊗s
i=1µi, QIC(Π,⊗s

i=1µi) ≤ QIC×(S)+

δ for an arbitrary small δ > 0. Fix any ⊗s−1
i=1 µi and µs, and take the corresponding

protocols Π1,Π2 from Lemma 4.3.4 for tasks ⊗s−1
i=1 (Ti,εi) and (Ts,εs). They succeed at

their respective task, and we get for all ⊗s
i=1µi

QIC(Π1,⊗s−1
i=1 µi)+QIC(Π2,µs) = QIC(Π,⊗s

i=1µi)

≤ QIC×(S)+δ .

Optimizing over ⊗s
i=1µi, we get QIC×(⊗s−1

i=1 (Ti,εi))+QIC(Ts,εs) ≤ QIC×(S)+δ . Us-

ing the induction hypothesis on QIC×(⊗s−1
i=1 (Ti,εi)) yields the desired result. Keeping

tracks of rounds, we also get the bounded round result.

Let us state the following corollary.

Corollary 4.3.6. For a product task ⊗i(Ti,εi) and any bound M ∈ N on the number of

messages, the following holds:

QIC(⊗i(Ti,εi)) = ∑
i

QIC(Ti,εi),

QICM(⊗i(Ti,εi)) = ∑
i

QICM(Ti,εi).

Combining the above corollary with Lemma 4.3.19, we get the following.

Corollary 4.3.7. For a product task (Ti,εi) and any bound M ∈ N on the number of
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messages, the following holds:

∑
i

QIC(Ti,εi)≤ QCC(⊗i(Ti,εi)),

∑
i

QICM(Ti,εi)≤ QCCM(⊗i(Ti,εi)).

We now show that quantum information complexity is convex in the error.

Lemma 4.3.21 (Convexity in error). For any p ∈ [0,1], T and ε , ε1, ε2 ∈ [0,1] satisfying

ε = p ·ε1+(1− p) ·ε2 and for any bound M = max(M1,M2), M1, M2 ∈N on the number

of messages, the following holds:

QIC(T,ε)≤ pQIC(T,ε1)+(1− p)QIC(T,ε2),

QICM(T,ε)≤ pQICM1(T,ε1)+(1− p)QICM2(T,ε2).

Proof. The proof is similar to the one for the analogous result with fixed input. Given

δ > 0, let Π1 and Π2 be protocols satisfying, for all µ , for i ∈ {1,2},Πi ∈ T (T,εi) and

QIC(Πi,µ) ≤ QIC(T,εi)+ δ , and take the corresponding protocol Π of Lemma 4.3.7.

First, it holds that protocol Π successfully accomplishes its task, i.e. it implements task

T on all inputs with error bounded by ε = pε1 +(1− p)ε2. We must now verify that the

quantum information cost satisfies the convexity property:

QIC(T,ε)≤max
µ

QIC(Π,µ)

= max
µ

(
pQIC(Π1,µ)+(1− p)QIC(Π2,µ)

)
≤ pmax

µ
QIC(Π1,µ)+(1− p)max

µ
QIC(Π2,µ)

≤ pQIC(T,ε1)+(1− p)QIC(T,ε2)+2δ .

The result follows by taking δ to zero. Keeping track of rounds, we get the bounded

round result.

As for distributional tasks, we get as a corollary that quantum information complexity
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is continuous in the error.

Corollary 4.3.8 (Continuity in error). Quantum information complexity is continuous

in the error. That is, for all T , r and ε , δ > 0, there exists ε ′ ∈ (0,ε) such that for all

ε ′′ ∈ (ε ′,ε),

|QIC(T,ε ′′)−QIC(T,ε)| ≤ δ ,

|QICr(T,ε ′′)−QICr(T,ε)| ≤ δ .

Similar results hold for the max-distributional quantum information complexity. How-

ever, we prove that we can almost reverse the quantifiers for the two possible notions of

prior-free quantum information complexity. The proof idea follows along the lines of the

proof of Theorem 3.5 in Ref. [33], but special care must be taken for quantum protocols.

The idea we use is to take an ε-net over DXY , and then take a δ -optimal protocol for each

distribution in the net. An ε-net over DXY is a set NXY ⊂DXY such that for all µ ∈DXY ,

there exists ν ∈ NXY such that ‖µ−ν‖1 ≤ ε . Since DXY is a compact set, there exists a

finite such NXY .

Theorem 4.3.1. For a classical task (T,ε) with ε > 0, a number of messages M and

each value α ∈ (0,1),

QICM
(

T,
ε

α

)
≤ QICM

D (T,ε)
1−α

.

Proof. Fix T , M, ε , α and denote I = QICM
D (T,ε). For any δ1 ∈ (0,1), we want to

prove the existence of a protocol Π ∈ T M(T, ε

α
· (1 + 2δ1)) satisfying QIC(Π,µ) ≤

I·(1+2δ1)
1−α

for all µ ∈DXY . This shows that QICM(T, ε

α
· (1+2δ1))≤ I

1−α
· (1+2δ1), and

then by continuity of quantum information complexity in the error, we get the result by

taking δ1 to 0. The proof follows along the lines of the one for the analogous result for

classical information complexity [33], using a minimax argument. We take extra care

to account for the continuum of quantum protocols, the round-by-round definition of

quantum information cost, and the fact that we do not have a bound on the size of the
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entanglement. Let δ2 ∈ (0,εδ1) satisfy the following two properties uniformly for all

µ1,µ2 that are δ2-close, and also uniformly for all M-message protocols Π:

|QIC(Π,µ1)−QIC(Π,µ2)| ≤ I · δ1

10
, (4.3.2)

|QICM(T,µ1,ε−δ2)−QICM(T,µ1,ε)| ≤ I · δ1

10
. (4.3.3)

The first inequality is possible by Lemma 4.3.10, i.e. by the uniform continuity of

quantum information cost in the input, uniformly over all M-message protocols, and

the second is possible by Lemma 4.3.25, i.e. the continuity of quantum information

complexity in the error, uniformly over all inputs. Fix a finite δ2-net for DXY , that

we denote NXY . For each µ ∈ NXY , fix a protocol Πµ ∈ T M(T,µ,ε − δ2) such that

QIC(Πµ ,µ)≤ QICM(T,µ,ε−δ2) · (1+ δ1
10) and denote the set of all such protocols PN .

We then have |PN |= |NXY |< ∞, and we get using (4.3.3) that

QIC(Πµ ,µ)≤ QICM(T,µ,ε−δ2) · (1+
δ1

10
)

≤
(
QICM(T,µ,ε)+ I · δ1

10
)
(1+

δ1

10
)

≤ I · (1+ δ1

10
)2

≤ I · (1+ δ1

2
). (4.3.4)

We define the following two-player zero-sum game over these two sets. Player A comes

up with a quantum protocol Π ∈ PN . Player B comes up with a distribution µ ∈ NXY .

Player B’s payoff is given by

PB(Π,µ) = (1−α) · QIC(Π,µ)

I
+α · Pe(Π,µ)

ε
,

and then player A’s is given by PA(Π,µ) =−PB(Π,µ). Recall that Pe(Π,µ) is the aver-

age error of protocol Π for implementing T on µ . We first show the following.

Claim 4.3.1. The value of the game for player B is bounded by 1+δ1.
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Proof. Let νB be a probability distribution over NXY representing a mixed strategy for

player B. To prove the claim, it suffices to show that there is a protocol Π ∈ PN such that

EνB[PB(Π,µ)] < 1+ δ1. Let µ̄ be the distribution corresponding to averaging over νB,

that is

µ̄(x,y) = EνB µ(x,y).

Let µ ′ ∈ NXY be a distribution that is δ2-close to µ̄ , and Π′ ∈ PN the corresponding

protocol. We first show that Π′ is also good for µ̄ . We have

Pe(Π
′, µ̄)≤ Pe(Π

′,µ ′)+δ2

≤ ε−δ2 +δ2

= ε,

in which the first inequality follows from the fact that µ̄ and µ ′ are δ2-close and the

second inequality from the fact that Π′ ∈ PN is the protocol corresponding to µ ′ ∈ NXY ,

i.e. Π′ ∈T r(T,µ ′,ε−δ2). We also have

QIC(Π′, µ̄)≤ QIC(Π′,µ ′)+ I · δ1

2

≤ I · (1+δ1),

in which the first inequality follows from (4.3.2) and the second from the fact that Π′ ∈
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PN is the protocol corresponding to µ ′ ∈ NXY along with (4.3.4). We obtain

EνB[PB(Π
′,µ)] = EνB

[
(1−α) · QIC(Π′,µ)

I
+α · Pe(Π

′,µ)

ε

]
= (1−α) ·EνB

[
QIC(Π′,µ)

I

]
+α · Pe(Π

′, µ̄)

ε

≤ (1−α) ·
[

QIC(Π′, µ̄)

I

]
+α · Pe(Π

′, µ̄)

ε

< (1−α) · (1+δ1)+α

< 1+δ1,

in which the first equality is by definition, the second by linearity of expectation, the first

inequality is by Lemma 4.3.8, i.e. concavity of quantum information cost in the input

state, and the second inequality is by the above results about Π′. This concludes the

proof of the claim.

By the minimax theorem for zero-sum games, the above claim implies that there

exists a probability distribution νA over PN representing a mixed strategy for player A

and such that the value of the game for player B is at most 1 + δ1. That is, for all

µ ∈ NXY ,

EνA(PB(Π,µ))< 1+δ1.

Let Π̄ = EνA(Π) be the M-message protocol obtained by publicly averaging over νA,

as per Lemma 4.3.7. This is the protocol we are looking for. The following claim holds.

Claim 4.3.2. For all µ ∈DXY , (1−α) · QIC(Π̄,µ)
I +α · Pe(Π̄,µ)

ε
< 1+2δ1.

Proof. Fix any µ ∈ DXY , and let µ ′ ∈ NXY be a distribution that is δ2-close to µ . Then
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we obtain

(1−α) · QIC(Π̄,µ)

I
+α · Pe(Π̄,µ)

ε

≤ (1−α) · QIC(Π̄,µ ′)+ Iδ1

I
+α · Pe(Π̄,µ ′)+δ2

ε

= (1−α) · QIC(Π̄,µ ′)

I
+α ·EνA

Pe(Π,µ ′)

ε

+(1−α) ·δ1 +α · δ2

ε

≤ (1−α) ·EνA

[
QIC(Π,µ ′)

I

]
+α ·EνA

[
Pe(Π,µ ′)

ε

]
+δ1

= EνA[PB(Π,µ ′)]+δ1

< 1+2δ1,

in which the first inequality follows from (4.3.2) and the fact that µ,µ ′ are δ2-close, the

first equality is because we take expectation over a probability, the second inequality is

because δ2 ≤ ε · δ1 and also by Lemma 4.3.7, i.e. by the convexity of quantum infor-

mation cost in the protocol, the second equality is by linearity of expectation and the

definition of PB(Π,µ ′), and the last inequality is because νA represents the mixed strat-

egy obtained by the minimax theorem. Since this holds for all µ ∈ DXY , this conclude

the proof of the claim.

To conclude the proof of the theorem, we first note that the above claim implies that

for all µ ∈DXY ,

QIC(Π̄,µ)≤ I
1−α

(1+2δ1),

so Π̄ satisfies the quantum information cost property we are looking for. It is left to

verify that it also has low error on all inputs. The above claim also implies that for all µ ,

Pe(Π̄,µ)≤ ε

α
· (1+2δ1).

Letting µ run over all distributions with support of size one, we get the desired error
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property, i.e. Π̄ ∈T M(T, ε

α
(1+2δ1)), and so

QICM
(

T,
ε

α
· (1+2δ1)

)
≤ I

1−α
(1+2δ1),

as desired.

To extend this result to the unbounded round quantum setting, we adapt a compact-

ness argument from Ref. [38], itself adapted from Ref. [125].

Theorem 4.3.2. For a classical task (T,ε) with ε > 0 and each value α ∈ (0,1),

QIC
(

T,
ε

α

)
≤ QICD(T,ε)

1−α
.

Proof. Let I = QICD(T,ε), and denote by PT the set of all protocols over the same input

and output spaces as T . For any Π, Pe(Π,µ) is continuous in µ by properties of the

statistical distance. Given δ > 0, define

A(Π) = {µ ∈DXY : QIC(Π,µ)≥ I +2 ·δ or Pe(Π,µ)≥ ε +δ}.

By continuity of both QIC(Π,µ) and Pe(Π,µ) in µ , these sets are closed for all Π ∈ PT .

Then, by definition of I, for all µ there exists Πµ ∈T (T,µ,ε) such that QIC(Πµ ,µ)≤
I + δ , and so ∩Π∈PT A(Π) = /0. Since DXY is compact and the sets A(Π) are closed,

we get that there exists a finite set Q ⊂ PT such that ∩Π∈QA(Π) = /0. We get that for

all µ , there exists Πµ ∈ Q such that QIC(Πµ ,µ) < I + 2δ and Pe(Πµ ,µ) < ε + δ . Let

M∗ = max{M : there is Π ∈ Q with M messages }, then

I +2δ ≥max
µ

min
Π∈Q∩T (T,µ,ε+δ )

QIC(Π,µ)

≥ QICM∗
D (T,ε +δ )

≥ (1−α) ·QICM∗
(

T,
ε

α
+

δ

α

)
≥ (1−α) ·QIC

(
T,

ε

α
+

δ

α

)
.
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The result follows by continuity of QIC and by taking δ to zero.

4.3.2.5 Reducing the Error for Functions

Similarly to communication, it is possible to reduce the error when computing func-

tions without increasing too much the information.

Lemma 4.3.22. For any function f and error parameter ε > 0, the following holds:

QIC( f ,ε) ∈ O(log1/ε ·QIC( f ,1/3)) .

Proof. Given δ > 0, let Π be a protocol computing f with worst-case error at most 1/3

on every input and satisfying QIC(Π,µ)≤QIC( f ,1/3)+δ for all µ . Let n∈O(log1/ε)

be given by the Chernoff bound such that protocol Πn running Π n times in parallel

as per Lemma 4.3.6, with each input being a copy of the instance to f , and taking a

majority vote (with arbitrary tie-breaking) computes f correctly except with probability

ε on every input. This n can be chosen independently of δ . We now argue on the

quantum information cost of Πn. Consider an arbitrary distribution µ for f , and let µn

be the distribution once the n copies have been made. If we denote the marginal for the

i-th copy by µ i, then µ i = µ for all i. By Lemma 4.3.6 and an induction, we then get that

QIC( f ,ε)≤ QIC(Πn,µn)

≤ nQIC(Π,µ)

≤ n(QIC( f ,1/3)+δ ).

The result follows by taking δ to 0.

4.3.3 Quantum Tasks

The following properties hold for quantum tasks. Most proofs follow exactly as for

distributional classical tasks; except when a different proof is required, we only state the

result without proof.
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4.3.3.1 Quantum Information Lower Bounds Communication

For quantum tasks also, information lower bounds communication.

Corollary 4.3.9. For a product quantum task⊗i(Ni,ρi,εi) and any bound M ∈N on the

number of messages, the following holds

0≤ QIC(⊗i(Ni,ρi,εi))≤ QCC(⊗i(Ni,ρi,εi)),

0≤ QICM(⊗i(Ni,ρi,εi))≤ QCCM(⊗i(Ni,ρi,εi)).

4.3.3.2 Additivity

Quantum information complexity of quantum tasks also satisfy an exact direct sum

property, a corollary of the following additivity result. For two product tasks S1 =⊗s1
i=1(Ni,ρi,εi),S2 =

⊗s1+s2
j=s1+1(N j,ρ j,ε j), define the product task S1⊗S2 =

⊗s1+s2
k=1 (Nk,ρk,εk).

We get the following results.

Lemma 4.3.23. For any two product classical tasks S1 =
⊗s1

i=1(Ni,ρi,εi), S2 =
⊗s1+s2

j=s1+1(N j,ρ j,ε j)

and any bound M ∈ N on the number of messages,

QIC(S1⊗S2) = QIC(S1)+QIC(S2),

QICM(S1⊗S2) = QICM(S1)+QICM(S2).

Corollary 4.3.10. For a product task (Ni,ρi,εi) and any bound M ∈ N on the number

of messages, the following holds:

QIC(⊗i(Ni,ρi,εi)) = ∑
i

QIC(Ni,ρi,εi),

QICM(⊗i(Ni,ρi,εi)) = ∑
i

QICM(Ni,ρi,εi).

Corollary 4.3.11. For a product task (Ni,ρi,εi) and any bound M ∈ N on the number
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of messages, the following holds:

∑
i

QIC(Ni,ρi,εi)≤ QCC(⊗i(Ni,ρi,εi)),

∑
i

QICM(Ni,ρi,εi)≤ QCCM(⊗i(Ni,ρi,εi)).

4.3.3.3 Convexity and Continuity

We also prove that quantum information complexity is convex and continuous in the

error parameter. For quantum tasks, it also make sense to consider linear combination of

the channels to be implemented in the task. We get the following result.

Lemma 4.3.24. For any N1, N2, ρ , ε1, ε2, M1, M2 and p ∈ [0,1], if we define ε =

pε1 +(1− p)ε2, N = pN1 +(1− p)N2, M = max(M1,M2), then the following holds:

QIC(N ,ρ,ε)≤ pQIC(N1,ρ,ε1)+(1− p)QIC(N2,ρ,ε2),

QICM(N ,ρ,ε)≤ pQICM1(N1,ρ,ε1)+(1− p)QICM2(N2,ρ,ε2).

Proof. Let Π1 and Π2 be protocols satisfying, for i ∈ {1,2}, Πi ∈ T (Ni,ρ,εi) and

QIC(Πi,ρ)≤QIC(Ni,ρ,εi)+δ for an arbitrary small δ > 0, and take the corresponding

protocol Π of Lemma 4.3.7. We first verify that protocol Π successfully accomplishes

its task. The result follows from the triangle inequality for the trace distance:

‖Π(ρAoutBoutR)−N (ρAoutBoutR)‖1 = ‖pΠ
1(ρAoutBoutR)+(1− p)Π2(ρAoutBoutR)

− (pN1 +(1− p)N2)(ρ
AoutBoutR)‖1

≤ ‖pΠ
1(ρAoutBoutR)− pN1(ρ

AoutBoutR)‖1

+‖(1− p)Π2(ρ)− (1− p)N2(ρ)‖AoutBoutR

≤ pε1 +(1− p)ε2

= ε.
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We must now verify that the quantum information cost satisfies the convexity property:

QIC(N ,ρ,ε)≤ QIC(Π,ρ)

= pQIC(Π1,ρ)+(1− p)QIC(Π2,ρ)

≤ pQIC(N1,ρ,ε1)+(1− p)QIC(N2,ρ,ε2)+2δ .

Keeping track of rounds, we get the bounded round result.

We get as a corollary that quantum information complexity is continuous in its error

parameter. Recall that quantum information complexity is non-increasing in the error

parameter.

Lemma 4.3.25. Quantum information complexity is continuous in the error. This holds

uniformly in the input. That is, for all N , M and ε , δ > 0, there exists ε ′ ∈ (0,ε) such

that for all ε ′′ ∈ (ε ′,ε) and all ρ ,

|QIC(N ,ρ,ε ′′)−QIC(N ,ρ,ε)| ≤ δ ,

|QICM(N ,ρ,ε ′′)−QICM(N ,ρ,ε)| ≤ δ .

4.4 Quantum Information Cost in the Cleve-Buhrman Model

We can also define a sensible notion of quantum information complexity for proto-

cols in the Cleve-Buhrman model.

Keeping with our purified view of quantum protocols in the context of quantum

information cost, a protocol ΠCB in the Cleve-Buhrman model would be mapped into

an equivalent protocol Π′ in the hybrid model, with each quantum instrument replaced

by its isometric extension. Moreover, to account for the fact that messages are classical,

the quantum copy of each message Ci generated by the isometric extension would be put

into the reference register R′i for subsequent rounds, inaccessible to both Alice and Bob.

Remember that both Alice and Bob would also get a copy of Ci in MA
i ,M

B
i as defined in
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Section 2.4.1.2. The quantum information cost of ΠCB would be defined accordingly in

terms of Π′ and the state ρ
A′iB
′
iC
′
iR
′
1···R′iR

i after message i has been sent.

Definition 4.4.1. For a protocol ΠCB in the Cleve-Buhrman model and its purification

Π′ in the hybrid model as defined above, and an input state ρ , we define the quantum

information cost of ΠCB on input ρ as

QICCB(ΠCB,ρ) = ∑
i≥1, odd

1
2

I(Ci;RR′1 · · ·R′i−1|BiMB
i−1)+ ∑

i≥1, even

1
2

I(Ci;RR′1 · · ·R′i−1|AiMA
i−1).

Note that Π′ implements the same channel, has the same communication and the

same number of messages of ΠCB. Moreover, once the reference register R′i is traced

out, the message Ci is classical. We now show that this quantum information cost for

ΠCB evaluates to the standard quantum information cost for its purification Π′, and that

the factor of 1/2 appearing in the standard definition in order to lower bound the quantum

communication cost is in fact unnecessary here, since all communication is classical.

Lemma 4.4.1. For a protocol ΠCB in the Cleve-Buhrman model and its purification Π′

in the hybrid model as defined above, and an input state ρ , it holds that

QICCB(ΠCB,ρ) = QIC(Π′,ρ),

2QICCB(ΠCB,ρ)≤ QCC(ΠCB).

Proof. The results follow since the sender’s copy in MA
i or MB

i of the message C1, · · · ,Ci

is traced out in each term of the quantum information cost. Hence, Ci is classical in each

term and the bound 2QICCB(ΠCB,ρ) ≤ QCC(ΠCB) follows since for odd i, I(Ci;RR′1
· · ·R′i−1|BiMB

i−1)≤ log |Ci| and for even i, I(Ci;RR′1 · · ·R′i−1|AiMA
i−1)≤ log |Ci|. Also, for

odd i, MB
i−1 holds a classical copy of R′1, · · · ,R′i−1, so that I(Ci;R|BiMB

i−1)= I(Ci;R|BiMB
i−1R′2R′4

· · ·R′i−1)= I(Ci;RR′1 · · ·R′i−1|BiMB
i−1), and similarly on Alice’s side, so that QICCB(ΠCB,ρ)=

QIC(Π′,ρ).

Note that to avoid cumbersome notation, we have avoided defining the Cleve-Buhrman

model with a pattern of communication that might depend on the partial transcript, and
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maybe also on shared randomness as in the randomized model. If we do not care about

the number of message, then this can affect communication by at most a factor of two

if we assume bit communication, by having Alice and Bob send bits in alternation. If

we want to maintain the round complexity, then the communication can be at most af-

fected by a multiplicative factor of the number of messages. For information however,

this would be of no effect on both round complexity and information complexity. Using

ideas developed here and the fact that sending padding messages in a pure state, as in

the proof of Lemma 4.3.7, contributes zero quantum information cost, we can see that it

is also possible to obtain the result of Lemma 4.4.1 for such an extension of the Cleve-

Buhrman in which the order of communication might depend on the partial transcript

and additional shared randomness.

Also note that with similar considerations, we could have alternatively defined the

quantum information cost in the randomized model by considering a purification Rν of

the shared randomness used in protocol Πν , inaccessible to both Alice and Bob, and

having each term of the form I(Ci;RRν |BiSB), with SB being Bob’s copy of the shared

randomness. This is also easily seen to yield the same value as in Definition 4.2.3 that

we adopted, as an average over ν .

4.5 The Cost of Forgetting Classical Information

In this section, we show that even though quantum protocols are reversible and thus

each party can somehow forget information that he learned about the input, there is a

quantum information cost associated in particular with forgetting classical information.

This holds either for information about a party’s own input, or for information about the

other party’s input.

4.5.1 Safe Copies Do Not Increase Quantum Information Cost

We first show that making safe copies of classical inputs do not increase the quantum

information cost. A safe copy is a copy that is made by each party at the outset of the

protocol and not acted upon during the remainder of the protocol. Consider any protocol
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Π, and let a protocol Π′ be a protocol in which Alice and Bob make a coherent copy of

their respective inputs X ,Y at the outset of the protocol into safe registers X ′,Y ′, and then

run Π. Recall that there are also coherent copies held in purification registers RX ,RY .

That is, on input distribution µ on X ,Y , we denote as ρXY
µ the state

ρ
XY
µ = ∑

x,y
µ(x,y)|x〉〈x|X ⊗|y〉〈y|Y , (4.5.1)

and then a purification is

∣∣ρµ

〉XY RX RY = ∑
x,y

√
µ(x,y) |x〉X |y〉Y |x〉RX |y〉RY . (4.5.2)

In the protocol Π′, these registers X ′,Y ′ are then left untouched for the remainder of the

protocol, which is then identical to protocol Π after such copies are made. We want

to show that the quantum information cost of Π′ is never greater than that of Π. More

formally, define the isometries

UX→XX ′
X = ∑

x∈X
|x〉X |x〉X

′
〈x |X , (4.5.3)

UY→YY ′
Y = ∑

y∈Y
|y〉Y |y〉Y

′
〈y |Y . (4.5.4)

Then the protocol Π′ is defined by applying UX on Alice’s side before applying U1 in the

first round, and by applying UY on Bob’s side before applying U2 in the second round,

and then running Ui in round i for i≥ 3. We then get the following result.

