
4698 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 12, DECEMBER 2006

Adaptive Detection of a Signal Known Only to Lie
on a Line in a Known Subspace, When Primary and

Secondary Data are Partially Homogeneous
Olivier Besson, Senior Member, IEEE, Louis L. Scharf, Fellow, IEEE, and Shawn Kraut, Member, IEEE

Abstract—This paper deals with the problem of detecting a
signal, known only to lie on a line in a subspace, in the presence
of unknown noise, using multiple snapshots in the primary data.
To account for uncertainties about a signal’s signature, we assume
that the steering vector belongs to a known linear subspace. Fur-
thermore, we consider the partially homogeneous case, for which
the covariance matrix of the primary and the secondary data have
the same structure but possibly different levels. This provides an
extension to the framework considered by Bose and Steinhardt.
The natural invariances of the detection problem are studied,
which leads to the derivation of the maximal invariant. Then, a
detector is proposed that proceeds in two steps. First, assuming
that the noise covariance matrix is known, the generalized-likeli-
hood ratio test (GLRT) is formulated. Then, the noise covariance
matrix is replaced by its sample estimate based on the secondary
data to yield the final detector. The latter is compared with a
similar detector that assumes the steering vector to be known.

Index Terms—Array processing, detection, maximal invariant
statistic, steering vector uncertainties.

I. PROBLEM STATEMENT

WE consider the problem of detecting a partly unknown
rank-one signal using multiple observations from an

array of sensors, in the presence of correlated noise with
unknown level and covariance matrix. More precisely, the
detection problem consists of deciding between the two hy-
potheses

(1)

where we have the following.
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• is the primary data
array, and is the sec-
ondary data array. The data array can be the output of an
array of sensors (space-only framework); in such a case,

denotes the time index, and and stand for the
number of snapshots collected. The problem formulated
in (1) is also relevant in space–time applications, in which
case is a space–time snapshot (whose length is the
number of sensors times the number of pulses) and is the
range cell index. In such a situation, the problem amounts
to detecting a target which potentially spreads over
range cells.

• is either the spatial or the space–time signature of in-
terest, referred to as the steering vector. We consider the
case where there exist uncertainties about . This can
occur, for instance, if the detection of the target is carried
out on a grid of spatial (and possibly Doppler) frequencies
while the actual frequencies lie in between the grid. The
uncertainties about the actual signature can also be due
to an uncalibrated array. Finally, in the case of a Ricean
channel, the steering vector is the sum of a (possibly
known) line-of-sight component and a random component
due to the scattering environment. In order to account for
these uncertainties, we assume that belongs to a known

-dimensional subspace spanned by the columns of the
matrix . We refer the reader to [1], [2], and refer-

ences therein for the rationale of such a model. It should be
pointed out that the detection problem considered herein
with is rather general and encompasses two spe-
cial cases of interest, namely the case where is perfectly
known, and the case where is unknown and arbitrary.
The former case corresponds to , , and
and was considered in [3]. An arbitrary steering vector
corresponds to , and .

• corresponds to the unknown emitted signal wave-
form—or the amplitude of a target in different range cells
in space–time applications—and is considered an un-
known deterministic (nonrandom) sequence in this paper.

• and stand for the noise in the primary and sec-
ondary data, respectively. They are proper zero-mean inde-
pendent and Gaussian distributed with

and . The scaling factor ac-
counts for noise power mismatch between the primary and
the secondary data. In other words, the primary and sec-
ondary data are only partially homogeneous. In the sequel,
we use the terminology “partially homogeneous” to refer
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to the case in which the scaling factor is something other
than one.

For the homogeneous case, detecting a signal of interest in
a background of noise (with unknown covariance matrix) has
been studied extensively in the literature. When is known, the
generalized-likelihood ratio test (GLRT) was derived by Kelly
[4], when . Extension to a vector signal (i.e., the signal
of interest belongs to a known linear subspace) can be found in
[5] and [6]. The adaptive matched filter (AMF) [7] proceeds in
two steps. First, the GLRT for known noise covariance matrix is
derived, and next, the noise covariance matrix is replaced by its
estimate obtained from secondary data. Kelly’s GLRT and the
AMF were shown to be the maximal invariants for this detection
problem in [8] and [9].

