
Iris Detection Authenticator
Nathan D. Tang and Bryan K. Chau

November 2022

Abstract

The development of iris biometric identification recognition is presented. Iris recognition di↵ers from other

methods because data acquisition is non-physical and is more accessible. It has been proven that the iris does

not change as an individual ages and is well protected from external damages due to the eyelid and cornea, acting

as a shield to the iris. In addition, the iris is almost impossible to forge due to its complex patterns and the

current limitations in technology. Using Canny Edge Detection, Hough Transform, rubber-sheet normalization,

Histogram of Gradient feature extraction, and the MultiMedia University iris database as our subjects, we design

a more reliable iris recognition software.

1

Contents

1 Introduction and Background 3

2 Related Work 3

3 Scope of Work 3

4 Design and Implementation 3
4.1 Overview . 3
4.2 Edge Map . 4
4.3 Pupil and Iris Detection . 6
4.4 Iris Extraction . 6
4.5 Image Enhancement: Removal of Extreme Pixels and Increasing Contrast 8
4.6 Iris Normalization . 9
4.7 Further Image Enhancement: Further Removal of Noisy Pixels . 9
4.8 Feature Extraction . 11
4.9 Feature Matching . 12

5 Testing 13

6 Analysis and Evaluation of Results 15

7 Conclusion 16

2

1 Introduction and Background

Biometric authentication is an ever-advancing technology that has seen great improvements in recent years. A
popular form of this is iris recognition which has several implementations in various technological sectors around
the globe. The iris is a fascinating subject of biometric security. Because each person has a unique iris pattern,
it is widely used for secure authentication over other biometrics such as facial recognition and fingerprint sensing.
By the end of this project, our team will design a more reliable biometric identification software in the form of iris
recognition, utilizing advanced computer vision techniques.

In the images we use, we have to assume that the iris is in full view with little to zero occlusion from eyelashes
and eyelids. We also assume minimal glare on the irises that create bright spots and hide critical information. The
image of the iris also has to be taken straight on, meaning the iris has to be circular, because we are using Circular
Hough Transform to detect the iris.

For this project, we are using a set of captured iris images. The data set is from the MultiMedia University
(MMU) Iris database for Biometric Attendance system. It is a public database consisting of consistent, closeup
eye images intended for machine learning training model use. The database consists of 440 total eye images of 44
individuals with 10 eye images each (5 left, 5 right). Each bitmap image is grayscale and of size 320x240 [1].

2 Related Work

There are numerous articles and research on iris recognition techniques and algorithms. Some researchers proposed
di↵erent theories for approaching the iris recognition problem. Daugman, for example, proposed the use of an
integro-di↵erential operator for localizing iris regions [2]. Others have proposed the use of Canny Edge Detection
with a Circular Hough Transform for removing eyelash and eyelid noise and obtaining the iris regions. Another
technique developed for filtering unwanted noise is called an adaptive fuzzy switching noise reduction (AFSNR)
filter [3]. Our work is related to these and many other projects using various algorithms for iris recognition. Jiménez
L. et al. [4] propose the use of Hough Transform to find a circumference in the eye image to describe the iris and
pupil contours, and Chawla et al. [2] introduce Daugman’s rubber sheet model for normalization. We also look at
a literature review of the most prominent algorithms in each stage of iris recognition. In their review, Ng et al. [5]
describe various methods for image preprocessing, feature extraction, and template matching. Of these methods,
some notable ones are integro-di↵erential operator, Hough transform, homogeneous rubber sheet model, Hamming
distance, and weighted Euclidean distance. In another work, separate from iris detection, Sultana et al. [6] use
HOG feature descriptors for object detection. Many of the techniques and algorithms described above are adopted
within this work on iris recognition.

3 Scope of Work

In this paper, we develop an algorithm for iris detection and authentication. We use the aforementioned data set
as the basis for training and testing our algorithm. The development of this algorithm is separated into multiple
sections. The first section is image preprocessing. This involves identifying and separating the iris from the eye
images using Canny Edge Detection and Hough Transform. Then, we normalize the image. To do this, we apply
the Matlab function, ImToPolar, to convert from Cartesian coordinates to polar coordinates. Once the image is
normalized, we extract features using HOG. Finally, we using Euclidean distance and SVM for feature matching,
and we test our database of eye images. At the end of this paper, we analyze the results of our findings, discuss
their implications, and consider future versions or adaptations.

4 Design and Implementation

4.1 Overview

We first create an ‘eyes’ struct to hold the original grayscale eye images (‘orig’), edge maps (‘edge’), extracted pupil
binary images (‘pupil’), and iris extractions (‘iris’) that will be developed in the following sections.

1 % struct to hold grayscale eye images , edge maps , pupil extraction , and
2 % iris extraction
3 eyes = struct ();

3

The first step in our approach was to develop an edge map using the Canny Edge Detector on the grayscale eye
image. Then, we used a pixel intensity threshold to extract a binary map that allowed us to use the Circular Hough
Transform to find the edge of the pupil in the image. After finding the pupil center and radius, we search radially
outward for the iris edge and then extract only the iris portion from the rest of the image. The next step after
extraction is enhancing the image. Here we remove unwanted noise, eyelids, eyelashes, and as much glare from the
image as possible by thresholding it. Once we have preprocessed the image of the iris, we then normalize it using the
Rubber Sheet Normalization algorithm, remapping the image to polar coordinates. Finally, after normalizing the
image, we extract features from the normalized images using di↵erent feature extraction methods such as HOG and
a 5x5 average filter to get feature descriptors. We then use these feature descriptors in conjunction with di↵erent
feature-matching techniques such as Euclidean distance and SVM. This will ultimately decide whether the iris image
is authenticated or deemed an imposter. These steps can be summarized in Figure 1. We will discuss each step in
detail in the following sections.

Figure 1: General overview of the Iris Detection Authenticator steps to preprocess, extract, and match iris’ to
authenticated users. We will use Canny Edge Detection, Circular Hough Transform, and rubber sheet normalization
for preprocessing. Then 5x5 average filter and HOG for feature extraction. Finally, we will use Euclidean distance
and SVM to template match/feature match the iris images [7].

4.2 Edge Map

Using the Canny Edge Detector, we produced the edge maps that will later be used to detect the iris edge.
Canny Edge Detector has three parameters: 1) High threshold: captures strong edges but misses weaker edges

2) Low threshold: captures weak edges but has false edges/noise 3) Sigma (�): corresponds to the Gaussian filter
mask size, or how much smoothing the image undergoes

We chose the Canny Edge Detector because it features hysteresis thresholding where only the low threshold edges
connected to the high threshold edges are kept (good continuation between adjacent pixels) and also produces single-
pixel-wide edge maps. Alternatively, simpler gradient-based or Laplacian-based edge detectors are very susceptible
to noise and produce multiple-pixel-wide edge maps, which may interfere with our iris edge detection. Figures 2
and 3 show our trials for optimizing the Canny Edge Detector.

1 %Edge Detection: Canny Edge Detector
2 eyes(img).edge = edge(eyes(img).orig ,’canny ’ ,0.15,3);

The Canny Edge Detector function in Matlab defaults so that if only one threshold is specified, that threshold
is the high threshold value. The low threshold value is automatically assigned to be 40% of the high threshold.

4

Figure 2: First trial of various thresholds and sigma values for Canny Edge Detector. From the results, it is clear
that the threshold should remain under 0.4, with threshold=0.2 giving the best results. Within the threshold=0.2
column, �=1 includes too much detail from the eyelashes, while �=3 and 5 have very good results in terms of
keeping the iris edges intact while filtering out the eyelashes. Because �=3 includes a more complete iris shape, we
will assume threshold=0.2 and �=3 gives the best results for the Canny Edge detection step for our given images.

Figure 3: Second trial for optimizing Canny Edge Detector. The previously found threshold=0.2 was found to be
too strong for some of the test images, so it was lowered to 0.15, with the sigma value staying the same. The
threshold=0.15 and �=3 parameters were tested on all twelve sample images in our data set, with the first three
results shown in the figure.

5

4.3 Pupil and Iris Detection

Next, in Figure 4 we used the original grayscale images and threshold the pixel intensities to make a binary image
where everything except for the darkest part of the eye (the pupil) is filtered out.

Figure 4: Pupil detection using a threshold mask on the original grayscale image to produce a binary image. The
threshold value for pixel intensity that we determined to work reasonably well after some trial and error was 50.

1 %Pupil detection threshold (empirically determined)
2 eyes(img).pupil = eyes(img).orig < 50;

Then, we used the Circular Hough Transform on each binary image, shown in Figure 5. Hough Transform is
used for feature extraction or line detection from binary images. Although we have our edge map from the Canny
Edge Detector, the Circular Hough Transform was not able to detect the iris edge from the edge map. Therefore,
we used the Circular Hough Transform on the binary image of the pupil to find the center and radius of the pupil.
Since the iris is just a larger concentric circle around the pupil, we then traversed radially outward from the edge
of the pupil in the edge map that we found earlier until another edge was detected. To ensure the next detected
edge was not an eyelid or eyelash, we traversed diagonally downward to the right from the pupil edge.

1 %Circular Hough Transform
2 [centers , radii] = imfindcircles(eyes(img).pupil ,[6 100]);
3

4 % retain the strongest circle (pupil edge)
5 coords = centers (1,:); pupil_radius = radii (1);
6

7 % start from lower right of pupil edge
8 x = round(coords (1))+round(pupil_radius);
9 y = round(coords (2))+round(pupil_radius);

10 while 1 % traverse radially outward (rightward/downward)
11 if eyes(img).edge(y,x) == 1 % iris edge detected
12 % calculate radial distance from pupil to iris edge
13 iris_radius = ((x-coords (1))^2 + (y-coords (2))^2) ^0.5;
14 break
15 end
16 x = x+1; y = y+1;
17 if x == 240 || y == 320 % if no iris edge was detected
18 iris_radius = pupil_radius *2; % set iris radius to 2x pupil radius
19 break
20 end
21 end

4.4 Iris Extraction

Now that we have detected the inner and outer edges of the iris, we can extract the iris portion, our region
of interest (ROI), from the original grayscale image, shown in Figure 6. We use the circle center coordinates
(coords(1), coords(2)) and the pupil/iris radii found previously to determine our region of interest.