Lemma 4.5.1. For any protocol Π and any input distribution µ for X ,Y , the protocol Π′

as defined above satisfies

QIC(Π′,µ)≤ QIC(Π,µ). (4.5.5)

Proof. This follows from Lemma 4.3.13, since UY commutes with U1 on Alice’s side,

and we can implement a protocol applying UX ,UY without any communication.
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Let us illustrate the difference between QIC(Π,µ) and QIC(Π′,µ) with a simple

example. Consider an input distribution µ such that X is uniformly distributed, and

Y = X . Consider a protocol in which Alice directly sends her input to Bob. Then the

costs are

QIC(Π,µ) = I(X : RX RY |Y )ρµ
(4.5.6)

= H(X |Y )ρµ
−H(X |RX RYY )ρµ

(4.5.7)

= H(X)ρµ
(4.5.8)

= |X |, (4.5.9)

QIC(Π′,µ) = I(X : RX RY |Y ′Y )ρ ′µ (4.5.10)

= 0, (4.5.11)

in which we used for QIC(Π′,µ) the fact that all registers are classical once X ′ is traced

out along with the fact that X =Y , similarly for H(X |Y )ρµ
, and finally, since ρ

XY RX RY
µ is

pure, H(X |RX RYY )ρµ
=−H(X)ρµ

.

Notice that for protocols with classical inputs, making such a local copy of the input

does not change the quantum communication cost. Hence, whenever we are interested in

minimizing the quantum information cost, we may always consider such protocols that

start by making a local copy of their inputs.

4.5.2 Alternate Characterization for Classical Inputs

For protocols with classical inputs, we provide an alternative characterization of their

quantum information cost that does not require introducing a purification register. Be-

fore proving this, we first introduce some new quantities. In a recent work, Kerenidis,

Laurière, Le Gall and Rennela define a notion of classical input information cost [87].

They also define an asymmetric version of quantum information cost. They have the

following definitions, in which we consider protocols making safe copies of the input

into registers X ′Y ′, as in the previous section.

Definition 4.5.1. For a protocol Π and an input distribution µ , the classical input infor-
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mation cost from Alice to Bob is defined as

CICA→B(Π,µ) =
1
2 ∑

i≥1, odd
I(Ci;X ′|Y ′Bi),

the classical input information cost from Bob to Alice as

CICB→A(Π,µ) =
1
2 ∑

i≥1, even
I(Ci;Y ′|X ′Ai),

the quantum information cost from Alice to Bob as

QICA→B(Π,µ) =
1
2 ∑

i≥1, odd
I(Ci;RX RY |Y ′Bi),

and the quantum information cost from Bob to Alice as

QICB→A(Π,µ) =
1
2 ∑

i≥1, even
I(Ci;RX RY |X ′Ai).

It follows from the data processing inequality that CICA→B ≤ QICA→B, a fact noted

in Ref. [87]. They also consider another notion of information cost for classical inputs,

termed the superposed information cost, and prove that it lies in between these two.

Note that QIC(Π,µ) = QICA→B(Π,µ) +QICB→A(Π,µ), so similarly we define a

symmetric version of classical input information cost CIC(Π,µ) = CICA→B(Π,µ) +

CICB→A(Π,µ). We want to compare these two quantities, and in particular we find that

they are related with a further notion of information cost, which we call the Holevo

information cost. This quantity evaluates the Holevo information each party possesses

at the end of the protocol about the other party’s input, conditional on his own input.

Note that similar considerations can be made in each round i by considering the protocol

Πi that runs Π up to round i and then stops (with an appropriate partition of the registers

in round i, depending on whether i is even or odd, and who holds Ci).

Definition 4.5.2. For a protocol Π and an input distribution µ , the Holevo information
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cost from Alice to Bob is defined as

HICA→B(Π,µ) = I(X ′;BoutB′|Y ′),

and the Holevo information cost from Bob to Alice as

HICB→A(Π,µ) = I(Y ′;AoutA′|X ′).

The introduction of the reference register R in the definition of quantum informa-

tion cost, which can be decomposed into RX ,RY for classical inputs, is natural when

discussing compression while keeping quantum correlations, and for general quantum

inputs, but when discussing protocols implementing classical tasks it might appear some-

what artificial. We now present an alternative characterization of quantum information

cost on classical inputs that does not involve such purification registers and only men-

tion the classical input registers, similar to the notion of classical input information cost

(CIC) of Ref. [87]. We start by expanding the ith term in the quantum information cost.

For odd i,

I(Ci;RX RY |Y ′Bi)ρ ′i
= I(Ci;RX |Y ′Bi)ρ ′i

+ I(Ci;RY |RXY ′Bi)ρ ′i
, (4.5.12)

and similarly for even i with the conditioning instead on X ′Ai. The first term on the

right end side is the classical input information cost term I(Ci;RX |Y ′Bi) = I(Ci;X ′|Y ′Bi)

in round i and somehow quantifies the amount of information that message Ci contains

about X for someone who already knows Y and possesses Bi as side-information, while

the second one does not immediately have such an intuitive interpretation. However,

we can rewrite it as I(Ci : RY |X ′Ai) = I(Ci : Y ′|X ′Ai) since X ′Ai contain a purification

of ρ
BiCiRX RYY ′
i . Notice that X ′,Y ′ are both classical in this term, which can now be in-

formally interpreted as the amount of information that message Ci contains about Y for

someone who already knows X and possess Ai. But remember that it is Alice who gener-

ated message Ci, so that I(Ci : Y ′|X ′Ai) would always evaluate to 0 in a classical protocol.

However, quantum protocols are reversible, so it is somehow possible to forget informa-
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tion along the way. The term I(Ci : Y ′|X ′Ai) then somehow corresponds to the amount

of information Alice is forgetting about Y when transmitting Ci, and so we call the sum

of these terms the classical input reverse information cost (CRIC).

Definition 4.5.3. For a protocol Π and an input distribution µ , the classical input reverse

information cost from Bob back to Alice is defined as

CRICA←B(Π,µ) =
1
2 ∑

i≥1, even
I(Ci;X ′|Y ′Bi),

and the classical input reverse information cost from Alice back to Bob as

CRICB←A(Π,µ) =
1
2 ∑

i≥1, odd
I(Ci;Y ′|X ′Ai).

We soon make the above intuition more precise by providing an operational interpre-

tation, but let’s first consider a simple example. Let µ be an input distribution with X ,Y

distributed independently and uniformly on n bits, and consider a protocol in which after

the second round, Alice has received a copy of Bob’s input Y . At this point, Alice then

copies the first m out of the n bits of Y , and then sends back Y to Bob. Then the term

with i = 3 in CRICB←A will amount to the n−m bits of information about Y that Alice

is forgetting.

Now, to make this more precise, we can consider the following scenario. Consider

an input state XY purified by RX RY . Alice is given her input X as usual, but also the

purification RY of Bob’s input. Bob is only given his input Y , and so only the register RX

is held by the referee. Alice is given the register RY in order for her to be able to generate

any message Ci in the protocol, for i odd as well as i even, and then transmit this message

to Bob, after giving him his side information BiY ′. We are interested in how much new

information about X this message Ci contains, hence we are only putting RX in the ref-

eree’s hand. More formally, suppose that we are interested in this information for round

i. We then ask what is the asymptotic quantum communication cost for redistributing

the Ci register of this state from Alice to Bob if, apart from Ci, Alice holds the Ai, X ′,

RY registers and Bob holds the Bi, Y ′ registers. This is I(Ci : RX |BiY ′) = I(Ci : X ′|Y ′Bi),
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for classical registers X ′,Y ′. Depending on whether i is odd or even, this is the ith term

in CICA→B or in CRICA←B. Remember that quantum communication in state redistri-

bution is symmetric under time-reversal, so that the cost is the same if Bob decides to

send back this message to Alice. Hence, not only does this scenario gives an operational

interpretation to CIC as the amount of information about X Alice is sending to Bob in

odd rounds, but also to CRIC as the amount of information about X Bob is forgetting by

sending it back to Alice in even rounds.

From this operational interpretation, it is then intuitive that in any odd round i, after

reception by Bob of message Ci from Alice, the conditional Holevo information I(X ′ :

BiCi|Y ′) Bob has about Alice’s input can be written as follows:

I(X ′;BiCi|Y ′) = ∑
j≤i, j odd

I(C j;X ′|Y ′B j)− ∑
j≤i, j even

I(C j;X ′|Y ′B j), (4.5.13)

in which on the right hand side the first sum corresponds to terms in CICA→B and the

second one to terms in CRICA←B. Note that this result follows from Lemma 4.3.14 with

classical registers Ra = X , Rb = Y , along with the fact that for two classical copies Y1,

Y2 of Y , I(Ci;X |Y1Y2Bi) = I(Ci;X |Y Bi) and I(X ;Y1|Y2) = 0. Similar statements hold for

Alice, with the role of odd and even rounds interchanged, and the proof is almost sym-

metric once we realize that the first term in CRICB←A vanishes, i.e. I(C1;Y ′|X ′A1) = 0,

which follows by the following chain of inequality, in which we use the data processing

inequality along with isometric invariance:

0≤ I(Y ′ : C1|X ′)

≤ I(Y ′ : A1C1|X ′)

= I(Y ′ : AinTA|X ′)

= 0.

Also note that from this and Lemma 4.3.13, the developments in Ref. [48] imply

a linear lower bound on the quantum information complexity of computing the inner

product function with bounded error. Similarly, the developments in Ref. [104] imply a
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linear lower bound on the quantum information complexity of computing the distributed

quantum Fourier transform between Alice’s and Bob’s input qubits.

The above characterization of the Holevo information cost also implies a relationship

between classical input information cost and quantum information cost.

Lemma 4.5.2. For a protocol Π and an input distribution µ , it holds that

QIC(Π,µ)≤ 2CIC(Π,µ).

Proof. This follows from the fact that I(X ′ : BiCi|Y ) ≥ 0 along with (4.5.13), and the

following chain of inequality:

2QIC(Π,µ) = ∑
1≤i, odd

(
I(Ci : X ′|Y ′Bi)+ I(Ci : Y ′|X ′Ai)

)
(4.5.14)

+ ∑
1≤i, even

(
I(Ci : Y ′|X ′Ai)+ I(Ci : X ′|Y ′Bi)

)
(4.5.15)

≤ ∑
1≤i, odd

(
I(Ci : X ′|Y ′Bi)+ I(Ci : X ′|Y ′Bi)

)
(4.5.16)

+ ∑
1≤i, even

(
I(Ci : Y ′|X ′Ai)+ I(Ci : Y ′|X ′Ai)

)
(4.5.17)

= 4CIC(Π,µ). (4.5.18)

Note that the following remark also makes it intuitively clear that QIC(Π,µ) ≤
2CIC(Π,µ) should hold. Given an M-message protocol Π, let Π′ be the protocol that

runs Π forward and then, without making any copy of the output, runs Π backward.

Then the (M+k)th message is identical to the (M−k)th message, except that the role of

the sender and the receiver have been exchanged. Since the terms in QIC are symmet-

ric under time-reversal, we have QICA→B(Π
′,µ) = QICB→A(Π

′,µ) = QIC(Π,µ). Also,

CICA→B(Π
′,µ)=CICA→B(Π,µ)+CRICA←B(Π,µ)=QIC(Π,µ) and CICB→A(Π

′,µ)=

CICB→A(Π,µ) +CRICB←A(Π,µ) = QIC(Π,µ) since the last M messages in Π′ con-

sist of the M message of Π run backward and thus contribute the CRIC terms. Thus,
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QIC(Π′,µ) = 2QIC(Π,µ) and CIC(Π′,µ) = QIC(Π,µ). Intuitively, it is clear that

CRICA←B(Π,µ) should be at most CICA→B(Π,µ) and CRICB←A(Π,µ) should be at

most CICB→A(Π,µ), since it should not be possible to send back more information about

the other party’s input then what was received. This intuition also leads to the inequality

QIC(Π,µ)≤ 2CIC(Π,µ).

Note that we also get the following result if we make a copy of the classical output

before running Π backward, as in the case of clean protocols as defined in Ref. [48].

Lemma 4.5.3. For any classical input µ and protocol Π with classical output, let Π′ be

the protocol that runs Π forward, makes a copy of the output into A′out ,B
′
out , and then

runs Π backward. Then Π′, with output in A′outB
′
out , implements the same channel as Π,

and its quantum information cost satisfies

QIC(Π′,µ)≤ 2QIC(Π,µ).

Notice that the above developments shed new light on why previous definitions of

quantum information cost, which were more similar in spirit to classical input informa-

tion cost than to quantum information cost, were restricted to compression results for a

single round. In the first round, both quantities evaluate to the same value, since Alice

does not yet possess any information on Bob’s input (aside from what she can infer from

her own input), and then the CRICA←B term evaluates to zero. For one-round protocols,

it is then immaterial whether one uses classical input information cost or quantum in-

formation cost. But then in subsequent rounds, generally the CRIC term can be much

larger than the CIC term in the quantum information cost. In fact, it is easy to construct

from the example above a protocol in which in the second round the CRIC term is large

while the CIC term is zero. Thus, trying to compress such a quantum message down

to CIC, that is, almost at no cost, while keeping the overall state of the protocol almost

equivalent to that in the original protocol is bound to fail: we know from our develop-

ments that to forget information we must invest communication! As a consequence, we

see that for quantum protocols, it is important to take into account the cost of forgetting

information.
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4.6 Direct Sum Theorem

In this section, we prove the first general multi-round direct sum theorem for quan-

tum communication complexity. In order to prove such a result, we present a protocol

compression result in terms of the quantum information cost. But first, in order to get

an intuition for why quantum information complexity should be an appropriate notion

to study direct sum questions, we prove its link to amortized quantum communication

complexity.

4.6.1 Amortized Quantum Communication

Before getting to the bounded round direct sum theorem, we first prove that quantum

information equals amortized quantum communication. That is, we prove the following.

Theorem 4.6.1. For any classical task (T,µ,ε) with ε > 0 and any number of message

M, the following holds:

QIC(T,µ,ε) = AQCC(T,µ,ε),

QICM(T,µ,ε) = AQCCM(T,µ,ε).

Proof. The converse part, which states that quantum information complexity is a lower

bound on the amortized quantum communication complexity, follows directly from Corol-

lary 4.3.5, and taking the limit. That is, it holds for all n that

QIC(T,µ,ε) =
1
n

QIC((T,µ,ε)⊗n)

≤ 1
n

QCC((T,µ,ε)⊗n).

The direct coding theorem, which states that the quantum information complexity

is an achievable rate for amortized quantum communication complexity, follows from

Lemma 4.3.3 and continuity of quantum information complexity in the error. That is,

take an arbitrarily small δ > 0, and use Corollary 4.3.25 to find an 0 < ε ′ < ε such that

QIC(T,µ,ε− ε ′)≤ QIC(T,µ,ε)+δ . We then consider a protocol Π ∈T (T,µ,ε− ε ′)
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satisfying QIC(Π,µ) ≤ QIC(T,µ,ε − ε ′)+ δ . We now use Lemma 4.3.3 to find, for a

sufficiently large n0 such that for all n≥ n0, a protocol Πn ∈T (Π⊗n,µ⊗n,ε ′) satisfying
1
nQCC(Πn)≤ QIC(Π,µ)+δ . We then have the following chain of inequality:

1
n

QCC(Πn)≤ QIC(Π,µ)+δ

≤ QIC(T,µ,ε− ε
′)+2δ

≤ QIC(T,µ,ε)+3δ .

Since δ > 0 is arbitrarily small and this holds for all sufficiently large n, we only have to

verify that Πn ∈ T ((T,µ,ε)⊗n) to complete the proof. Recall that Pi
e(Πn,µ

⊗n) denotes

the error Πn makes for the i-th coordinate. We have for each i ∈ [n],

Pi
e(Πn,µ

⊗n)≤ Pi
e(Π

⊗n,µ⊗n)+ ε
′

≤ ε− ε
′+ ε

′

= ε,

in which we first use properties of the trace distance, and then the fact that Π∈T (T,µ,ε−
ε ′). The result for bounded round follows similarly.

A similar result holds for quantum tasks.

Theorem 4.6.2. For any N , ρ , M, ε > 0, the following holds:

QIC(N ,ρ,ε) = AQCC(N ,ρ,ε),

QICM(N ,ρ,ε) = AQCCM(N ,ρ,ε).

Proof. The proof for the classical case also apply here, up to the verification that the

corresponding protocol Πn is in T ((N ,ρ,ε)⊗n). The result in such a case follows

since we have Π ∈ T (N ,ρ,ε) and Πn ∈ T (Π⊗n,ρ⊗n,ε ′). Then, for arbitrarily small
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δ > 0, we get for each i ∈ [n],

‖Tr¬Ai
outBi

out
Πn(ρ

⊗n)−N (ρ)‖ ≤ ‖Tr¬Ai
outBi

out
Πn(ρ

⊗n)−Π(ρ)‖

+‖Π(ρ)−N (ρ)‖

≤ ‖Πn(ρ
⊗n)−Π

⊗n(ρ⊗n)‖+ ε− ε
′

≤ ε,

in which we first use the triangle inequality, and then monotonicity of the trace distance

under partial trace. Hence, Πn ∈T ((N ,ρ,ε)⊗n)

This asymptotic result makes it clear intuitively that quantum information complexity

is the right notion to consider in the context of general direct sum. Indeed, by replacing

asymptotic compression with a one-shot compression result, we obtain our direct sum

result in Section 4.6.3.

4.6.2 Protocol Compression at Information Cost

To be able to compress a protocol proportionally to its quantum information cost,

we first compress a single message down to a communication cost proportional to its

conditional mutual information, as in asymptotic state redistribution. Entanglement is

deemed free for the compression. We obtained the following result for single message

compression in Chapter 3.

Lemma 4.6.1. For all ε ∈ (0,1/2) and ρ ∈ D(ABC) with purifying register R, there

exists a one-message protocol Π ∈T (R,ρ,ε) with quantum communication satisfying

QCC(Π)≤61
ε2 · I(C;R|B)ρ +

242
ε2 +16.

To compress a single protocol to a quantum communication cost close to its quantum

information cost, we apply single message compression iteratively, once for each of the

M messages in the protocol. We obtain the following result.
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Lemma 4.6.2. For any ε ∈ (0,1/2), any M-message protocol Π, any input state ρ , there

exists an M-message compression protocol Π′ ∈T (Π,ρ,ε) satisfying

QCC(Π′)≤ 32M2

ε2 QIC(Π,ρ)+M
(

242M2

ε2 +17
)
.

Proof. Define ε1 = ε/M and t = 242/ε2
1 + 16. Given any M-message protocol Π and

any state ρAinBinR , let ρ
A1C1B1R
1 = U1(ρ ⊗ψ), ρ

A2C2B2R
2 = U2(ρ1), · · · , ρ

AMCMBMR
M =

UM(ρM−1). Then, take Qi =
1

2ε2
1
I(Ci;R|Bi−1)+ t. Then by Lemma 3.4.2, we have pro-

tocols Πi, each with encoding and decoding maps V i
1, V i

2, along with corresponding

entanglement φi ∈ D(T i
AT i

B) and communication register Ĉi of size dimĈi = 2dQie, with

each satisfying

‖Πi(ρ
AiCiBiR
i )−ρ

AiCiBiR
i ‖1 ≤ ε1. (4.6.1)

We define the following protocol Π′ starting from the protocol Π. The state ψ is the

shared entanglement used in Π, and its isometries are U1, U2, · · · , UM, UM+1. The state

φi is the shared entanglement used in Πi, and their isometries are V i
1, V i

2, respectively.

Note that for even i, we will act V i
1 on Bob’s side and V i

2 on Alice’s side.

Protocol Π′ on input σ in registers A⊗n
in ,B⊗n

in of Π⊗n

– Take entangled state ψ̂ = ψ⊗n⊗φ1⊗·· ·⊗φM.

– Take unitaries Û1 =V 1
1 ◦U

⊗n
1 , Û2 =V 2

1 ◦U
⊗n
2 ◦V 1

2 , · · · , ÛM =V M
1 ◦U

⊗n
M ◦V

M−1
2 ,

ÛM+1 =U⊗n
M+1 ◦V M

2 .

– Take as output the A⊗n
out ,B

⊗n
out registers of Π⊗n.
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Note that the communication cost of Π′ satisfies

QCC(Π′) = ∑
i

log |Ĉi|

= ∑
i
dQie

≤ ∑
i>0, odd

61
ε2

1
I(Ci;R|Bi−1)+ ∑

i>0, even

61
ε2

1
I(Ci;R|Ai−1)+M(t +1)

≤ 32
ε2

1
QIC(Π,ρ)+M(t +1)

≤ 32M2

ε2 QIC(Π,ρ)+M(
242M2

ε2 +17).

This is also an M-message protocol. It remains to bound the error to make sure that Π′

implements Π on ρ up to error ε . We have

‖Π′(ρ)−Π(ρ)‖= ‖Tr¬AoutBout UM+1V M
2 V M

1 UMV M−1
2 · · ·V 1

1 U1(ρ⊗ ψ̂)

−Tr¬AoutBout UM+1UM · · ·U1(ρ⊗ψ)‖

= ‖Tr¬AoutBout UM+1ΠiUMΠM−1 · · ·Π1U1(ρ⊗ψ)

−Tr¬AoutBout UM+1UM · · ·U1(ρ⊗ψ)‖

≤ ‖Tr(A′)(B′)UM+1ΠM · · ·Π2U2Π1(ρ1)

−Tr(A′)(B′)UM+1ΠM · · ·Π2U2(ρ1)‖

+‖Tr(A′)(B′)UM+1ΠMUMΠM−1 · · ·Π3U3Π2(ρ2)

−Tr(A′)(B′)UM+1ΠMUMΠM−1 · · ·Π3U3(ρ2)‖

+ · · ·

+‖Tr(A′)(B′)UM+1ΠMUMΠM−1(ρM−1)

−Tr(A′)(B′)UM+1ΠMUM(ρM−1)‖

+‖Tr(A′)(B′)UM+1ΠM(ρM)

−Tr(A′)(B′)UM+1(ρM)‖

≤ ‖Π1(ρ1⊗)− (ρ1)‖+‖Π2(ρ2)− (ρ2)‖
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+ · · ·

+‖ΠM−1(ρM−1)− (ρM−1)‖+‖ΠM(ρM)− (ρM)‖

≤Mε1

= ε.

The first equality is by definition, the second one by taking the channel view for the

protocols Πi, since the corresponding A′i, B′i left at the end of these are traced out, and

only U i
1, U i

2 act on φ i, the first inequality is by the triangle inequality and by definition

of the ρi’s, the second inequality is due to the monotonicity of trace distance under noisy

channels, and the next is because Πi ∈T (Ri,ρi,ε1).

4.6.3 Direct Sum for Bounded Round

By combining the above protocol compression result with many properties of quan-

tum information complexity, we obtain the following direct sum theorem for distribu-

tional quantum communication complexity.

Theorem 4.6.3. For a product classical task ⊗i(Ti,µi,εi), any ε ∈ (0,1/2) and any

number of message M,

QCCM(⊗i(Ti,µi,εi))≥
ε2

32M2 ∑
i

(
QCCM(Ti,µi,εi + ε)− (

242M2

ε2 +17)M
)
.

Proof. By Lemma 4.3.5, QCCM(⊗i(Ti,µi,εi)) ≥ ∑i QICM(⊗i(Ti,µi,εi)). Given δ > 0,

let Πi ∈T M(Ti,µi,εi) be a protocol satisfying QIC(Πi,µi)≤QICM(Ti,µi,εi)+δ and let

Π′i be the compression protocol given by Lemma 4.6.2, satisfying Π′i ∈T M(Ti,µi,εi+ε)

and QCC(Π′i) ≤ 32M2

ε2 QIC(Π,ρ) +M(242M2

ε2 + 17). By rearranging terms, we get the

result.

We can obtain a similar result for quantum tasks.

143



Theorem 4.6.4. For a product quantum task (Ni,ρi,εi), any ε ∈ (0,1/2) and any num-

ber of message M,

QCCM(⊗i(Ni,ρi,εi))≥
ε2

32M2 ∑
i

(
QCCM(Ni,ρi,εi + ε)−M(

242M2

ε2 +17)
)
.

4.6.3.1 Yao’s Min-Max Theorem

In order to obtain a version of Theorem 4.6.3 for worst-case tasks, we also need a

quantum version of Yao’s Min-Max theorem.

Lemma 4.6.3. For any ε and δ > 0, any relation T and number of message M,

QCCM(T,ε +δ )≤max
µ

QCCM(T,µ,ε),

QCC(T,ε +δ )≤max
µ

QCC(T,µ,ε).

Proof. Fix T,M,ε and denote c = maxµ QCCM(T,µ,ε). For any δ > 0, we want to

prove the existence of a protocol Π ∈T M(T,ε +δ ) satisfying QCC(Π)≤ c. Recall that

Pe(Π,µ) is the error of protocol Π on input µ . Fix a finite δ -net for DXY containing

all distributions with support of size one, that we denote NXY . For each µ ∈ NXY , fix

a protocol Πµ ∈ T M(T,µ,ε) such that QCC(Πµ) ≤ c and denote the set of all such

protocols PN . We then have |PN |= |NXY |< ∞. We define the following two-player zero-

sum game over these two sets. Player A comes up with a quantum protocol Π ∈ PN .

Player B comes up with a distribution µ ∈ NXY . Player B’s payoff is given by

PB(Π,µ) = Pe(Π,µ),

and then player A’s is given by PA(Π,µ) =−PB(Π,µ). We first show the following.

Claim 4.6.1. The value of the game for player B is bounded by ε +δ .

Proof. Let νB be a probability distribution over NXY representing a mixed strategy for

player B. To prove the claim, it suffices to show that there is a protocol Π ∈ PN such that

144



EνB[PB(Π,µ)] < ε + δ . Let µ̄ be the distribution corresponding to averaging over νB,

that is

µ̄(x,y) = EνB µ(x,y).

Let µ ′ ∈ NXY be a distribution that is δ -close to µ̄ , and Π′ ∈ PN the corresponding pro-

tocol. We will show that Π′ is also good for µ̄ . We have

Pe(Π
′, µ̄)≤ Pe(Π

′,µ ′)+δ

≤ ε +δ ,

in which the first inequality follows from the fact that µ̄ and µ ′ are δ -close and the

second inequality from the fact that Π′ ∈ PN is the protocol corresponding to µ ′ ∈ NXY ,

i.e. Π′ ∈T r(T,µ ′,ε−δ2). Then

EνB[PB(Π
′,µ)] = EνB[Pe(Π

′,µ)]

= Pe(Π
′, µ̄)

< ε +δ ,

in which the first equality is by definition, the second by linearity of expectation, and the

inequality is by the above results about Π′. This concludes the proof of the claim.

