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Adaptive Detection With Bounded Steering Vectors
Mismatch Angle
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Abstract—We address the problem of detecting a signal of interest
(SOI), using multiple observations in the primary data, in a background of
noise with unknown covariance matrix. We consider a situation where the
signal’s signature is not known perfectly, but its angle with a nominal and
known signature is bounded. Furthermore, we consider a possible scaling
inhomogeneity between the primary and the secondary noise covariance
matrix. First, assuming that the noise covariance matrix is known, we
derive the generalized-likelihood ratio test (GLRT), which involves solving
a semidefinite programming problem. Next, we substitute the unknown
noise covariance matrix for its estimate obtained from secondary data,
to yield the final detector. The latter is compared with a detector that
assumes a known signal’s signature.

Index Terms—Array processing, detection, generalized-likelihood ratio
test (GLRT), steering vector mismatch.

I. INTRODUCTION AND PROBLEM STATEMENT

The problem of detecting the presence of a signal of interest (SOI)
against a background of colored noise is fundamental, especially in
radar applications. This problem has been studied extensively in the lit-
erature (see, e.g., [1] for a list of references). Usually, the presence of a
target is sought in a single vector under test, assuming that training sam-
ples, which contain noise only, are available (see, e.g., [2] and [3]). Fur-
thermore, the space or space–time signature of the target is assumed to
be known. Herein, we consider a slightly different framework, namely
we assume that the primary data contains multiple observations and
that the SOI signature is not known perfectly. The first assumption
arises, for instance, when a high-resolution radar attempts to detect a
range-spread target [4]. In such a case, the primary data consists of the
array outputs in the range cells in which the target is likely to be present.
Uncertainties about the SOI signature can be attributed to many pos-
sible causes, including uncalibrated arrays, pointing errors, multipath
propagation, and wavefront distortions [5], [6].

Detection with multiple observations in the primary data and partly
known signals of interest has been considered, among others in [4],
[5], and [7]–[9]. Reference [5] considers detecting uncertain rank-one
waveforms when both the space and time signatures of the SOI are
assumed to belong to known linear subspaces. Bose and Steinhardt de-
rive the maximal invariant along with the generalized-likelihood ratio
test (GLRT) for this general framework. An extension to partially ho-
mogeneous environments is considered in [9]. Reference [4] considers
the detection of a range-spread target using a high-resolution radar, as-
suming that the steering vector is known. The authors derive and an-
alyze a two-step GLRT for both the homogeneous and the partially
homogeneous case. In [7] the SOI signature is considered as unknown
and arbitrary. The theory of invariance is invoked to obtain a most pow-
erful invariant test and a suboptimal constant false alarm rate (CFAR)
detector. Reference [8] proposes a CFAR detector based on a two-step
GLRT when the signals of interest are Gaussian and belong to a known
subspace.

Manuscript received January 11, 2006; revised June 28, 2006. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Daniel Fuhrman.

O. Besson is with the Department of Avionics and Systems, ENSICA, 31056
Toulouse, France (e-mail: besson@ensica.fr).

Digital Object Identifier 10.1109/TSP.2006.890820

For most of the above-mentioned studies, the fact that the SOI lies in
a subspace facilitates the derivation of the detectors, as one usually ends
up with closed-form detectors. However, the choice of this subspace is
delicate since one must ensure that the SOI really belongs to it. Other-
wise, there is some loss of performance. In this paper, we investigate a
different approach. We assume that we have knowledge of the nominal
value of the SOI signature and that the actual signature is “close” to its
nominal value. More precisely, we assume that the angle between these
two vectors is bounded. This approach was already advocated by the
author in [10]. However, the latter reference only considers the case of a
single vector under test, viz. Np = 1: the present paper is an extension
of [10] to the case where the primary data contains multiple snapshots.
As will be illustrated below, consideringNp > 1 involves considerable
complications, notably in the derivation of the maximum-likelihood es-
timate (MLE) of the SOI’s signature. When Np = 1, the technique of
Lagrange multipliers (with a single Lagrange multiplier) is invoked in
[10] to obtain the maximum-likelihood (ML) estimator. It is shown in
[10] that the Lagrange multiplier is the unique solution to a secular
equation. When Np > 1, finding the MLEs turns out to be more com-
plicated as it involves maximizing a quadratic form with an equality
constraint and a nonconvex quadratic inequality constraint. In this case,
the problem can be written as a semidefinite program, as will be shown
in the next section.

