13,167 research outputs found

    A Kalman Filter Approach for Biomolecular Systems with Noise Covariance Updating

    Full text link
    An important part of system modeling is determining parameter values, particularly for biomolecular systems, where direct measurements of individual parameters are typically hard. While Extended Kalman Filters have been used for this purpose, the choice of the process noise covariance is generally unclear. In this chapter, we address this issue for biomolecular systems using a combination of Monte Carlo simulations and experimental data, exploiting the dependence of the process noise covariance on the states and parameters, as given in the Langevin framework. We adapt a Hybrid Extended Kalman Filtering technique by updating the process noise covariance at each time step based on estimates. We compare the performance of this framework with different fixed values of process noise covariance in biomolecular system models, including an oscillator model, as well as in experimentally measured data for a negative transcriptional feedback circuit. We find that the Extended Kalman Filter with such process noise covariance update is closer to the optimality condition in the sense that the innovation sequence becomes white and in achieving a balance between the mean square estimation error and parameter convergence time. The results of this chapter may help in the use of Extended Kalman Filters for systems where process noise covariance depends on states and/or parameters.Comment: 23 pages, 9 figure

    Adaptive detection with bounded steering vectors mismatch angle

    Get PDF
    We address the problem of detecting a signal of interest (SOI), using multiple observations in the primary data, in a background of noise with unknown covariance matrix. We consider a situation where the signal signature is not known perfectly, but its angle with a nominal and known signature is bounded. Furthermore, we consider a possible scaling inhomogeneity between the primary and the secondary noise covariance matrix. First, assuming that the noise covariance matrix is known, we derive the generalized-likelihood ratio test (GLRT), which involves solving a semidefinite programming problem. Next, we substitute the unknown noise covariance matrix for its estimate obtained from secondary data, to yield the final detector. The latter is compared with a detector that assumes a known signal signature

    DOA Estimation in Partially Correlated Noise Using Low-Rank/Sparse Matrix Decomposition

    Full text link
    We consider the problem of direction-of-arrival (DOA) estimation in unknown partially correlated noise environments where the noise covariance matrix is sparse. A sparse noise covariance matrix is a common model for a sparse array of sensors consisted of several widely separated subarrays. Since interelement spacing among sensors in a subarray is small, the noise in the subarray is in general spatially correlated, while, due to large distances between subarrays, the noise between them is uncorrelated. Consequently, the noise covariance matrix of such an array has a block diagonal structure which is indeed sparse. Moreover, in an ordinary nonsparse array, because of small distance between adjacent sensors, there is noise coupling between neighboring sensors, whereas one can assume that nonadjacent sensors have spatially uncorrelated noise which makes again the array noise covariance matrix sparse. Utilizing some recently available tools in low-rank/sparse matrix decomposition, matrix completion, and sparse representation, we propose a novel method which can resolve possibly correlated or even coherent sources in the aforementioned partly correlated noise. In particular, when the sources are uncorrelated, our approach involves solving a second-order cone programming (SOCP), and if they are correlated or coherent, one needs to solve a computationally harder convex program. We demonstrate the effectiveness of the proposed algorithm by numerical simulations and comparison to the Cramer-Rao bound (CRB).Comment: in IEEE Sensor Array and Multichannel signal processing workshop (SAM), 201

    Continuous time systems identification with unknown noise covariance = SystĂšmes d'identification de temps continu avec co-variation de bruit (ou bruits) inconnus = Identifikation zeitkontinuierlicher systeme mit unbekannter rauschkovarianz

    Get PDF
    In identifying parameters of a continuous-time dynamical system, a difficulty arises when the observation noise covariance is unknown. The present paper solves this problem in the case of a linear time-invariant system with white noise affecting additively both the state and the observation. The problem is that the likelihood functional cannot be obtained when the observation noise covariance is unknown. A related procedure is suggested, however, and the estimates are obtained by finding roots of an appropriate functional. It is shown that the estimates obtained are consistent