By the minimax theorem for zero-sum games, the above claim implies that there

exists a probability distribution νA over PN representing a mixed strategy for player A

and such that the value of the game for player B is at most 1 + δ1. That is, for all

µ ∈ NXY ,

EνA(PB(Π,µ))< 1+δ1.

Let Π̄ = EνA(Π) be the M-message protocol in the randomized model obtained by

publicly averaging over νA. This is the protocol we are looking for. Indeed, it holds that
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EνA(PB(Π,µ)) = Pe(Π̄,µ) is the average error of Π̄ on µ ∈ NXY . Letting µ run over all

distributions with support of size one, it follows that Π̄∈T M(T,ε +δ ). The unbounded

round result follows in the same way.

We can now prove the direct sum result for worst-case classical tasks.

Theorem 4.6.5. For a product classical task (Ti,εi), any ε ∈ (0,1/2) and any number

of message M,

QCCM(⊗i(Ti,εi))≥
ε2

32M2 ∑
i

(
QCCM(Ti,εi + ε)−M(

242M2

ε2 +17)
)
.

Proof. Similarly to the distributional case, we first have QCCM(⊗i(Ti,εi))≥∑i QICM(Ti,εi).

Then, we use the fact that quantum information complexity is at least as large as max-

distributional quantum information complexity, and use compression for each fixed input

distribution in the optimization to obtain

∑
i

QICM(Ti,εi)≥∑
i

QICM
D (Ti,εi)

= ∑
i

max
µi

QICM(Ti,µi,εi)

≥∑
i

max
µi

ε2

32M2

(
QCCM(Ti,µi,εi + ε)−M(

242M2

ε2 +17)
)
.

The result then follows by the quantum version of Yao’s Min-Max theorem, Lemma 4.6.3,

since δ can be taken arbitrarily small in it.

4.7 Bounded-Round Disjointness

A further application of the quantum information complexity paradigm is to obtain

powerful lower bounds on quantum communication complexity of specific functions.

We provide an example by proving a tight lower bound, up to polylogarithmic terms, on

the bounded round quantum communication complexity of disjointness.
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4.7.1 Reduction from Disjointness to AND

Recall that the disjointness function computes, when viewing Alice’s and Bob’s in-

puts as subsets of {1,2, · · · ,n}, whether the sets are disjoint. That is, it is defined as

follows: for (x,y) ∈ {0,1}n×{0,1}n, DISJn(x,y) = 1 if for all i ∈ [n], xi∧ yi = 0, and 0

otherwise. In this section, we see how to reduce the quantum communication complexity

of disjointness to the quantum information complexity of AND, for AND(a,b) = a∧ b

the conjunction of the two bits a and b. We start with the following definition.

Definition 4.7.1. For all M ∈ N,ε ∈ [0,1],

QICM
0 (AND,ε) = inf

Π∈T M(AND,ε)
max

µ0
QIC(Π,µ0),

in which the maximum ranges over all µ0 satisfying µ0(1,1) = 0.

We can obtain a low-information protocol for AND from a protocol for disjointness.

Lemma 4.7.1. For any n, M, ε ∈ [0,1],ΠD ∈T M(DISJn,ε) and µ0 such that µ0(1,1) =

0, there exists ΠA ∈T M(AND,ε) such that

QIC(ΠA,µ0) =
1
n

QIC(ΠD,µ
⊗n
0 ).

Proof. Fix µ0 and ε . We prove the result by induction on n. The base case is trivial

since DISJ1 = ¬AND, and so a protocol to compute DISJ1 with error ε can be used to

compute AND with error ε . For the induction step, suppose the result holds for n− 1,

we will use Lemma 4.3.4 to go from DISJn to DISJ1 and DISJn−1. Indeed, given ΠD

computing DISJn with error ε , we can use Lemma 4.3.4 with ρ1 = µ0, ρ2 = µ
⊗n−1
0

and then protocols Π1 from the lemma computes DISJ1 with error ε and Π2 computes

DISJn−1 with error ε , and they satisfy

QIC(ΠD,µ
⊗n
0 ) = QIC(Π1,µ0)+QIC(Π2,µ⊗n−1

0 ).

By applying the induction hypothesis to Π2, we obtain a protocol Π2
A computing AND
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with error ε , and such that

QIC(ΠD,µ
⊗n
0 ) = n

(
1
n

QIC(Π1,µ0)+
n−1

n
QIC(Π2

A,µ0)

)
.

To obtain the claimed protocol ΠA, we then apply Lemma 4.3.7 to Π1 and Π2
A with

p = 1/n, and the average protocol then satisfy the conditions of the lemma.

The following lemma is very similar to Theorem 4.3.1. The only difference is that

the distributions we consider are restricted and on the right hand side the error of the

protocol is measured in the worst case. Since the error is worst case, there is no loss in

the error, and the payoff function would be simply PB(Π,µ) = QIC(Π,µ)/I.

Lemma 4.7.2. For all M ∈ N,

QICM
0 (AND,ε) = max

µ0,µ0(1,1)=0
inf

Π∈T M(AND,ε)
QIC(Π,µ0)

Lemma 4.7.3. For all M, n ∈ N,

QCCM(DISJn,1/3)≥ n ·QICM
0 (AND,1/3)

Proof. We have the following chain of inequality:

QCCM(DISJn,1/3)≥ QICM(DISJn,1/3)

≥max
µ0

inf
ΠD∈T M(DISJn,1/3)

QIC(ΠD,µ
⊗n
0 )

≥max
µ0

inf
ΠA∈T M(AND,1/3)

n ·QIC(ΠA,µ0)

≥ n ·QICM
0 (AND,1/3).

The first inequality is by Lemma 4.3.19, the second since, on the right hand side, the

maximization is over a smaller set of product distributions with µ0(1,1) = 0 and the

minimization over a larger set of protocols, the third is because Lemma 4.7.1 implies the

minimization is over a larger set of protocols, and the last is by Lemma 4.7.2.
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4.7.2 Optimal Bounds: Reducing Back to Disjointness

At this point, we need to show a Ω̃(1/M) lower bound on QICM
0 (AND,1/3) to obtain

the desired lower bound for disjointness. We only give a high-level overview of the

technical arguments required from this point on, without providing proofs. We refer the

interested reader to Ref. [40] for technical details. The main idea can be split into two

parts.

First, we give a protocol for disjointness that runs the protocol for AND n times.

But since running the AND protocol on an arbitrary input could incur a high quantum

information cost, we start by doing some low communication preprocessing on the input

using a trick from Ref. [38]. By subsampling a sublinear amount of coordinates and

trying to find an intersection in them using distributed search as in Refs [1, 42], we can

either say, after a communication in o(
√

n), that the set do intersect, or, except with

small probability, that the number of intersection is small. Then, the prior-free quantum

information cost of disjointness is upper bounded by n times the quantum information

cost of AND on inputs with small weight on (1,1). If we restrict the AND protocol

to consist of M messages, this can only increase the information cost. But then, for M

message protocols, we can use a continuity argument and boosting of the error to obtain

a bound in term of QICM
0 (AND,1/3).

Lemma 4.7.4. For any ε > 0 and M ∈ N,

QICM
0 (AND,ε)≤ O

(
log1/ε ·QICM

0 (AND,1/3)
)
.

Proof. This can be proved in the same way as Lemma 4.3.22.

Lemma 4.7.5. Suppose we have a M-round protocol Π for AND. Then,

QIC(Π,µ)≤ QIC(Π,µ0)+O(MH(w)), (4.7.1)

where w = µ(1,1)≤ 1/2, µ0(1,1) = 0, and µ0(xi,yi) =
1

1−w µ(xi,yi) otherwise.

Proof. This just follows from the proof of lemma 4.3.10, since the input size is constant.
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Note that this is this only place in the argument where the number of message M

appears explicitly in the bounds. We obtain the following result.

Lemma 4.7.6. For any n, M ∈ N,

QIC(DISJn,1/3)≤ O
(
n · logn ·QICM

0 (AND,1/3)
)
+n ·M ·H(w)+o(

√
n),

with w = log4 n
n .

The second part consists of proving a Ω(
√

n) lower bound on QIC(DISJn,1/3). Note

that QICM
0 (AND,1/3) ∈ Ω̃(1/M) then follows from this and the above result by an ap-

propriate choice of n ∈ θ̃(M2). It is probably possible to obtain such a result from the

strong direct product theorem for the quantum communication complexity of disjoint-

ness of Klauck, Spalek and de Wolf [89], but the corresponding reduction would be

much more complicated than the one we provide. Instead, we prove a stronger result,

building on a threshold direct product theorem of Sherstov [119] for quantum commu-

nication complexity of Boolean function for which a tight bound is obtained through the

generalized discrepancy method. This is one of the strongest method known to lower

bound quantum communication complexity. We prove that the generalized discrepancy

method also lower bounds quantum information complexity. Given a Boolean function

f , denote by GDM( f ) the lower bound on QCC( f ,1/3) obtained using the generalized

discrepancy method. Note that GDM(DISJn) ∈Ω(
√

n). Since the asymptotic compres-

sion result for quantum information cost assumes a known input distribution, there is a

lot of technical work going into the reduction from an average case to a worst case com-

pression result satisfying the condition of Sherstov’s threshold direct product theorem.

We obtain the following result.

Lemma 4.7.7. For any boolean function f , it holds that

QIC( f ,1/3) ∈Ω(GDM( f )).
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Note that a corollary of the above result is the first round independent upper bound

on quantum communication complexity of Boolean functions in terms of their quantum

information complexity.

Corollary 4.7.1. For any Boolean function f , it holds that

QCC( f ,1/3) ∈ 2O(QIC( f ,1/3)+1).

4.8 Conclusion

We conclude with a discussion of our results and further directions for this research

program.

4.8.1 Discussion

We have defined a new notion of quantum information cost and a corresponding no-

tion of quantum information complexity. In contrast to previously defined notions, these

directly provide a lower bound on the communication, independently of round complex-

ity. To define the quantum information cost of a protocol on an input quantum state,

we take a detour through classical information cost and provide a different perspective

on it, relating it to channel simulation with side information at the receiver, a variant

of the classical reverse Shannon theorem studied in information theory. This provides

a different proof that the information complexity is an achievable rate for amortized

communication complexity, one that preserves the round complexity. Moreover, this

characterization of the information cost in terms of the sum of the asymptotic commu-

nication cost for each channel simulation can be generalized to the quantum setting by

considering the appropriate asymptotic task, which turns out to be equivalent to quan-

tum state redistribution. Using this quantum generalization, we provide an operational

interpretation in the distributional setting for quantum information complexity as the

amortized quantum communication complexity, and in this sense provide the right quan-

tum generalization of the classical information complexity. Along the way, we also show

many important properties of the newly defined quantities. These are from Ref. [129]
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and from joint work with Mark Braverman, Ankit Garg, Young Kun Ko and Jieming

Mao [40]. For quantum protocols with classical inputs, we provide, in joint work with

Mathieu Laurière [94], an alternative characterization of quantum information cost that

avoids referring to purification registers, and quantifies the cost of forgetting classical

information.

We use these new notions to obtain the first general direct sum theorem for quantum

communication complexity that holds for multiple rounds of communication. This had

been an open question since the first works on the direct sum question for quantum com-

munication [82], and it was reiterated recently [7]. The approach we take is to exploit

the link between this new, fully quantum notion of quantum information complexity that

we introduce, and the task of quantum state redistribution. Protocol compression then

builds upon a one-shot state redistribution protocol. This is from Refs [23, 129]. There

is possibly still room for improvement in the dependence on the number of rounds for

the direct sum theorem that we prove, but new techniques will probably be required in

order to get substantial improvement over the parameters that we obtain. The fact that

we are doing compression in a message-by-message fashion, with non-negligible error

for each message compression, and at fixed length encoding, imposes severe limitations

on the direct sum results that we can obtain.

However, the applicability of this notion of quantum information complexity to such

a general, multi-round direct sum theorem, holding for all relations, provides further ev-

idence that it is the correct quantum generalization of classical information complexity

to consider in the standard communication complexity setting. Along with the opera-

tional interpretation as the amortized communication complexity and its application to

lower bounding the bounded round quantum communication complexity of the disjoint-

ness function, it now appears clear that this is indeed the case. Finding such a quantum

generalization was one of the open questions stated by Braverman in Ref. [33]. Another

open question in Ref. [33] was to find the right generalization of information complexity

to the multipartite setting. Note that for many issues that seemed to impose a limit on

the development of a notion of quantum information complexity, like reversible proto-

cols that can reveal to the players nothing but the output, there are similar issues that
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seem to apply to a notion of classical multiparty information complexity. Thus, this new

interpretation of (bipartite) classical information cost might prove useful to shed light on

an appropriate notion of multiparty (classical) information cost.

Two of the main areas of success of classical information complexity is in obtain-

ing direct sum and direct product theorems, and in obtaining communication complexity

lower bounds, in particular on composite functions built from simpler component func-

tions. A spectacular example of this is the recent result of Braverman, Garg, Pankratov,

and Weinstein, proving the exact classical communication complexity of disjointness up

to second order [38]. Quantum information complexity also satisfies a direct sum prop-

erty for such composite functions. Indeed, on suitably chosen input distributions, the

quantum information complexity of disjointness on n bits is at least equal to n times the

quantum information complexity of the AND function on 2 bits. This is one of the prop-

erties we use in order to prove, in joint work with Mark Braverman, Ankit Garg, Young

Kun Ko and Jieming Mao [40], a near-optimal bound on the bounded-round quantum

communication complexity of disjointness. Along the way to proving this result, we

prove that quantum information complexity also satisfies many important properties that

make classical information complexity such a useful notion. A particular difference that

we find in contrast with the classical notion is in continuity in the input, with a factor of

the number of messages M proving to be necessary for some quantum protocols [40].

4.8.2 Open Questions

One potential bottleneck to obtaining other tight lower bounds using quantum infor-

mation complexity is the fact that our notion of quantum information cost is defined in

terms of a fully quantum conditional mutual information, a quantity that is much less un-

derstood than its classical counterpart. Obtaining meaningful lower bounds on quantum

conditional mutual information is a notoriously hard problem in quantum information

theory [98], with some progress in recent years [24, 29, 97]. A recent breakthrough

result by Fawzi and Renner [60], yielding a lower bound on the quantum conditional

mutual information in terms of the best recovery map acting on the conditioning system,

will hopefully find application in the context of quantum information complexity.
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We are confident that this new notion of quantum information complexity will stimu-

late interesting developments in quantum communication complexity, as well as in quan-

tum information theory to obtain tools that would prove helpful for such developments.

Interesting directions for this research program is first to obtain interesting lower bounds

on the quantum information complexity of other functions, possibly by developing fur-

ther techniques for lower bounding the conditional mutual information.

Other potential applications of this notion of quantum information complexity is in

obtaining time-space trade-offs for quantum streaming algorithms [79], and obtaining

the exact, up to second order, communication complexity of some problems, like the re-

sult in the classical setting that was recently obtained for the disjointness function [38].

Also, it would be interesting to investigate the general direct sum question in an unlim-

ited round setting, and to try to obtain general direct product theorems, for which it is

still an open question whether such theorems hold even for the simplest case of a single

round of quantum communication.
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CHAPTER 5

INTERACTIVE QUANTUM CAPACITY

5.1 Introduction

After introducing classical interactive coding and motivating the development of its

quantum analogue, we discuss immediate difficulties in generalizing classical results to

the quantum setting. We then present our approach to overcome these problems and

prove the first results showing that quantum communication complexity is robust under

noisy communication.

5.1.1 Classical Interactive Capacity

Quantum information theory is well developed for information transmission over

noisy quantum channels, dating back to the work of Holevo in the 70’s [71, 72], for

the transmission of classical information [73, 116], quantum information [53, 99, 122],

and even if we allow for pre-shared entanglement between sender and receiver [18, 19].

It describes the ultimate limits for (unidirectional) data transmission over noisy quantum

channels without concern for explicit, efficient construction of codes. Closely related

is the area of quantum coding theory, which takes a more practical approach toward

the construction of quantum error correcting codes [121, 124] by providing explicit and

efficient constructions [44, 45, 65, 124], and by providing bounds on their existence

[45, 61, 108].

Quantum communication complexity has also been studied in depth since Yao’s sem-

inal paper introduced the field in 1993 [139]. It is an idealized setting in which lo-

cal computation is deemed free and communication noiseless but expensive. Quantum

communication, even more so than classical communication, is prone to transmission

errors in the real world. With the ubiquity of distributed computing nowadays, it has

become increasingly important to develop information and coding theory for interactive

protocols.



In the realm of classical communication, Schulman initiated the field with his pio-

neering works [112–114], showing that it is possible to simulate over a noisy channel

any protocol designed to be run on a noiseless channel with exponentially small proba-

bility of error while only dilating the protocol by a constant factor. This multiplicative

dilation factor, in the case of a binary symmetric channel, is proportional to the inverse

of the capacity, as in the data transmission case. However, the hidden constant of propor-

tionality does not go to 1 asymptotically. For adversarial errors, Schulman also shows

how to withstand corruption up to a rate of 1
240 . Recent work by Braverman and Rao

[35] shows how to withstand error rates of 1
4 − ε in the case of an adversarial channel,

and they also show this is optimal in their model of noisy communication. Even more

recently, Franklin, Gelles, Ostrovsky and Schulman [62] were able to show that in an

alternative model in which Alice and Bob are allowed to share a secret key unknown to

the adversary Eve, they can withstand error rates up to 1
2 − ε , which is also shown to be

optimal in their model.

All of the above simulations use tree codes, which were introduced by Schulman.

Tree codes exist for various parameters, but no efficient construction is known. A relax-

ation of the tree code condition still strong enough for most applications in interactive

coding was proposed by Gelles, Moitra and Sahai [64], and they provided an efficient

randomized construction for these so-called potent tree codes. Using these in a ran-

dom error model leads to efficient decoding on the average, hence to efficient simulation

protocols (of course, given black-box access to the original protocol, which might be

inefficient in itself). In a worst-case adversarial scenario, the decoding might still take

exponential time with potent tree codes. It was only recently that an alternative coding

strategy developed by Brakerski and Kalai [27] was able to address the adversarial error

case efficiently. Their strategy is to cleverly split the communication into blocks of log-

arithmic length in which tree encoding is used. In addition, they send, in between the

blocks, some history information that enables efficient decoding. This construction was

further improved by Brakerski and Naor [28]. A survey article by Braverman [32] pro-

vides a good overview of results and open questions in the area of classical interactive

communication circa 2011, though some of the important questions raised there have
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been addressed since. In particular, the question of interactive capacity of binary sym-

metric channels was recently investigated by Kol and Raz [90]. For this channel they find

that indeed, in the low noise regime, the communication capacity behaves differently in

the asymptotic limit of long interactive protocols than in the data transmission case.

5.1.2 Difficulties with Interactive Quantum Coding

The approach taken in all of the above is inherently classical and does not gener-

alize well to the quantum setting. In particular, the fact that classical information can

be copied and resent multiple times is implicitly used, and therefore the fact that the

information in the communication register can be destroyed by noise is inconsequential.

In contrast, the no-cloning theorem of quantum theory [55, 136] rules out copying of

quantum messages. As a result, if the information in some communication register is

destroyed, it cannot be resent. A naive strategy, which applies in the quantum as well

as in the classical case, would be to encode each round separately. However, in a ran-

dom error model, a constant dilation of each round would not be sufficient to achieve

constant fidelity in the worst case of one-qubit transmission per round, and a super-

constant dilation leads to a communication rate of zero asymptotically. Moreover, in the

case of adversarial errors, no constant rate of error can be withstood with such a strat-

egy unless the number of rounds is constant: the adversary can always disrupt a whole

block. The properties of classical information made it possible for Schulman and his

successors to design clever classical simulation protocols that can withstand constant er-

ror rates at constant communication rates, and succeed in simulating classical protocols

designed for noiseless channels over noisy channels by reproducing the whole transcript

of the noiseless protocol. However, it was not obvious that it is possible, given an arbi-

trary protocol designed for a noiseless bidirectional quantum channel, to simulate it over

noisy quantum channels with constant error rate at a constant communication rate. Even

for protocols in the Cleve-Buhrman model, in which the communication is classical, it

is not clear that we can achieve results similar to those for classical protocols. Indeed, a

quantum measurement is in general irreversible. If such a measurement is performed on

the shared entangled state and the players later realize that the measurement was based
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on wrong classical information, the naive adaptation of the classical simulation to the

Cleve-Buhrman model fails.

5.1.3 Overview of Results

Most of the results in this chapter are based on a collaboration with Gilles Brassard,

Ashwin Nayak, Alain Tapp and Falk Unger [31]. We show that despite the above obsta-

cles, it is indeed possible to simulate arbitrary quantum protocols over noisy quantum

channels with good communication rates. We consider two models for interaction over

noisy channels. One is analogous to Yao’s model, and all communication in it is over

noisy quantum channels, but the parties do not pre-share entanglement. The other is

analogous to the Cleve-Buhrman model, and all communication in it is over noisy clas-

sical channels and parties are allowed to pre-share noiseless entanglement. We call these

models the quantum and shared entanglement models, respectively. We also consider a

further variation on the shared entanglement model in which entanglement is also noisy.

The main focus is on the model with perfect shared entanglement but adversarial

noise on the classical communication. In such a context, the number of errors is defined

to be the Hamming distance between the transcript of sent messages and the transcript

of possibly corrupted received messages. Messages are over a constant size alphabet,

and the error rate is the ratio between the number of errors introduced by the adversary

in the worst-case and the number of such messages sent, i.e. the transcript length. Note

that in this model, it is possible for the honest parties to generate a secret key unknown

to the adversary by measuring their shared entanglement. Most of our technical contri-

butions go into showing that a constant dilation factor on the communication suffices to

withstand an adversarial error rate of 1
2 − ε in the shared entanglement model, for arbi-

trarily small ε > 0. This is optimal, and matches the highest tolerable error rate in the

analogous shared secret key model for classical interactive communication [62]. There

are two main components going into establishing this result.

First, we need to establish a framework for simulating quantum protocols over noisy

channels. To avoid losing quantum information, the approach we take is to teleport [15]

the quantum communication register back and forth. When the register is in some party’s
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possession, this party tries to evolve the simulation by applying one of his unitaries in

the noiseless protocol, or one of its inverses if he realizes at some point he applied it

wrongly before. The important point is that all operations on the quantum registers are

reversible, being a sequence of noiseless protocol unitaries and random (but known)

Pauli operators. Of particular importance to our work is the notion of tree codes as

introduced by Schulman, which the players use to transmit classical information.

As described in a recent paper on efficient interactive coding [28], the high-level logic

of all solutions proposed until now for classical protocol simulation can be summarized

as follows: the parties try to evolve the protocol, and if they later realize there has been

some error, they try to go back to the point where they last agreed (in a protocol tree

representation, this would be their least common ancestor). In our approach for quantum

protocols, the parties try to follow roughly the same idea, but for two reasons are not

able to do this passively. First, there is no underlying transcript (or protocol tree) that

the parties try to synchronize, except that they wish to evolve the correct sequence of

unitaries. By the no-cloning theorem [55, 136], the parties cannot restart with a copy of

the quantum information received up to some earlier point. Instead they have to actively

rewind previous unitaries and wrong teleportation decodings until a suitable point in the

protocol. Second, when they try to synchronize in this manner, they actively teleport,

potentially leading to more errors on the joint quantum register.

An important ingredient in our simulation is the representation for noisy quantum

protocols that we develop. As said before, in quantum protocols there is no direct ana-

logue of a protocol tree representation that enables one to keep track exactly and explic-

itly of the evolution of the noiseless protocol simulation. The cleaned-up form (5.5.2) of

our representation provides in some sense a quantum analogue of a protocol tree repre-

sentation. As the classical representation, it enables an exact and explicit assessment of

the evolution of the noiseless protocol simulation, as well as that of the departure from

it due to noise.

At this point, it might look like we have reduced our problem to the classical case,

since the parties only transmit classical information—the teleportation measurement out-

comes. This enables us to reuse tools from classical interactive coding, most notably tree
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codes, but the design of the quantum simulation protocol needs extra care. Unlike the

classical case, agreement by the two parties on a common classical transcript is not suf-

ficient. This transcript consists mostly of random teleportation measurement outcomes

and is useless by itself. We additionally need to maintain a joint quantum state that

eventually evolves according to the original protocol.

Once we realize the importance of teleportation in the context of noisy communi-

cation, and carefully design the simulation protocol, it may not come as a surprise that

the simulation incurs only a constant factor overhead. The need for backtracking in the

quantum simulation, however, seems to impose serious constraints on the tolerable error

rate. A priori it is entirely unclear that we could hope to circumvent the low error toler-

ance seen in simulations with backtracking. The second part of our main contribution is

to develop the necessary techniques to prove that we can tolerate an error rate as high as
1
2 − ε .

Indeed, all recent classical schemes tolerating high error rates have the property that

the parties always go forward with the communication by using the tree structure of clas-

sical protocols. In comparison, in the original Schulman tree code based scheme there is

some form of backtracking, due to which the scheme could only tolerate a much lower

adversarial error rate of 1
240 . This is due to the fact that in a protocol with backtrack-

ing [114], the fraction of good rounds, in which both players correctly decode the tree

code transmission, must be higher for the simulation to succeed than in a protocol that

always goes forward by transmitting edges of a pointer jumping problem [35, 62]. There

also is some form of backtracking in the outer level of the computationally efficient pro-

tocol of Ref. [27], thus limiting the overall error rate that can be tolerated to a fourth of

that of the inefficient protocol used at the inner level. In light of these results, it is clear

that previously used techniques would not suffice to tolerate error rates as high as 1
2 − ε

for our protocol, which requires backtracking. The new techniques we develop are thus

necessary.