In the partially homogeneous case, the adaptive coherence es-
timator (ACE) was derived in [10]–[12] and shown to be a scale-
invariant GLRT and the uniformly most powerful invariant test
[13]. Extensions of the ACE to a subspace signal were also con-
sidered. We refer to [12] and references therein for an overview.
Most of the studies cited so far deal with the case, and
a known steering vector.

Detection from multiple observations and with partly known
signals of interest is rather scarce and was considered, e.g., in
[1], [3], [14], and [15]. However, the problem addressed in this
paper differs from those in these references, as explained below.
In the recent paper [15], a constant false alarm rate (CFAR) de-
tector based on a two-step GLRT is derived under the assump-
tion that the signals of interest belong to a known subspace.
However, in [15], the signals of interest evolve in a -dimen-
sional subspace while here they are constrained to lie in an un-
known one-dimensional subspace of a known subspace .
In other words, the signal of interest is in [15], with

, whereas herein the signal of interest is .
Reference [3] considers the detection of a range-spread target
using an high resolution radar. The detection problem is for-
mally equivalent to that in (1), except that the steering vector is
assumed to be known in [3]. The authors derive and analyze a
two-step GLRT in the homogeneous case (the noise covariance
matrix is the same in the primary and secondary data) and in the
partially homogeneous case (the noise covariance matrix has the
same structure in the primary and secondary data but may differ
by a scaling factor, as in the present paper). In contrast to [3]
where the steering vector is known, the statistical average of the
primary data matrix is considered as unknown and
arbitrary in [14]. In other words, the signal of interest matrix
does not have any structure. The theory of invariance is invoked
to obtain a most powerful invariant test and a suboptimal CFAR
detector. The detection problem described in (1) is similar to
that addressed in [1], where uncertain rank-one waveforms are
to be detected. More precisely, in [1], both the space
and time signatures of the signal of interest are as-
sumed to belong to the -dimensional and -dimensional linear
subspaces spanned by the columns of known matrices and .
Therefore, it is similar to the problem treated here, with ,

, , and . Bose and Steinhardt provide in-
sightful derivations and interpretations of the maximal invariant,
and derive the GLRT for this very general framework. However,
[1] considers the homogeneous case only, meaning that .

Hence, the present paper provides an extension of [1] to the par-
tially homogeneous case.

The paper is organized as follows. In Section II, we study the
natural invariances of the detection problem along with the max-
imal invariant statistic. Our detector is derived in Section III.
The performance of the detector is evaluated in Section IV and
compared with a that of a detector that assumes a perfectly
known steering vector. Our conclusions are drawn in Section V.
They suggest that the generalized adaptive direction detector
(GADD) of this paper is more robust to model mismatch than
the generalized adaptive subspace detector (GASD) of [3], and
only slightly less powerful when there is no model mismatch.

II. INVARIANCES

Let us consider the natural invariances of the detection
problem in (1). Since we wish to preserve zero mean and
Gaussianity of the measurements under , we restrict our
attention to linear transformations of the data. In order for
the transformed noise to be temporally independent between
snapshots, these transformations are of the form

(2)

with and unitary matrices. Furthermore, since the noise
covariance matrix must be the same, up to a scaling factor, under
each hypothesis, it follows that and must be proportional
to each other, and full rank. Finally, since the steering vector
must remain in , must satisfy

(3)

Therefore, the hypothesis testing problem (1) is invariant under
the group of transformations defined by

(4)

where and are arbitrary scalars, is a full-rank matrix such
that with a invertible matrix, and and
are unitary matrices. The group of transformations induced on
the parameter space is

(5)

with . A few remarks are in order. When the steering
vector is known, then is a full-rank matrix such that .
On the contrary, when is arbitrary and unknown, can be any
nonsingular matrix.

Now that the group of transformations under which the detec-
tion problem is invariant has been defined, we look for test statis-
tics that are invariant to . All of them will be a function of the
maximal invariant (see [16] for a theoretical presentation and
[8] and [9] for comprehensive overviews and array processing
applications of invariance and maximal invariants), which is de-
rived next. In the following, we let denote an
matrix whose columns form a basis for . We also define

(6)
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as the sample covariance matrix of the secondary data. Finally,
we will denote by the vector whose elements are the eigen-
values of the matrix between parentheses.

Proposition 1: Let

(7a)

(7b)

(7c)

The maximal invariant statistic with respect to the group of
transformations (4) is given by the eigenvectors of

(8)

and the scaled eigenvalues

(9)

Proof: The proof is given in Appendix I and builds upon
the results of [1] where the maximal invariant for the homoge-
neous case was derived.