    Generalization of the noise model for time-distance helioseismology

    Full text link
    In time-distance helioseismology, information about the solar interior is encoded in measurements of travel times between pairs of points on the solar surface. Travel times are deduced from the cross-covariance of the random wave field. Here we consider travel times and also products of travel times as observables. They contain information about e.g. the statistical properties of convection in the Sun. The basic assumption of the model is that noise is the result of the stochastic excitation of solar waves, a random process which is stationary and Gaussian. We generalize the existing noise model (Gizon and Birch 2004) by dropping the assumption of horizontal spatial homogeneity. Using a recurrence relation, we calculate the noise covariance matrices for the moments of order 4, 6, and 8 of the observed wave field, for the moments of order 2, 3 and 4 of the cross-covariance, and for the moments of order 2, 3 and 4 of the travel times. All noise covariance matrices depend only on the expectation value of the cross-covariance of the observed wave field. For products of travel times, the noise covariance matrix consists of three terms proportional to 1/T1/T, 1/T21/T^2, and 1/T31/T^3, where TT is the duration of the observations. For typical observation times of a few hours, the term proportional to 1/T21/T^2 dominates and Cov[τ1τ2,τ3τ4]≈Cov[τ1,τ3]Cov[τ2,τ4]+Cov[τ1,τ4]Cov[τ2,τ3]Cov[\tau_1 \tau_2, \tau_3 \tau_4] \approx Cov[\tau_1, \tau_3] Cov[\tau_2, \tau_4] + Cov[\tau_1, \tau_4] Cov[\tau_2, \tau_3], where the τi\tau_i are arbitrary travel times. This result is confirmed for p1p_1 travel times by Monte Carlo simulations and comparisons with SDO/HMI observations. General and accurate formulae have been derived to model the noise covariance matrix of helioseismic travel times and products of travel times. These results could easily be generalized to other methods of local helioseismology, such as helioseismic holography and ring diagram analysis

    A generalized spatiotemporal covariance model for stationary background in analysis of MEG data

    Get PDF
    Using a noise covariance model based on a single Kronecker product of spatial and temporal covariance in the spatiotemporal analysis of MEG data was demonstrated to provide improvement in the results over that of the commonly used diagonal noise covariance model. In this paper we present a model that is a generalization of all of the above models. It describes models based on a single Kronecker product of spatial and temporal covariance as well as more complicated multi-pair models together with any intermediate form expressed as a sum of Kronecker products of spatial component matrices of reduced rank and their corresponding temporal covariance matrices. The model provides a framework for controlling the tradeoff between the described complexity of the background and computational demand for the analysis using this model. Ways to estimate the value of the parameter controlling this tradeoff are also discussedComment: 4 pages, EMBS 2006 conferenc

    Optimized Large-Scale CMB Likelihood And Quadratic Maximum Likelihood Power Spectrum Estimation

    Full text link
    We revisit the problem of exact CMB likelihood and power spectrum estimation with the goal of minimizing computational cost through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al.\ (1997), and here we develop it into a fully working computational framework for large-scale polarization analysis, adopting \WMAP\ as a worked example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked \WMAP\ sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8\% at ℓ≀32\ell\le32, and a maximum shift in the mean values of a joint distribution of an amplitude--tilt model of 0.006σ\sigma. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation that requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ≀32\ell \le 32, rendering low-ℓ\ell QML CMB power spectrum analysis fully tractable on a standard laptop.Comment: 13 pages, 13 figures, accepted by ApJ

    The impact of beam deconvolution on noise properties in CMB measurements: Application to Planck LFI

    Full text link
    We present an analysis of the effects of beam deconvolution on noise properties in CMB measurements. The analysis is built around the artDeco beam deconvolver code. We derive a low-resolution noise covariance matrix that describes the residual noise in deconvolution products, both in harmonic and pixel space. The matrix models the residual correlated noise that remains in time-ordered data after destriping, and the effect of deconvolution on it. To validate the results, we generate noise simulations that mimic the data from the Planck LFI instrument. A χ2\chi^2 test for the full 70 GHz covariance in multipole range ℓ=0−50\ell=0-50 yields a mean reduced χ2\chi^2 of 1.0037. We compare two destriping options, full and independent destriping, when deconvolving subsets of available data. Full destriping leaves substantially less residual noise, but leaves data sets intercorrelated. We derive also a white noise covariance matrix that provides an approximation of the full noise at high multipoles, and study the properties on high-resolution noise in pixel space through simulations.Comment: 22 pages, 25 figure

    Adaptive detection of a signal known only to lie on a line in a known subspace, when primary and secondary data are partially homogeneous

    Get PDF
    This paper deals with the problem of detecting a signal, known only to lie on a line in a subspace, in the presence of unknown noise, using multiple snapshots in the primary data. To account for uncertainties about a signal's signature, we assume that the steering vector belongs to a known linear subspace. Furthermore, we consider the partially homogeneous case, for which the covariance matrix of the primary and the secondary data have the same structure but possibly different levels. This provides an extension to the framework considered by Bose and Steinhardt. The natural invariances of the detection problem are studied, which leads to the derivation of the maximal invariant. Then, a detector is proposed that proceeds in two steps. First, assuming that the noise covariance matrix is known, the generalized-likelihood ratio test (GLRT) is formulated. Then, the noise covariance matrix is replaced by its sample estimate based on the secondary data to yield the final detector. The latter is compared with a similar detector that assumes the steering vector to be known
    • 

    corecore