To achieve higher error tolerance, we follow Ref. [62] and use a blueberry code to ef-

fectively turn most adversarial errors into erasures. Concatenating such a code on top of

a tree code yields a tree code with an erasure symbol. Since general transmission errors
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are twice as harmful as erasures for the tree code condition, which is stated in terms of

Hamming distance, it was shown in Ref. [62] that if the error rate is below 1
2−ε , then the

large number of rounds in which both parties correctly decode a long enough prefix is

sufficient to imply success of the simulation. Once again due to backtracking, this con-

dition is not sufficient for our purpose and in particular blueberry codes by themselves

are not sufficient to improve error tolerance up to 1
2 here. For us, the number of rounds

in which both parties decode correctly even the whole string could be high, but if these

rounds alternate with rounds in which at least one of the parties makes a decoding error,

then the protocol could stall, and simulation would fail. To circumvent this possibility,

we need to bound the number of rounds with bad tree code decoding. Previously known

bounds on this [114] can be used to show success of our simulation, but are far from

enabling us to tolerate up to 1
2 error rate. We develop a new bound on tree codes with

an erasure symbol, Lemma 5.6.2, which might be of independent interest for classical

interactive coding. This bound enables us to tightly control the number of rounds with

bad decoding. Once we control this quantity, it is also important to insure that even

when there is a corruption detected as an erasure in a round, as long as there is no bad

decoding, the protocol will not need to spend a good round to correct for this previous

erasure round.

We can adapt the techniques that we develop in the shared entanglement model for

the quantum communication model: we first distribute a linear amount of entanglement

using standard quantum information and coding theory techniques. This leads to a toler-

able adversarial error rate of up to 1
6 in the quantum model, close to the best achievable

for quantum data transmission with zero error at 1
4 . This is better than the factor of two

drop that might be expected if we compare classical interactive coding to unidirectional

coding. We can also adapt our techniques for an adversarial error model to the case of a

random error model. Then, dilation factors proportional to 1
Q for a depolarizing channel

of quantum capacity Q in the quantum model, and proportional to 1
C for a binary sym-

metric channel of capacity C in the shared entanglement model, are sufficient. We also

show that the result in the shared entanglement model is asymptotically optimal: there

exists a family of binary functions for which a dilation factor proportional to 1
C is neces-
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sary. When considering noisy entanglement in the form of noisy EPR pairs in a Werner

state [132], we give, for any non-separable Werner state, simulation protocols with lin-

ear noisy classical communication and noisy EPR pair consumption. The techniques

developed in this case can be adapted to show that the use of depolarizing channels in

both directions enables the simulation to succeed whenever the quantum capacity with

two-way classical communication, Q2, is strictly positive. For some range of the de-

polarizing parameter, Q = 0 but Q2 > 0, so this proves that Q does not characterize a

quantum channel’s capacity for interactive quantum communication.

Due to the use of tree codes, the protocols presented in this paper are not com-

putationally efficient. However, it is possible to extend classical results on efficient

interactive coding tolerating maximum error to noisy quantum communication. The

representation of noisy protocols mentioned above is quite powerful and will be used

in forthcoming papers to adapt classical results on computationally efficient interactive

computation over adversarial channels [27] and on the interactive capacity of random

noise channels [90] to the quantum regime.

Organization: This chapter is structured as follows: in Section 5.2, we set up the no-

tation and state the relevant definitions for the classical part of our simulation protocols.

In Section 5.3, we define the different models of noisy communication. In Section 5.4,

we define the notion of interactive quantum capacity, and in the following section prove

that it is strictly positive for many channels. In section 5.6, we state and prove our main

result for the adversarial case in the shared entanglement model. Section 5.7 shows

how to adapt the result of the previous section to obtain various other interesting results,

in particular for the quantum model, the noisy shared entanglement model, and in the

case of a random error model. We conclude with a discussion of our results and further

research directions.

5.2 Classical Communication Protocols and Online Codes

Our simulation protocols contain an important classical component, so we set the

notation for noiseless classical communication that we use, and define the online codes
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that we use.

5.2.1 Noiseless Communication

In our setting, we are interested in protocols in which each party sends a message

from some message set [d] = {1,2, · · · ,d−1,d} of size d in alternation, for some fixed

number of rounds N′ (actually, N′
2 in our protocols). A round consists of Alice sending a

message to Bob and then Bob sending a message back. Parties only have access to some

noisy channels, so they need to encode these messages in some way. The codes used to

do so in an interactive setting are described in the next subsection. For the moment, let

us focus on the messages the parties wish to transmit, without the coding.

In round i, Alice transmits a message ai ∈ [d] to Bob, and then Bob sends back a

message bi ∈ [d]. These messages depend on the messages a1, a2, · · · , ai−1 ∈ [d] and b1,

b2, · · · , bi−1 ∈ [d] Alice and Bob sent in the previous rounds, respectively. We refer to

these sequences of messages (at the end of round i) as Alice’s history sA = a1 · · ·ai ∈ [d]i

and Bob’s history sB = b1 · · ·bi ∈ [d]i, respectively. Note that these histories are updated

in each round, and that each history, at the end of round i, can be represented as a node

at depth i in some d-ary tree of depth N′. This tree is called a history tree. The whole

(noiseless) communication can be extracted from the information in these two histories.

When the communication is noisy, in some rounds the parties make errors when

trying to determine the other party’s history. When comparing the history s = s1 · · ·si ∈
[d]i of a party in round i of the protocol without coding, with the other party’s best guess

si = si
1 · · ·si

i ∈ [d]i for that history, the least common ancestor of s and si is the node at

depth i− ` such that s1 · · ·si−` = si
1 · · ·si

i−` but si−`+1 6= si
i−`+1. We call ` the magnitude

of the error of such a guess si, and in general for two histories s,si ∈ [d]i satisfying the

above (with least common ancestor at depth i− `) we write L(s,si) = `. Note that we

can compute ` as i−max{t : (∀ j ≤ t)[s j = si
j]}.
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5.2.2 Interactive Error Correcting Codes

Standard error correcting codes are designed for data transmission and therefore are

not particularly well suited for interactive communication over noisy channels. We use

two kinds of codes designed to work in an interactive scenario.

5.2.2.1 Tree Codes

In his breakthrough papers [113, 114], Schulman defined tree codes, which are par-

ticular codes designed for such interactive communication. Indeed, these tree codes can

perform encoding and decoding round by round (following Ref. [62], we refer to such

codes as online codes), such that for each round, a message from the message set [d] is

transmitted, but even if there is some decoding error in this round, for each additional

round we perform (without transmission error), the more likely it is that this previous

decoding error is correctly decoded. We describe this property in more details after

formally defining tree codes. We use the following for our definition. Given a set A

and its k-fold Cartesian product Ak = A× ·· ·×A (k-times), we denote, for any n ∈ N,

A≤n = ∪n
k=1Ak. Also, given a transmission alphabet Σ and two words ē = e1 · · ·et ∈ Σt

and ē′ = e′1 · · ·e′t ∈ Σt over this alphabet, we denote by ∆(ē, ē′) (the Hamming distance)

the number of different symbols, i.e., ∆(ē, ē′) = |{i : ei 6= e′i}|.

Definition 5.2.1. (Tree codes [114]) Given a message set [d] of size d > 1, a number of

rounds of communication N′ ∈ N, a distance parameter α ∈ (0,1) and a transmission

alphabet Σ of size |Σ| > d, a d-ary tree code of depth N′ and distance parameter α

over alphabet Σ is defined by an encoding function E : [d]≤N′ → Σ, and a decoding

function D : Σ≤N′ → [d]≤N′ .

Let Ē : [d]≤N′→Σ≤N′ denote the extension of E to strings, i.e., for any t ≤N′, and a=

a1 · · ·at ∈ [d]t ,

Ē(a) = E(a1)E(a1a2) · · ·E(a1 · · ·at−1)E(a1 · · ·at) ,

which is a string in Σt .
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The encoding function satisfies the following distance property, called the tree code

property. For any t ≤ N′, and a,a′ ∈ [d]t ,

L(a,a′) = ` =⇒ ∆(Ē(a), Ē(a′))≥ α · ` .

In other words, if the least common ancestor of a,a′ is at depth t − `, then the corre-

sponding codewords are at distance at least α`.

The decoding function satisfies the property that for any t ≤ N′, and ē ∈ Σt ,

D(ē) ∈ {a : a ∈ [d]t minimizes ∆(Ē(a), ē)} .

We later consider decoding of tree codes with an erasure symbol⊥ that is not used by

the encoding function, but may occur in the output of a channel. The decoding algorithm

extends verbatim to received words with erasure symbols: it outputs a message sequence

whose tree encoding is closest in Hamming distance to the received word.

Note that the decoding function is not uniquely defined for a given tree code: we

could avoid ambiguity by outputting a special failure symbol for D(ē) whenever |{a :

a∈ [d]t minimizes ∆(Ē(a), ē)}|> 1. Also note that we can view tree codes in the follow-

ing alternative way, connecting them with the history tree representation defined above.

Starting with a history tree, we can label the arcs out of each node by a symbol from

Σ corresponding to the encoding of that path in the tree code. The encoding function

Ē represents the concatenation of the symbols on the path from root to node a, and the

distance property is related to the distance of a,a′ to their least common ancestor in the

history tree, and to the number of errors during these corresponding L(a,a′) last trans-

missions. The following was proved in Ref. [114] about the existence of tree codes. Let

H(α) =−α · logα− (1−α) · log(1−α) denote the binary entropy function.

Lemma 5.2.1. Given a message set [d] of size d > 1, a number of rounds of communi-

cation N′ ∈N and a distance parameter 0 < α < 1, taking transmission alphabet Σ with

|Σ|= 2b(2 ·2H(α) ·d)
1

1−α c−1 suffices to label the arcs of some tree code, i.e., there ex-

ists an encoding function E satisfying the tree code property, and the required alphabet
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size is independent of N′, the number of rounds of communication.

In fact, the result due to Schulman is even stronger: there exists an unbounded depth

tree code with Σ of the size discussed above. This stronger result could be useful in the

case in which the number of rounds N′ is not bounded at the beginning of the protocol,

and has been used to authenticate streams of classical data in Ref. [62].

The distance property of tree codes assures us of the following: if in round t the

decoding is good for the first t − ` messages sent (` ≥ 0), but wrong for the message

sent in round t− `+1 (and possibly also for some other messages), then the reencoding

of the sequence of decoded messages must be distinct from the transmitted one in at

least α · ` positions in the last ` rounds. Then, incorrect decoding (i.e., decoding to a

message different from the one encoded) implies that there were at least 1
2 ·α · ` trans-

mission errors during those rounds, independently of what was sent in the first t − `

rounds. More precisely, given a transmitted message ā ∈ [d]t , encoded as ē = Ē(ā) ∈ Σt ,

received as ē′′ ∈ Σt , and decoded as ā′ = D(ē′′) ∈ [d]t , with ē′ = E(ā′), if we have

a1 · · ·at−` = a′1 · · ·a′t−` but at−`+1 6= a′t−`+1, i.e., L(a,a′) = `, then ∆(ē, ē′) ≥ α · ` and

∆(et−`+1 · · ·et ,e′′t−`+1 · · ·e′′t ) ≥
1
2 ·α · ` (Note e1 · · ·et−` = e′1 · · ·e′t−`). This property is

extremely useful for interactive communication: even if the decoding of a message is in-

correct in some round, if there are sufficiently many error-free subsequent transmissions,

we can later correct that error. This property is essential to our analysis of the simulation

protocol, and to our proof of Lemma 5.6.2.

5.2.2.2 Blueberry Codes

Another kind of online code we need to withstand the highest possible error rates

are randomized error detection codes called blueberry codes in Ref. [62]. To use these,

Alice and Bob encode and decode messages with a shared secret key in a way that weakly

authenticates and encrypts each message, and in this way the adversary Eve cannot apply

a corruption of her choosing. Such codes unknown to the adversary were termed private

codes in Ref. [93]. At best, with some small (but constant) probability she is able to

corrupt a message in such a way that Alice and Bob do not detect it and this results in an
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effective decoding error, but most of the time a corruption of Eve results in an effective

erasure decoding. Since the tree code property, and hence also its decoding, is defined

in terms of Hamming distance, transmission errors are twice as harmful as erasures in

the tree decoding. (We can view the erasure flag ⊥ as a special symbol in Σ never used

in the encoding, but which helps in decoding.) When incorrect decoding occurs, the two

parties might perform operations on the quantum registers that need to be corrected later.

On the other hand, when an erasure occurs, it is visible to the recipient and this prevents

him from performing such incorrect operations. Hence, concatenating a blueberry code

with the tree code enables significant improvement in the allowed error rates.

These blueberry codes were defined in Ref. [62] for the purpose of authenticating

streams of classical messages and for the simulation of interactive classical protocols.

Below we summarize their definition and important properties.

Definition 5.2.2. (Blueberry codes [62]) For i ≥ 1 let Bi : Γ→ Γ be a random and

independent permutation. The blueberry code maps a string e ∈ Σt ⊂ Γt of arbitrary

length t to B(e) = B1(e1)B2(e2) · · ·Bt(et). We denote such a code as B : Σ∗ → Γ∗,

and define the erasure parameter of this code as β = 1− |Σ|−1
|Γ|−1 , and its complement

εβ = 1−β = |Σ|−1
|Γ|−1 .

Definition 5.2.3. Assume that at some time i, di = Bi(ei) is transmitted and d′i 6= di is

received. If B−1
i (d′i) 6∈ Σ, we mark the transmission as an erasure, and the decoding

algorithm (for the Blueberry code) outputs ⊥. Otherwise, this event is called an error.

Corollary 5.2.1. Let e ∈ Σt and assume B(e) is communicated over a noisy channel.

Every symbol corrupted by the channel causes either an error with probability εβ , or an

erasure with probability β .

Lemma 5.2.2. Assume a blueberry code B : Σ∗→ Γ∗ is used to transmit a string e ∈ Σt

over a noisy channel. For any constant 0 ≤ c ≤ 1, if the channel’s corruption rate

is c, then with probability 1− 2−Ω(t) at least a (1− 2εβ )-fraction of the ct corrupted

transmissions are marked as erasures.
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Corollary 5.2.2. If out of t received transmissions, ct were marked as erasures while

decoding a blueberry code B : Σ∗ → Γ∗, then except with probability 2−Ω(t) over the

shared randomness, the adversarial corruption rate is at most c/(1−2εβ ).

5.3 Quantum Simulators and Interactive Channels

In this section, we describe the kind of protocols we want to simulate over noisy

channels, and then formally define the models of noisy communication we study.

5.3.1 Noiseless Communication Model

In the noiseless quantum communication model that we want to simulate, we con-

sider protocols in the hybrid model of a special form: throughout the whole protocol, the

A register is held by Alice, the B register by Bob, the C register, which is the commu-

nication register, is exchanged back-and-forth between Alice and Bob and initially held

by Alice, and finally the E register purifies the initial (and then also the final) state of the

ABC registers and might be held by Eve, a potential adversary. For protocols in this form,

we refer to N as their length and to each of the N/2 back-and-forth exchange between

Alice and Bob as rounds. The initial state |ψinit〉ABCE ∈ D(A⊗B⊗C⊗E) is chosen

arbitrarily from the set of possible inputs, and is fixed at the outset of the protocol, but

possibly unknown (totally or partially) to Alice and Bob. Note that to allow for compo-

sition of quantum protocols in an arbitrary environment, we consider arbitrary quantum

states as input, which may be entangled with some reference system E. A protocol Π is

then defined by the sequence of unitaries U1,U2, · · · ,UN+1, with Ui for odd i known at

least to Alice (or given to her in a black box) and acting on registers AC, and Ui for even i

known at least to Bob (or given to him in a black box) and acting on registers BC. For

simplicity, we assume that N is even. We can modify any protocol to satisfy this prop-

erty, while increasing the total cost of communication by at most one communication of

the C register. On a particular input state |ψinit〉, the protocol generates the final state

|ψfinal〉ABCE = UN+1 · · ·U1 |ψinit〉ABCE , for which at the end of the protocol the A and C

registers are held by Alice, the B register is held by Bob, and the E register is held by
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Eve. The output state of the protocol is Π(|ψinit〉) = TrE(|ψfinal〉〈ψfinal|ABCE), and by a

slight abuse of notation we also represent the induced quantum channel from ABCE to

ABC simply by Π. Since we consider local computation to be free, the sizes of A and B

can be arbitrarily large, but still of finite size, say mA and mB qubits, respectively. We re-

strict ourselves to the case of a single-qubit communication register C, which is the worst

case for noisy interactive communication. Every protocol can be converted into such a

form by increasing the communication by a factor of at most two but possibly at the ex-

pense of much more interaction: if a party has to speak when it is not his turn, he sends

a qubit in state |0〉 . Note that both the Yao and the Cleve-Buhrman models of quantum

communication complexity can be recast in this framework by making all operations

coherent: put the initial classical registers into quantum registers, replace classically

controlled operations by quantumly controlled operations, also replace measurements

by pseudo-measurements, and then replace any classical communication by quantum

communication. In particular, this gets rid of the problem of the non-reversibility of

measurements, which are an essential part of the Cleve-Buhrman model.

We later embed length N protocols into others of larger length N′ > N. To perform

such noiseless protocol embedding, we define some dummy registers Ã, B̃, C̃ isomorphic

to A, B, C, respectively. Ã and C̃ are part of Alice’s scratch register and B̃ is part of

Bob’s scratch register. Then, for any isomorphic quantum registers D, D̃, let SWAPD↔D̃

denote the quantum unitary that swaps the D, D̃ registers. Recall that N is assumed to be

even. In a noiseless protocol embedding, for i ∈ {1,2, · · ·N−1}, we leave Ui untouched.

We replace UN by (SWAPB↔B̃UN) and UN+1 by (SWAPAC↔ÃC̃UN+1). Finally, for i ∈
{N +2,N +3, · · ·N′+1}, we define Ui = I, the identity operator.

We refer later to the unidirectional model; in this noiseless model, we allow for large

local registers A′, B′ and for a large communication register C′ that is used only once, ei-

ther from Alice to Bob or from Bob to Alice, depending on the protocol. These registers

can be further decomposed such that when used for simulation, the A and C registers of

the protocol to be simulated are subsystems of A′, and B is one of B′. We also allow for

classical registers X , Y held by Alice and Bob, respectively. For concreteness we con-

sider here the case of communication from Alice to Bob; the other case is symmetric. A
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simulation protocol U in the unidirectional model is defined by two quantum instruments

M XA′C′
1 , MY B′C′

2 , and the output of the protocol on input |ψ〉 ∈H (A⊗B⊗C⊗E) is

the state of the ABC subsystem of M2M1(|ψ〉), and is denoted U(|ψ〉). By abuse of

notation, the induced quantum channel from ABCE to ABC is also denoted U .

5.3.2 Noisy Communication Model

There are many possible models for noisy communication. We consider two in par-

ticular: one analogous to the Yao model with no shared entanglement but noisy quantum

communication, which we call the quantum model, and one analogous to the Cleve-

Buhrman model with noiseless pre-shared entanglement but noisy classical communica-

tion, which we call the shared entanglement model. A further variation on the shared en-

tanglement model in which the entanglement is also noisy is considered in Section 5.7.4.

For simplicity, we formally define in this section what we sometimes refer to as alter-

nating communication models, in which Alice and Bob alternately transmit the com-

munication register to each other, and this is the model in which most of our protocols

are defined. Our definitions easily adapt to somewhat more general models which we

call oblivious communication models, following Ref. [35]. In these models, Alice and

Bob do not necessarily transmit their messages in alternation, but nevertheless in a fixed

order and of fixed sizes known to all (Alice, Bob and Eve) depending only on the round,

and not on the particular input or the actions of Eve. Communication models with a

dependence on inputs or actions of Eve are called adaptive communication models.

5.3.2.1 Quantum Model

The following notions will be required to define adversaries in the quantum model.

When considering a quantum system A of dimension q, we fix an orthonormal basis

{|i〉}i∈{0,1,···q−1} for A and use the following generalizations of Pauli operators: for j,k ∈

{0,1, · · ·q− 1}, X j |k〉 = |(k+ j) mod q〉 and Z j |k〉 = e
i2π

jk
q |k〉. The operators in the

set {X jZk} j,k∈{0,1,q−1} are known as the Heisenberg-Weyl operators, and form a basis
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for the linear vector space of operators on A, and the operators in

Fq,N = {X j1Zk1⊗·· ·⊗X jN ZkN} j`k`∈{0,1,···q−1}2,`∈[N] (5.3.1)

form a basis for the space of operators on A⊗N . For E ∈Fq,N , we denote by wt(E) the

weight of E, i.e., the number of A subsystems on which E acts non-trivially. For δ ∈
[0,1], the set

Eδ ,q,N = {E ∈Fq,N : wt(E)≤ δN} (5.3.2)

is the subset of elements of Fq,N of weight less than or equal to δN.

Now, for the quantum model, Alice possesses a local classical-quantum register

X ⊗ A′ in which X is the classical register and the quantum register A′ contains five

subsystems of interest: to implement a noiseless protocol Π as a black-box, the A and

CA parts correspond to the registers of the noiseless communication protocol, while Ã

and C̃A are the corresponding registers defined by the noiseless protocol embedding,

and A′′ is some scratch register used for her local quantum computation in the simula-

tion. Similarly, Bob possesses a local classical-quantum register Y ⊗B′ in which Y is

the classical register and the quantum register B′ contains four subsystems of interest:

to act Π as a black-box, the B and CB parts correspond to the registers of the noiseless

communication protocol, while B̃ is the corresponding register defined by the noiseless

protocol embedding, and B′′ is some scratch register used for his local quantum com-

putation in the simulation. Eve possesses a local classical-quantum register Z⊗E ′ in

which Z is the classical register and the quantum register E ′ contains two subsystems of

interest: the E part corresponds to the reference register of the noiseless communication

protocol and E ′′ is some scratch register used for her local quantum computation in the

simulation. A quantum communication register C′, of some fixed size q independent of

the length N of the protocol to be simulated, is exchanged back-and-forth between Alice

and Bob, passing through Eve; it is held by Alice at both the beginning and the end of

the simulation protocol. A simulation protocol Q in the quantum model of length N′ is

defined by a sequence of quantum instruments M XA′C′
1 , MY B′C′

2 , · · · , M XA′C′
N′+1 such that,

on input a state
∣∣ψ ′init

〉A′B′C′E ′
= |ψinit〉ABCAE⊗|0〉, given black-box access to a noiseless
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protocol Π, and against an adversary A defined by a sequence of quantum instruments

N ZE ′C′
1 , · · · ,N ZE ′C′

N′ , the protocol outputs the ÃB̃C̃ subsystems of

ρfinal = M Π

N′+1NN′M
Π

N′ · · ·M
Π
2 N1M

Π
1 (|ψ ′init〉〈ψ ′init|). (5.3.3)

(Here, the superscript Π emphasizes the black-box access to the protocol.) We denote

this output by QΠ(A(|ψinit〉)), and the induced quantum channel from ABCE to ÃB̃C̃ ∼=
ABC by QΠ(A). The success of the simulation is measured by how close the simulation

output state is to the final state of the noiseless protocol on the ABC registers, and is

captured by the following definition:

Definition 5.3.1. A simulation protocol Q in the quantum model of length N′ succeeds

with error ε at simulating all length N noiseless protocols against all adversaries in

some class A if, for all noiseless protocols Π of length N, for all adversaries A ∈ A ,

‖Π−QΠ(A)‖� ≤ ε . The communication rate RQ of Q is RQ = N
N′ logq for q ≥ 2 the

alphabet size of the communication register C′.

Note that the adversary only has to make the simulation fail on some particular pro-

tocol, and on some particular input, to characterize the simulation protocol as ineffective

against her.

In a random error model (analogous to that studied in quantum information theory,

à la Shannon), Eve is a non-malicious passive environment, and Ni = N Q for some

fixed quantum channel N Q, and the class A contains a single element N C′⊗N′
, (with

trivial Z,E ′ registers). For simplicity, we then say that the simulation succeeds over

N Q. In an adversarial error model (analogous to that studied in quantum coding theory,

à la Hamming), Eve is a malicious adversary who wants to make the protocol fail, and

we are interested in particular classes of adversaries which we denote A Q
δ ,q,N′ for some

parameter δ such that 0≤ δ ≤ 1. The class A Q
δ ,q,N′ contains all adversaries with a bound

δ on the fraction of communications of the C′ register they corrupt, in the following

sense. Here, Fq′,1,Eδ ,q,N′ are defined in Eqs. (5.3.1) and (5.3.2), respectively.

Definition 5.3.2. The class A Q
δ ,q,N′ of adversaries in the quantum model with error rate

bounded by δ , 0 ≤ δ ≤ 1, contains adversaries of the following kind. Each adversary
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is specified by a sequence of instruments N
ZE ′C′1

1 , · · · , N
ZE ′C′N′

N′ with arbitrary local

quantum register E ′ of dimension q′ ∈N and local classical register Z with classical state

set Z , with |Z | ∈N. All these adversaries act on a quantum communication register C′

of dimension q∈N, on protocols of length N′ ∈N. For any ρ =∑z0∈Z pZ0(z0)|z0〉〈z0|Z⊗
ρ(z0)

E ′C′⊗N′ ∈D(Z⊗E ′⊗C′⊗N′), the action of such an adversary is

N
ZE ′C′N′

N′ · · ·N ZE ′C′1
1 (ρ) = ∑

i,z,z0

pZ0(z0)|z〉〈z|Z⊗GE ′C′⊗N′

i,z,z0
ρ(z0)G

†E ′C′⊗N′

i,z,z0
,

for i ranging over some finite set, z, z0 ∈Z , with each Gi,z,z0 of the form

Gi,z,z0 = ∑
H∈E

δ ,q,N′ ,F∈Fq′,1

αH,F,i,z,z0FE ′⊗HC′⊗N′
,

also subject to the requirement that for any z0 ∈Z , ∑i,z G†
i,z,z0

Gi,z,z0 = IE ′C′⊗N′
.

