2,279 research outputs found

    Generic multimodal biometric fusion

    Get PDF
    Biometric systems utilize physiological or behavioral traits to automatically identify individuals. A unimodal biometric system utilizes only one source of biometric information and suffers from a variety of problems such as noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks and unacceptable error rates. Multimodal biometrics refers to a system which utilizes multiple biometric information sources and can overcome some of the limitation of unimodal system. Biometric information can be combined at 4 different levels: (i) Raw data level; (ii) Feature level; (iii) Match-score level; and (iv) Decision level. Match score fusion and decision fusion have received significant attention due to convenient information representation and raw data fusion is extremely challenging due to large diversity of representation. Feature level fusion provides a good trade-off between fusion complexity and loss of information due to subsequent processing. This work presents generic feature information fusion techniques for fusion of most of the commonly used feature representation schemes. A novel concept of Local Distance Kernels is introduced to transform the available information into an arbitrary common distance space where they can be easily fused together. Also, a new dynamic learnable noise removal scheme based on thresholding is used to remove shot noise in the distance vectors. Finally we propose the use of AdaBoost and Support Vector Machines for learning the fusion rules to obtain highly reliable final matching scores from the transformed local distance vectors. The integration of the proposed methods leads to large performance improvement over match-score or decision level fusion

    Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization

    Full text link
    Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization

    The 3D model control of image processing

    Get PDF
    Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator

    The Fourth Biometric - Vein Recognition

    Get PDF

    Iris Detection Authenticator

    Get PDF
    The development of iris biometric identification recognition is presented. Iris recognition differs from other methods because data acquisition is non-physical and is more accessible. It has been proven that the iris does not change as an individual ages and is well protected from external damages due to the eyelid and cornea, acting as a shield to the iris. In addition, the iris is almost impossible to forge due to its complex patterns and the current limitations in technology. Using Canny Edge Detection, Hough Transform, rubber-sheet normalization, Histogram of Gradient feature extraction, and the MultiMedia University iris database as our subjects, we design a more reliable iris recognition software
    corecore