1 % extract iris
2 % return 2-D grid of coordinates for grayscale eye image
3 [xgrid , ygrid] = meshgrid (1: size(eyes(img).orig ,2), 1:size(eyes(img).orig ,1));

6

Figure 5: Circular Hough Transform results for all twelve sample images. We based the iris extraction mask on the
location of the pupil and traversed radially outward from the edge of the pupil to find the iris edge from the edge
map. All pupils are perfectly detected and outlined, whereas the iris outlines are reasonably accurate. The fourth
image in the second row features an iris outline that is slightly within the manually distinguishable iris, but the
rest of the results are as expected.

4 % filter out anything outside iris and anything inside pupil
5 % pixel value = 1 for region of interest , 0 for non -ROI
6 mask = ((xgrid -coords (1)).^2 + (ygrid -coords (2)).^2) <= iris_radius .^2 &...
7 ((xgrid -coords (1)).^2 + (ygrid -coords (2)).^2) >= pupil_radius .^2;
8 % apply mask to original grayscale image to get extracted iris
9 eyes(img).iris = eyes(img).orig .* uint8(mask);

10

11 imshow(eyes(img).iris);

Figure 6: Extracted irises for all twelve sample images. The region between the two concentric circles (iris outer
edge and pupil edge/iris inner edge) is kept, while everything else is filtered out.

7

4.5 Image Enhancement: Removal of Extreme Pixels and Increasing Contrast

With the iris extracted, we can apply thresholding to remove unwanted eyelashes, eyelids, and reflections. These
are commonly found in our data set and could present unwanted errors when extracting features from the iris. In
Figure 7, we resize the image to only include the iris and threshold the pixel intensities to make a binary image
where everything except for the iris is filtered out.

1 %Image enhancement
2 %round estimate values for radius and center point
3 rounded_coords = round(coords);
4 round_iris_r = round(iris_radius);
5 round_pupil_r = round(pupil_radius);
6

7 %Resize image to only include iris pixels
8 eyes(img).iris_only = eyes(img).iris(rounded_coords (2)- ...
9 round_iris_r:rounded_coords (2)+ round_iris_r , rounded_coords (1)- ...

10 round_iris_r:rounded_coords (1)+round_iris_r);
11

12 %Remove extreme pixels (eyelid , eyelash , reflection on eye)
13 eyes(img).iris_only = uint8(eyes(img).iris_only > 50) .* ...
14 uint8(eyes(img).iris_only < 130) .* eyes(img).iris_only;

Figure 7: Removal of non-iris pixels using a threshold mask on the resized grayscale image of the iris. The threshold
value for pixel intensity that we determined to work reasonably well after some trial and error was pixels > 50 for
eyelash removal and pixels > 130 for glare/skin removal.

In addition to removing unwanted pixels, we can further enhance the image by increasing the contrast of the
iris by remapping the image intensity values to the full display range of the intensity values. Since we removed
some pixels through thresholding, this will greatly increase the contrast present in the iris. This will help with
feature detection as there will be a larger spread in intensity values. This increase in contrast can easily be seen in
comparison from Figure 7 to Figure 8.

1 %Increase contrast
2 [M,N] = size(eyes(img).iris_only);
3

4 for x=1:M
5 for y=1:N
6 %ignore thresholded pixels
7 if eyes(img).iris_only(y,x) == 0

8

8 continue
9 end

10 %remap [51 ,149] intensities to [0 ,255]
11 eyes(img).iris_only(y,x) = ((double(eyes(img).iris_only(y,x)) -50)/(130 -50))*255;
12 end
13 end

Figure 8: Increasing contrast of iris by remapping intensity values to full scale range of intensity values. Since we
removed pixels with intensity values > 50 and intensity values > 150, we were able to remap the remaining pixels
to the full scale. In our case, we were left with pixel intensities from [51, 149] and were able to extend this range
to [0,255], giving a higher contrast.

4.6 Iris Normalization

Since the iris may be captured in di↵erent sizes due to varying distances from the camera or pupils may be dilated,
we can remap each pixel in the iris from Cartesian to polar coordinates. We normalize this mapping, such that it
is a fixed-size rectangular block, regardless of pupil dilation, and di↵erent radii sizes of irises, as mentioned before
[8]. We achieve this normalization by selecting a set number of thetas (angular resolution) to sample and then
sampling a set number of pixels radially outward (radial resolution) at those thetas [4]. Figure 9 shows a visual
representation of this. Depending on what number of pixels we set for the radial resolution, interpolation will occur
if not enough pixels are present in the image at the theta. To do this we use ImToPolar, a Matlab function [9].

1 %Iris normalization
2 eyes(img).polar = ImToPolar(eyes(img).iris_only , ...
3 round_pupil_r/round_iris_r , round_iris_r/round_iris_r , 40, 320);

4.7 Further Image Enhancement: Further Removal of Noisy Pixels

As can be seen in Figure 10, there is a lot of noise in the middle of the normalized iris and on the borders of the
image due to our removal of eyelids and eyelashes from the previous steps. This can introduce unwanted features
during our feature extraction stage and ideally should be excluded from the image to increase the accuracy and
performance of the authenticator. In order to achieve this, we will remove the entire portion of the image that
includes the eyelids and eyelashes, to create an image consisting of only the iris, shown in Figure 11.

To test if this image enhancement is viable, we will compare feature extractions/feature matching with and
without removing the eyelids and eyelashes.

9

Figure 9: Visualization of iris normalization based on Rubber Sheet Normalization [5]. Theta is increased while
pixels are sampled radially outward towards radius, r. Since the image will be normalized to a sheet of MxN pixels,
if there are not enough pixels present at the current theta, then pixels will be interpolated to fit the sheet at that
theta.

Figure 10: Iris normalization based on Rubber Sheet Normalization. Here we can see the iris being normalized to
a sheet. In the middle of the sheets you can see the eyelids and eyelashes which demonstrates stretching out the
iris onto the sheet. Through trial error, we chose to map the radii of the irises to 40 pixels and the thetas to 320
pixels. This produced reasonable results on the sheets of irises to be used for feature extraction.

10

Figure 11: Removal of unwanted noise from eyelashes and eyelids from normalized iris images. Although not all of
the noise is removed from the images, most of it is removed as compared to Figure 10, allowing us to get a more
accurate iris image.

4.8 Feature Extraction

Once we have all the normalized images of the various training images, we then extract features from them. For our
project, we first tried using SIFT for feature extraction. However, this proved to be ine↵ective for our iris images
due to its inclination to choose feature points at any noise that was present, since they created strong corners.
Instead, we used histogram of gradients, otherwise known as HOG, as it generally provides a good description of
the structure of images rather than corners, as seen in SIFT [6]. This algorithm worked better with the images and
code we used. The code and Figure 12 show our implementation of HOG and the resulting image.

1 %HOG feature extraction
2 cellSize = [2 2]; %used for HOG cell size , smaller = more small details , larger = more large

details
3

4 [eyes(img).featureVector ,hogVisualization] = extractHOGFeatures(uint8(eyes(img).polar), ’CellSize ’
, cellSize);

5

6 figure (9); subplot(4,3,img); imshow(uint8(eyes(img).polar));
7 title(strcat(’s’,string(img),’.bmp’));
8 hold on;
9 plot(hogVisualization);

10 hold off;

In order to pick up smaller details in the iris we will also reduce the cell size of the HOG feature to 2x2 pixels.
This reduction in cell size increases the HOG’s ability to capture small details in the image, which is useful in our
case. In turn, this increases our computation time. However, we do not see a noticeable di↵erence in computation
time in our testing, most likely due to our images having small pixel densities [10].

In addition to using HOG, we also used a 5x5 block of average pixel intensities as a simple feature extraction
method. This essentially applied a 5x5 average filter across the entire image, giving a vector that can be used to
match against input irises. The code is shown below.

1 average_kernal = fspecial(’average ’, AVERAGE_FILTER_SIZE); %create 5x5 filter
2 eyes(img).average_featureVector = imfilter(uint8(eyes(img).polar), average_kernal); %apply filter

over entire polar image

11

Figure 12: Feature extraction using HOG on normalized iris images. Each image has its own set of features that
are di↵erent from the others. This allows us to do the same feature extraction on the test images and match them
together.

4.9 Feature Matching

The final step in authenticating di↵erent irises in our system is matching the extracted features to di↵erent iris
images. To achieve this we deployed two di↵erent methods, one without machine learning and one with it. Our
first approach utilized Euclidean distance as a simple way to calculate the mathematical similarity between one
training image and an input image. Our second approach used a supervised machine learning algorithm, in our
case, Support Vector Machine (SVM), to train from di↵erent iris images, allowing it to classify multiple irises more
accurately than normal matching algorithms [11].

To implement the Euclidean distance, we simply used the norm function in Matlab which calculates the
distances accordingly between two vectors, which in our case is the HOG feature vector. This result would give us
the mathematical distance between two di↵erent vectors with a lower number meaning a closer distance. Using this
value we can empirically find a threshold value to find feature vectors that are close in value and we will be able to
authenticate whether the iris is the same or not.

1 % Eucl_distance = norm(eyes (1).featureVector - eyes_test (1).featureVector);
2 % For HOG feature
3 % 12 sample images , so loop 12 times
4 fprintf (" Begin HOG feature test ---\n")
5 for img = 1: NUM_OF_REG_EYES
6 for img_test = 1: NUM_OF_REG_EYES
7 Eucl_distance = norm(eyes(img).featureVector - eyes_test(img_test).featureVector);
8 if Eucl_distance < 2.7 % 2.7 for 8x8 cell , 10.5 for 4x4, 32.3 for 2x2
9 Authenticated(img , img_test) = 1;

10 if img == img_test
11 fprintf ("Match found for eye(%d) with eye_test (%d), [PASS]\n", img , img_test);
12 else
13 fprintf ("Match found for eye(%d) with eye_test (%d), [FAIL]\n", img , img_test);
14 end
15 else
16 Authenticated(img , img_test) = 0;
17 end
18 end
19 end

12

On the other hand, for the SVM, we used a Matlab function called fitcecoc which enables SVM to be used
with Error-Correcting Output Codes classified, ECOC classifier for short. This classifier consists of multiple binary
learners, like SVM, to do multiclass classifying [12]. SVM in simple terms finds a hyperplane that creates a boundary
between the data that it is given. For example, in a simple 2D space this hyperplane would be a simple line separating
two di↵erent data. However, this can be extended to an N-dimensional plane, allowing for high complexity and
separation of data that is non-linear [11]. However, traditional SVM only allows for the classification of binary
problems, whether the data is X or if it is Y. To solve this problem and to be more useful for our issue, we can
use SVM in conjunction with the ECOC classifier to solve multiclass problems. In essence, the ECOC classifier
combines multiple SVM hyperplane binary classifiers into one to create multiple boundaries for di↵erent classes.
This concept can be further explained in Figure 13. Once this SVM with ECOC classifier is trained, it can predict
the class of the input iris image. The code is shown below for the training of the SVM with the ECOC classifier.