This adapts to an interactive communication model the formal definition of adversar-

ial channel given in Ref. [96] in a unidirectional communication model. Note that this

allows for adaptive, probabilistic, entangled strategies for Eve, but such that any Kraus

operator Gi,z,z0 is a linear combination of operators which act on at most a δ fraction of

the C′ registers non-trivially. We therefore say that the fraction of errors is bounded by

δ for all adversaries in A Q
δ ,q,N′ .

5.3.2.2 Shared Entanglement Model

For the shared entanglement model, Alice, Bob and Eve possess local classical-

quantum registers split analogously to those in the quantum model. In addition to the

entanglement inherent in |ψinit〉ABCE , Alice and Bob also share entanglement to be con-

sumed during the simulation in the form of a large state |φ〉TATB with the registers TA,

TB held by Alice and Bob, respectively. In general, the entanglement registers have a

product decomposition TA = T 1
A ⊗·· ·⊗T N′

A , TB = T 1
B ⊗·· ·⊗T N′

B . A classical commu-

nication register C′′, of some fixed size q independent of the length N of the protocol

to be simulated, is exchanged back-and-forth between Alice and Bob, passing through
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Eve; it is held by Alice at both the beginning and the end of the simulation protocol. A

simulation protocol S in the shared entanglement model of length N′ is defined by a se-

quence of quantum instruments M XA′TAC′′
1 , MY B′TBC′′

2 , · · · , M XA′TAC′′
N′+1 such that, on input

a state
∣∣ψ ′init

〉A′B′C′′E ′
= |ψinit〉ABCAE⊗|0〉, given black-box access to a noiseless protocol

Π, and against an adversary A defined by a sequence of quantum instruments N ZE ′C′′
1 ,

· · · , N ZE ′C′′
N′ , the protocol outputs the ÃB̃C̃ subsystems of the state ρfinal given by

ρfinal = M Π

N′+1NN′M
Π

N′ · · ·M
Π
2 N1M

Π
1 (|ψ ′init〉〈ψ ′init|). (5.3.4)

(Again, the superscript Π emphasizes the black-box access to the protocol by the simu-

lator.) We denote this output by SΠ(A(|ψinit〉)), and the induced quantum channel from

ABCE to ÃB̃C̃ ∼= ABC by SΠ(A). The success of the simulation is measured by how

close the simulation output state is to the final state of the noiseless protocol on the ABC

registers, and is captured by the following definition:

Definition 5.3.3. A simulation protocol S in the shared entanglement model of length N′

succeeds with error ε at simulating all length N noiseless protocols against all adver-

saries in some class A if, for all noiseless protocols Π of length N, for all adversaries

A ∈A , ‖Π− SΠ(A)‖� ≤ ε . The communication rate RC of S is RC = N
N′ logq for q ≥ 2

the alphabet size of the classical communication register C′′, and the entanglement con-

sumption rate RE is RE = log(max(dimTA,dimTB))
N logq for TA,TB the entanglement registers used

for the simulation by Alice and Bob, respectively.

In a random error model, Eve is a non-malicious passive environment, and Ni =N S

for some fixed classical channel N S, and the class A contains a single element N C′′⊗N′

(with trivial Z,E ′ registers). For simplicity, we then say that the simulation succeeds over

N S. In an adversarial error model, Eve is a malicious adversary who wants to make the

protocol fail, and we are interested in particular classes of adversaries which we denote

A S
δ ,q,N′ for some parameter 0 ≤ δ ≤ 1. The class A S

δ ,q,N′ contains all adversaries with

a bound δ on the fraction of communications of the C′′ register they corrupt, in the

following sense. Here, for two strings c,c0 over a finite alphabet, ∆(·, ·) is the Hamming

distance function counting the number of positions in which c and c0 differ; see section
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5.2.2.1 for a formal definition.

Definition 5.3.4. The class A S
δ ,q,N′ of adversaries with error rate bounded by δ , 0 ≤

δ ≤ 1, in the shared entanglement model contains adversaries of the following kind.

Each adversary is specified by instruments N
ZE ′C′′1

1 , · · · , N
ZE ′C′′N′

N′ with arbitrary local

quantum register E ′ of dimension q′ ∈N and local classical register Z with classical state

set Z , with |Z | ∈N. All these instruments act on a classical communication register C′′

of dimension q∈N, on protocols of length N′ ∈N. For any ρ =∑z0∈Z pZ0(z0)|z0〉〈z0|Z⊗
ρ(z0)

E ′C′′⊗N′ ∈D(Z⊗E ′⊗C′′⊗N′), the action of such an adversary is

N
ZE ′C′′N′

N′ · · ·N ZE ′C′′1
1 (ρ) = ∑

c,c0,z,z0

pZ0(z0)|z〉〈z|Z⊗GE ′C′′⊗N′

c,c0,z,z0
ρ(z0)G†E ′C′′⊗N′

c,c0,z,z0
,

for c, c0 ∈ {0,1, · · · ,q−1}N′ satisfying ∆(c,c0)≤ δN′, z, z0 ∈Z , with each Gc,c0,z,z0 of

the form

Gc,c0,z,z0 = ∑
F∈Fq′,1

αF,c,c0,z,z0FE ′⊗|c〉〈c0|C
′′⊗N′

,

also subject to the requirement that for any c0 ∈ {0,1, · · · ,q − 1}N′ , z0 ∈ Z ,

∑c,z G†
c,c0,z,z0

Gc,c0,z,z0 = IE ′⊗|c0〉〈c0|C
′′⊗N′

.

Note that this allows for adaptive, probabilistic strategies for Eve, but such that con-

ditioned on any sequence of measurement outcome z (recorded in the Z registers), final

transcript c on the communication register, inputs z0, c0, at most a δ fraction of the ac-

tions of Eve have acted non-trivially on the C′′ register, even though she can copy all

classical transmissions in the Z registers. We therefore say that the fraction of error is

bounded by δ for all adversaries in A Q
δ

.

Note that the adversaries in the quantum and in the shared entanglement models are

fundamentally different: in the shared entanglement model, Eve can copy all classical

messages and gather the corresponding information to establish her strategy, but she can-

not modify Alice or Bob’s quantum information, except for what is possible by corrupt-

ing their classical communication and by using the information in the quantum register E
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purifying the input state. By contrast, in the quantum model, she cannot always “read”

the quantum messages, but she can apply entangled, fully quantum corruptions to the

quantum register when she chooses to.

5.4 Definition of Interactive Quantum Capacity

In classical information theory, a single quantity characterizes a noisy channel’s ca-

pacity to transmit information. Indeed, whether we consider the task of sending an arbi-

trary long message or the task of distributing randomness, the optimal rate of asymptotic

communication, for probability of error tending to zero, is characterized by the same

quantity, the noisy channel’s capacity. This holds whether we allow the sender and re-

ceiver to share randomness or not at the outset, and even if we allow the receiver to send

back-communication to the sender. In all of these tasks and in all of these settings, the

channel capacity is the same, and evaluates to the maximum over all input distributions

of the mutual information between the input and the output to the channel.

The situation is already much more complicated if we want to characterize a noisy

channel’s capacity to implement interactive communication. From the work of Schul-

man [114], we know that a channel with non-zero capacity for data transmission will

have non-zero capacity to implement any interactive task, but it was only recently shown

that there exists settings and tasks for which the capacity of a particular channel with low

noise to implement an interactive task is strictly smaller than its capacity to implement

unidirectional data transmission. However, still in the low noise regime, it is possible

to have capacity close to one for the binary symmetric channel [90]. However, depend-

ing on the kind of task that we want to implement, a different model of communication

might have to be considered, since in the noisy interactive setting, it is conceivable that

Alice and Bob lose synchronisation and both try to speak simultaneously over the noisy

channel.

In quantum information theory, even in the unidirectional setting, the question is

much more complicated than for unidirectional classical information theory. First, we

could be interested in the task of sending either classical or quantum information over
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a noisy channel, or even a combination of both. Then, for each of these, we could

be interested in transmitting different kind of information: for quantum information,

the data to be transmitted could be an arbitrary, unknown quantum state, part of some

larger entangled state, half of a maximally entangled state, etc. It turns out that in most

settings, these tasks often define only two distinct capacities: the capacity to transmit

classical or quantum information, however these are defined. But then, there are also

a variety of settings to consider, and these yield much different quantities: the capacity

of a channel without any assistance, when assisted by entanglement, when assisted by

two-way classical communication, etc. There are even channels for which the capacity

to transmit quantum information without assistance is zero, but becomes strictly positive

if we allow classical back-communication or entanglement assistance.

In the interactive setting, we then also will have to distinguish between the kind of

assistance that we allow, and the kind of task that we want to implement. We define the

interactive capacity of a quantum channel (or of a set of channel as in the adversarial

setting), with respect to an infinite set of task, classical or quantum, that we want to

implement. This set is parametrized by a parameter n, such that for all n there exists a

task in the set with quantum communication complexity at least n. We also define the

interactive capacity with respect to the side resources that we want to allow. Note that if

we allow for free noiseless classical communication, a quantum channel’s capacity for

interactive communication is equal to its capacity for quantum information transmission,

which follows from teleportation. Hence, we will rather be interested in the case of no

assistance for quantum channels, and of entanglement-assistance, either perfect or noisy,

for either classical or quantum channels. We have the following definitions.

Definition 5.4.1. The quantum communication complexity of some task T over a noisy

channel M assisted by some resources Q is defined as the minimum number of uses of

M , in either direction and with assistance of resources Q, required to successfully im-

plement the task T , up to some error parameter implicit in T . It is denoted as QCCQ
M (T ).

If it is not possible to implement task T over M assisted by Q, we define QCCQ
M (T )=∞.

Definition 5.4.2. The interactive capacity of channel M assisted by some resources Q
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with respect to the set of task T is defined as

CQ
T (M ) = liminf

n→∞
{ n

QCCQ
M (T )

: T ∈ T,QCC(T ) = n}

if QCCQ
M (T )< ∞ for all T ∈T , and 0 otherwise.

The focus in this chapter is in the very noisy regime, for which we show that a pos-

itive capacity for unidirectional transmission implies a positive capacity for interactive

communication. This holds for an arbitrary set of quantum tasks. However, the simula-

tion protocols could be much more interactive than the original protocols. Ideas devel-

oped here can be applied, together with classical techniques and appropriate data struc-

tures, to obtain high communication rates, and high capacity, in the low noise regime;

see Section 5.8 for a further discussion on this.

5.5 Positive Interactive Quantum Capacity

We start by describing a basic simulation protocol, which attains the first goal of sim-

ulating quantum protocols with asymptotically positive communication and error rates,

and constant entanglement consumption rate. This provides an interactive analogue of a

family of good quantum codes. This protocol contains the essential ideas of the optimal

protocol of section 5.6, but the description and analysis are simplified because we do not

have the additional blueberry code layer. Moreover, this protocol succeeds with perfect

fidelity, provided the number of errors is below a certain threshold.

5.5.1 Result

We focus on the shared entanglement model. Techniques to distribute entanglement

in both random [53, 99, 122] and adversarial [45, 61, 108] error models are well-studied.

We can combine our findings with these entanglement distribution techniques to translate

results in the shared entanglement model to the quantum model. We first focus on an

adversarial model of error, and then adapt these results to a random error model. Such

extensions to other models of communication are studied in Section 5.7.
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It is already clear from the results in this section and Section 5.7 that for any set

of tasks, any classical channel with positive capacity for data transmission will have

positive interactive quantum capacity when assisted by perfect entanglement. It is also

clear that a quantum channel with positive capacity for distributing entanglement will

have positive capacity for interactive quantum communication without requiring any

assistance.

For the basic simulation protocol described in this section, entanglement is only used

to teleport the quantum information back-and-forth between the two parties. In Sec-

tion 5.6, we show how to tolerate maximum error rates by also using entanglement to

generate a shared secret key unknown to the adversary, thus enabling the two honest

parties to detect most adversarial errors as effective erasures.

Given an adversarial channel in the shared entanglement model with low enough

error rate, we show how to simulate perfectly any noiseless protocol of length N over

this channel using a number of transmissions linear in N, and consuming a linear number

of EPR pairs. More precisely, we prove the following.

Theorem 5.5.1. There exist a constant error rate δ > 0, communication rate RC > 0,

transmission alphabet size q ∈ N, and entanglement consumption rate RE ∈ R+ such

that for all noiseless protocol lengths N ∈ 2N, there exists a universal simulator S in the

shared entanglement model of length N′ with communication rate at least RC, transmis-

sion alphabet size q, entanglement consumption rate at most RE, which succeeds with

zero error at simulating all noiseless protocols of length N against all adversaries in

A S
δ ,q,N′ .

Specific values for the constants posited in the theorem are given at the end of Sec-

tion 5.5.4.

5.5.2 Intuition for the Simulation Protocol

Before describing in detail the basic simulation protocol, let us first give some intu-

ition on how it succeeds in simulating a noiseless quantum protocol over a noisy channel.

The strategy to avoid losing the quantum information in the communication register over
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the noisy channel is to teleport the C register of the noiseless protocol back and forth into

Alice’s CA register and Bob’s CB register, creating a virtual C register which is either in

Alice’s or in Bob’s hand. They use the shared entanglement in TATB to do so, as well

as the noisy classical channels to transmit their teleportation measurement outcomes.

Whenever Alice possesses the virtual C register she can try to evolve the simulation of

the noiseless protocol by applying one of her noiseless protocol unitaries on the virtual

AC register, and similarly for Bob on the virtual BC register. If they later realize that

there has been some error in the teleportation decoding, they might have to apply in-

verses of these operations, but overall, everything acting on the virtual ABC quantum

register can be described as an intertwined sequence of Pauli operators acting on the C

register and noiseless protocol unitaries (and their inverses) acting on the AC and the BC

registers. There are two important points to notice here. First, the sequence of operations

acting on the joint register is a sequence of reversible unitaries. Hence, if the parties keep

track of the sequence of operations on the joint register, at least one of the parties can

reverse any of his operations when he is in possession of the virtual C register. Second,

both parties know the order in which these operators have been applied while only one

knows exactly which one was applied: for Pauli operators, both parties know ±XxZz is

applied at some point, but only one knows the correct value of xz ∈ {0,1}2, and simi-

larly both know UM
j (with U+1

j = U j, U−1
j = U†

j , U0
j = I) is applied at some point, but

only one knows the correct values of j ∈ {1, · · · ,N′+ 1} and M ∈ {−1,0,+1}. This is

the classical information they try to transmit to each other so that both know exactly the

sequence of operations that have been applied on the joint register. The tree codes due

to Schulman are particularly well suited for protecting against noise in this interactive

scenario.

More concretely, in each round the parties first need to decode the teleportation be-

fore trying to evolve the simulation of the quantum protocol and finally teleporting back

the communication register to the other party. The goal is that the parties know exactly

where they are in the simulation of the protocol (i.e., the sequence of unitaries that have

been applied to the virtual protocol registers) when they are able to correctly decode the

classical messages sent by the other party. To enable a party to learn exactly what action
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was taken by the other party in the earlier rounds, the message sent in each round is in

{0,1}2×{−1,0,+1}×{0,1}2, encoded with a tree code. The first pair of bits corre-

sponds to the teleportation decoding operation done at the beginning of a party’s turn.

The trit is associated with the evolution in the noiseless protocol: +1 stands for going

forward with the protocol, i.e., for a unitary operator of the noiseless protocol that was

applied to the joint state of the party’s local register and the communication register;

−1 stands for going backwards with the protocol, i.e., for the inverse of a unitary of

the noiseless protocol that was applied by that party to the joint state; 0 stands for hold-

ing the protocol idle, i.e., no action is taken by that party to evolve the protocol in that

round. Note that the index j of the unitary UM
j a party applies can be computed solely

from the sequence of trits sent by that party, and such an explicit calculation is defined

in the simulation description. Finally, the last pair of bits corresponds to the outcome of

the measurement in the teleportation of the communication register, to enable the other

party to correctly decode the teleportation.

For each party, we call his history at some point the sequence of these triplets of mes-

sages he transmitted up to that point (see section 5.2). If a party succeeds in correctly

decoding the history of the other party, he then possesses all the information about the

operations that were applied on the joint quantum register, and can choose his next move

accordingly. Note that the information about which Pauli operator was used to decode

the teleportation might appear to be redundant, but it is not when there are decoding

errors. In such a case, the wrong Pauli operators might be applied to do the teleportation

decoding. Even though the party who applied the wrong Pauli operator will realize his

mistake later (when the tree code enables him to eventually decode this message cor-

rectly), the other party still needs to be informed that the decoding of the teleportation

in that particular round was different from what it should have been. Sending the infor-

mation about which Pauli operator was used to do the teleportation decoding implicitly

provides that information, and even enables the other party to correct this wrong tele-

portation decoding by himself if need be. We indeed use this property in the simulation

(especially in the simulation for maximal error tolerance in Section 5.6.)
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5.5.3 Description of the Simulator

All communication is done with a tree encoding over some alphabet Σ. To later

simplify the analysis, we fix the distance parameter to α = 39
40 . The message set consists

of {0,1}2×{−1,0,+1}×{0,1}2 ∼= [4]× [3]× [4]∼= [48], so we take arity d = 48. Also,

taking N′ = 4(1+ 1
N )N is sufficient. By Lemma 5.2.1, we know that there exists a q ∈N

independent of N′ such that an alphabet Σ of size q suffices to label the arcs of a tree

code of any depth N′ ∈ N. Both parties agree before the protocol begins on such a tree

code of depth N′ with corresponding encoding and decoding functions E and D (each

party uses a separate instance of the same tree code to transmit her/his messages to the

other party). The goal is to tolerate error rate up to δ = 1
80 .

The convention we use for the variables describing the protocol is the following.

On Alice’s side, in round i, xADi zADi ∈ {0,1}2 correspond to the bits she uses for the

teleportation decoding on the X and Z Pauli operators, respectively, xAMi zAMi ∈ {0,1}2

correspond to the bits of the teleportation measurement on the corresponding Pauli oper-

ators, jAi ∈ Z and MA
i ∈ {−1,0,+1} correspond respectively to the index of the unitary

she uses in round i and to whether she uses U+1
jAi

= U jAi
, its inverse U−1

jAi
= U†

jAi
, or sim-

ply applies the identity channel U0
jAi
= I on the AC quantum register, and the counter cAi

keeps track of the sum of all previous messages MA
` , l ≤ i. On Bob’s side, we use a

similar set of variables, with superscript B instead of A. All Pauli operators are applied

on the virtual C register. When discussing variables obtained from decoding in round i,

a superscript i is added to account for the fact that this decoding might be wrong and

could be corrected in later rounds. Similarly, the superscript i is used when discussing

other variables that are round dependent.

The actions Alice and Bob take in round i are based on their best guess for the state

|ψi〉 of the joint register at the beginning of round i. The state |ψi〉 can be classically

computed from the information in Alice’s and Bob’s histories. The analysis rests on the

following two representations for the state |ψi〉. The first one can be directly computed,
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up to irrelevant operations of Eve on the E register, as

|ψi〉ABCE =
i−1

∏
`=1

(
XxBM` ZzBM` UMB

`

jB`
ZzBD` XxBD` XxAM` ZzAM` UMA

`

jA`
ZzAD` XxAD`

)
|ψinit〉ABCE .

(5.5.1)

Here, from the history sA of Alice’s history tree, we can directly obtain from the `th

message sent by Alice, for ` = 1 · · · i− 1, the two bits xAD` zAD` used to decode the

teleportation, the trit MA
` corresponding to the evolution of the protocol performed in

round `, and then the two bits xAM` zAM` corresponding to the outcome of the teleporta-

tion measurement. We then use counters cA` ’s that maintain the sums of the MA
` ’s to

compute the indices jA` ’s of the noiseless protocol unitaries used by Alice in round `:

cA0 = 0,cA` = cA(`−1) +MA
` , jA` = 2cA(`−1) +MA

` . Note that jAi depends only on the se-

quence of messages MA
1 ,M

A
2 , · · · ,MA

(i−1),M
A
i . Similarly, the history sB of Bob’s history

tree is used to obtain xBD` zBD` ,xBM` zBM` , as well as MB
` , and to compute cB0 = 0,cB` =

cB(`−1)+MB
` , jB` = 2cB(`−1)+MB

` +1. We define UM
j = I whenever j ≤ 0 or M = 0. Note

that if MA
` 6= 0, jA` is odd and UM

jA`
acts on Alice’s side. Similarly, if MB

` 6= 0, jB` is even

and UM
jB`

acts on Bob’s side. Also note that j ≤ N′+ 1 so the U j’s are well-defined, by

the noiseless protocol embedding described in Section 5.3.1.

From this first representation of the state |ψi〉, we can classically compute a second

one by recursively “cleaning up” the first representation. The clean-up is performed by

combining as many of the operators as possible, as follows. We multiply all consecu-

tive Pauli operators acting on the C register, and simplify consecutive pairs of operators

U`,U−1
` acting on the same set of qubits, to obtain a state of the form:

|ψi〉ABCE = σ̂
i Ũ i

ti σ̃
i
ti Ũ i

ti−1 σ̃
i
ti−1 · · · Ũ i

2 σ̃
i
2 Ũ i

1 σ̃
i
1 UriUri−1 · · ·U2U1 |ψinit〉ABCE (5.5.2)

with σ̂ i =±Xx̂i
Zẑi

, and for ` ∈ {1, . . . , ti}, σ̃ i
` = Xxi

`Zzi
` for x̂iẑi,xi

`z
i
` ∈ {0,1}

2, and Ũ i
` =

U±1
`′ for some ri−2ti ≤ `′ ≤ ri +2ti. The rules used recursively to perform the clean-up

are the following: in the case that σ̃ i
` = I, we require that for two consecutive unitary

operators acting on the same set of qubits, if ` > 1, then Ũ i
` 6= (Ũ i

`−1)
−1, and if ` = 1,
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then Ũ i
1 6=Uri+1 and Ũ i

1 6=U−1
ri

. This last rule is what determines the cut between Uri and

Ũ i
1σ̃ i

1. The parameter ri determines the number of noiseless protocol unitaries the parties

have been able to successfully apply on the joint register before errors start to arise on

it, and the parameter ti determines the number of errors the parties have to correct before

being able to evolve the state as in the noiseless protocol. Note that this is well-defined:

there is a unique representation in the form (5.5.2) corresponding to any in the form

(5.5.1).

To decide which action to take in round i, Alice starts by decoding the possibly

corrupted messages f ′1, . . . , f ′i−1 ∈ Σ received from Bob up to this point to obtain her best

guess si
B =D( f ′1, . . . , f ′i−1) for the history sB of his history tree. Along with the history

sA of her history tree, she uses it to compute her best guess of the form (5.5.2) of the

joint state. If her decoding of Bob’s history is good (error-free), then she has all the

information she needs to compute the joint state |ψi〉. She can then choose the right

actions to take to evolve the simulation. She takes the following actions based on the

assumption that her decoding is good. If it is not, errors might accumulate on the joint

register ABC, which she will later have to correct.

Alice’s next move depends on whether ti = 0 or not, according to her best guess for

the state |ψi〉). If ti = 0, then she wishes to evolve the protocol one round further, if it is

her turn to do so. That is, if ri is even, then she sets MA
i = +1 to apply UAC

ri+1, but if ri

is odd, Bob should be the next to apply a unitary of the protocol, so she sets MA
i = 0. If

ti 6= 0, then she wishes to correct the last error not yet corrected, if she is the one who

applied it. That is, if Ũti = UM′
`′ for `′ odd, then she sets MA

i = −M′ ∈ {±1} (note that

in this case it holds that jAi = `′), else she sets MA
i = 0 and she hopes Bob will next

correct Ũti . In all cases, with σ̂C
i = ±Xx̂iZẑi , she sets xADi = x̂i,zADi = ẑi and computes

cAi = cA(i−1)+MA
i , jAi = 2cA(i−1)+MA

i . Note that she does not care about the global phase

factor ±1 appearing in σ̂i during the clean-up from the form (5.5.1) to the form (5.5.2).

This phase arises because the Pauli operators X and Z anticommute, and is irrelevant.

After this classical preprocessing, she can now perform her quantum operations on

the AC registers: she first decodes the teleportation operation (and possibly some other

Pauli errors remaining on the C register) by applying ZzADi XxADi on the T 2(i−1)
A register
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before swapping registers T 2(i−1)
A and CA, effectively putting the virtual C register into

CA. (Note that in round 1, Alice already possesses the C register so this part is trivial: we

let T 0
A =CA and set xAD1 zAD1 = 00.) She then performs UMA

i
jAi

on the virtual AC register to

try to evolve the protocol (or correct a previous error), before teleporting back the virtual

C register to Bob using the half of entangled state in the T 2i−1
A register, obtaining mea-

surement outcome xAMi zAMi ∈ {0,1}2. She updates her history sA by following the edge

ai = (xADi zADi ,MA
i ,x

AM
i zAMi ) in the history tree, and transmits message ei = E(a1 · · ·ai)

over the noisy classical channel, with E the encoding function of the tree code.