We now define formally our detection problem. It consists of de-
ciding between the following two hypotheses:

H0 :
xxx(k) = nnnp(k); k = 1; . . . ; Np

yyy(k) = nnns(k); k = 1; . . . ; Ns

H1 :
xxx(k) = ssst�(k) + nnnp(k); k = 1; . . . ; Np

yyy(k) = nnns(k); k = 1; . . . ; Ns

: (1)

We denote byXXX = [xxx(1) � � � xxx(Np)] the m�Np primary data array
and YYY = [yyy(1) � � � yyy(Ns)], the m �Ns secondary data array. xxx(k)
stands either for a space snapshot—in which case k denotes a time
index—or a space–time snapshot, with m being the number of array
antennas times the number of pulses. In the latter case, k corresponds
to a range index.

In (1), nnnp(k) and nnns(k) stand for the noise in the primary and sec-
ondary data, respectively. We assume that they are proper, zero-mean,
independent, and Gaussian-distributed random vectors with covariance
matrices

Efnnnp(k)nnnp(k)
Hg = 
MMM (2a)

Efnnns(k)nnns(k)
Hg =MMM: (2b)

Hence, we consider a partially homogeneous environment in which the
covariance matrices of the primary and the secondary data have the
same structure, but possibly different power. Both 
 and MMM are un-
knowns.

Under H1, the SOI is a rank-one matrix ssstttH , with ttt =
[t(1) � � � t(Np)]

T . sss is either the spatial or the space-time sig-
nature of interest, referred to as the steering vector, while ttt denotes
the amplitude of the SOI in the time or range domain. We assume that
ttt is arbitrary and unknown. Although sss is unknown, we assume that
it is close to a nominal (and therefore known) steering vector �aaa. To
account for this uncertainty, we assume that sss is mostly aligned with
�aaa, and that the fraction of its energy outside R(�aaa) is bounded. More
precisely, it is assumed that

sss 2 C = sss;
jsssH�aaaj2

(sssHsss)(�aaaH�aaa)
� � (3)

where 0 < � < 1 is a scalar that sets how much of the energy is
allowed to be outside R(�aaa). The constraint (3) means that the square
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of the cosine angle between sss and �aaa must be above �. In other words,
sss belongs to a cone, whose axis is �aaa and whose angle �c is such that
cos2 �c = �. In the limiting case � = 1, the actual steering vector is
aligned with the presumed steering vector. Observe that such modeling
of the steering vector uncertainties was also considered in [11], but in
a slightly different way, namely a cone is defined for the real and the
imaginary parts of the steering vector. Moreover, [11] considers the
homogeneous case only, viz. 
 = 1, and a single vector in the primary
data, i.e., the case Np = 1.

II. DETECTION

Our goal is therefore to detect the presence of the rank-one matrix
ssstttH , with ttt arbitrary and under the constraint defined in (3). Before
deriving the detector, a few words are in order regarding the invariances
of the detection problem at hand. When the steering vector is known to
be �aaa, the hypothesis testing problem corresponding to (1) is invariant
under the group of transformations G defined by [12]

G = fg : [XXX YYY ]! [�TTTXXXBBBH
�TTTYYYDDD

H ]g (4)

where � and � are arbitrary scalars, TTT is a full-rank matrix such that
TTT �aaa / �aaa, and BBB and DDD are unitary matrices. The rationale behind (4)
can be briefly explained as follows. Only linear transformations are
considered so as to retain Gaussianity of the measurements. Postmul-
tiplication of XXX and YYY by unitary matrices ensure that the columns of
these matrices remain independent. Arbitrary scaling of XXX and YYY by
� and � is due to the unknown scaling factor 
 between the noise co-
variance matrices of the primary and the secondary data. Finally, the
transformation matrix TTT is constrained i) to be full rank in order for
the transformed covariance matrix to be full rank and ii) to retain the
structure of the SOI data matrix under H1. More precisely, the steering
vector of the transformed data should satisfy the same hypotheses as
those of the original steering vector. This is why when sss is known to be
proportional to �aaa, the matrix TTT should be such that TTT �aaa is proportional
to �aaa. Under the framework considered here, the group of transforma-
tions is the same as in (4), except that the matrix TTT should now be
chosen in such a way that the cone C is invariant to TTT . In other words,
the set fTTTsss; sss 2 Cg should be C. However, the natural invariances of a
cone are scaling, rotation around its axis, and symmetry with respect to
the hyperplane orthogonal to �aaa. Therefore, the transformations TTT that
leave the cone invariant are of the form [13]

TTT = � PPP �aaa +UUU
?