The maximal invariant is a vector-valued function of the data.
It consists of the eigenvectors of and the normalized eigen-
values of and . This normalization is mandatory to ensure
a constant false alarm rate in the partially homogeneous case.
The following observations, concerning the case of a known
and the case of an unknown , can be made.

Remark 1: When is known, then , and
is now the steering vector. In this case, , or equivalently ,
has only one single eigenvalue, and
reduces to

The maximal invariant then consists of the ratio above, along
with the corresponding eigenvector of , as well as the
eigenvalues of . In the single snapshot case, ,
is a vector and , are scalars. Observing
that , it follows that the
maximal invariant reduces to

which is exactly the ACE statistic of [10], [11], and [13]. Hence,
we recover the fact that the ACE test statistic is a maximal in-
variant in the partially homogeneous case.

Remark 2: When is unknown and arbitrary, ,
and . The maximal invariant then consists of

(10)

III. DETECTION

In this section, we derive a CFAR detector using a GLRT ap-
proach. First note that, in principle, a one-step GLRT can be
derived, using the whole array data, including the primary and

secondary data. This approach was taken, e.g., by Kelly in [4].
It was also used in [11] to prove that the ACE is a scale in-
variant GLRT. Unfortunately, in our situation where ,
it is shown in Appendix II (see also [3, Sect. II.A]) that the
maximum-likelihood estimates (MLEs) of the unknown param-
eters cannot be obtained in a simple and closed-form expression,
which results in a computationally complex detector. Therefore,
this approach is abandoned and we turn to an approach similar
to those advocated, e.g., in [3], [14], and [15]. First, we assume
that the noise covariance matrix is known, and we derive the
GLRT using the primary data only. Next, we substitute for the
unknown covariance matrix its estimate based on secondary
data.

Let us consider first that is known. Then, the probability
density function (PDF) of is given by

(11)
with under , under . The log-likelihood
function is thus given by

(12)

Differentiating the previous equation with respect to the scaling
parameter and setting the result to zero yields the following
estimate of :

(13)
Under , all unknown parameters are estimated and the esti-
mate of under is simply

(14)

Under , we still need to minimize

with respect to and . However

(15)

Hence, the MLE of is given as

(16)

where , the MLE of , is given, up to a scaling factor, by

(17)
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where stands for the principal eigenvector. Substituting
these values in yields the following estimate of under :

(18)

where stands for the principal eigenvalue of the ma-
trix between braces. Therefore, the generalized-likelihood ratio
(GLR) for known is given by

GLR

(19)
where the symbol means “equivalent to.” Our detector con-
sists of replacing in (19) by its MLE, namely , which
leads to

(20)

or, equivalently

(21)

Note that this detector depends on the maximal invariant and
is thus CFAR with respect to and [16], as its distribution
only depends on the signal to noise ratio (see Appendix I). In
fact, the detector in (20) only uses the maximal eigenvalue of

, which is equal to the square of the largest singular value
of . Therefore, it first performs whitening of
the data , then looks for a preferred direction in the subspace

, namely the direction of maximum energy. This
seems logical since, if the signal of interest is present, it should
lie along a line in this subspace. The detector in (20) can thus be
viewed as an adaptive version of the matched direction detector
derived in [2].

Remark 3: In the homogeneous case, Bose and Steinhardt
[1] derived analytical expressions for the PDF of the GLRT (see
also [17] for a similar analysis). The partially homogeneous case
induces a serious complication, namely the normalizing factor
at the denominator of (20). This renders the theoretical analysis
very difficult, not to say intractable, and we were not able to
obtain theoretical expressions for the PDF of (20). Therefore, in
the next section, the performance of the detector will be assessed
by numerical simulations.

Remark 4: As mentioned above, the detector in (20) is in-
variant to arbitrary scaling of the measurements and . This
property is important when the noise is no longer a Gaussian
process but a spherically invariant random process. In such a
case, under the null hypothesis, the primary and secondary data
matrices can be written as [18] and [19] and

, where and are Gaussian, and and
are the so-called textures which might be different between

the primary and the secondary data, but constant over the
and snapshots or range cells. Usually, the textures are con-
sidered as random variables with a given PDF. For fixed and

, the left-hand side of (20)—let us call it for the sake of con-
venience—does not depend on and . Therefore, under ,
its PDF given and , , does not depend on and

. Consequently, under , does not depend on the PDFs
of the textures, which is an interesting feature of the detector.