1 %% Feature matching/Classifier for SVM ECOC ...
2 % SVM binary classifer
3 % For HOG feature
4 % 12 sample images , so loop 12 times
5 fprintf (" Begin SVM ECOC feature test --------------------------------------\n")
6 features = [];
7

8 %create Nx1 matrix with each row containing a feature vector for image
9 for i = 1: NUM_OF_REG_EYES*NUM_OF_TRAIN_IMAGES_PER_EYE

10 feature = eyes_train(i).featureVector; %feature used to train
11 features = cat(1,features ,feature); %put all futures into one vector
12 end
13

14 %create class labels for each feature vector
15 Z = []; %holds the class labels for the feature vector
16 for i = 1: NUM_OF_TRAIN_EYES %create a class array that goes with features
17 Y = ones(NUM_OF_TRAIN_IMAGES_PER_EYE ,1) * i;
18 Z = cat(1,Z,Y);
19 end
20

21 %SVM model for binary classification
22 t = templateSVM(’Standardize ’,true ,’KernelFunction ’,’rbf’);
23

24 %ECOC classifier multiclassifcation with one v all
25 SVMmodels = fitcecoc(features ,categorical(Z),’Learners ’,t, Coding=’onevsall ’);

Figure 13: The main di↵erence between binary classification and multiclass classification is the number of hyper-
planes that separates the data [13]. This increase in the number of hyperplanes allows for multiclass classification
in a one vs all algorithm.

5 Testing

With the feature extraction and feature matching providing suitable results, we can now test di↵erent iris images
in the iris detection authenticator (IDA). To mimic a real-world situation, we chose to register 12 subjects with 4

13

training images and 1 test image per subject. We also had 32 subjects with 5 test images per subject who were
not registered into the system. The images for training included various translations, rotations, light intensity, and
occlusions, such as glasses. This allowed the training to be more thorough and give a better understanding of the
capabilities of the IDA. The results for testing are listed in Table 1 and Table 2. We tried di↵erent permutations
of feature extraction and feature matching pairs and have listed the code for testing and results below.

1 %% Feature matching/Classifier for Euclidian Distance ...
2

3 % Eucl_distance = norm(eyes (1).featureVector - eyes_test (1).featureVector);
4 % For HOG feature
5 % 12 sample images , so loop 12 times
6 fprintf (" Begin HOG feature test ---\n")
7 fail_count = 0;
8 for img = 1: NUM_OF_REG_EYES
9 for img_test = 1: NUM_OF_REG_EYES

10 Eucl_distance = norm(eyes(img).featureVector - eyes_test(img_test).featureVector);
11 if Eucl_distance < 32.3 % 2.7 for 8x8 cell , 10.5 for 4x4 , 32.3 for 2x2
12 Authenticated_HOG(img , img_test) = 1;
13 if img == img_test
14 fprintf ("Match found for eye(%d) with eye_test (%d), [PASS]\n", img , img_test);
15 else
16 fprintf ("Match found for eye(%d) with eye_test (%d), [FAIL]\n", img , img_test);
17 end
18 else
19 Authenticated_HOG(img , img_test) = 0;
20 end
21 end
22 for img_test = 1: NUM_OF_UNREG_EYES*NUM_OF_UNREG_IMAGES_PER_EYE
23 Eucl_distance = norm(eyes(img).featureVector - eyes_unreg(img_test).featureVector);
24 if Eucl_distance < 32.3 % 2.7 for 8x8 cell , 10.5 for 4x4 , 32.3 for 2x2
25 fail_count = fail_count + 1;
26 fprintf ("Match found for eye(%d) with eye_unreg (%d), [FAIL] \n", img , round(img_test

/4));
27 end
28 end
29 end
30

31 for img = 1: NUM_OF_REG_EYES
32 if sum(Authenticated_HOG(img , :))
33 else
34 fprintf (" Match NOT found for eye(%d) \n", img)
35 end
36 end
37

38 fprintf (" Number of False Postivies = %d [FAIL]\n", fail_count);

HOG/Euclidean Registered Iris Unregistered Iris
Predicted Registered Iris TP = 9 FP = 9
Predicted Unregistered Iris FN = 3 TN = 151

Table 1: Confusion matrix for HOG features with Euclidean distance matching. A total of 12 registered subjects
with 4 training and 1 test image per subject. In addition, a total of 32 subjects with 5 test images per subject who
were not registered. Total error = 9+3

12+160 = 7.0%. TP = True Positive, FP = False Positive, FN = False Negative,
and TN = True Negative.

5x5/Euclidean Registered Iris Unregistered Iris
Predicted Registered Iris TP = 5 FP = 94
Predicted Unregistered Iris FN = 7 TN = 66

Table 2: Confusion matrix for 5x5 Average filter features with Euclidean distance matching. A total of 12 registered
subjects with 4 training and 1 test image per subject. In addition, a total of 32 subjects with 5 test images per
subject who were not registered. Total error = 94+7

12+160 = 58.7%

As mentioned before, we also tested removing noisy pixels, as seen in Figure 11, and we found that this did not
hinder the testing results and only marginally improved test results. This resulted in findings seen in Table 1 and

14

Table 2. We decided to keep this image enhancement step as it seemed to help with the algorithm, even if only a
little.

We also tried testing SVM with HOG/5x5 but had very inaccurate results. When we tested SVM, we found that
it was unable to match any of the registered eyes to its respective persons and found that its ability to di↵erentiate
between di↵erent irises was poor. Although we are unsure of the exact reason why it did not perform well, we
think it has to do with the relatively small amount of training that SVM had to train from. Many SVM-based
systems have at least ten times more training data than their testing data and are usually in the range of hundreds
or thousands of images [14]. Our training only had 4 images and our testing only consisted of 1 test image, due to
the small data set we received. Considering how complex the iris pattern is, this is the conclusion we can come to
in the high error rate of our SVM system.

6 Analysis and Evaluation of Results

As far as our algorithm goes, the iris was successfully detected through a combination of canny edge detection,
thresholding, and Circular Hough Transform. The iris was detected with great accuracy for the most part, even
with eyelashes and eyelids occluding the iris. In addition to iris detection, we were able to successfully extract the
iris and were able to preprocess the image for feature detection. The iris was fully extracted with great accuracy, but
the removal of the eyelids and eyelashes have proved to be di�cult and causes issues in extraction due to occlusion.
We also normalized the iris following Daugman’s Rubber Sheet Normalization method, allowing our irises to be
consistent in between feature extraction.

Although our algorithm works on our database, there are some limitations to our design. Firstly, the eye images
need to be open enough such that pupils/irises are unobstructed, otherwise it is almost impossible to extract the
iris for obvious reasons. Secondly, the resolution of the image needs to be fairly high as iris patterns are very subtle
and the more pixels to work with means better accuracy and results. Lastly, since we are using Circular Hough
Transform (as opposed to ellipses), the eyes need to be facing the camera otherwise some iris patterns can be lost.
We chose to go with the Circular Hough Transform as there are less parameters, making it less computationally
expensive.

While we did see success in general with our algorithms we also want to highlight some issues that we encountered.
For instance, one of the issues we saw was that the Circular Hough Transform does not detect the inner iris edge.
Instead, to work around this problem, we used a pupil binary mask to find the pupil edge and then used the edge
map from our Canny Edge Detector by traversing radially outward from the pupil edge until we reached an edge
pixel. This e↵ectively found iris rings and worked out well, as can seen from our iris detection portion. Another
issue we saw was with the feature extraction portion. We first attempted to use SIFT and Harris Corner detection,
but that did not work for matching the iris features due to sharp corners caused by the eyelashes and eyelids. So
instead we switched to HOG to obtain feature descriptors, as it was better at detecting small details across the
entire image. This worked better when we matched the images using Euclidean distance, giving a relatively low
error rate of 7%. Continuing with this testing method, we can extrapolate that the error rate will only go down
as we add more training data and test images. However, as seen in the test results, the 5x5 average filter features
did not perform well and this can most likely be attributed to the complex pattern present in the irises. Thus, we
can conclude that it is not suitable as a feature excretion method for irises while HOG is. We also saw issues with
SVM which was discussed in depth in the testing portion of this report.

Given more time, we would have tried using the Ellipse Hough Transform in case the eyes were not directly
frontward facing. In addition, we would have tried more descriptors for the irises since HOG, although a great
descriptor for human bodies and shapes, did not give convincing and distinct descriptors for our iris images. We
would also try Haar-like features or Fourier descriptors, since those work well with human physical features and
seem to be implemented in some iris recognition algorithms. In terms of matching, we would have trained the
SVM further as it seemed to provide suitable results when given a good amount of data. We would have also tried
template matching pixel by pixel from our trained data to the test data. If we were to start this project over again,
we would have spent more time on developing the descriptors, as this needs heavy engineering in comparison to
other portions of the algorithms and, is by far, the most important part in reliability and security for biometric
systems.

15

7 Conclusion

As previously mentioned in the analysis, the algorithms up until feature extraction had no issues. Iris detection
worked with high accuracy for circular regions. Image enhancement and normalization also worked well for the data
set we used. While eyelashes and eyelids posed an issue for feature extraction, we were still able to obtain adequate
feature descriptors for feature matching. With the time constraints, we were able to develop a decent algorithm for
validating a person’s irises with registered iris data, but the results we have are a good indicator that our system
can be further improved. In future iterations of this project, we would go back to the Hough Transform and use an
elliptic version instead of the circular one we used in this project. We would also include more feature descriptors
and compare which ones performed best with irises. Finally, we would also look for other databases that o↵er more
training data with better resolution to get even better results in our feature matching algorithm. Overall, in this
project, we successfully found and extracted irises and developed a working algorithm for iris recognition.

16

References

[1] N. Mohammad, Mmu iris dataset, multimedia university iris database for biometric attendance system, Jul.
2020.

[2] S. K. Chawla and A. Oberoi, “A robust algorithm for iris segmentation and normalization using hough
transform,” Nov. 2011.