�aaaQQQUUU
?H
�aaa (5)

where � is an arbitrary scalar, PPP �aaa is the orthogonal projection onto
�aaa;UUU?�aaa is a m� (m� 1) matrix whose columns form an orthonormal
basis forR(�aaa)?, andQQQ is an unitary matrix. Indeed, every vector sss 2 C
can be written as a component aligned with �aaa and a component orthog-
onal to �aaa, i.e., sss / �aaa cos � + �aaa? sin �, with �aaa? orthogonal to �aaa, and
j�j � �c. Premultiplying byTTT (and ignoring �), the component along �aaa
is not modified while the orthogonal component is rotated around �aaa. It
is straightforward to show that the square of the cosine angle between sss
and �aaa is unchanged, and hence C is invariant to TTT . Accordingly, every
vector in the one can be written as the product of TTT by another vector
in the cone. To summarize, the hypothesis testing problem (1) with the
constraint that sss 2 C is invariant under the group of transformations
G defined in (4), with TTT given by (5). The group of transformations
induced on the parameter space is

�g :

sss

ttt




MMM

!

�1TTTsss

�2BBBttt


j�j2j�j�2

j�j2TTTMMMTTTH

(6)

with�1��2 = �. Once the invariances of the hypothesis testing problem
have been found, it is natural to restrict the attention to invariant tests
(we will see that the detector derived below is invariant). All of them
will be a function of the maximal invariant statistic [5], [14]. Further-
more, the distribution of the maximal invariant statistic only depends
on the so-called induced maximal invariant. In our case, we were not
able to identify the maximal invariant statistic. Note that, even in the
simple case where sss belongs to a known linear subspace, derivation
of the maximal invariant statistic is quite involved (see [5] for homo-
geneous environment, and [9], [15] for partially homogeneous envi-
ronments). In our case, the problem is still more complicated as the
steering vector sss is defined through an inequality involving a quadratic
form in sss. Therefore, in the sequel, we will simply prove invariance of
the detector.

Let us now turn to the derivation of our detector. Towards this end,
we will proceed in two steps. First, we assume that the covariance ma-
trixMMM is known, and we derive the GLRT using the primary data only.
Next, we substitute MMM for its MLE based on secondary data. Observe
that, in principle, the GLRT based on the whole set of measurements
[XXX YYY ] could be used. However, as mentioned in [4], this results in a
complicated estimator for the scaling factor 
, as soon as Np � 3.
Moreover, this one-step GLRT does not result in any significant im-
provement compared to the two-step GLRT considered herein. There-
fore, we only consider the latter in the sequel. Hence, let us first assume
thatMMM is known. Under the assumptions made, the probability density
function (PDF) of XXX is given by [13]

f(XXX) =
etr� f
�1(XXX � �ssstttH)(XXX � �ssstttH)HMMM�1g

�mN j
MMM jN
: (7)

In the previous equations, etrf � g = expTrf � g, where Trf � g stands
for the trace, j � j denotes the determinant, and � = 0 under H0; � = 1
under H1. It is straightforward to show that the maximum of f(XXX)
with respect to 
 is attained when


 =
1

mNp

Trf(XXX � �sssttt
H)(XXX � �sssttt

H)HMMM�1g: (8)

Therefore

max



f(XXX) =
e�mN

�mN j
MMM jN

/ [Trf(XXX � �sssttt
H)(XXX � �sssttt

H)HMMM�1g]�mN
: (9)

Consequently, the generalized-likelihood ratio (GLR) can be written as

GLR =
TrfXXXXXXHMMM�1g

minsss;ttt Trf(XXX � ssstttH)(XXX � ssstttH)HMMM�1g

mN

: (10)