Upon receiving the message e′i, a possibly corrupted version of ei, Bob obtains his

best guess si
A for Alice’s history sA by computing, with previous messages e′1 · · ·e′i−1,

si
A =D(e′1 · · ·e′i). He uses it along with his own history sB to compute his best guess of

the representation of the state(
XxAMi ZzAMi UMA

i
jAi

ZzADi XxADi

)
|ψi〉 (5.5.3)

analogous to that in (5.5.1). He then cleans this up to obtain a representation analogous

to that in (5.5.2), and based on this latest representation chooses in the same way as Al-

ice his xBDi zBDi ,MB
i , and then uses MB

i and cBi−1 to compute cBi , jBi . After this classical

preprocessing, he can then perform his quantum operations: he first decodes the telepor-

tation operation by applying ZzBDi XxBDi on the T 2i−1
B register and by swapping it with CB,

creating a virtual C register, then performs UMB
i

jBi
on the virtual BC register to try to evolve

the protocol, before teleporting back the virtual C register to Alice using the half of en-

tangled state in the T 2i
B register, and obtains measurement outcome xBMi zBMi . He updates

his history sB by following the edge bi = (xBDi zBDi ,MB
i ,x

BM
i zBMi ), and transmits message

fi = E(b1 · · ·bi) over the channel. The round is completed when Alice receives message

f ′i , a possibly corrupted version of fi. After the N′
2 rounds, Alice and Bob take the par-

ticular registers Ã, B̃ and C̃ specified by the noiseless protocol embedding (see section

5.3.1), and use them as their respective outcomes for the protocol. If the simulation is

successful the output quantum state corresponds to the ABC subsystem of |ψfinal〉ABCE

specified by the original noiseless protocol. We later prove that the protocol is successful
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if the error rate is below 1
80 .

We summarize the protocol below. Alice and Bob start with the state |ψinit〉 in the

registers ABCAE, the register CB initialized to |0〉, the registers TATB initialized to N′

EPR pairs
[

1√
2
(|00〉+ |11〉)

]⊗N′

, with one qubit from each EPR pair held by Alice, one

by Bob, and the qubits in registers Ã, B̃,C̃ initialized to |0〉 (cf. the noiseless protocol

embedding described in Section 5.3.1). They also have access to a suitable amount of

classical workspace for local computations required for the simulation. They repeat the

following for i = 1, . . . , N′
2 :

1. If i> 1, Alice computes si
B=D( f ′1 · · · f ′i−1), and extracts bi

`=(xiBD
` ziBD

` ,MiB
` ,xiBM

` ziBM
` )

for `= 1, . . . , i−1. These are her best guesses for Bob’s messages. She computes

the corresponding ciB
` , jiB

` . For i = 1, the values of the parameters Alice needs for

the simulation are straightforward.

2. Also using sA, she computes her best guess for the form (5.5.2) of the state |ψi〉 of

the joint register, and the corresponding xADi zADi , MA
i , cAi , jAi , as described earlier

in this section.

3. If i> 1, she completes the teleportation operation by applying ZzADi XxADi to register

T 2(i−1)
A and swaps this with the CA register.

4. She applies UMA
i

jAi
to the ACA register, in an attempt to evolve the original protocol.

5. She teleports the CA register to Bob using entanglement in register T 2i−1
A and gets

outcomes xAMi zAMi .

6. Alice updates her state sA by following edge ai = (xADi zADi ,MA
i ,x

AM
i zAMi ) and

transmits message ei = E(a1 · · ·ai) using the noisy classical channel to Bob, who

receives e′i, a possibly corrupted version of ei.

7. Bob computes si
A = D(e′1 · · ·e′i) and also using sB, performs actions on his side

analogous to Alice’s. He completes the teleportation operation, swaps register

T 2i−1
B with CB, applies the appropriate unitary operation to the register CBB, uses

the T 2i
B register to teleport the CB register to Alice, and finally transmits fi. Round

i is completed when Alice receives f ′i , a possibly corrupted version of fi.
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After these N′
2 rounds, they both extract their protocol outcome from the ÃB̃C̃ registers

specified by the noiseless protocol embedding.

5.5.4 Analysis

The analysis is done conditional on some overall classical state (and in particular,

some respective views of Alice, Bob and Eve of the transcript) at each round. In particu-

lar, if the adversary has an adaptive, probabilistic strategy, we condition on some strategy

based on the outcome of her previous measurements. We return to this issue later.

The total number of rounds is N′
2 , with two transmissions per round, for a total of N′

transmissions. We define two kinds of rounds: good rounds in which both parties decode

correctly the other party’s history, and bad rounds in which at least one party makes a

decoding error. To analyse the protocol, we define a “potential function” P(i) ∈ Z which

increases at least by some (strictly positive) amount in good rounds, and decreases by at

most some other (bounded) amount in bad rounds. The potential function is such that

we know the simulation succeeds whenever P(N′
2 +1)≥ N +1. Hence, it is sufficient to

bound the ratio of good to bad rounds as a function of the error rate to prove the success

of the simulation.

Let us now define P(i) more formally. To do so, we use the representation (5.5.2)

for the form of the quantum state of the joint registers at the beginning of round i (or

equivalently, at the end of round i−1). Recall that ri determines the number of noiseless

protocol unitaries the parties have been able to successfully apply on the joint register

before errors start to arise on it, and ti determines the number of errors the parties have

to correct before being able to resume the simulation. Define

P(i) = ri−2ti. (5.5.4)

The factor of 2 in front of ti is to account for the worst case scenario for the simulation

in round i. As will be apparent from our analysis below, in the worst case, all remaining

Ũ i
l ’s are applied by the same party who applied Uri−1 and Ũ i

ti = U−1
ri−1−2(ti−1). Then, if

P(N′
2 +1)≥ N +1, the operators Ũ i

` in (5.5.2) at the end of the simulation (i.e., with i =
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N′+1) may only be equal to the identity operator, as ensured by the noiseless protocol

embedding. Thus the output of the simulation is correct. We now prove the following

technical lemma which bounds P(i) as a function of the number of good and bad rounds.

Lemma 5.5.1. At the end of round i, define

Ni
g = |{ j : j ≤ i, round j was good}|,

Ni
b = |{ j : j ≤ i, round j was bad}|.

Then P(i+1)≥ Ni
g−4Ni

b.

Proof. We prove Lemma 5.5.1 by induction. For the base case, |ψ1〉= |ψinit〉, so P(1) =

0 and the statement holds.

To get a flavor of the induction step, let us look at P(2) at the end of round 1. In

round 1, Alice applies U1 then teleports the virtual C register. If Bob decodes the message

correctly, he applies U2 and teleports the virtual register C back, leading to a joint state of

the form σ̂U2U1 |ψinit〉. In this case N1
b = 0, so P(2) = 2≥ 1 = N1

g . If there is a decoding

error, at worst Bob applies the incorrect Pauli operation to complete the teleportation

step, and still applies U2. The joint state is then of the form σ̂U2σ̃U1 |ψinit〉. In this case,

N1
g = 0, and P(2) = 1−2 =−1≥−4 =−4N1

b .

For the induction step, given the state |ψi〉 at the end of round i− 1, we consider

two cases. First, suppose that the ith round is good, so that Ni
g = Ni−1

g + 1 and Ni
b =

Ni−1
b . Both Alice and Bob correctly reconstruct the state as in (5.5.2). If ti = 0, by the

simulation rules, at least one of Alice or Bob can advance the original noiseless protocol,

and ti+1 = ti = 0 and ri+1≥ ri+1. (If ri is odd, only Bob advances the protocol, otherwise

both do.) If ti ≥ 1, again, at least one of Alice or Bob can invert the unitary operation Ũ i
ti

(depending on the parity of `, where Ũ i
ti =U±1

` ). Then ti+1 ≤ ti−1, and ri+1 ≥ ri. So in
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all cases

P(i+1) = ri+1−2ti+1

≥ ri−2ti +1

= P(i)+1

≥ Ni−1
g −4Ni−1

b +1

= Ni
g−4Ni

b .

In the second case, the ith round is bad, so that Ni
g = Ni−1

g and Ni
b = Ni−1

b + 1. At

worst, both Alice and Bob decode the received messages incorrectly. With an incorrect

guess for the state in (5.5.2), Alice’s actions in this round either decrease ri by one,

or increase ti by one, or leave both unchanged. The same holds for Bob. At worst,

ti+1 = ti + 2 and ri+1 = ri. The other possibilities such as ti+1 = ti + 1,ri+1 = ri− 1 or

ti+1 = ti,ri+1 = ri−2 lead to a smaller decrease in the potential function P. So

P(i+1) = ri+1−2ti+1

≥ ri−2ti−4

= P(i)−4

≥ Ni−1
g −4Ni−1

b −4

= Ni
g−4Ni

b.

In all cases, P(i+1)≥ Ni
g−4Ni

b which proves the claim.

Corollary 5.5.1. If P(N′
2 +1)≥ N +1, then the simulation succeeds with zero error.

Proof. For notational convenience, in this proof let r = rN′
2 +1

, t = tN′
2 +1

. We also let the

superscript N′
2 +1 be implicit in all the operators Ũ±1

` that occur in the proof below.

The only unitary operations from the original protocol that Alice applies are of the

form U±1
` , for odd `. Moreover, Alice knows her history at all times. Thus, even in a

bad round i, she either applies U`+2, I or U−1
` , where U` is the last unitary operation

she applied in the representation (5.5.2). A similar statement holds for Bob. Thus, the
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subscripts, in the original protocol, of two consecutive unitary operators applied by the

same party in (5.5.2) do not differ by more than 2.

We have P(N′
2 +1) = r−2t ≥ N +1, so r ≥ N +1+2t with t ≥ 0. In particular, we

have r≥N+1. Once Ur has been applied, the noiseless protocol embedding ensures that

the final state of the noiseless protocol in registers ABC is safely stored in local registers

ÃB̃C̃ that are never changed by UN+2 · · ·UN′+1, or by the Pauli operations on the virtual C

register. It remains to be verified that that all the operators Ũ`, 0 ≤ ` ≤ t, have indices

strictly higher than N +1.

The indices (in the original protocol) of the operators Ũ` applied by Alice may de-

crease by at most two at once, and similarly for Bob. So the worst case is if all the

operators Ũ` are applied by the same party, and are inverses of the noiseless protocol

unitaries. Without loss of generality, we consider only this case. If the party who ap-

plied Ur also applies all the operators Ũ`, then Ũ1 =U−1
r , Ũ2 =U−1

r−2, . . . , Ũt =U−1
r−2(t−1)

and r− 2(t− 1) > r− 2t = P(N′
2 + 1) ≥ N + 1. So the simulation generates the correct

output. Similarly if the party who applied Ur−1 also applies all the operators Ũ`, then

Ũ1 =U−1
r−1, Ũ2 =U−1

r−3, . . . , Ũt =Ur−2t+1 and r−2t+1 > r−2t = P(N′
2 +1)≥N+1. In

all cases, the safe registers ÃB̃C̃ to be outputted by the parties hold the ABC subsystem

of |ψfinal〉 at the end of round N′
2 whenever P(N′

2 +1)≥ N +1.

We now show that if the number of errors as a fraction of N′, which is the total

number of classical symbols transmitted over the adversarial channel, is bounded by a

particular constant δ > 0, we are guaranteed that the simulation succeeds. We do this in

two steps: we first give a bound on the fraction of bad rounds as a function of the error

rate, and then use it to show that below a certain error rate, the simulation succeeds.

The bound on the fraction of bad rounds as a function of the error rate we use follows

from the more general result in Lemma 5.6.2, which we prove in the next section when

studying a protocol designed to tolerate the highest possible error rate. The implication

we use here is the following: if the error rate is bounded by δ (so there are at most δN′

errors) and the tree code distance of both Alice and Bob’s tree code is at least α , then

the number of bad rounds Nb is bounded as Nb ≤ (2δ + εα)N′, where εα = 1−α .
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We are now ready to prove that the simulation succeeds with the parameters chosen

for our protocol. We have εα = 1
40 , δ = 1

80 , N′ = 4(N +1), so

P
(

N′

2
+1
)
≥ Ng−4Nb

=
N′

2
−5Nb

≥ N′

2
−5(2δ + εα)N′

= N′
(

1
2
− 10

80
− 5

40

)
=

1
4

N′

= N +1 .

Here, the first inequality is from Lemma 5.5.1, the first equality is by definition of Ng,

Nb, i.e., N′
2 = Ng+Nb, and the second inequality is from our bound on Nb due to Lemma

5.6.2. The fact that the simulation succeeds is then immediate from Corollary 5.5.1.

Note that the form of the simulation protocol does not depend on the particular pro-

tocol to be simulated, but only on its length N and the noise parameter of the adversarial

channel we want to tolerate. Also note that even if the adversary is adaptive and prob-

abilistic (with adaptive, random choices depending on her measurement outcomes and

her view of the transcript, as allowed by the model), the simulation succeeds regardless

of her choice of action. As long as the corruption rate is bounded by δ , our analysis

holds in each branch of the adversary’s probabilistic computation . We use the definition

of the class A S
δ ,q,N′ to prove that indeed, the simulation succeeds with zero error.

For |ψ〉 ∈H (A⊗B⊗C⊗E ⊗D), with D a purifying system of the same size as

A⊗B⊗C⊗E, with have that

(Π⊗ ID)(|ψ〉) = TrE(UN · · ·U1|ψ〉〈ψ|U†
1 · · ·U

†
N) ,

where Π is the protocol that is being simulated. For any adversary in A ∈ A S
δ ,q,N′ , the
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simulation yields state

(SΠ(A)⊗ ID)(|ψ〉) = Tr¬(ÃB̃C̃D)(M
Π

N′+1NN′M
Π

N′ · · ·M
Π
2 N1M

Π
1 (|ψ〉〈ψ|)),

in which the ¬(ÃB̃C̃D) subscript for the partial trace means that we trace all except

the ÃB̃C̃D registers, and the instrument M Π
` is the simulation step for the `th local

computation by the corresponding party. Then we can rewrite

(SΠ(A)⊗ ID)(|ψ〉)

= ∑
xTyTz

pXTYTZ(xT,yT,z| |ψ〉) |xT〉〈xT|XT⊗|yT〉〈yT|YT⊗|z〉〈z|Z⊗ρ(xT,yT,z)

where XT, YT are the registers containing the views xT, yT of the transcript as seen

by Alice and Bob, respectively, Z is the adversary’s classical register, ρ(xT,yT,z) are

some quantum states, and pXTYTZ a probability distribution conditional on the input

|ψ〉. By definition of the class A S
δ ,q,N′ , we have that, conditioned on some classi-

cal state z of Eve, ρ(xT,yT,z) suffers at most δN′ corruptions by Eve, for any possi-

ble transcript views xT, yT. So, by the above analysis, its ÃB̃C̃D subsystems contains

TrE(UN · · ·U1|ψ〉〈ψ|U†
1 · · ·U

†
N), a perfect copy of (Π⊗ ID)(|ψ〉) for any views xT,yT of

the transcripts of Alice and Bob, respectively. Hence, tracing over all subsystems but

ÃB̃C̃D, we obtain (Π⊗ ID)(|ψ〉), and the simulation protocol succeeds with zero proba-

bility of error at simulating any noiseless protocol of length N against all adversaries in

A S
δ ,q,N′ .

We have thus established the following. We use a tree code of arity d = 48 and dis-

tance parameter α = 1− εα = 39
40 . With q = |Σ| chosen according to Lemma 5.2.1,

RC = N
N′ logq = 1

4(1+ 1
N ) logq

≥ 1
8logq , RE = 1

logq , and δ = 1
80 , we have that for all N,

there exists a universal simulation protocol in the shared entanglement model that, given

black-box access to any two-party quantum protocol of length N in the noiseless model,

succeeds with zero probability of error at simulating the noiseless protocol on any input

(independent of the contents of the purifying register held by Eve) while transmitting
1

RC logqN symbols from an alphabet Σ of size q over any adversarial channel with error
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rate δ , and consuming RE
RC

N EPR pairs. This proves Theorem 5.5.1.

5.6 Tolerating Maximal Error Rates

We show how we can modify the basic protocol described in the last section such that

it tolerates up to 1
2 − ε error rate, for arbitrarily small ε > 0, in the shared entanglement

model. This is optimal: we also prove that no interactive protocol can withstand an error

rate of 1
2 in this model. More formally, we prove the following results.

Theorem 5.6.1. Given any two-party quantum protocol of length N in the noiseless

model, no protocol in the shared entanglement model can tolerate an error rate of 1
2 and

succeed in simulating the protocol with lower worst-case error than the best unidirec-

tional protocol. This result holds in the oblivious as well as the alternating communica-

tion models. More precisely, for all noiseless protocol lengths N ∈ N, for all communi-

cation rates RC > 0, transmission alphabet sizes q∈N, entanglement consumption rates

RE≥ 0, for all simulation protocols S in the shared entanglement model of length N′ with

the above parameters, there exists an adversary A ∈A S
1
2 ,q,N

′
and an unidirectional pro-

tocol U such that for all noiseless protocols Π of length N, ‖SΠ(A)−Π‖� ≥ ‖U−Π‖�.

Theorem 5.6.2. Given an adversarial channel in the shared entanglement model with

constant error rate strictly smaller than 1
2 , we can simulate any noiseless protocol of

length N with negligible error over this channel using a number of transmissions linear

in N, and consuming a linear number of EPR pairs. More precisely, there exists a

constant c> 0 such that for arbitrarily small constant ε > 0, there exist a communication

rate RC > 0, an alphabet size q∈N, and an entanglement consumption rate RE ≥ 0 such

that for all noiseless protocol lengths N ∈ 2N, there exists a universal simulator S in

the shared entanglement model of length N′ with communication rate RC, transmission

alphabet size q, entanglement consumption rate RE, which succeeds with error 2−cN at

simulating all noiseless protocols of length N against all adversary in A S
1
2−ε,q,N′

.
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5.6.1 Proof of Optimality

To prove Th. 5.6.1, we observe that the argument of Ref. [62] in the classical case

applies here as well: we only need to notice that if the error rate is 1
2 with alternating

communication in the shared entanglement model, then an adversary can completely

corrupt all of the transmissions of either Alice or Bob, at his choosing, say Bob’s. In

particular, he could replace all of Bob’s transmissions by a fixed message, and leave Al-

ice’s messages unchanged. Effectively Bob does not transmit any information to Alice,

and this protocol can be simulated in the unidirectional model. Indeed, suppose that for

a fixed register E, transmission alphabet Σ of size q, noiseless protocol length N, and

simulation protocol length N′, the adversary A1
2

maps all transmissions from Bob to

Alice to a fixed symbol e0 ∈ Σ, for any simulator S of length N′ that tries to simulate

a noiseless protocol Π of length N. We construct MU
1 which is the composition of all

operations of Alice in S while replacing all messages of Bob by e0. In the unidirectional

protocol U , Alice applies the instrument MU
1 to Alice’s share of the joint state in the

simulation protocol. The quantum communication from Alice to Bob is the concatena-

tion of all the messages from Alice in the simulation protocol, along with Bob’s share of

the initial joint state. Bob would then apply the instrument MU
2 , which is the sequential

application of all his operations in the simulation protocol S. This unidirectional pro-

tocol simulates S running against the adversary A1
2

for any noiseless protocol and any

input, and then produces the same output.

The above proof also applies in an oblivious model for noisy communication. In

an oblivious model, the order in which the parties speak is fixed by the protocol and

does not depend on the input or the actions of the adversary. An adversary can choose

to disrupt all the messages of the party who communicates at most half the number of

symbols. Hence, the proof also extends to the case of oblivious, but not necessarily

alternating, communication. In such a case, the simulation protocol would also define a

function Speak : [N′]→{A,B} known to all (Alice, Bob and Eve) which specifies whose

turn it is to speak and is independent of both the input and of the action of Eve.

We can further extend the argument to the case of a Speak function which depends
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on some secret key and is unknown to Eve, so Eve does not always know who is going

to speak more often. In that case, Eve can flip a random bit to decide which party’s

communication she is going to corrupt. It would be a reasonable assumption if the

communication is classical, that Eve can see who speaks before she decides whether or

not to corrupt a message. In this case, the statement is changed to ‖SΠ(A)−Π‖� is

bounded away from zero, as can be seen by considering, for increasing N, some family

of protocols computing, for example, the bitwise parity function of N
2 bits output by both

parties or the swap function in which Alice and Bob want to exchange their A,B registers.

An extension of the argument of the proof of Theorem 5.7.2 shows that the fidelity is

also bounded away from 1 for the case of protocols computing the inner product binary

function. To reach the 1
2 bound on the tolerable error rate, the parties would then need

an adaptive strategy which depends on the sequence of errors applied by the adversary.

However, this is dangerous in a noisy model: depending on the error pattern, the parties

might not agree on whose turn it is to speak, and they could run into synchronisation

problems.

5.6.2 Proof of Achievability

We first describe the modification to the simulation of Section 5.5 that are required

to tolerate maximum error, and then describe how to adapt the analysis to obtain such

optimal result.

5.6.2.1 Description of the Simulation

The proof of achievability is somewhat more involved. It follows ideas similar to

that of the basic simulation, but protocol is carefully analysed and optimized. We start

by setting up new notation that enables us to do so. The intuition given in section 5.5.2

still applies here, but parameters which were fixed in the basic case now depend on the

parameter ε when we wish to tolerate an error-rate of 1
2 − ε . In particular, the distance

parameter α = 1− εα now changes, as well as the length of the protocol N′ = lN. Since

the parties have access to shared entanglement, they do not need to distribute it at the
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beginning of the protocol, and they can also use it to generate a secret key unknown

to the adversary Eve. The secret key is used to generate a blueberry code with erasure

parameter εβ = |Σ|−1
|Γ|−1 , with Σ the tree code alphabet and Γ the blueberry code alpha-

bet. Each of the tree code transmission alphabet symbols are further encoded with the

blueberry code before transmission over the noisy channel. A corruption caused by the

adversary is detected as an erasure with probability 1− εβ . When an erasure is detected

by either party in a round, that party does not attempt to continue the simulation (as in

the previous section) in that round. The corresponding trit sent is 0, and the teleportation

decoding bits are 00. Otherwise, the structure of the protocol is mainly unchanged.

We summarize the optimized protocol below. Alice and Bob start with the state |ψinit〉
in the registers ABCAE, the register CB initialized to |0〉, the registers TATB initialized

to N′ EPR pairs
[

1√
2
(|00〉+ |11〉)

]⊗N′

, with one qubit from each EPR pair held by Al-

ice, one by Bob, and the qubits in registers Ã, B̃,C̃ initialized to |0〉 (cf. the noiseless

protocol embedding described in Section 5.3.1). They measure a suitable number of ad-

ditional EPR pairs to produce a secret key unknown to the adversary. Using this, generate

common blueberry codes B1,B2, . . . ,BN′ uniformly and independently from the set of

permutations over Γ. They also have access to a suitable amount of classical workspace

for local computations required for the simulation.

Alice and Bob repeat the following for i = 1 · · · N′
2 :

1. For i = 1, there is no message to be decoded, and the values of the parameters

needed for the simulation are straightforward. Alice continues with step 3. If i> 1,

Alice decodes the blueberry encoding of Bob’s possibly corrupted last transmis-

sion. If she detects an erasure, she sets MA
i = 0,xADi = zADi = 0 and f ′i−1 =⊥, and

skips to step 4 below. Else, she decodes the transmission as f ′i−1 ∈ Σ, a possibly

corrupted version of Bob’s last tree encoding fi−1, and continues with step 2.

2. Alice computes si
B = D( f ′1 · · · f ′i−1), and extracts bi

` = (xiBD
` ziBD

` ,MiB
` ,xiBM

` ziBM
` )

for ` = 1, . . . , i− 1, her best guess for Bob’s messages, and the corresponding

ciB
` , jiB

` .

3. Using sA,sB, she computes her best guess for the state |ψi〉 of the joint register,
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and the corresponding xADi zADi ,MA
i ,c

A
i , jAi .

4. She completes the teleportation by applying ZzADi XxADi to register T 2(i−1)
A and swaps

this with the CA register.

5. She tries to make progress in the simulation by applying UMA
i

jAi
to the ACA register.

6. She teleports the CA register to Bob using entanglement in register T 2i−1
A and gets

outcomes xAMi zAMi .

7. Alice updates her history sA by following edge ai = (xADi zADi ,MA
i ,x

AM
i zAMi ), com-

putes ei = E(a1 · · ·ai) and transmits the blueberry encoding B2i−1(ei) of ei over

the noisy the channel to Bob.

8. Upon receiving of a possibly corrupted version of Alice’s last transmission, Bob

decodes the blueberry code layer: he either detects an erasure and sets e′i =⊥, or

else decodes the transmission as e′i ∈ Σ, a possibly corrupted version of ei.

9. Bob computes xBDi zBDi ,MB
i analogously to Alice, depending on whether or not he

detects an erasure. In more detail, if Bob does not detect an erasure, he decodes

si
A =D(e′1 · · ·e′i) and also uses sB to compute the above parameters. He then per-

forms actions on his registers analogous to Alice’s: he completes the teleportation

step, swaps register T 2i−1
B with CB, applies the operator UMB

i
jBi

to the registers BCB,

uses the T 2i
B register to teleport back the CB register to Alice, computes fi, and

transmits the blueberry encoding B2i( fi) of fi to Alice. Round i is completed

when Alice receives a possibly corrupted version of this message.

After these N′
2 rounds, they both extract the output of the simulation from the ÃB̃C̃

registers specified by the noiseless protocol embedding.

5.6.2.2 Analysis

As in the proof in Section 5.5.4, the analysis is first carried conditional on some

respective views of Alice, Bob and Eve of the transcript at each round. An additional

component is the conditioning on some classical state z of the Z register of the adver-

sary, Eve, and the averaging over the shared secret key used for the blueberry code. In
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particular, if the adversary has an adaptive and probabilistic strategy, we condition on

some strategy consistent with the transcript on which we have already conditioned. We

return to this issue later.

We again define a function P(i) such that the simulation succeeds whenever P(N′
2 +

1)≥N+1. Using the notation and the form of the state |ψi〉 on the joint register ABCE at

the beginning of round i (or at the end of round i−1) rewritten as in (5.5.2), we let P(i) =

ri−2ti (i.e., the same potential function works for the enhanced simulation as well). We

now have three kinds of rounds: good rounds in which both parties decode correctly

the other party’s history, bad rounds in which at least one party makes a decoding error,

and the erasure rounds, in which no party makes a decoding error, but at least one party

decodes an erasure from the blueberry code.