[3] A. Banitalebi and S. A. R. Abu Bakar, “Adaptive fuzzy switching noise reduction filter for iris pattern
recognition,” Jurnal Teknologi, vol. 73, pp. 1–2015, Feb. 2015. doi: 10.11113/jt.v73.3381.

[4] F. Jiménez L., C. Pardo-Beainy, and O. Mendez, “Biometric iris recognition using hough transform,” Sep.
2013, pp. 1–6, isbn: 978-1-4799-1121-9. doi: 10.1109/STSIVA.2013.6644905.

[5] R. Ng, Y. H. Tay, and K. Mok, “A review of iris recognition algorithms,” vol. 2, Sep. 2008, pp. 1–7, isbn:
978-1-4244-2327-9. doi: 10.1109/ITSIM.2008.4631656.

[6] M. Sultana, T. Ahmed, P. Chakraborty, M. Khatun, M. R. Hasan, and M. Uddin, “Object detection using
template and hog feature matching,” International Journal of Advanced Computer Science and Applications,
vol. 11, pp. 233–238, Jul. 2020. doi: 10.14569/IJACSA.2020.0110730.

[7] P. Verma, M. Dubey, S. Basu, and P. K. Verma, “Hough transform method for iris recognition-a biometric
approach,” 2012.

[8] Mohammadi Arvacheh, Ehsan, “A study of segmentation and normalization for iris recognition systems,”
2006. [Online]. Available: http://hdl.handle.net/10012/2846.

[9] P. Manandhar, Polar to/from rectangular transform of images, Dec. 2007.

[10] M. Tyagi, “Hog (histogram of oriented gradients): An overview,” Towards Data Science, Jul. 2021.

[11] alokesh985 and om agarwal 2411, “Introduction to support vector machines (svm),” GeeksforGeeks, May 2022.

[12] Classificationecoc, multiclass model for support vector machines (svms) and other classifiers, 2014.

[13] Utku, “Onevsall classification using logistic regression,” Utku’s Blog, Apr. 2022.

[14] T. Kavzoglu and I. Colkesen, “The e↵ects of training set size for performance of support vector machines and
decision trees,” Jul. 2012.

17

https://doi.org/10.11113/jt.v73.3381
https://doi.org/10.1109/STSIVA.2013.6644905
https://doi.org/10.1109/ITSIM.2008.4631656
https://doi.org/10.14569/IJACSA.2020.0110730
http://hdl.handle.net/10012/2846

Appendix

Appendix A - Matlab Functions

iris detection.m

1 %% Clear all/Close all
2 close all
3 clear all
4 clc
5 %% Iris Detection template subset
6

7 FIGURE_ON = 1;
8 NUM_OF_REG_EYES = 12;
9 REMOVE_CENTER_AND_EDGES = 1;

10 AVERAGE_FILTER_SIZE = 5;
11

12 cellSize = [2 2]; %used for HOG cell size , smaller = more small details , larger = more large
details

13

14 % struct to hold grayscale eye images , edge maps , pupil extraction , and
15 % iris extraction
16 eyes = struct ();
17

18

19

20 % N sample images , so loop N times
21 for img = 1: NUM_OF_REG_EYES
22 %load in images (all are grayscale bitmaps of size 320 x240)
23 % from MMU Iris database
24 eyes(img).orig = im2gray(imread(strcat(’s’,string(img),’.bmp’)));
25

26 %Edge Detection: Canny Edge Detector
27 eyes(img).edge = edge(eyes(img).orig ,’canny ’ ,0.15,3);
28

29 %plotting canny edge images
30 % figure (2); subplot(3,4,img); imshow(eyes(img).edge);
31 % title(strcat(’s’,string(img),’.bmp ’))
32

33 %Pupil detection threshold (empirically determined)
34 eyes(img).pupil = eyes(img).orig < 50;
35

36 %Circular Hough Transform
37 [centers , radii] = imfindcircles(eyes(img).pupil ,[6 100]);
38

39 % retain the strongest circle (pupil edge)
40 coords = centers (1,:);%center = P-by -2 matrix , P = number of circles , x in 1st column , y in 2

nd column
41 pupil_radius = radii (1);
42

43 % start from lower right of pupil edge
44 x = round(coords (1))+round(pupil_radius);
45 y = round(coords (2))+round(pupil_radius);
46 while 1 % traverse radially outward (rightward/downward)
47 if eyes(img).edge(y,x) == 1 % iris edge detected
48 % calculate radial distance from pupil to iris edge
49 % calculate radial distance from center of pupil iris edge
50 iris_radius = ((x-coords (1))^2 + (y-coords (2))^2) ^0.5;
51 break
52 end
53 x = x+1; y = y+1;
54 if x == 240 || y == 320 % if no iris edge was detected
55 iris_radius = pupil_radius *2; % set iris radius to 2x pupil radius
56 break
57 end
58 end
59

60 %plotting orignal picture with iris and pupil identified
61 figure (3); subplot(3,4,img); imshow(eyes(img).orig);
62 title(strcat(’s’,string(img),’.bmp’))

18

63 % draw pupil circle
64 viscircles(centers (1,:), pupil_radius ,’Color ’,’b’,’LineWidth ’ ,0.5);
65 % draw iris circle
66 viscircles(centers (1,:), iris_radius ,’Color ’,’b’,’LineWidth ’ ,0.5);
67

68 % extract iris
69 % return 2-D grid of coordinates for grayscale eye image
70 [xgrid , ygrid] = meshgrid (1: size(eyes(img).orig ,2), 1:size(eyes(img).orig ,1));
71 % filter out anything outside iris and anything inside pupil
72 % pixel value = 1 for region of interest , 0 for non -ROI
73 mask = ((xgrid -coords (1)).^2 + (ygrid -coords (2)).^2) <= iris_radius .^2 &...
74 ((xgrid -coords (1)).^2 + (ygrid -coords (2)).^2) >= pupil_radius .^2;
75 % apply mask to original grayscale image to get extracted iris
76 eyes(img).iris = eyes(img).orig .* uint8(mask);
77

78 % plotting iris extracted
79 % figure (4); subplot(3,4,img); imshow(eyes(img).iris);
80 % title(strcat(’s’,string(img),’.bmp ’))
81

82 %Image enhancement
83 %round estimate values for radiis and center point
84 rounded_coords = round(coords);
85 round_iris_r = round(iris_radius);
86 round_pupil_r = round(pupil_radius);
87

88 %Resize image to only include iris
89 eyes(img).iris_only = eyes(img).iris(rounded_coords (2)- ...
90 round_iris_r:rounded_coords (2)+ round_iris_r , rounded_coords (1)- ...
91 round_iris_r:rounded_coords (1)+round_iris_r);
92 figure (5); subplot(3,4,img); imshow(eyes(img).iris_only);
93 title(strcat(’s’,string(img),’.bmp’))
94

95 %Remove extreme pixels(eyelid , eyelash , reflection on eye)
96 eyes(img).iris_only = uint8(eyes(img).iris_only > 50) .* ...
97 uint8(eyes(img).iris_only < 130) .* eyes(img).iris_only;
98

99 figure (6); subplot(3,4,img); imshow(eyes(img).iris_only);
100 title(strcat(’s’,string(img),’.bmp’))
101

102 %Increase contrast
103 [M,N] = size(eyes(img).iris_only);
104

105 for x=1:M
106 for y=1:N
107 %ignore thresholded pixels
108 if eyes(img).iris_only(y,x) == 0
109 continue
110 end
111 %remap [51 ,149] intensities to [0 ,255]
112 eyes(img).iris_only(y,x) = ((double(eyes(img).iris_only(y,x)) -50)/(130 -50))*255;
113 end
114 end
115

116 figure (7); subplot(3,4,img); imshow(eyes(img).iris_only , []);
117 title(strcat(’s’,string(img),’.bmp’))
118

119 eyes(img).iris_only = uint8(eyes(img).iris_only);
120

121 %Iris normalization
122 eyes(img).polar = ImToPolar(eyes(img).iris_only , ...
123 round_pupil_r/round_iris_r , round_iris_r/round_iris_r , 40, 320);
124

125 %cut from 110 -240 to get rid of eyelashes maybe
126 if REMOVE_CENTER_AND_EDGES
127 eyes(img).polar = [eyes(img).polar (5:end -5 ,1:110) eyes(img).polar (5:end -5 ,240:end -5)];
128 end
129

130 figure (8); subplot(4,3,img); imshow(eyes(img).polar , []);
131 title(strcat(’s’,string(img),’.bmp’))
132

133 %Extracting HOG features ...

19

134

135 [eyes(img).featureVector ,hogVisualization] = extractHOGFeatures(uint8(eyes(img).polar), ’
CellSize ’, cellSize);

136

137

138 average_kernal = fspecial(’average ’, AVERAGE_FILTER_SIZE); %create 5x5 filter
139 eyes(img).average_featureVector = imfilter(uint8(eyes(img).polar), average_kernal); %apply

filter over entire polar image
140

141 figure (16); subplot (4,3,img); imshow(eyes(img).average_featureVector);
142

143 figure (9); subplot(4,3,img); imshow(uint8(eyes(img).polar));
144 hold on;
145 plot(hogVisualization);
146 hold off;
147

148

149

150 % eyes(img).features = detectHarrisFeatures(uint8(eyes(img).polar));
151 % im_w_detected = insertMarker(uint8(eyes(img).polar), eyes(img).features , ’circle ’);
152 % figure (9); subplot(3,4,img); imshow(im_w_detected , []);
153 % title(strcat(’s’,string(img),’.bmp ’))
154

155 end
156

157 %% Registered Test images subset
158

159 NUM_OF_TEST_EYES = 12;
160

161 % struct to hold grayscale eye images , edge maps , pupil extraction , and
162 % iris extraction
163 eyes_test = struct ();
164

165 num_of_unregistered_eyes = 12;
166

167 % N sample images , so loop N times
168 for img = 1: num_of_unregistered_eyes
169 %load in images (all are grayscale bitmaps of size 320 x240)
170 % from MMU Iris database
171 eyes_test(img).orig = im2gray(imread(strcat(’t1_’,string(img),’.bmp’)));
172

173 %Edge Detection: Canny Edge Detector
174 eyes_test(img).edge = edge(eyes_test(img).orig ,’canny ’ ,0.15,3);
175

176 %plotting canny edge images
177 % figure (2); subplot(3,4,img); imshow(eyes(img).edge);
178 % title(strcat(’s’,string(img),’.bmp ’))
179

180 %Pupil detection threshold (empirically determined)
181 eyes_test(img).pupil = eyes_test(img).orig < 50;
182