Remark 5: When is known, the detector in (20) reduces to

(22)

which corresponds to the detector derived in [3, eq. (26)]. Fur-
thermore,when there is only one snapshot in the primary data,

and (20) above reduces to

(23)

which is exactly the ACE.
Remark 6: When is unknown and arbitrary, is the iden-

tity matrix, and our detector becomes

(24)

Hence, when an arbitrary rank-one component is to be detected,
the detector amounts to comparing the largest eigenvalue
of to its trace. The detector first performs a
whitening operation of the data, and then tests if the largest
eigenvalue is above the others (in which case it decides a
rank-one component is present) or if all eigenvalues are
of the same order (in which case the data is considered as
white noise). This is an interesting variation on the statistic

, which is the GLRT
for sphericity using primary data only, when the measurement
model is under and ,

arbitrary, under [20].

IV. NUMERICAL EXAMPLES

In this section, we illustrate the performance and the robust-
ness of the detector in (20), and compare it with the detector
that assumes that the steering vector is known. For the sake of
clarity, the two detectors are repeated below:

(25)

(26)

In (25), stands for the presumed steering vector, which may or
may not differ from the actual steering vector . In other words,
we consider the possibility of a mismatch between and , as
could happen for instance with an uncalibrated array or with
pointing errors. Following the terminology used in [3], we will
refer to (25) as the GASD. The detector in (26) will be referred
to as the GADD in the figures. Three different scenarios will be
investigated, with various degrees of mismatch.

1) In the first scenario, the presumed and the actual steering
vector coincide, i.e., and, furthermore, .
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Fig. 1. P of GASD and GADD versus SNR. m = 10, p = 2, N = 20,
N = 2, and P = 10 . aaa = aaa 2 hHi.

This corresponds to the case of a perfectly known steering
vector and a matrix that includes the actual steering
vector. Under such conditions, we may expect the detector
(25) to perform better than the detector (26).

2) In the second scenario, we consider a mismatch between
and while still belongs to . To parameterize the mis-
match, we will use the angle between and ,
which will be referred to as . In this scenario, the detector
(26) should not undergo any performance loss while the
detector in (25) should. We will investigate the relative per-
formances of the two detectors versus .

3) In the third scenario, we still consider a mismatch between
and and, additionally, no longer belongs to . This

scenario tests the robustness of both detectors. will still
denote the angle between and , while
will stand for the angle between and .

In all simulations below, we consider an array with
elements, the dimension of is and the number of
snapshots in the secondary data is . In order to set the
thresholds and for a given probability of false alarm ,
we resorted to Monte Carlo count techniques. More precisely,

simulations of the data under the null hypothesis
were run, and the two test statistics in (25)–(26) were computed,
then sorted in ascending order. The thresholds were computed
from the most significant values of the test statistics.
In the simulations shown below, . To obtain the
probability of detection, independent trials were run, and the
test statistics are compared to the thresholds in order to obtain

. The probability of detection is plotted as a function of the
signal-to-noise ratio (SNR), which is defined as

SNR (27)

Note that the SNR is the induced maximal invariant for the
problem at hand (see Appendix I), which means that the dis-
tribution of the maximal invariant only depends on SNR [16].

Fig. 2. P of GASD and GADD versus SNR. m = 10, p = 2, N = 20,
N = 4, and P = 10 . aaa = aaa 2 hHi.

Fig. 3. P of GASD and GADD versus SNR. m = 10, p = 2, N = 20,
N = 2, and P = 10 . aaa 6= aaa, aaa 2 hHi. cos � = 0:97.

Figs. 1–5 display the results for the three different scenarios
mentioned above. From inspection of these figures, the fol-
lowing observations can be made.

• In the first scenario, the detector that assumes to be
known performs better than the detector that assumes that

belongs to the range space of (see Figs. 1 and 2). This
is logical as the actual steering vector perfectly matches the
presumed one. Observe that the difference is about 1 dB at

, and hence the performance loss incurred by the
GADD is not very important.