We state an analogue of the technical Lemma 5.5.1 and its corollary.

Lemma 5.6.1. At the end of round i, define

Ni
g = |{ j : j ≤ i, round j was good}|,

Ni
b = |{ j : j ≤ i, round j was bad}|,

Ni
e = |{ j : j ≤ i, round j was an erasure round}|.

Then P(i+1)≥ Ni
g−4Ni

b.

The proof of this lemma and its corollary below are omitted since they are nearly

identical to the proofs in the basic simulation. The only difference is if in some round,

which may be a bad round or an erasure round, at least one party detects an erasure.

We sketch the argument in the case that round i is an erasure round. The only unitary

operation applied by a party that detects an erasure, is a Pauli operator on the virtual

communication register C. If both parties detect an erasure, ri+1 = ri and ti+1 = ti. If

any one party decodes correctly and the other detects an erasure, we have ri+1 ≥ ri

and ti+1 ≤ ti, so P(i+1) ≥ P(i). (The function only increases if the party that decoded

correctly can apply Uri+1 or Ũ−1
ti as defined by the simulation, i.e., that party holds the

registers on which the said unitary operation acts.) In both cases, the quantity Ni
g−4Ni

b =
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Ni−1
g −4Ni−1

b ≤ P(i), so P(i+1)≥ Ni
g−4Ni

b.

Corollary 5.6.1. If P(N′
2 +1)≥ N +1, then the simulation succeeds with zero error.

Hence, it suffices to bound the ratio of bad to good rounds as a function of the cor-

ruption rate in order to prove the success of the simulation. To do so, we show that

depending on a given tolerable error rate 1
2 − ε , we can vary the distance parameter

α = 1− εα of the tree codes used by Alice and Bob and also the erasure parameter

β = 1−εβ of the blueberry codes they use, and make this ratio as low as desired (except

with negligible probability in the random choice of the shared secret key used for the

blueberry code). However, there is now a third kind of round, and we would also want

to ensure that the ratio of good rounds versus erasure rounds does not get arbitrarily low,

and that P(N′
2 +1)≥ N +1.

We focus on the number Ng = N
N′
2 +1

g , Nb = N
N′
2 +1

b and Ne = N
N′
2 +1

e of good, bad and

erasure rounds in the whole simulation, respectively. To bound the fraction of bad rounds

as a fraction of the corruption rate, we appeal to a corollary of the following technical

lemma. The lemma derives a new bound on tree codes with an erasure symbol. Since

this result only pertains to the structure of such codes independent of our application, it

might have applications to classical interactive coding and other settings as well.

Lemma 5.6.2. If there is a bound δ on the fraction of the total number of transmissions

N′ that are corrupted and not detected as erasure by the blueberry code, then the number

Nb of bad rounds in the whole simulation is bounded as Nb ≤ (2δ + εα)N′, where εα =

1−α , and α is the distance parameter of the tree code with an erasure symbol used by

Alice and Bob.

Proof. For any 1 ≤ i ≤ j ≤ N′
2 , let IAe (i, j), IAb (i, j), IAg (i, j) be the subset of rounds i, i+

1, · · · , j− 1, j in which the symbol Alice gets from the blueberry decoding is an era-

sure, an error (i.e., an incorrect symbol), or the original encoded symbol, respectively.

Note that these are disjoint sets satisfying IAe (i, j)∪ IAb (i, j)∪ IAg (i, j) = [i, j], where [i, j]

denotes the set {i, i + 1, · · · , j− 1, j}. Similarly, let JAb (i, j) and JAg (i, j) be the sub-

sets of [i, j] in which the sequence of messages Alice gets from the tree decoding cor-

responds to a decoding error and the correct decoding, respectively. Again note that

199



IAe (i, j)∪ JAb (i, j)∪ JAg (i, j) = [i, j], a disjoint union. We define analogous subsets for

Bob with A’s replaced by B’s in the notation. Using this notation, we have

Nb =

∣∣∣∣JAb(1,
N′

2

)
∪ JBb

(
1,

N′

2

)∣∣∣∣ , and∣∣∣∣IAb(1,
N′

2

)∣∣∣∣+ ∣∣∣∣IBb(1,
N′

2

)∣∣∣∣ ≤ δN′ .

The statement we wish to prove is∣∣∣∣JAb(1,
N′

2

)
∪ JBb

(
1,

N′

2

)∣∣∣∣ ≤ 2δN′+ εαN′.

We prove the following stronger statements, which claim that the number of rounds in

which a party makes a tree code decoding error is only slightly larger than the number

of rounds in which she makes a blueberry code decoding error:∣∣∣∣JAb(1,
N′

2

)∣∣∣∣ ≤ 2
∣∣∣∣IAb(1,

N′

2

)∣∣∣∣+ 1
2

εαN′ , (5.6.1)

and ∣∣∣∣JBb(1,
N′

2

)∣∣∣∣ ≤ 2
∣∣∣∣IBb(1,

N′

2

)∣∣∣∣+ 1
2

εαN′ .

The proofs of the two statements are similar, so we only prove the statement for

Alice’s subsets. To lighten the notation, we drop the A superscripts. For any subset K of

[N′
2 ] and any two strings ē, ē′ ∈ Σt with ē = e1 · · ·et and ē′ = e′1 · · ·e′t , and t ≤ N′/2, define

∆K(ē, ē′) = |{i ∈ K : i ≤ t,ei 6= e′i}|. Note that with K̄ = [N′
2 ] \K, ∆(ē, ē′) = ∆K(ē, ē′)+

∆K̄(ē, ē
′), and ∆K(ē, ē′)≤ |K|.

We are now ready to prove the statement (5.6.1). We prove by strong induction on the

number of rounds t that |Jb(1, t)| ≤ 2|Ib(1, t)|+ εαt. The base case, t = 1, is immediate:

in the first round, Alice does not decode any message, so that the two sets Jb(1,1), Ib(1,1)

are empty.
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For t > 1, assume that

|Jb(1, j)| ≤ 2|Ib(1, j)|+ εα j ,

for all j with 0 ≤ j < t, where we define Jb(1,0) = Ib(1,0) = /0. If in round t, t >

1, Alice detects an erasure or decodes correctly, then the induction step is immediate.

Hence, for the induction step, we consider the case of incorrect decoding. Let ā ∈ [d]t

be the sequence of transmitted messages, ē = Ē(ā) ∈ Σt the corresponding sequence of

transmissions, ē′ ∈ Σt the sequence of possibly corrupted receptions, ā′ = D(ē′) ∈ [d]t

the sequence of decoded messages, and ē′′ = Ē(ā′) its encoding in the tree code. Then,

by the decoding condition, ∆(ē′′, ē′) ≤ ∆(ē, ē′). Let ` = L(ā, ā′) be the distance of ā, ā′

to their least common ancestor. Then ∆[1,t−`](ē′′, ē) = 0, as the encodings have the same

prefix as well. Since ē′′ 6= ē, note that 1≤ `≤ t. By the induction hypothesis,

|Jb(1, t− `)| ≤ 2|Ib(1, t− `)|+ εα(t− `) .

By definition

|Jb(1, t)| = |Jb(1, t− `)|+ |Jb(t− `+1, t)|,

|Ib(1, t)| = |Ib(1, t− `)|+ |Ib(t− `+1, t)|,

so it suffices to prove

|Jb(t− `+1, t)| ≤ 2|Ib(t− `+1, t)|+ εα` (5.6.2)

to complete the proof.

Let K = Ie(t− `+ 1, t), the set of rounds in which Alice detects an erasure. Since

codewords in the tree code, in particular ē′′ and ē, do not contain the erasure symbol,

the decoding condition ∆(ē′′, ē′) ≤ ∆(ē′, ē) is equivalent to ∆K̄(ē
′′, ē′) ≤ ∆K̄(ē

′, ē). We
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therefore have

∆(ē′′, ē) = ∆K(ē′′, ē)+∆K̄(ē
′′, ē)

≤ |Ie(t− `+1, t)|+∆K̄(ē
′′, ē)

≤ |Ie(t− `+1, t)|+∆K̄(ē
′′, ē′)∆K̄(ē

′, ē)

≤ |Ie(t− `+1, t)|+2∆K̄(ē
′, ē)

= |Ie(t− `+1, t)|++2 |Ib(t− `+1, t)| . (5.6.3)

On the other hand, since ā 6= ā′, the tree code distance condition stipulates that ∆(ē′′, ē)≥
α`= (1− εα)`. Along with (5.6.3), this gives us

` ≤ ∆(ē′′, ē)+ εα` ≤ |Ie(t− `+1, t)|+2 |Ib(t− `+1, t)|+ εα` . (5.6.4)

We use this to bound the number of bad rounds for Alice, in terms of the number of

blueberry decoding errors she encounters. We have

` = |Ie(t− `+1, t)|+ |Jb(t− `+1, t)|+
∣∣Jg(t− `+1, t)

∣∣
≥ |Ie(t− `+1, t)|+ |Jb(t− `+1, t)| . (5.6.5)

Combining (5.6.4) and (5.6.5), we get the claimed bound, as in (5.6.2).

Corollary 5.6.2. If the corruption rate c of the channel satisfies 0 ≤ c < 1
2 , then except

with probability smaller than 2−Ω(N′), where N′ is the length of the simulation protocol,

the total number of bad rounds in the simulation is bounded as Nb≤ (2εβ +εα)N′, where

εα = 1−α , α is the distance parameter of the tree code, εβ = 1−β , and β is the erasure

parameter of the blueberry code.

Proof. Suppose the transmitted symbol is gi ∈Γ after a blueberry encoding B j (where j∈
{2i−1,2i}), and that conditional on her classical state and some measurement outcomes

zk until round i, Eve chooses to corrupt gi into a different g′i ∈ Γ. This action is indepen-

dent from the randomness used in B j, and it holds that Pr[B−1
i (g′i) ∈ Σ|z1, · · · ,zi] = εβ .

This is independent of the classical state and any measurement outcome zi of Eve. We
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consider two cases. First, suppose the corruption rate c is bounded as εβ ≤ c < 1
2 (so that

the corruption rate is at least a constant). By Lemma 5.2.2, with probability 1−2−Ω(N′)

at least a (1−2εβ )-fraction of the cN′ corrupted transmissions are detected as erasures.

So the blueberry decoding gives at most cN′−c(1−2εβ )N′ = 2cεβ N′ < εβ N′ transmis-

sion errors, except with probability negligible in N′. Taking δ = εβ in the statement of

Lemma 5.6.2 gives us the corollary. If 0≤ c≤ εβ , then the corollary is immediate from

Lemma 5.6.2, with δ = εβ .

With the above result in hand, we can show that if the corruption rate is 1
2 − ε

with ε > 0, and we take εα = 1
20ε,εβ = 1

40ε,N′ ≥ 2
ε
(N +1), then except with negligible

probability, the simulation succeeds:

P
(

N′

2
+1
)
≥ Ng−4Nb

=
N′

2
−Ne−5Nb (By Lemma 5.6.1)

≥ εN′−5Nb (since N′/2 = Ng +Nb +Ne)

≥ εN′−5(2εβ + εα)N′ (since Ne ≤ (1/2− ε)N′)

= N′
(

ε− 10
40

ε− 5
20

ε

)
(By Corollary 5.6.2)

=
1
2

εN′

≥ N +1 .

That the simulation succeeds is now immediate from Corollary 5.6.1.

The above statement holds conditional on some classical state z of the Z register of

Eve, and some respective views of Alice and Bob of the transcript at each round. To

prove Theorem 5.6.2, we argue as in Section 5.5.4 to translate these results to the output

state produced by the protocols, even when we consider inputs entangled with some

reference register R. We do not repeat the whole analysis here, since it is nearly identical

once we make the following observation. An arbitrary channel Eve fitting the framework

of the shared entanglement model could have adaptive, probabilistic behaviour based on
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previous measurement outcomes. However, these probabilistic choices are independent

of the secret key generated by Alice and Bob for the blueberry code. As in section

5.5.4, the above result holds for each probabilistic choice of Eve. Summing over all such

choices, we obtain the same result, proving Theorem 5.6.2.

5.7 Results in Other Models

By adapting the results in the shared entanglement model for an adversarial error

model, we can obtain several other interesting results. We first complete our study of the

shared entanglement model with results in a random error setting. We then consider the

quantum model and obtain results for both adversarial and random error settings. We

also prove that the standard forward quantum capacity of the quantum channels used

does not characterize their communication capacity in the interactive communication

scenario. Finally, we consider a variation on the shared entanglement model in which,

along with the noisy classical communication, the shared entanglement is also noisy.

5.7.1 Shared Entanglement Model with Random Errors

In this section we consider two-party protocols with prior shared entanglement and

classical communication over binary symmetric channels. Given a two-party quantum

protocol of length N in the noiseless model and any C > 0, we exhibit a simulation

protocol in the shared entanglement model that is of length O( 1
C N) and succeeds in

simulating the original protocol with negligible error over classical binary symmetric

channels of capacity C. More precisely,

Theorem 5.7.1. There exist constants c, l > 0 such that given any classical binary sym-

metric channel M of capacity C > 0 and noiseless protocol length N ∈ 2N, there exist

a universal simulator S in the shared entanglement model of length N′ with communi-

cation rate RC ≥ lC, transmission alphabet of size 2, entanglement consumption rate

RE ≤ 1, which succeeds with error 2−cN at simulating all noiseless protocols of length

N over M .
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We complement this with a lower bound for the communication rate. We exhibit a

sequence of two-party quantum protocols of increasing length N in the noiseless model

such that for all C > 0, any corresponding sequence of simulation protocols of length

o( 1
C N) in the shared entanglement model with classical binary symmetric channels of

capacity C fail at producing the final state with low error on some input. Moreover, the

family of quantum protocol can be chosen to be one that computes a distributed binary

function. More precisely,

Theorem 5.7.2. There exists a sequence {ΠN}N∈2N of two-party quantum protocols

such that for all C > 0, for any simulation protocol S in the shared entanglement model

of length N′ ∈ o(N/C) with communication rate RC = N
N′ and arbitrary entanglement

consumption rate RE, the simulation makes error at least 1−o(1) over binary symmetric

channel of capacity C.

5.7.1.1 Discussion of Optimality

The above results show that, in the regime where we use binary symmetric channels

of classical capacity close to 0, we cannot do much better than what we achieve, up to

a multiplicative constant on top of the 1
C dilation factor. If we want to perform better

in that regime, we would have to use the specifics of the operations implemented by

the noiseless protocol instead of using it as a black-box, even if we are restricting to

protocols computing binary functions. We could however hope to be able to get much

better hidden constants, since we do not match the case of one-way communication

in which the constant can be made arbitrarily close to 1
2 as the quantum message size

increases. Another regime of interest would be for channels of capacity close to 1, in

which our techniques dilate the length of the protocols by a large multiplicative constant

even when the error rate is low. In the classical case, recent results of Kol and Raz [90]

show how to obtain communication rates going to 1 as the capacity goes to 1. Using our

representation for quantum protocols, we are able to adapt their techniques with ideas

similar to those used here to obtain comparable results in the shared entanglement model

(up to a factor of 2 for teleportation), and this result will appear in a forthcoming paper.
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5.7.1.2 Proof of Theorem 5.7.1

In Lemma 2 of Ref. [114], it is stated that, given a transmission alphabet Σ, there ex-

ists d > 0 and ε ∈ (0, 1
90) such that given a binary symmetric channel M of capacity C,

there is a p ∈ N, p≤ d 1
C , an encoding function E : Σ→ {0,1}p and a decoding function

D : {0,1}p→ Σ such that Pr[D(M (E(e))) 6= e]≤ ε for all e. We use this in conjunction

with the result of Theorem 5.5.1 and the Chernoff bound to obtain the following result:

with ε < 1
80 , Σ given by Lemma 5.2.1 for a tree code of arity 48 and distance parameter

α = 39
40 and the corresponding d > 0, given a binary symmetric channel of capacity C

and the corresponding p ∈ N,E and D, if all the Σ transmissions in the basic simulation

protocol are done by reencoding over {0,1}p with E (and decoding with D), then except

with probability 2−Ω(N′′) for N′′ = 4(1+ 1
N )N the length of the basic simulation protocol

over alphabet Σ, N′ = pN′′ the length of the oblivious simulation protocol over the bi-

nary symmetric channel, and N the length of the noiseless protocol to be simulated, the

error rate for transmission of Σ symbols is below 1
80 . By Theorem 5.5.1 the simulation

succeeds.

5.7.1.3 Proof of Theorem 5.7.2

It is known that for a classical discrete memoryless channel such as the binary sym-

metric channel, entanglement-assistance does not increase the classical capacity [19],

and it is also known that allowing for classical feedback also does not lead to an increase

in the classical capacity. However, we might hope that allowing for both simultaneously

might lead to improvements. This is not the case: classical feedback augmented by

shared entanglement can be seen to be equivalent to quantum feedback, and it is also

known that for discrete memoryless quantum channels, the classical capacity with un-

limited quantum feedback is equal to that with unlimited entanglement assistance [25].

Hence, in the shared entanglement model, the classical capacity of the binary symmetric

channels used is not increased by the entanglement assistance and the other binary sym-

metric channel’s feedback. For some protocols of length N fitting our general framework

in the noiseless model, like those accomplishing a quantum swap function or even a clas-
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sical swap or bitwise XOR functions on inputs of size N
2 , the parties effectively exchange

their entire inputs to produce the correct output. Hence, a dilation factor proportional to

the inverse of the capacity 1
C is necessary. What we wish to prove is even stronger: there

exists a family of distributed binary functions such that this is necessary. We consider the

inner product function IPn : {0,1}n×{0,1}n→{0,1}, defined as IPn(x,y) =⊕n
i=1xi∧yi,

which has communication complexity in Θ(n) in both the Yao and the Cleve-Buhrman

quantum communication complexity model [48, 103].

By a reduction due to Cleve, van Dam, Nielsen, and Tapp [48], any protocol eval-

uating the IPn function with small error can be used to transmit n classical bits with

small probability of error. Hence, any noise-tolerant simulation of such a protocol over

a channel of classical capacity C can be used to transmit n-bit strings with some small

probability of failure. As a consequence, for small enough error, the simulation requires

at least 1
C n uses of the channel. Note that we have made the reasonable assumption

that we can run the simulation backward over the noisy channel at the same communi-

cation cost or else that we start with a coherent protocol for the inner product function.

The restriction of having protocols compute a function in a coherent way is natural if

we wish to compose quantum simulation protocols; then they may be run on arbitrary

superpositions of inputs.

5.7.2 Quantum Model with Adversarial Errors

We turn our attention to two-party protocols where there is no prior entanglement,

and the communication is over noisy quantum channels. Given an adversarial channel in

the quantum model with error rate strictly smaller than 1
6 , we can simulate any noiseless

protocol of length N over this channel using a number of transmissions linear in N. More

precisely, we show the following.

Theorem 5.7.3. There exists a constant c > 0 such that for arbitrary small ε > 0, there

exist a communication rate RC > 0 and an alphabet size q ∈N such that for all noiseless

protocol lengths N ∈ 2N, there exists a universal simulator S in the quantum model

of length N′ with communication rate at least RC, transmission alphabet size q, which
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succeeds with error 2−cN at simulating all noiseless protocols of length N against all

adversary in A Q
1
6−ε,q,N′

.

5.7.2.1 Proof of Theorem 5.7.3

The approach we take in the quantum model is to emulate the simulation in the

shared entanglement model. First, we use the quantum channels available to distribute

sufficient entanglement, and then use them effectively as classical channels along with

the entanglement to run the simulation protocol from section 5.6. Thus the simulation

consists of an entanglement distribution phase, followed by a protocol implementation

phase.

In more detail, suppose we wish to emulate a simulation protocol of length N′ in

the shared entanglement model. Alice uses lN′ transmissions, for a parameter l to be

specified below, to distribute sufficient perfect entanglement to Bob through the use of a

quantum error correcting code (QECC). They then run the simulation protocol in section

5.6. During this protocol implementation phase, before transmission and after reception

of a quantum register through the channel, both the sender and the receiver measure the

register. These measurements have the effect of transforming all possible quantum ac-

tions of Eve into classical actions. Conditioned on the results of the two measurements,

the corresponding branches of the simulation proceed exactly as if the sender and the

receiver had transmitted and received information over a classical channel. If the size q

of the communication register is larger than the alphabet size Γ of the transmissions, and

Eve maps some of these classical messages outside of Γ, Alice and Bob mark these as

erasures. So Eve does not gain anything by introducing errors outside Γ.

We start by pinning down the parameters of the quantum error correcting codes

(QECCs) needed to distribute the necessary amount of entanglement. In the interest

of simplicity, we do not attempt to optimize the parameters involved.

For a given ε > 0, let s = (|Γ|!)
(|Γ|−|Σ|)! be the size of the shared secret key used to do the

blueberry encoding in each round of the simulation in Section 5.6. Two maximally en-

tangled states of size 2s, i.e., states of the form ∑
2s−1
j=0 | j〉

TA | j〉TB , are used to generate the
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secret keys and to create the EPR pairs required for teleportation in every round. For a

given size q for the communication register, and simulation protocol in the shared entan-

glement model of length N′, we distribute a maximally entangled state over N′ logq(2s)

registers of size q.

In the entanglement distribution phase of the simulation in the quantum model, we

encode the N′ logq(2s) registers into lN′ registers of size q. For the encoding, we use a

quantum error correcting code with alphabet size q, transmission rate RQ ≥ 1
l logq(2s),

and maximum tolerable error rate δ to be determined shortly. We only consider exact

quantum error correcting codes, but the analysis extends to approximate ones. (Approx-

imate error correction allows for some deviation from perfect transmission.)

To determine the relationship between q, l, and δ required for the simulation to suc-

ceed, we first note that in the protocol implementation phase (the second phase of the

simulation), we transmit classical messages chosen from a set of size |Γ| over the quan-

tum channel. For simplicity, we choose q ≥ |Γ|. To ensure that this second phase suc-

ceeds, the number of corruptions in it should be bounded by (1
2 − ε)N′. An adversary

could choose to put all of the allowed corruptions in the first (entanglement distribution)

phase, so the QECC should be able to recover from the same number of errors. In other

words, we require δ lN′ ≥ N′
2 − εN′. The length of the message in the entanglement dis-

tribution phase satisfies l ≥ 1−2ε

2δ
. In summary, the entire simulation tolerates N′

2 − εN′

adversarial errors during a total of (l +1)N′ transmissions of size q registers provided a

suitable QECC exists. The error rate tolerated is 1−2ε

2(l+1) .

The above analysis applies to the oblivious communication model. If we restrict our-

selves to the alternating communication model, we have twice as much communication,

i.e., 2lN′ size-q registers, in the entanglement transmission phase. The adversary can

choose to corrupt the transmissions of one party alone, so l ≥ 1−2ε

2δ
as before. The total

number of transmissions is however (2l +1)N′, so the error rate tolerated is 1−2ε

2(2l+1) .

We now appeal to a high-dimensional quantum Gilbert-Varshamov bound [8, 61]

stating that for arbitrarily small ε ′ > 0, there exist strictly positive communication rate

RQ > 0 and large enough transmission alphabet size such that families of quantum codes

of arbitrarily large length exist which can tolerate a fraction 1
4−ε ′ of errors and allow for
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perfect decoding of the quantum state. Using these codes with ε ′ = ε , we get δ = 1
4−ε ,

l ≥ 1−2ε

2δ
= 2(1−2ε)

1−4ε
and net error rate 1−2ε

2(l+1) =
(1−2ε)(1−4ε)

6−16ε
≥ 1

6 − ε that the simulation

protocol can tolerate in an oblivious model of communication. In an alternating model

of communication, we are able to tolerate an error rate of 1
10 − ε .

The above choice of parameters ensures that the error rate in the entanglement dis-

tribution phase is bounded by 1
4 − ε , and the received quantum state can be decoded

perfectly. This establishes a shared maximally entangled state of the required dimen-

sion. Moreover, the corruption rate of the adversary during the protocol implementation

phase is lower than 1
2 − ε . Recall that Alice and Bob measure the states received over

the quantum channel in the standard basis to convert it to a classical channel. Given any

strategy of the adversary, which is necessarily independent of the secret key used for the

blueberry codes, for any choice of measurement outcomes for Alice and Bob, the simu-

lation succeeds with probability exponentially close to 1 (in terms of N′). The remainder

of the analysis goes as in section 5.6.2.2, proving Theorem 5.7.3.

5.7.2.2 Discussion of Optimality

If we consider only perfect quantum error correcting codes for quantum data trans-

mission, it is known that we cannot tolerate error rates of more than 1
4 asymptotically.

With the approach of first distributing entanglement and then using the 1
2 − ε error rate

simulation protocol in the shared entanglement model, we get an overall tolerable error

rate for the simulation of less than 1
6 . Crépeau, Gottesman and Smith [50] showed how

we can tolerate up to 1
2 error rate asymptotically for data transmission if we consider

approximate quantum error correcting codes. Using these we could get 1
4 − ε tolerable

error rate for a two phase simulation protocol as described above. However, their reg-

ister size as well as the number of communicated registers are linear in the number of

transmitted qubits in the original protocol. This would lead to a communication rate of

0 asymptotically in the simulation. It would be interesting to see whether we can do

something similar with register size independent of the transmission size, but possibly

dependent on the fidelity we want to reach and how close to 1
2 (or some other fraction

strictly larger than 1
4 ) we would like the tolerable error rate to be. Using this kind of a
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code, if we break up the simulation in two phases, an entanglement distribution part and

then a protocol implementation part, the above is the best we can do. We might hope

to develop a fully quantum analogue of tree codes that does not entail the two phase

simulation, in order to achieve higher error rates. The putative quantum codes would

require some properties for fault-tolerant computation, so that we may coherently apply

the noiseless protocol unitary operations in the simulation. This issue does not occur

in the fully classical setting, since we can copy classical information and perform the

computation on the copy.