183 %Circular Hough Transform
184 [centers , radii] = imfindcircles(eyes_test(img).pupil ,[6 100]);
185

186 % retain the strongest circle (pupil edge)
187 coords = centers (1,:);%center = P-by -2 matrix , P = number of circles , x in 1st column , y in 2

nd column
188 pupil_radius = radii (1);
189

190 % start from lower right of pupil edge
191 x = round(coords (1))+round(pupil_radius);
192 y = round(coords (2))+round(pupil_radius);
193 while 1 % traverse radially outward (rightward/downward)
194 if eyes_test(img).edge(y,x) == 1 % iris edge detected
195 % calculate radial distance from pupil to iris edge
196 % calculate radial distance from center of pupil iris edge
197 iris_radius = ((x-coords (1))^2 + (y-coords (2))^2) ^0.5;
198 break
199 end
200 x = x+1; y = y+1;
201 if x == 240 || y == 320 % if no iris edge was detected

20

202 iris_radius = pupil_radius *2; % set iris radius to 2x pupil radius
203 break
204 end
205 end
206

207 %plotting orignal picture with iris and pupil identified
208 figure (10); subplot (3,4,img); imshow(eyes_test(img).orig);
209 title(strcat(’t1 -’,string(img),’.bmp’))
210 % draw pupil circle
211 viscircles(centers (1,:), pupil_radius ,’Color ’,’b’,’LineWidth ’ ,0.5);
212 % draw iris circle
213 viscircles(centers (1,:), iris_radius ,’Color ’,’b’,’LineWidth ’ ,0.5);
214

215 % extract iris
216 % return 2-D grid of coordinates for grayscale eye image
217 [xgrid , ygrid] = meshgrid (1: size(eyes_test(img).orig ,2), 1:size(eyes_test(img).orig ,1));
218 % filter out anything outside iris and anything inside pupil
219 % pixel value = 1 for region of interest , 0 for non -ROI
220 mask = ((xgrid -coords (1)).^2 + (ygrid -coords (2)).^2) <= iris_radius .^2 &...
221 ((xgrid -coords (1)).^2 + (ygrid -coords (2)).^2) >= pupil_radius .^2;
222 % apply mask to original grayscale image to get extracted iris
223 eyes_test(img).iris = eyes_test(img).orig .* uint8(mask);
224

225 % plotting iris extracted
226 % figure (4); subplot(3,4,img); imshow(eyes(img).iris);
227 % title(strcat(’s’,string(img),’.bmp ’))
228

229 %Image enhancement
230 %round estimate values for radiis and center point
231 rounded_coords = round(coords);
232 round_iris_r = round(iris_radius);
233 round_pupil_r = round(pupil_radius);
234

235 %Resize image to only include iris
236 eyes_test(img).iris_only = eyes_test(img).iris(rounded_coords (2)- ...
237 round_iris_r:rounded_coords (2)+ round_iris_r , rounded_coords (1)- ...
238 round_iris_r:rounded_coords (1)+round_iris_r);
239 figure (11); subplot (3,4,img); imshow(eyes_test(img).iris_only);
240 title(strcat(’t1 -’,string(img),’.bmp’))
241

242 %Remove extreme pixels(eyelid , eyelash , reflection on eye)
243 eyes_test(img).iris_only = uint8(eyes_test(img).iris_only > 50) .* ...
244 uint8(eyes_test(img).iris_only < 130) .* eyes_test(img).iris_only;
245

246 figure (12); subplot (3,4,img); imshow(eyes_test(img).iris_only);
247 title(strcat(’t1 -’,string(img),’.bmp’))
248

249 %Increase contrast
250 [M,N] = size(eyes_test(img).iris_only);
251

252 for x=1:M
253 for y=1:N
254 if eyes_test(img).iris_only(y,x) == 0
255 continue
256 end
257 eyes_test(img).iris_only(y,x) = ((double(eyes_test(img).iris_only(y,x)) -50)/(130 -50))

*255;
258 end
259 end
260

261 figure (13); subplot (3,4,img); imshow(eyes_test(img).iris_only , []);
262 title(strcat(’t1 -’,string(img),’.bmp’))
263

264 eyes_test(img).iris_only = uint8(eyes_test(img).iris_only);
265

266 %Iris normalization (rubber sheet algo)
267 eyes_test(img).polar = ImToPolar(eyes_test(img).iris_only , ...
268 round_pupil_r/round_iris_r , round_iris_r/round_iris_r , 40, 320);
269

270 %cut from 110 -240 to get rid of eyelashes maybe
271 if REMOVE_CENTER_AND_EDGES

21

272 eyes_test(img).polar = [eyes_test(img).polar (5:end -5 ,1:110) eyes_test(img).polar (5:end
-5 ,240:end -5)];

273 end
274

275 figure (14); subplot (4,3,img); imshow(eyes_test(img).polar , []);
276 title(strcat(’t1 -’,string(img),’.bmp’))
277

278 %Extracting HOG features ...
279

280 [eyes_test(img).featureVector ,hogVisualization] = extractHOGFeatures(uint8(eyes_test(img).
polar), ’CellSize ’, cellSize);

281

282 average_kernal = fspecial(’average ’, AVERAGE_FILTER_SIZE);
283 eyes_test(img).average_featureVector = imfilter(uint8(eyes_test(img).polar), average_kernal);
284

285 figure (17); subplot (4,3,img); imshow(eyes_test(img).average_featureVector);
286

287 figure (15); subplot (4,3,img); imshow(uint8(eyes_test(img).polar));
288 hold on;
289 plot(hogVisualization);
290 hold off;
291 end
292

293 %% Unregistered Test images subset
294

295 NUM_OF_UNREG_EYES = 32;
296 NUM_OF_UNREG_IMAGES_PER_EYE = 4;
297

298 % struct to hold grayscale eye images , edge maps , pupil extraction , and
299 % iris extraction
300 eyes_unreg = struct ();
301

302 image_folder = pwd;
303 image_folder =strcat(image_folder ,’\unregistered_eyes ’);
304 filenames = dir(fullfile(image_folder , ’*.bmp’));
305 total_images = NUM_OF_UNREG_EYES*NUM_OF_UNREG_IMAGES_PER_EYE;
306

307 % N sample images , so loop N times
308 for image_num = 1: total_images
309 f = fullfile(image_folder , filenames(image_num).name);
310 %load in images (all are grayscale bitmaps of size 320 x240)
311 % from MMU Iris database
312 eyes_unreg(image_num).orig = im2gray(imread(f));
313

314 % figure ,imshow(f)
315

316 %Edge Detection: Canny Edge Detector
317 eyes_unreg(image_num).edge = edge(eyes_unreg(image_num).orig ,’canny’ ,0.15,3);
318

319 %plotting canny edge images
320 % figure (2); subplot(3,4, image_num); imshow(eyes_unreg(image_num).edge);
321 % title(strcat(’s’,string(image_num) ,’.bmp ’))
322

323 %Pupil detection threshold (empirically determined)
324 eyes_unreg(image_num).pupil = eyes_unreg(image_num).orig < 50;
325

326 %Circular Hough Transform
327 [centers , radii] = imfindcircles(eyes_unreg(image_num).pupil ,[6 100]);
328

329 % retain the strongest circle (pupil edge)
330 coords = centers (1,:);%center = P-by -2 matrix , P = number of circles , x in 1st column , y in 2

nd column
331 pupil_radius = radii (1);
332

333 % viscircles(coords , pupil_radius ,’EdgeColor ’,’b’);
334

335 % start from lower right of pupil edge
336 x = round(coords (1))+round(pupil_radius);
337 y = round(coords (2))+round(pupil_radius);
338 while 1 % traverse radially outward (rightward/downward)
339 if eyes_unreg(image_num).edge(y,x) == 1 % iris edge detected

22

340 % calculate radial distance from pupil to iris edge
341 % calculate radial distance from center of pupil iris edge
342 iris_radius = ((x-coords (1))^2 + (y-coords (2))^2) ^0.5;
343 break
344 end
345 x = x+1; y = y+1;
346 if x == 240 || y == 320 % if no iris edge was detected
347 iris_radius = pupil_radius *2; % set iris radius to 2x pupil radius
348 break
349 end
350 end
351

352 % %plotting orignal picture with iris and pupil identified
353 % figure (3); subplot(9,4, image_num); imshow(eyes_unreg(image_num).orig);
354 % title(strcat(’s’,string(image_num) ,’.bmp ’))
355 % % draw pupil circle
356 % viscircles(centers (1,:), pupil_radius ,’Color ’,’b’,’LineWidth ’ ,0.5);
357 % % draw iris circle
358 % viscircles(centers (1,:), iris_radius ,’Color ’,’b’,’LineWidth ’ ,0.5);
359

360 % extract iris
361 % return 2-D grid of coordinates for grayscale eye image
362 [xgrid , ygrid] = meshgrid (1: size(eyes_unreg(image_num).orig ,2), 1:size(eyes_unreg(image_num).

orig ,1));
363 % filter out anything outside iris and anything inside pupil
364 % pixel value = 1 for region of interest , 0 for non -ROI
365 mask = ((xgrid -coords (1)).^2 + (ygrid -coords (2)).^2) <= iris_radius .^2 &...
366 ((xgrid -coords (1)).^2 + (ygrid -coords (2)).^2) >= pupil_radius .^2;
367 % apply mask to original grayscale image to get extracted iris
368 eyes_unreg(image_num).iris = eyes_unreg(image_num).orig .* uint8(mask);
369

370 % plotting iris extracted
371 % figure (4); subplot(3,4, image_num); imshow(eyes_unreg(image_num).iris);
372 % title(strcat(’s’,string(image_num) ,’.bmp ’))
373

374 %Image enhancement
375 %round estimate values for radiis and center point
376 rounded_coords = round(coords);
377 round_iris_r = round(iris_radius);
378 round_pupil_r = round(pupil_radius);
379

380 %Resize image to only include iris
381 eyes_unreg(image_num).iris_only = eyes_unreg(image_num).iris(rounded_coords (2)- ...
382 round_iris_r:rounded_coords (2)+ round_iris_r , rounded_coords (1)- ...
383 round_iris_r:rounded_coords (1)+round_iris_r);
384 % figure (5); subplot(9,4, image_num); imshow(eyes_unreg(image_num).iris_only);
385 % title(strcat(’s’,string(image_num) ,’.bmp ’))
386