• The robustness of the GADD can clearly be seen in Figs. 3
and 4, where is plotted for two different values of . As

decreases, the performance of the GASD degrades,
while that of the GADD remains constant. When

, the two detectors have similar performance, while the
GADD performs about 3 dB better at than the
GASD, for . Therefore, in a situation where
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Fig. 4. P of GASD and GADD versus SNR. m = 10, p = 2, N = 20,
N = 2, and P = 10 . aaa 6= aaa, aaa 2 hHi. cos � = 0:90.

Fig. 5. P of GASD and GADD versus SNR. m = 10, p = 2, N = 20,
N = 2, and P = 10 . aaa 6= aaa, aaa =2 hHi. cos � = 0:9 and cos = 0:97.

there exists a mismatch between the presumed and the ac-
tual steering vector, the GADD can offer improved robust-
ness.

• Fig. 5 considers a case where the two detectors operate in
a mismatched situation. It can be seen that, for low SNR,
the two detectors perform the same while, for high SNR,
the detector (26) performs better. Again, the GADD offers
improved robustness.

V. CONCLUSION

In this paper, we considered the problem of detecting a partly
unknown signal which lies in a known subspace, in the presence
of noise which might not be completely homogeneous between
the primary and the secondary data. The natural invariances of
the problem were studied and a new detector was derived. The
detector amounts to searching the direction of maximum en-
ergy in a subspace, after whitening of the data. We showed that

this detector performs only slightly worse than a detector which
knows the steering vector of interest, but offers improved ro-
bustness when there is a mismatch between the actual steering
vector and the presumed steering vector. Therefore, the choice
between the two detectors is dictated by the confidence we have
in the presumed steering vector; should there exist uncertain-
ties about the latter, the GADD might be preferred. On the other
hand, if a precise knowledge of is at hand, the GASD remains
the best solution.

APPENDIX I
PROOF OF PROPOSITION 1

In order to prove Proposition 1, we first need to show that
the maximal invariant is indeed invariant to the group of trans-
formations defined in (4). Observing that is transformed as

, is invertible, and , it follows that

(28)

(29)

Therefore, is transformed as

(30)
with . Accordingly, since is invariant for , it
follows that is invariant for , i.e., ,
and hence there exists such that . Using
this property along with the technique employed above, it can
readily be shown that

(31)

from which we have that . Therefore

(32)

The eigenvectors of are left unchanged while its eigen-
values are multiplied by , as those of . At the same time,

is also multiplied by , which shows that the
maximal invariant of Proposition 1 is indeed invariant to .

Next, we need to show that, if two sets of data and
have the same maximal invariant, then they are re-

lated to one another by a transformation of the type defined
in (4). Towards this end, we will build upon the results of [1]
which provides the maximal invariant in the homogeneous case.
Briefly stated, we will use the same kind of technique as in [13],
where the ACE was proven to be a maximal invariant in the par-
tially homogeneous case based on the fact that the AMF and
Kelly’s GLRT were a maximal invariant in the homogeneous
case. For the sake of clarity, we will use the notation
to emphasize that depends on and . We will also use the
same notations for and . Let us assume that
and have the same eigenvectors and that

(33a)
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(33b)

Under this hypothesis, one has

(34)
where and are arbitrary scalars such that .
Similarly

(35)

Furthermore, the eigenvectors of and
are identical. However, as shown by Bose and

Steinhardt, the eigenvectors of , as well as the eigenvalues
of and are the maximal invariant in the homogeneous
case. Therefore, there must exist a full-rank matrix such that

, and unitary matrices and such that

(36)

which concludes the proof. Finally, we note that the induced
maximal invariant in the homogeneous case is the output array
signal to interference and noise ratio, viz.
(see [1]). Using the same arguments as those used to de-
rive the maximal invariant, it can be shown that the induced
maximal invariant in the partially homogeneous case is

.

APPENDIX II
A NOTE ON THE ONE-STEP GLRT

In this Appendix, we briefly explain the reason why a two-
step GLRT-based approach should be preferred to the one-step
GLRT. A first reason stems from the fact that the latter does
not lead to closed-form and simple expressions of the maximum
likelihood estimates of the unknown parameters, as briefly ex-
plained below. Under hypothesis the joint distribution of the
primary and secondary data is given by

(37)

with , , and

(38)
with under , under . For the sake of
convenience, let us first consider the null hypothesis. Then the
MLE of and are obtained as the maximizers of (37). It is
well known that is the MLE of [4]. Therefore, the MLE
of is obtained by minimizing , or equivalently
its logarithm. Let

(39)

be the eigenvalue decomposition of with
. Observing that

(40)

it follows that we need to minimize

(41)

Differentiating the previous equation with respect to and
equating the result to zero yields

(42)

In the case , a closed-form solution for can be
found (see [11]). For small values of , say , an analytic
solution is still available [3], but for large , only a numerical
solution can be found. This results in a computationally inten-
sive detector. Furthermore, as shown in [3], this additional com-
plexity does not result in any significant improvement compared
to a two-step GLRT. Therefore, we only consider the latter ap-
proach in this paper.