Finally, we note that the proof of Theorem 5.6.1 applies here as well. It establishes a

bound of 1
2 on the maximum error rate tolerable in an oblivious communication model:

no simulation protocol in the quantum model can succeed with arbitrarily small error

against all adversaries in A Q
1
2 ,q,N

′
, for any q,N′ ∈ N.

5.7.3 Quantum Model with Random Errors

We shift our focus to quantum communication over depolarizing channels. Given

a two-party quantum protocol of length N in the noiseless model and any Q > 0, we

devise a simulation protocol in the quantum model that is of length O( 1
QN) and succeeds

in simulating the original protocol with arbitrarily small error over quantum depolarizing

channels of quantum capacity Q. More precisely,

Theorem 5.7.4. There exist a constant l > 0 and a function f :N→R+ with limN→∞ f (N)=

0 such that given any depolarizing channel M of quantum capacity Q > 0 and noiseless

protocol length N ∈ 2N, there exists a universal simulator P in the quantum model of

length N′ with communication rate RQ ≥ lQ, transmission alphabet size 2, which suc-

ceeds with error f (N) at simulating all noiseless protocols of length N over M .

We point out that quantum capacity with feedback is a lower bound on the dilation

needed to simulate protocols over depolarizing channels. There exist a sequence of two-

party quantum protocols of increasing length N in the noiseless model such that for all

QB > 0, any corresponding sequence of simulation protocols of length o( 1
QB

N) in the

211



quantum model with quantum depolarizing channels of quantum capacity QB with clas-

sical feedback fail at producing the final state with low error on some input. Moreover,

the family of quantum protocol can be chosen to be one computing a distributed binary

function.

Theorem 5.7.5. There exists a sequence {ΠN}N∈2N of two-party quantum protocols

such that for all QB > 0, for any simulation protocol S in the shared entanglement model

of length N′ ∈ o(N/QB) with communication rate RC = N
N′ , the simulation makes error

at least Ω(1).

It turns out that quantum capacity does not capture the ability to transmit informa-

tion in an interactive setting. Given a two-party quantum protocol of length N in the

noiseless model, there exist a quantum depolarizing channel of unassisted forward quan-

tum capacity Q = 0 and a simulation protocol in the quantum model with asymptotically

positive rate of communication which succeeds in simulating the original protocol with

arbitrarily small error over that quantum channel.

Theorem 5.7.6. There exist constants c,RQ > 0 such that given a particular depolarizing

quantum channel M0 of forward quantum capacity Q = 0 and any noiseless protocol

length N ∈ 2N, there exist a universal simulator P in the quantum model of length N′

with communication rate at least RQ, transmission alphabet size 2, which succeeds with

error 2−cN at simulating all noiseless protocols of length N over M0.

5.7.3.1 Proof of Theorem 5.7.4

For the case of random error in the quantum model, we use techniques similar to the

case of adversarial error. Indeed, we split the protocol into two phases: an entanglement

distribution phase and a protocol implementation phase.

It suffices to adapt the result from section 5.5 for a basic simulation protocol of length

N′′ over some large alphabet Σ. We then only need to distribute N′′ maximally entan-

gled states of the appropriate size. For any depolarizing channel of quantum capacity

Q > 0, we use standard coding results from quantum Shannon theory [133] to distribute
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entanglement at a rate of d
Q for some d > 0 with low error. Then, for the protocol imple-

mentation phase, we appeal to two properties. First, the classical capacity C of a quantum

channel is at least as large as its quantum capacity. Second, a classical capacity achieving

strategy for the depolarizing channel is to simulate a binary symmetric channel (BSC)

of capacity C for each transmission by measuring the output in the computational basis,

and then to block code over the corresponding BSC (see, e.g., Ref. [133] for details).

We can then translate the proof of Theorem 5.7.1 to design our classical strategy. This

succeeds with overwhelming probability assuming perfect entanglement, and the output

is arbitrarily close to the noiseless protocol one. Combining the bound on the error from

the two phases, the simulation can be made to succeed with error less than f (N) over

the depolarizing channel of quantum capacity Q, for some function f : N→ R+ which

asymptotically goes to zero.

5.7.3.2 Proof of Theorem 5.7.5

The idea for this proof is to use the fact that distributing an EPR pair over a quantum

depolarizing channel produces a Werner state, which is symmetric in interchange of

Alice and Bob (see section 5.7.4 for a definition of Werner states). Moreover, if Bob

uses the free classical feedback to teleport to Alice with these Werner states, this creates

a virtual depolarizing channel from him to Alice, with the same parameter as the actual

channel from Alice to him. Hence, a quantum depolarizing channel from Alice to Bob

along with free classical feedback is sufficient to simulate depolarizing channels in both

directions, and the total number of uses of the depolarizing channel is the same in both

cases.

Similar to what was argued in the proof of Theorem 5.7.2 for classical communica-

tion, it is clear that for some protocols of length N fitting our general framework in the

noiseless model can be used to communicate up to N
2 qubits in each direction. Hence,

since our simulation protocols of length N′ can be simulated by N′ uses of a depolarizing

channel from Alice to Bob supplemented by classical feedback from Bob to Alice, we

cannot have a rate of communication better than N
2QB

for small enough error.

To prove that a protocol to compute a binary function is sufficient, we once again
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consider the inner product function IPn. We apply a coherent version of the idea to

use the inner product protocol to communicate, as in the proof of Theorem 5.7.2. This

allows us to use the depolarizing channel to distribute quantum entanglement, and then

also to teleport (again with the inner product protocol used this time to communicate

classical information). For this, it is sufficient to note that what we achieved in the

proof of Theorem 5.7.2 using the protocol for IPn is actualy stronger than Θ(N) bits of

classical communication: we had a coherent bit channel [67] for Θ(N) cobits (coherent

bits), which can be used to distribute Θ(N) ebits (EPR pairs). Note that we once again

make the reasonable assumption that we can run the simulation backward over the noisy

channel at the same communication cost or else that we start with a coherent protocol

for the inner product function.

5.7.3.3 Proof of Theorem 5.7.6

The case of the depolarizing channel requires some technical work, so for simplicity

we first consider the case of the quantum erasure channel. For the quantum erasure chan-

nel, we use the property that, for erasure probability 1
2 ≤ p < 1, the (forward, unassisted)

quantum capacity is 0 while the classical capacity is 1− p and the entanglement gener-

ation capacity with classical feedback is at least 1− p. Moreover, the feedback required

to achieve this bound is only one message of length linear in the size of the quantum

communication. The strategy we use is the following: for a basic simulation protocol

of length N′′ over Σ, Alice distributes N′′ EPR pairs to Bob by sending 4N′′
(1−p) halves of

such states over the quantum erasure channel. Then, except with negligible probability,

at least N′′ of them are received intact, and Bob knows which these are. The feedback

consists of informing Alice which N′′ pairs were received intact and can be used in the

protocol. This can be done over the quantum erasure channel, with probability negligibly

smaller than 1, with a classical message of length linear in N′′.

Then, given a message set Σ we can use the quantum erasure channel a constant num-

ber of times to decrease the probability of error in a classical transmission of any symbol

e ∈ Σ below 1
90 . Except with negligible probability, the fraction of N′′ transmissions of

symbols of Σ transmitted in this way is below 1
80 . We can then use a reasoning similar
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to that in the proof of Theorem 5.7.3 to argue that the output is arbitrarily close to the

noiseless protocol one.

Now for the depolarizing channel, the reasoning is mostly the same, but we have to

work harder to obtain (almost) noiseless entanglement. The unassisted forward capacity

of the depolarizing channel is shown in Ref. [17] to be equivalent to one-way entan-

glement distillation yield. To separate one-way and two-way entanglement distillation,

they use a combination of the recurrence method of Ref. [16] along with their hashing

method. The recurrence method is an explicitly two-way entanglement distillation pro-

tocol which can purify highly noisy entanglement, but does not have a positive yield in

the limit of high fidelity distillation. The hashing method is a one-way protocol with

positive yield in the perfect fidelity limit, but which does not work on highly noisy en-

tanglement. We cannot hope to use this strategy to distill near perfect EPR pairs in our

scenario since the hashing method as they describe it requires too much communication.

(We could probably use a derandomization argument to avoid communicating the ran-

dom strings in this protocol.) To reduce the communication cost, we instead use a hybrid

approach of entanglement distillation followed by quantum error correction.

Starting with a depolarizing channel with depolarizing parameter as high as possi-

ble, but still low enough to have Q = 0, we use it to distribute imperfect EPR pairs. This

yields (rotated) Werner states with the highest possible fidelity to perfect EPR pairs, but

such that one-way entanglement distillation protocols cannot have a positive yield of

EPR pairs while two-way entanglement distillation protocols can. (See section 5.7.4 for

a definition of Werner states.) We then do one round of the recurrence method for entan-

glement distillation to obtain a lesser number of Werner states of higher fidelity to perfect

EPR pairs, and so we could now use one-way distillation protocols on these to obtain

a positive yield of near-perfect EPR pairs. The amount of classical communication re-

quired up to this point is one message from Alice to Bob of linear length informing him

of her measurement outcomes, and then one classical message of linear length from Bob

to Alice informing her which states to keep as well as which rotation to apply to these.

(The rotation takes the states back to the symmetric Werner form; log12 bits of informa-

tion per pair is sufficient for this purpose [17].) We now use these EPR pairs along with
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teleportation to effectively obtain a depolarizing channel of quantum capacity Q > 0.

We use standard coding from Quantum Shannon theory [133] over this quantum channel

to distribute N′′ near perfect EPR pairs. This new step only requires a linear amount of

classical communication. After the initial very noisy entanglement distribution step, we

thus only have three classical messages to send over the depolarizing channel of classical

capacity C > 0. We generate near perfect entanglement using the depolarizing channel a

linear number of times, and then go on to the protocol implementation phase as before.

Note that we are not yet guaranteed an exponential decay of the error at this point, only

that the error tends to zero in the limit of large N. To get exponential decay in error, we

adapt the above protocol. Before using teleportation and QECC to distribute near-perfect

entanglement, we perform a few more rounds of the recurrence method until the Werner

states reach fidelity parameter above 0.82. Except with negligible probability, starting

with some linear number of noisy EPR pairs, after a constant number of rounds of the

recurrence method, we are left with sufficiently many less noisy EPR pairs for our next

step. At this point, it is known that there exist stabilizer codes achieving the hashing

bound (which has strictly positive yield for this noise parameter) and which have neg-

ligible error. Using the property that some classical capacity achieving strategy for the

depolarizing channel also has negligible error, we get the stated exponential decay in the

error.

5.7.3.4 Discussion of Optimality

It is known that for some range of the depolarizing parameter, the quantum capac-

ity QB with classical feedback of the depolarizing channel is strictly larger than its unas-

sisted forward quantum capacity Q [17]. In particular, there exist values for which Q = 0

but QB > 0. A careful analysis of the related 2-way entanglement distillation proto-

cols (in particular their communication cost and their amount of interaction) reveals that

there is some range of the depolarizing parameter for which we can achieve successful

simulation even though Q = 0, by using the depolarizing channels in each direction to

transmit classical information. This proves that the standard forward quantum capacity

of the quantum channels used does not characterize their communication capacity in the
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interactive communication scenario. Note that QB > 0 if and only if the depolarizing pa-

rameter ε ′ < 2
3 , and so QB > 0 if and only if the quantum capacity assisted by two-way

classical communication Q2 > 0. In the case where we are given a depolarizing channel

with QB > 0, we can modify the method used in the proof of Theorem 5.7.6. We iter-

atively use the recurrence method a constant number of times on the noisy distributed

EPR pairs, until the depolarizing channels induced through teleportation over the noisy

distilled EPR pairs have non-zero forward quantum capacity. (Here the constant de-

pends upon the depolarizing parameter, but not on N.) Then we distribute entanglement

over the induced channels using standard QECCs. We achieve asymptotically positive

rates of communication for our simulation protocols. It is an interesting open question

whether we can close the gap between our lower and upper bounds and always achieve

successful simulation at a rate O( 1
QB

N). The separation result regarding the forward,

unassisted quantum capacity of the depolarizing channel requires some technical work,

but the case of the erasure channel already makes it clear that in general for discrete

memoryless quantum channels, the unassisted forward quantum capacity is not the most

suitable quantity to consider in the setting of interactive quantum communication.

5.7.4 Noisy Entanglement

The last model we consider is a further variation on the shared entanglement model,

in which, along with the noisy classical links between the honest parties, the entangle-

ment these parties share is also noisy.

There are many possible models for noisy entanglement; we consider a simple one

in this section, in which parties share noisy EPR pairs instead of perfect pairs. Follow-

ing Ref. [16], we consider the so-called (rotated) Werner states WF = F |Φ00〉〈Φ00|+
1−F

3 (|Φ01〉〈Φ01|+ |Φ10〉〈Φ10|+ |Φ11〉〈Φ11|), which are mixtures of the four Bell states

parametrized by 0≤ F ≤ 1. Note that these are the result of passing one qubit of an EPR

pair through a Tε ′ depolarizing channel, for F = 1− 3ε ′

4 . The purification of these noisy

EPR pairs is given to Eve. We use the result of Ref. [16] to show that for any F > 1
2 , sim-

ulation protocols with asymptotically (in N→∞, not in F→ 1
2 ) positive communication

rates and which can tolerate a positive error rate can succeed with asymptotically zero
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error. This is optimal: at F = 1
2 , Werner states are separable, so there is no way to use

them in conjunction with classical communication to simulate quantum communication.

5.7.4.1 Adversarial Errors in the Classical Channel

We first consider the case of adversarial errors. Let lc be the number of rounds of

the recurrence method for entanglement distillation necessary to reach the F = 0.82

bound. This number is independent of N, and depends only on the initial value of the

parameter F . As described in the proof of Theorem 5.7.6, each round of the recurrence

method only requires a linear length message in each direction. After this bound is

reached, one last linear length classical message is sufficient to generate a linear amount

of entanglement through teleportation via an induced depolarizing channel of non-zero

quantum capacity Q. Standard quantum error correction techniques enable us to extract

near-perfect entanglement at this point. Once we have near-perfect entanglement, we

can use techniques from the basic simulation protocol to perform successful simulation

of noiseless protocols, hence achieving our goal. The protocol sketched above requires

the communication of 2lc+1 messages to distill near-perfect entanglement, independent

of N, followed by a phase of simulating the message transmissions from the original

protocol. The simulation protocol tolerates a constant error rate, though inversely pro-

portional in lc. It requires a constant rate of noisy entanglement consumption, which is

exponential in lc since each round of the recurrence method consumes at least half of the

noisy EPR pairs. The protocol has a constant, positive rate of communication, though

inversely proportional in the number of consumed noisy EPR pairs.

5.7.4.2 Random Errors in the Classical Channel

The case of noisy communication through binary symmetric channels once again is

immediate from the adversarial error case by a concentration of measure argument. The

communication rate of the resulting protocol is inversely proportional in the classical

capacity C, and also in the number of noisy EPR pairs consumed.
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5.8 Conclusion

We conclude with a discussion of our results and further research directions.

5.8.1 Discussion

In this chapter, we proposed a simulation of interactive quantum protocols intended

for noiseless communication over noisy channels. Our approach is to replace irreversible

measurements by reversible pseudo-measurements in the Cleve-Buhrman model (with

shared entanglement and classical communication). Then, in the noisy version of the

model, we teleport back and forth the corresponding quantum communication regis-

ter to avoid losing quantum information. We develop a representation for such noisy

quantum protocols that gives an analogue of Schulman’s protocol tree representation for

classical protocols. We prove that with this approach, it is possible to simulate the evolu-

tion of quantum protocols designed for noiseless quantum channels over noisy classical

channels with only a linear dilation factor.

In the case of adversarial channel errors in which the parties are allowed to pre-

share a linear amount of entanglement, we prove that the error rate of 1
2 − ε that our

simulation tolerates is optimal for oblivious protocols. To get the tolerable error rate as

high as 1
2 − ε , we develop new techniques along with a new bound on tree codes with

an erasure symbol, Lemma 5.6.2. To simplify the exposition, we chose not to optimize

different parameters, such as communication and entanglement consumption rates and

communication register size.

We adapt our findings to a random error model in which parties are allowed to share

entanglement but communicate over binary symmetric channels of capacity C > 0. We

obtain communication rates proportional to C. We show that, up to a hidden constant,

this is optimal for some family of distributed binary functions, for example the inner

product functions IP n : {0,1}n×{0,1}n→{0,1}, defined as IP n(x,y) =⊕n
i=1xi ·yi. Our

findings can also be adapted to obtain similar (though not optimal) results for the quan-

tum model (the noisy version of Yao’s model). Here, the simulation protocols run in

two phases. In the first, a preprocessing phase, a linear amount of entanglement is
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distributed with standard techniques from quantum Shannon theory for random noise

and from quantum coding theory for adversarial noise. This is followed by a simulation

phase in which the actions of the parties parallel those in the shared entanglement model.

In the case of adversarial noise, we show that we can tolerate an error rate of 1
6 − ε in

the quantum model. In the case of random noise in which the parties communicate over

depolarizing channels of capacity Q > 0, we obtain rates proportional to Q. Perhaps sur-

prisingly, we show that the use of depolarizing channels in both directions enables the

simulation to succeed even for some quantum channels of unassisted forward quantum

capacity Q = 0. This proves that Q does not characterize a quantum channel’s capacity

for interactive quantum communication. We extend our ideas to perform simulation in

an extension of the shared entanglement model in which not only is the classical com-

munication noisy, but also the entanglement is noisy.

5.8.2 Open Questions

A direction of research that immediately falls out of this work is characterizing the

communication rates in all of the models discussed. In particular, the precise interactive

capacity of the depolarizing channel with a specified noise parameter remains open. The

question of interactive capacity for the binary symmetric channel was raised in the clas-

sical context by Schulman [114] and brought back to attention recently by Braverman

in a survey article on the topic of interactive coding [32]. Recent developments provide

lower and upper bounds for this quantity [90]. In the classical setting, a particular prob-

lem with worst case interaction of one bit transmissions to which all classical interactive

protocols can be mapped was proposed for the study of such a quantity. Since every

interactive quantum protocol can be mapped onto our general problem, it would be nat-

ural to study such a quantity in the quantum domain. Would the interactive capacity

of the binary symmetric channel (with entanglement assistance) for quantum protocols

be the same as that for classical protocols [90], up to a factor of two for teleportation?

We show in upcoming articles that for small bit flip probability ε , the lower bound of
1
2−O(

√
H(ε)) holds, and even extends to a lower bound of 1−O(

√
H(ε)) for depolar-

izing channels. Do the techniques developed in Ref. [90] adapt to the quantum setting
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to obtain matching upper bounds of 1
2 −Ω(

√
H(ε)) and 1−Ω(

√
H(ε)), respectively?

What about other channels?

Another question that remains open is that of the highest tolerable adversarial error

rate that can be withstood in the quantum model. To study this question, it is likely that a

fully quantum approach with new kinds of quantum codes needs to be developed. In par-

ticular, ideas from fault-tolerant quantum computation might be necessary. Furthermore,

the important question of integrating our results into a larger fault-tolerant framework, in

which the local operations are also noisy, remains open. Yet another important question

for interactive quantum coding is what would happen in a shared entanglement setting

if along with the noisy classical communication, the entanglement provided were also

noisy; we investigated this question for a depolarizing noise model for the entanglement,

but other models would also be interesting to study. In particular, what about adversarial

noise on the shared EPR pairs above the unidirectional binary error rate limit? Note that

below that bound, we can adapt the techniques we use here for distillation. Finally, the

question of computationally efficient simulation also remains open, and we will show

in upcoming works how to merge the techniques developed here with those of Braker-

ski and Kalai [27] to efficiently process the classical communication in our simulation

protocols.
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CHAPTER 6

CONCLUSION

6.1 Discussion

With the advent of quantum communication networks hopefully arriving in a rela-

tively near future, it is important to develop a theory of information for interactive quan-

tum protocols. The aim of this thesis was to present in a coherent way the foundation for

such a theory. We studied the interactive quantum analogues of source coding and noisy

channel coding. We also studied a unidirectionnal compression task, quantum state re-

distribution, which is strongly tied to the notion of quantum information complexity of

interactive tasks.

In Chapter 3, we proved the first smooth entropy bounds on the amount of quantum

communication required to implement quantum state redistribution; this is joint work

with Mario Berta and Matthias Christandl [23]. In the asymptotic iid limit, we recover

the previously known optimal rates for this task [54, 100, 140]. An additional result that

we show is that our converse bounds even hold if we allow for feedback from the receiver

to the sender, hence in the iid setting the conditional quantum mutual information lower

bound on quantum communication is robust under interactive communication.

In Chapter 4, we introduced new, fully quantum notions of quantum information

cost and complexity, and provided an operational interpretation for them as the amor-

tized quantum communication complexity; this is from Ref. [129]. We proved that these

quantities satisfy most of the important properties of their classical counterparts; this is

from Ref. [129] and from joint work with Mark Braverman, Ankit Garg, Young Kun Ko

and Jieming Mao [40]. In the case of classical inputs, we also provided an alternate char-

acterization of quantum information cost that quantifies the cost of forgetting classical

information; this is work in progress with Mathieu Laurière [94]. An application of the

quantum information complexity paradigm, which also requires a protocol compression

result, is the first general multi-round direct sum theorem for quantum communication



complexity; this is from Ref. [129]. Another application is to prove an optimal lower

bound, up to polylogarithmic terms, on the bounded round quantum communication

complexity of the disjointness function; this is joint work with Mark Braverman, Ankit

Garg, Young Kun Ko and Jieming Mao [40].

In Chapter 5, we proposed the first schemes for implementing interactive quantum

communication over noisy channels with only constant overhead, proving that quantum

communication complexity is robust under noisy communication. We even show that

it is possible to withstand a maximal fraction 1
2 − ε of adversarial noise in this setting

with perfect shared entanglement but noisy classical communication. This required the

development of new bounds on classical interactive codes. Since the distribution of en-

tanglement can be implemented with standard, unidirectional quantum communication,

this shows that any channel with positive capacity for data transmission also has positive

interactive quantum capacity. The idea that we develop, using teleportation over a noisy

classical channel in order to evolve the simulation of a protocol over this channel, seems

quite general and is applicable in other noise regimes. Perhaps surprisingly, we also

show that some channels with zero unassisted quantum capacity have strictly positive

unassisted interactive quantum capacity, proving that unassisted quantum capacity does

not characterize a channel’s capacity to implement interactive quantum communication.

6.2 Open Questions

Many interesting research directions fall out of these works. First, for quantum state

redistribution in an interactive setting, it might be interesting to study this task in dif-

ferent models of communication than the ones we consider. For example, by allowing

arbitrary pre-shared entanglement and variable length classical communication, would it

be possible to implement this task in a one-shot setting with average communication cost

close to the conditional quantum mutual information, without the 1
ε

multiplicative factor

inherent when we consider worst-case communication cost? For the analogous problem

in the classical setting, Braverman and Rao [36] proved that this can indeed be done,

although with a lot of interaction, at an average cost exactly equal, up to second order,
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to the conditional mutual information. Note that in the quantum setting, even for the

simpler case of source coding, such a result would be quite surprising since the variable

length classical message cannot leak much information about the underlying quantum

state.

In the context of interactive communication, when many successive rounds of com-

munication have quantum information cost much lower than one qubit, is it possible to

compress them globally at a low communication cost, which would be proportional to

their total quantum information cost but not to the number of messages? In the classi-

cal setting, Barak, Braverman, Chen and Rao perform such a task in order to obtain an

unbounded round direct sum theorem for communication complexity [10].

Another important question, which was settled only recently by Braverman and

Schneider [37] in the classical setting, is whether quantum information complexity is

computable. Indeed, it is known in the classical setting that to asymptotically reach the

infimum in the definition of information complexity, an infinite sequence of protocols

with increasing number of rounds can be required [38]. In Ref. [37], the authors provide

a bound on the rate of convergence in terms of the number of rounds of the underlying

protocols. Can we prove something similar in the quantum setting?

Apart from these foundational questions on quantum information complexity, it would

also be interesting to find further applications to concrete lower bounds. Given its early

success in settling the bounded round quantum communication complexity of disjoint-

ness, it is reasonable to be hopeful that this notion will find many such applications.

Moreover, the recent breakthrough result of Fawzi and Renner, providing a powerful

lower bound on the conditional quantum mutual information, should be helpful for these

potential applications of quantum information complexity.

In the context of noisy interactive quantum coding, a first question would be to try to

obtain good characterization of the interactive quantum capacity in the low noise regime

for some well-studied channels, like the depolarizing and erasure channels, as well as for

the binary symmetric channel with perfect entanglement assistance. In the entanglement-

assisted setting, it is possible to use the techniques we developed in Chapter 5 along with

ideas from classical interactive coding to obtain good rates of communication in this
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regime. For quantum channels in the low noise regime, is it possible to generalize these

ideas without requiring entanglement assistance? We believe that ideas from coherent

communication [67] should lead to interesting results in this setting.

For adversarial quantum errors, it would be interesting to develop a fully quantum

analogue of tree codes. These could be useful in order to avoid having two-phase proto-

cols that first distribute entanglement before they implement interactive communication.

New challenges arise in the quantum setting due to the fact that we cannot copy states at

the different stages of the protocol, and thus we probably will have to perform computa-

tion of some sort on encoded data. Hence, ideas from fault-tolerant quantum computing

will probably arise naturally in order to develop such quantum tree codes. A somewhat

related question would be to study the question of noisy interactive quantum commu-

nication when the local quantum computation is also noisy. Can we still implement

interactive communication with positive communication rates in such a setting?

All in all, many interesting questions remain in this young field of interactive quan-

tum information theory, and hopefully the material in this thesis can serve as an appro-

priate introduction in order to study them.
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