387 %Remove extreme pixels(eyelid , eyelash , reflection on eye)
388 eyes_unreg(image_num).iris_only = uint8(eyes_unreg(image_num).iris_only > 50) .* ...
389 uint8(eyes_unreg(image_num).iris_only < 130) .* eyes_unreg(image_num).iris_only;
390

391 % figure (6); subplot(9,4, image_num); imshow(eyes_unreg(image_num).iris_only);
392 % title(strcat(’s’,string(image_num) ,’.bmp ’))
393

394 %Increase contrast
395 [M,N] = size(eyes_unreg(image_num).iris_only);
396

397 for x=1:M
398 for y=1:N
399 %ignore thresholded pixels
400 if eyes_unreg(image_num).iris_only(y,x) == 0
401 continue
402 end
403 %remap [51 ,149] intensities to [0 ,255]
404 eyes_unreg(image_num).iris_only(y,x) = ((double(eyes_unreg(image_num).iris_only(y,x))

-50)/(130 -50))*255;
405 end
406 end
407

408 % figure (7); subplot(9,4, image_num); imshow(eyes_unreg(image_num).iris_only , []);

23

409 % title(strcat(’s’,string(image_num) ,’.bmp ’))
410

411 eyes_unreg(image_num).iris_only = uint8(eyes_unreg(image_num).iris_only);
412

413 %Iris normalization
414 eyes_unreg(image_num).polar = ImToPolar(eyes_unreg(image_num).iris_only , ...
415 round_pupil_r/round_iris_r , round_iris_r/round_iris_r , 40, 320);
416

417 %cut from 110 -240 to get rid of eyelashes maybe
418 if REMOVE_CENTER_AND_EDGES
419 eyes_unreg(image_num).polar = [eyes_unreg(image_num).polar (5:end -5 ,1:110) eyes_unreg(

image_num).polar (5:end -5 ,240:end -5)];
420 end
421

422 % figure (8); subplot(9,4, image_num); imshow(eyes_unreg(image_num).polar , []);
423 % title(strcat(’s’,string(image_num) ,’.bmp ’))
424

425 %Extracting HOG features ...
426

427 [eyes_unreg(image_num).featureVector ,hogVisualization] = extractHOGFeatures(uint8(eyes_unreg(
image_num).polar), ’CellSize ’, cellSize);

428

429

430 average_kernal = fspecial(’average ’, AVERAGE_FILTER_SIZE);
431 eyes_unreg(image_num).average_featureVector = imfilter(uint8(eyes_unreg(image_num).polar),

average_kernal);
432

433 % figure (16); subplot (9,4, image_num); imshow(eyes_unreg(image_num).average_featureVector);
434 %
435 % figure (9); subplot(9,4, image_num); imshow(uint8(eyes_unreg(image_num).polar));
436 % hold on;
437 % plot(hogVisualization);
438 % hold off;
439

440

441

442 % eyes_unreg(image_num).features = detectHarrisFeatures(uint8(eyes_unreg(image_num).polar));
443 % im_w_detected = insertMarker(uint8(eyes_unreg(image_num).polar), eyes_unreg(image_num).

features , ’circle ’);
444 % figure (9); subplot(3,4, image_num); imshow(im_w_detected , []);
445 % title(strcat(’s’,string(image_num) ,’.bmp ’))
446

447 end
448

449 %% Feature matching/Classifier for Euclidian Distance ...
450

451 % Eucl_distance = norm(eyes (1).featureVector - eyes_test (1).featureVector);
452 % For HOG feature
453 % 12 sample images , so loop 12 times
454 fprintf (" Begin HOG feature test ---\n")
455 fail_count = 0;
456 for img = 1: NUM_OF_REG_EYES
457 for img_test = 1: NUM_OF_REG_EYES
458 Eucl_distance = norm(eyes(img).featureVector - eyes_test(img_test).featureVector);
459 if Eucl_distance < 32.3 % 2.7 for 8x8 cell , 10.5 for 4x4 , 32.3 for 2x2
460 Authenticated_HOG(img , img_test) = 1;
461 if img == img_test
462 fprintf ("Match found for eye(%d) with eye_test (%d), [PASS]\n", img , img_test);
463 else
464 fprintf ("Match found for eye(%d) with eye_test (%d), [FAIL]\n", img , img_test);
465 end
466 else
467 Authenticated_HOG(img , img_test) = 0;
468 end
469 end
470 for img_test = 1: NUM_OF_UNREG_EYES*NUM_OF_UNREG_IMAGES_PER_EYE
471 Eucl_distance = norm(eyes(img).featureVector - eyes_unreg(img_test).featureVector);
472 if Eucl_distance < 32.3 % 2.7 for 8x8 cell , 10.5 for 4x4 , 32.3 for 2x2
473 fail_count = fail_count + 1;
474 fprintf ("Match found for eye(%d) with eye_unreg (%d), [FAIL] \n", img , round(img_test

/4));

24

475 end
476 end
477 end
478

479 for img = 1: NUM_OF_REG_EYES
480 if sum(Authenticated_HOG(img , :))
481 else
482 fprintf (" Match NOT found for eye(%d) \n", img)
483 end
484 end
485

486 fprintf (" Number of False Postivies = %d [FAIL]\n", fail_count);
487

488 fprintf("---\n")
489

490 % Eucl_distance = norm(eyes (1).featureVector - eyes_test (1).featureVector);
491 % For 5x5 Average filter ..
492 % 12 sample images , so loop 12 times
493 fprintf (" Begin 5x5 avg feature test ---------------------------------------\n")
494 fail_count = 0;
495 for img = 1: NUM_OF_REG_EYES
496 for img_test = 1: NUM_OF_REG_EYES
497 Eucl_distance = norm(im2double(eyes(img).average_featureVector) - im2double(eyes_test(

img_test).average_featureVector));
498 if Eucl_distance < 7 %7 for 5x5
499 Authenticated_AVG(img , img_test) = 1;
500 if img == img_test
501 fprintf ("Match found for eye(%d) with eye_test (%d), [PASS]\n", img , img_test);
502 else
503 fprintf ("Match found for eye(%d) with eye_test (%d), [FAIL]\n", img , img_test);
504 end
505 else
506 Authenticated_AVG(img , img_test) = 0;
507 end
508 end
509 for img_test = 1: NUM_OF_UNREG_EYES*NUM_OF_UNREG_IMAGES_PER_EYE
510 Eucl_distance = norm(im2double(eyes(img).average_featureVector) - im2double(eyes_unreg(

img_test).average_featureVector));
511 if Eucl_distance < 7 %7 for 5x5
512 fail_count = fail_count + 1;
513 fprintf ("Match found for eye(%d) with eye_unreg (%d), [FAIL] \n", img , round(img_test

/4));
514 end
515 end
516 end
517

518 for img = 1: NUM_OF_REG_EYES
519 if sum(Authenticated_AVG(img , :))
520 else
521 fprintf (" Match NOT found for eye(%d) \n", img)
522 end
523 end
524

525 fprintf (" Number of False Postivies = %d [FAIL]\n", fail_count);
526

527 fprintf("---\n")
528

529

530 %% Reading and processing training images
531

532 NUM_OF_TRAIN_EYES = 12;
533 NUM_OF_TRAIN_IMAGES_PER_EYE = 4;
534

535 % struct to hold grayscale eye images , edge maps , pupil extraction , and
536 % iris extraction
537 eyes_train = struct ();
538

539 image_folder = pwd;
540 image_folder =strcat(image_folder ,’\Labeled_data ’);
541 filenames = dir(fullfile(image_folder , ’*.bmp’));
542 % total_images = numel(filenames);

25

543 total_images = NUM_OF_TRAIN_EYES*NUM_OF_TRAIN_IMAGES_PER_EYE;
544

545 % N sample images , so loop N times
546 for image_num = 1: total_images
547 f = fullfile(image_folder , filenames(image_num).name);
548 %load in images (all are grayscale bitmaps of size 320 x240)
549 % from MMU Iris database
550 eyes_train(image_num).orig = im2gray(imread(f));
551

552 %Edge Detection: Canny Edge Detector
553 eyes_train(image_num).edge = edge(eyes_train(image_num).orig ,’canny’ ,0.15,3);
554

555 %plotting canny edge images
556 % figure (2); subplot(3,4, image_num); imshow(eyes_train(image_num).edge);
557 % title(strcat(’s’,string(image_num) ,’.bmp ’))
558

559 %Pupil detection threshold (empirically determined)
560 eyes_train(image_num).pupil = eyes_train(image_num).orig < 50;
561

562 %Circular Hough Transform
563 [centers , radii] = imfindcircles(eyes_train(image_num).pupil ,[6 100]);
564

565 % retain the strongest circle (pupil edge)
566 coords = centers (1,:);%center = P-by -2 matrix , P = number of circles , x in 1st column , y in 2

nd column
567 pupil_radius = radii (1);
568

569 % start from lower right of pupil edge
570 x = round(coords (1))+round(pupil_radius);
571 y = round(coords (2))+round(pupil_radius);
572 while 1 % traverse radially outward (rightward/downward)
573 if eyes_train(image_num).edge(y,x) == 1 % iris edge detected
574 % calculate radial distance from pupil to iris edge
575 % calculate radial distance from center of pupil iris edge
576 iris_radius = ((x-coords (1))^2 + (y-coords (2))^2) ^0.5;
577 break
578 end
579 x = x+1; y = y+1;
580 if x == 240 || y == 320 % if no iris edge was detected
581 iris_radius = pupil_radius *2; % set iris radius to 2x pupil radius
582 break
583 end
584 end
585

586 % %plotting orignal picture with iris and pupil identified
587 % figure (3); subplot(9,4, image_num); imshow(eyes_train(image_num).orig);
588 % title(strcat(’s’,string(image_num) ,’.bmp ’))
589 % % draw pupil circle
590 % viscircles(centers (1,:), pupil_radius ,’Color ’,’b’,’LineWidth ’ ,0.5);
591 % % draw iris circle
592 % viscircles(centers (1,:), iris_radius ,’Color ’,’b’,’LineWidth ’ ,0.5);
593

594 % extract iris
595 % return 2-D grid of coordinates for grayscale eye image
596 [xgrid , ygrid] = meshgrid (1: size(eyes_train(image_num).orig ,2), 1:size(eyes_train(image_num).