REFERENCES

[1] S. Bose and A. O. Steinhardt, “Adaptive array detection of uncertain
rank one waveforms,” IEEE Trans. Signal Process., vol. 44, no. 11, pp.
2801–2809, Nov. 1996.

[2] O. Besson, L. L. Scharf, and F. Vincent, “Matched direction detectors
and estimators for array processing with subspace steering vector
uncertainties,” IEEE Trans. Signal Process., vol. 53, no. 12, pp.
4453–4463, Dec. 2005.

[3] E. Conte, A. De Maio, and G. Ricci, “GLRT-based adaptive detection
algorithm for range-spread targets,” IEEE Trans. Signal Process., vol.
49, no. 7, pp. 1336–1348, Jul. 2001.

[4] E. J. Kelly, “An adaptive detection algorithm,” IEEE Trans. Aerosp.
Electron. Syst., vol. 22, no. 1, pp. 115–127, Mar. 1986.

[5] ——, “Adaptive detection in non-stationary interference, Part III,”
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington,
MA, Tech. Rep. 761, 1987.

[6] R. S. Raghavan, N. Pulsone, and D. J. McLaughlin, “Performance of
the GLRT for adaptive vector subspace detection,” IEEE Trans. Aerosp.
Electron. Syst., vol. 32, no. 4, pp. 1473–1487, Oct. 1996.

[7] F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg, “A CFAR
adaptive matched filter detector,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 28, no. 1, pp. 208–216, Jan. 1992.

[8] S. Bose and A. O. Steinhardt, “A maximal invariant framework
for adaptive detection with structured and unstructured covariance
matrices,” IEEE Trans. Signal Process., vol. 43, no. 9, pp. 2164–2175,
Sep. 1995.

[9] ——, “Optimum array detector for a weak signal in unknown noise,”
IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 3, pp. 911–922, Jul.
1996.

[10] L. L. Scharf and T. McWhorter, “Adaptive matched subspace detec-
tors and adaptive coherence estimators,” in Proc. 30th Asilomar Conf.
Signals Systems Computers, Pacific Grove, CA, Nov. 3–6, 1996, pp.
1114–1117.

[11] S. Kraut and L. L. Scharf, “The CFAR adaptive subspace detector is a
scale-invariant GLRT,” IEEE Trans. Signal Process., vol. 47, no. 9, pp.
2538–2541, Sep. 1999.

[12] S. Kraut, L. L. Scharf, and T. McWhorter, “Adaptive subspace detec-
tors,” IEEE Trans. Signal Process., vol. 49, no. 1, pp. 1–16, Jan. 2001.

[13] S. Kraut, L. L. Scharf, and R. W. Butler, “The adaptive coherence
estimator: A uniformly most powerful invariant adaptive detection
statistic,” IEEE Trans. Signal Process., vol. 53, no. 2, pp. 427–438,
Feb. 2005.



BESSON et al.: ADAPTIVE DETECTION OF A SIGNAL KNOWN ONLY TO LIE ON A LINE IN A KNOWN SUBSPACE 4705

[14] E. Conte, A. De Maio, and C. Galdi, “CFAR detection of multidimen-
sional signals: An invariant approach,” IEEE Trans. Signal Process.,
vol. 51, no. 1, pp. 142–151, Jan. 2003.

[15] Y. Jin and B. Friedlander, “A CFAR adaptive subspace detector for
second-order Gaussian signals,” IEEE Trans. Signal Process., vol. 53,
no. 3, pp. 871–884, Mar. 2005.

[16] E. L. Lehmann, Testing Statistical Hypotheses, 2nd ed. New York:
Springer Verlag, 1986.

[17] C. G. Khatri and C. R. Rao, “Test for a specified signal when the noise
covariance matrix is unknown,” J. Multivariate Anal., vol. 22, no. 2,
pp. 177–188, Aug. 1987.