orig ,1));
597 % filter out anything outside iris and anything inside pupil
598 % pixel value = 1 for region of interest , 0 for non -ROI
599 mask = ((xgrid -coords (1)).^2 + (ygrid -coords (2)).^2) <= iris_radius .^2 &...
600 ((xgrid -coords (1)).^2 + (ygrid -coords (2)).^2) >= pupil_radius .^2;
601 % apply mask to original grayscale image to get extracted iris
602 eyes_train(image_num).iris = eyes_train(image_num).orig .* uint8(mask);
603

604 % plotting iris extracted
605 % figure (4); subplot(3,4, image_num); imshow(eyes_train(image_num).iris);
606 % title(strcat(’s’,string(image_num) ,’.bmp ’))
607

608 %Image enhancement
609 %round estimate values for radiis and center point
610 rounded_coords = round(coords);
611 round_iris_r = round(iris_radius);

26

612 round_pupil_r = round(pupil_radius);
613

614 %Resize image to only include iris
615 eyes_train(image_num).iris_only = eyes_train(image_num).iris(rounded_coords (2)- ...
616 round_iris_r:rounded_coords (2)+ round_iris_r , rounded_coords (1)- ...
617 round_iris_r:rounded_coords (1)+round_iris_r);
618 % figure (5); subplot(9,4, image_num); imshow(eyes_train(image_num).iris_only);
619 % title(strcat(’s’,string(image_num) ,’.bmp ’))
620

621 %Remove extreme pixels(eyelid , eyelash , reflection on eye)
622 eyes_train(image_num).iris_only = uint8(eyes_train(image_num).iris_only > 50) .* ...
623 uint8(eyes_train(image_num).iris_only < 130) .* eyes_train(image_num).iris_only;
624

625 % figure (6); subplot(9,4, image_num); imshow(eyes_train(image_num).iris_only);
626 % title(strcat(’s’,string(image_num) ,’.bmp ’))
627

628 %Increase contrast
629 [M,N] = size(eyes_train(image_num).iris_only);
630

631 for x=1:M
632 for y=1:N
633 %ignore thresholded pixels
634 if eyes_train(image_num).iris_only(y,x) == 0
635 continue
636 end
637 %remap [51 ,149] intensities to [0 ,255]
638 eyes_train(image_num).iris_only(y,x) = ((double(eyes_train(image_num).iris_only(y,x))

-50)/(130 -50))*255;
639 end
640 end
641

642 % figure (7); subplot(9,4, image_num); imshow(eyes_train(image_num).iris_only , []);
643 % title(strcat(’s’,string(image_num) ,’.bmp ’))
644

645 eyes_train(image_num).iris_only = uint8(eyes_train(image_num).iris_only);
646

647 %Iris normalization
648 eyes_train(image_num).polar = ImToPolar(eyes_train(image_num).iris_only , ...
649 round_pupil_r/round_iris_r , round_iris_r/round_iris_r , 40, 320);
650

651 %cut from 110 -240 to get rid of eyelashes maybe
652 if REMOVE_CENTER_AND_EDGES
653 eyes_train(image_num).polar = [eyes_train(image_num).polar (5:end -5 ,1:110) eyes_train(

image_num).polar (5:end -5 ,240:end -5)];
654 end
655

656 % figure (8); subplot(9,4, image_num); imshow(eyes_train(image_num).polar , []);
657 % title(strcat(’s’,string(image_num) ,’.bmp ’))
658

659 %Extracting HOG features ...
660

661 [eyes_train(image_num).featureVector ,hogVisualization] = extractHOGFeatures(uint8(eyes_train(
image_num).polar), ’CellSize ’, cellSize);

662

663

664 average_kernal = fspecial(’average ’, AVERAGE_FILTER_SIZE);
665 eyes_train(image_num).average_featureVector = imfilter(uint8(eyes_train(image_num).polar),

average_kernal);
666

667 % figure (16); subplot (9,4, image_num); imshow(eyes_train(image_num).average_featureVector);
668 %
669 % figure (9); subplot(9,4, image_num); imshow(uint8(eyes_train(image_num).polar));
670 % hold on;
671 % plot(hogVisualization);
672 % hold off;
673

674

675

676 % eyes_train(image_num).features = detectHarrisFeatures(uint8(eyes_train(image_num).polar));
677 % im_w_detected = insertMarker(uint8(eyes_train(image_num).polar), eyes_train(image_num).

features , ’circle ’);

27

678 % figure (9); subplot(3,4, image_num); imshow(im_w_detected , []);
679 % title(strcat(’s’,string(image_num) ,’.bmp ’))
680

681 end
682

683 % eye_train_but_avg = struct ();
684 %
685 % count = 1;
686 % for image_num = 1: NUM_OF_TRAIN_EYES
687 % eye_train_but_avg(image_num).featureVector = eyes_train(count).featureVector + ...
688 % eyes_train(count +1).featureVector + eyes_train(count +2).featureVector + eyes_train(count +3).

featureVector;
689 % eye_train_but_avg(image_num).featureVector = eye_train_but_avg(image_num).featureVector /4;
690 % count = count + 1;
691 % end
692 %
693 % %% Feature matching/Classifier for Euclidian Distance ...
694 %
695 % % Eucl_distance = norm(eyes (1).featureVector - eyes_test (1).featureVector);
696 % % For HOG feature
697 % % 12 sample images , so loop 12 times
698 % fprintf (" Begin HOG AVG feature test ---\n")
699 % for img = 1: NUM_OF_REG_EYES
700 % for img_test = 1: NUM_OF_REG_EYES
701 % Eucl_distance = norm(eyes(img).featureVector - eye_train_but_avg(img_test).featureVector

);
702 % if Eucl_distance < 26 % 2.7 for 8x8 cell , 10.5 for 4x4 , 32.3 for 2x2
703 % Authenticated_HOG_AVG(img , img_test) = 1;
704 % if img == img_test
705 % fprintf (" Match found for eye(%d) with eye_test (%d), [PASS]\n", img , img_test);
706 % else
707 % fprintf (" Match found for eye(%d) with eye_test (%d), [FAIL]\n", img , img_test);
708 % end
709 % else
710 % Authenticated_HOG_AVG(img , img_test) = 0;
711 % end
712 % end
713 % end
714 %
715 % for img = 1: NUM_OF_REG_EYES
716 % if sum(Authenticated_HOG_AVG(img , :))
717 % else
718 % fprintf (" Match NOT found for eye(%d) \n", img)
719 % end
720 % end
721 % fprintf("---\n")
722

723 %% Feature matching/Classifier for SVM ECOC ...
724 % SVM binary classifer
725 % For HOG feature
726 % 12 sample images , so loop 12 times
727 fprintf (" Begin SVM ECOC feature test --------------------------------------\n")
728 features = [];
729

730 %create Nx1 matrix with each row containing a feature vector for image
731 for i = 1: NUM_OF_REG_EYES*NUM_OF_TRAIN_IMAGES_PER_EYE
732 feature = eyes_train(i).featureVector; %feature used to train
733 features = cat(1,features ,feature);
734 end
735

736 %create class labels for each feature vector
737 Z = [];
738 for i = 1: NUM_OF_TRAIN_EYES %create a class array that goes with features
739 Y = ones(NUM_OF_TRAIN_IMAGES_PER_EYE ,1) * i;
740 Z = cat(1,Z,Y);
741 end
742

743 t = templateSVM(’Standardize ’,true ,’KernelFunction ’,’rbf’); %SVM model for binary classification
744

745

28

746 SVMmodels = fitcecoc(features ,categorical(Z),’Learners ’,t, Coding=’onevsall ’); %ECOC
multiclassifcation with one v all

747

748 for j = 1: NUM_OF_REG_EYES
749 predicted_class = predict(SVMmodels ,eyes_test(j).featureVector);
750 % fprintf ("Match found for eye(%d) with eye_test (%d)\n", j, char(predicted_class))
751 if j == double(predicted_class)
752 fprintf (" Match found for eye(%d) with eye_test (%d), [PASS]\n", j, double(predicted_class))

;
753 else
754 fprintf (" Match found for eye(%d) with eye_test (%d), [FAIL]\n", j, double(predicted_class))

;
755 end
756 end
757

758 fprintf ("End SVM ECOC feature test ------------------------------------\n")
759

760 %% Feature matching/Classifier for SVM using RBF kernal ...
761 % SVM binary classifer
762 % For HOG feature
763 % 12 sample images , so loop 12 times
764 fprintf (" Begin SVM feature test ---\n")
765 features = [];
766

767 %create Nx1 matrix with each row containing a feature vector for image
768 for i = 1: NUM_OF_REG_EYES*NUM_OF_TRAIN_IMAGES_PER_EYE
769 feature = eyes_train(i).featureVector; %feature used to train
770 features = cat(1,features ,feature);
771 end
772

773 %create class labels for each feature vector
774 Z = [];
775 for i = 1: NUM_OF_TRAIN_EYES %create a class array that goes with features
776 Y = ones(NUM_OF_TRAIN_IMAGES_PER_EYE ,1) * i;
777 Z = cat(1,Z,Y);
778 end
779

780 SVMmodels = cell(NUM_OF_REG_EYES ,1); %holds the SVM for registered eyes
781 for j = 1: NUM_OF_REG_EYES
782 class_label = Z == j;
783 SVMmodels{j} = fitcsvm(features ,class_label ,’ClassNames ’,[false true],’KernelFunction ’,’rbf’);
784 end
785

786 % d = 0.005;
787 % [x1Grid ,x2Grid] = meshgrid(min(features (:,1)):d:max(features (:,1)) ,...
788 % min(features (:,2)):d:max(features (:,2)));
789 % xGrid = [x1Grid (:),x2Grid (:)];
790 % N = size(xGrid ,1);
791 % Scores = zeros(N,NUM_OF_REG_EYES);
792

793 % d = 0.005;
794 % [x1Grid ,x2Grid] = meshgrid(min(features (:,1)):d:max(features (:,1)) ,...
795 % min(features (:,2)):d:max(features (:,2)));
796 % xGrid = [x1Grid (:),x2Grid (:)];
797 % N = size(xGrid ,1);
798 % Scores = zeros(N,NUM_OF_REG_EYES);
799

800 eyes_test(img_test).featureVector;
801

802 for j = 1: NUM_OF_REG_EYES
803 [~,score] = predict(SVMmodels{j},xGrid);
804 Scores(:,j) = score (:,2); % Second column contains positive -class scores
805 end
806

807 [~,maxScore]=max(Scores ,[] ,2);
808 figure
809 gscatter(x1(:),x2(:),maxScore ,’cym’);
810 hold on;
811 gscatter(features (:,1),features (:,2),features ,’rgb’,’.’ ,30);
812 title(’{\bf Iris Classification Regions}’);
813 xlabel(’Petal Length (cm)’);

29

814 ylabel(’Petal Width (cm)’);
815 axis tight
816 hold off

filter image.m

1 function filtered_image = filter_image(input_image , filter);
2 [r,c] = size(input_image);
3 [r_f ,c_f] = size(filter);
4 r_start_index = 1+(r_f -1) /2;
5 c_start_index = 1+(c_f -1) /2;
6 r_end_index = (r_f -1)/2;
7 c_end_index = (c_f -1)/2;
8 filtered_image = zeros (r,c);
9

10 for i=r_start_index:r-r_end_index
11 for j=c_start_index:c-c_end_index
12 dummy_mtrx = input_image(i-((r_f -1)/2):i+((r_f -1)/2),j-((c_f -1)/2):j+((c_f -1)/2));
13 filtered_block = double(dummy_mtrx) .* filter;
14 filtered_image(i, j) = sum(filtered_block (:));
15 end
16 end
17

18 filtered_image = uint8(filtered_image);

PolarToIm.m

1 function imR = PolarToIm (imP , rMin , rMax , Mr , Nr)
2 % POLARTOIM converts polar image to rectangular image.
3 %
4 % V0.1 16 Dec , 2007 (Created) Prakash Manandhar , pmanandhar@umassd.edu
5 %
6 % This is the inverse of ImToPolar. imP is the polar image with M rows and
7 % N columns of data (double data between 0 and 1). M is the number of
8 % samples along the radius from rMin to rMax (which are between 0 and 1 and
9 % rMax > rMin). Mr and Nr are the number of pixels in the rectangular

10 % domain. The center of the image is assumed to be the origin for the polar
11 % co-ordinates , and half the width of the image corresponds to r = 1.
12 % Bilinear interpolation is performed for points not in the imP image and
13 % points not between rMin and rMax are rendered as zero. The output is a Mr
14 % x Nr grayscale image (with double values between 0.0 and 1.0).
15

16

17 imR = zeros(Mr, Nr);
18 Om = (Mr+1)/2; % co -ordinates of the center of the image
19 On = (Nr+1)/2;
20 sx = (Mr -1)/2; % scale factors
21 sy = (Nr -1)/2;
22

23 [M N] = size(imP);
24

25 delR = (rMax - rMin)/(M-1);
26 delT = 2*pi/N;
27

28 for xi = 1:Mr
29 for yi = 1:Nr
30 x = (xi - Om)/sx;
31 y = (yi - On)/sy;
32 r = sqrt(x*x + y*y);
33 if r >= rMin & r <= rMax
34 t = atan2(y, x);
35 if t < 0
36 t = t + 2*pi;
37 end
38 imR (xi, yi) = interpolate (imP , r, t, rMin , rMax , M, N, delR , delT);
39 end
40 end
41 end

30

42

43 function v = interpolate (imP , r, t, rMin , rMax , M, N, delR , delT)
44 ri = 1 + (r - rMin)/delR;
45 ti = 1 + t/delT;
46 rf = floor(ri);
47 rc = ceil(ri);
48 tf = floor(ti);
49 tc = ceil(ti);
50 if tc > N
51 tc = tf;
52 end
53 if rf == rc & tc == tf
54 v = imP (rc, tc);
55 elseif rf == rc
56 v = imP (rf, tf) + (ti - tf)*(imP (rf , tc) - imP (rf , tf));
57 elseif tf == tc
58 v = imP (rf, tf) + (ri - rf)*(imP (rc , tf) - imP (rf , tf));
59 else
60 A = [rf tf rf*tf 1
61 rf tc rf*tc 1
62 rc tf rc*tf 1
63 rc tc rc*tc 1];
64 z = [imP(rf, tf)
65 imP(rf , tc)
66 imP(rc , tf)
67 imP(rc , tc)];
68 a = A\double(z);
69 w = [ri ti ri*ti 1];
70 v = w*a;
71 end

ImToPolar.m

1 function imP = ImToPolar (imR , rMin , rMax , M, N)
2 % IMTOPOLAR converts rectangular image to polar form. The output image is
3 % an MxN image with M points along the r axis and N points along the theta
4 % axis. The origin of the image is assumed to be at the center of the given
5 % image. The image is assumed to be grayscale.
6 % Bilinear interpolation is used to interpolate between points not exactly
7 % in the image.
8 %
9 % rMin and rMax should be between 0 and 1 and rMin < rMax. r = 0 is the

10 % center of the image and r = 1 is half the width or height of the image.
11 %
12 % V0.1 7 Dec 2007 (Created), Prakash Manandhar pmanandhar@umassd.edu
13

14 [Mr Nr] = size(imR); % size of rectangular image
15 Om = (Mr+1)/2; % co -ordinates of the center of the image
16 On = (Nr+1)/2;
17 sx = (Mr -1)/2; % scale factors
18 sy = (Nr -1)/2;
19

20 imP = zeros(M, N);
21

22 delR = (rMax - rMin)/(M-1);
23 delT = 2*pi/N;
24

25 % loop in radius and
26 for ri = 1:M
27 for ti = 1:N
28 r = rMin + (ri - 1)*delR;
29 t = (ti - 1)*delT;
30 x = r*cos(t);
31 y = r*sin(t);
32 xR = x*sx + Om;
33 yR = y*sy + On;
34 imP (ri, ti) = interpolate (imR , xR , yR);
35 end
36 end
37

31

38 function v = interpolate (imR , xR, yR)
39 xf = floor(xR);
40 xc = ceil(xR);
41 yf = floor(yR);
42 yc = ceil(yR);
43 if xf == xc & yc == yf
44 v = imR (xc, yc);
45 elseif xf == xc
46 v = imR (xf, yf) + (yR - yf)*(imR (xf , yc) - imR (xf , yf));
47 elseif yf == yc
48 v = imR (xf, yf) + (xR - xf)*(imR (xc , yf) - imR (xf , yf));
49 else
50 A = [xf yf xf*yf 1
51 xf yc xf*yc 1
52 xc yf xc*yf 1
53 xc yc xc*yc 1];
54 r = [imR(xf, yf)
55 imR(xf , yc)
56 imR(xc , yf)
57 imR(xc , yc)];
58 a = A\double(r);
59 w = [xR yR xR*yR 1];
60 v = w*a;
61 end

32

Appendix B - Analysis of Senior Project Design

Project Title: Iris Detection Authenticator

Students’ Names: Nathan D. Tang and Bryan K. Chau

Students’ Signatures:

Advisor’s Name: Jane Zhang

Advisor’s Initials:

Date: 12/07/2022

Summary of Functional Requirements

The Iris Detection Authenticator is a program utilizing an algorithm that takes a set of eye images, extracts the
irises from the images, normalizes the iris images, extracts features from the normalized images, and stores that
information. Other eye images can then be tested against the registered data to identify whether they match the
registered irises.

Primary Constraints

The most significant challenge in our project and implementation was obtaining high accuracy in our testing. We
used a large data set of 450 eye images, so checking that our iris processing, feature extraction, and feature matching
stages worked was a time consuming process. Creating this algorithm to be e�cient as well was another di�culty
along with its accuracy. Research was another part of our project that proved to be a challenge. There were a
number of papers related to our project, but implementing their ideas and techniques took time and e↵ort. We
used Matlab to code our project, and many of the papers did not. Some of the papers and software we gathered
were also outdated, so there was some di�culty converting and updating code to become relevant for our work.

Economic

Not much human capital was needed for the development of this project. Our group consisted of two people, and
we were able to complete this project over the course of this year. Financially, there were no extra costs for our
project, and the tools we needed were our computers, internet, and Matlab. As students, we have access to all of
these. Since the project is mostly software, the only natural capital is power and energy. The costs for this project
is all in the early stages, and benefits will accrue after our algorithm is used in real devices which is out of the scope
of our study. For our project, we used an online database of eye images that was free to use. We paid for our own
computers, internet, and student fees which pays for our Matlab student licenses. The development time for our
project went as expected. We completed our research, development, testing, and analysis throughout the year.

If manufactured on a commercial basis

Our project is the program we developed, so that is the only ”device” that is manufactured or sold. There are no
other costs involved in manufacturing our device. We estimate the profit from licensing our product is $250 per
system, and that results in an estimated $15,000 a year. The electricity cost for powering this program we estimate
is <$5.

Environmental

The environmental impacts occur during usage of the program. It requires a small amount of power to run. Since
this is software, it has to run on some physical device, so fuel and mineral resources are impacted by manufacturing
computers. Metals and energy are needed for the device our project runs on. This also a↵ects the wildlife in the
areas where those metals and fuels are mined for.

33

Manufacturability

Our project itself can be easily manufactured or replicated with our code. There are no issues of manufacturability
in regards to the software development

Sustainability

This is very sustainable because our project is heavily software-sided. There are no issues maintaining our software
on modern devices. As long as Matlab has no major updates that a↵ect our code, our product will still be
functional for a long time. Since our software runs on a single device, the sustainability impact on resources can
be measured by the number of devices our software is on. Upgrading our design requires new research on feature
extraction and matching. It is limited by the ability to implement these and any Matlab software in our code.

Ethical

Our project deals with inherently private data, so there are major ethical risks. A valid concern is that in real
applications, our code can be hacked and a person’s iris data can be stolen. Encryption and other security measures
are needed to mitigate this issue. Furthermore, inaccuracy in our algorithm can lead to false negatives, or worse,
false positives.

Health and Safety

Our product hopes to increase hygiene and safety of the user by reducing contact between the user and the device
our software is used. Our project inherently reduces contact between the user and the device because it uses images
instead of fingerprints as its data. We also hope that our software is secure so data cannot be stolen by any malicious
attacks.

Social and Political

Given that this product generally deals with very sensitive data, people may be worried about the data mining
that occurs from this device. While it may be true that this device stores data on the user, it is inevitable for
the operation of the device. In terms of accessibility, the product will start o↵ at a high price to support the
development of the device but will eventually drop in price as cameras get cheaper and the algorithm matures.
Everyone will be able to use this device, unless they are physically missing their eyes. It will require no previous
knowledge to utilize, making it very accessible.

Development

Throughout the development of this project, we learned many new computer vision techniques. We utilized many
of Matlab’s own features as well as implemented new methods such as Hough transform, HOG feature extraction,
rubber-sheet normalization, and SVM classification.

34