[18] K. Yao, “A representation theorem and its application to spherically in-
variant processes,” IEEE Trans. Inf. Theory, vol. 19, no. 5, pp. 600–608,
Sep. 1973.

[19] R. J. Muirhead, Aspects of Multivariate Statistical Theory. New
York: Wiley, 1982.

[20] K. V. Mardia, J. T. Kent, and J. M. Bibby, Mutivariate Analysis. New
York: Academic, 1979.

Olivier Besson (SM’04) received the Ph.D. degree in
signal processing and the “Habilitation à Diriger des
Recherches” degree from INP, Toulouse, France, in
1992 and 1998, respectively.

Currently, he is an Associate Professor with the
Department of Avionics and Systems of ENSICA,
Toulouse, France. His research interests are in the
general area of statistical signal and array processing
with applications in radar and communications.

Dr. Besson is a member of the IEEE SAM Tech-
nical Committee and served as the Co-Technical

Chairman of the IEEE SAM 2004 workshop. He was formerly an Associate
Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING and currently
serves as an Associate Editor for the IEEE SIGNAL PROCESSING LETTERS.

Louis L. Scharf (F’86) received the Ph.D. degree
from the University of Washington, Seattle.

From 1971 to 1982, he served as Professor of
electrical engineering and statistics at Colorado
State University (CSU), Fort Collins. From 1982 to
1985, he was Professor and Chairman of electrical
and computer engineering at the University of
Rhode Island, Kingston. From 1985 to 2000, he was
Professor of electrical and computer engineering
at the University of Colorado, Boulder. In January
2001, he rejoined CSU as Professor of electrical

and computer engineering, and statistics. Since August 2004 he has served
as Chief Scientist for TensorComm. He has held several visiting positions in
the United States and abroad: Ecole Supérieure d’Electricité, Gif-sur-Yvette,
France; ENST, Paris; EURECOM, Nice, France; the University of La Plata, La
Plata, Argentina; Duke University, Durham, NC; the University of Wisconsin,
Madison; and the University of Tromso, Tromso, Norway. His interests are in
statistical signal processing as it applies to adaptive radar, sonar, and wireless
communication. His most important contributions to date are invariance theo-
ries for detection and estimation; matched and adaptive subspace detectors and
estimators for radar, sonar, and data communication; and canonical decomposi-
tions for reduced dimensional filtering and quantizing. His current interests are
in rapidly adaptive receiver design for space-time and frequency-time signal
processing in the wireless communication channel.

Prof. Scharf was Technical Program Chair for 1980 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), Denver, CO;
Tutorials Chair for ICASSP 2001, Salt Lake City, UT; and Technical Program
Chair for Asilomar 2002, Pacific Grove, CA. He is Past Chair of the Fellow
Committee for the IEEE Signal Processing Society and previously served on its
Technical Committees for Theory and Methods and for Sensor Arrays and Mul-
tichannel Signal Processing. He has received numerous awards for his research
contributions to statistical signal processing, including an IEEE Distinguished
Lectureship, IEEE Third Millennium Medal, the Technical Achievement Award
from the IEEE Signal Processing Society, and its Society Award.

Shawn Kraut (M’00) received the B.S. degree in
engineering physics from the University of Arizona,
Tucson, in 1993 and the Ph.D. degree in physics
from the University of Colorado, Boulder, in 1999.
The topic of his Ph.D. dissertation was adaptive
subspace detectors used in radar array processing
and related areas. In particular, he derived the
generalized-likelihood ratio test (GLRT) and related
properties of the adaptive coherence estimator (ACE)
detection algorithm, which is robust with respect to
scaling uncertainty in the noise statistics.

From 1999 to 2002, he was a Postdoctoral Research Associate at Duke Uni-
versity, Raleigh-Durham, NC, where he developed physics-based signal pro-
cessing algorithms for applications in radar and sonar. From 2002 to 2005, he
was an Assistant Professor at Queen’s University, Ontario, Canada, where he
showed that ACE is a uniformly mostly powerful (UMP)-invariant detection
test and developed sequential-Bayesian algorithms for passive-sonar detection
of moving sources in shallow water. Currently, he is a member of the technical
staff at the Massachusetts Institute of Technology (MIT) Lincoln Laboratory,
Lexington, MA.