The last step to complete the derivation of the GLRT consists of solving
the minimization problem at the denominator of (10), with the con-
straint that sss 2 C. First, we show that this minimization problem can
be solved for ttt explicitly, assuming that sss is known. Indeed, observe
that

J = Trf(XXX � sssttt
H)(XXX � sssttt

H)HMMM�1g

= TrfXXXXXXH
MMM
�1g � ttt

H
XXX

H
MMM
�1
sss

� sss
H
MMM
�1
XXXttt+ (tttHttt)(sssHMMM�1

sss)

= ttt�
XXXHMMM�1sss

sssHMMM�1sss

H

(sssHMMM�1
sss) ttt�

XXXHMMM�1sss

sssHMMM�1sss

+ TrfXXXXXXH
MMM
�1g �

sssHMMM�1XXXXXXHMMM�1sss

sssHMMM�1sss
: (11)
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Therefore, for any sss, the vector ttt that minimizes J is given by

ttt =
XXXHMMM�1sss

sssHMMM�1sss
: (12)

Substituting this value in (11), we are left with the following maximiza-
tion problem

max
sss2C

sssHMMM�1XXXXXXHMMM�1sss

sssHMMM�1sss
: (13)

Note that both the objective function and the constraint are invariant
to arbitrary scaling of sss. This stems from the fact that there exits an
inherent scaling ambiguity between sss and ttt from the formulation of the
problem. Hence, we must somehow enforce an additional constraint on
the norm of sss. For the sake of simplicity, we impose that sssHMMM�1sss = 1
and the maximization problem can be reformulated as

max
sss

sssHMMM�1XXXXXXHMMM�1sss subject to
sssHMMM�1sss = 1

�sssHsss� sssHPPP �aaasss � 0
(14)

where PPP �aaa = (�aaaH�aaa)�1�aaa�aaaH is the orthogonal projection on �aaa. Let us
introduce the whitened vector ~sss = MMM�1=2sss where MMM�1=2 is the in-
verse of the square-root of MMM . Then, we need to solve

max
~sss

~sssHAAA~sss subject to ~sssH~sss = 1 and ~sssHQQQ~sss � 0 (15)

with

AAA =MMM�1=2XXXXXXHMMM�1=2 (16a)

QQQ =MMM1=2[�III � PPP �aaa]MMM
1=2: (16b)

The problem consists of maximizing a quadratic form with the con-
straints that the solution lies on a sphere and within a (transformed)
cone. Equivalently, it is a quadratic problem with a quadratic equality
constraint and a quadratic inequality constraint. Note that the objective
function is convex, but the inequality constraint is not convex. Indeed,
QQQ and �III�PPP �aaa have the same inertia [16]. However, �III�PPP �aaa hasm�1
positive eigenvalues equal to � and one negative eigenvalue equal to
� � 1. Therefore, QQQ is not positive semidefinite.

The usual and widely used method to solve the aforementioned
problem is the Lagrange multiplier technique [17]. The Lagrangian
associated with the maximization problem in (15) can be written as
[17]

L(~sss; �; �) = �~sssHAAA~sss+ �(~sssH~sss� 1) + �~sssHQQQ~sss (17)

where � � 0 and � are the Lagrange multipliers, and�AAA+�III+�QQQ �
0 so that the Lagrangian can be effectively minimized. Differentiating
(17) with respect to ~sss and equating the result to zero yields

[�AAA+ �III + �QQQ]~sss = 0: (18)

Therefore, the Lagrange multipliers must be found such that the matrix
AAA��III��QQQ is negative semidefinite with one eigenvalue equal to zero.
However, it is not clear how to obtain simply � and � from this equa-
tion. Further insights can be gained by considering the dual problem.
Prior to that, note that there is a zero duality gap between the primal
problem and the dual problem if there exist two vectors ~sss1 and ~sss2 such
that ~sssH1 QQQ~sss1 < 0; ~sssH2 QQQ~sss2 < 0 and ~sssH1 ~sss1 > 1; ~sssH2 ~sss2 < 1 (see [18]). In
our case, observe that �aaaHMMM�1=2QQQMMM�1=2�aaa = j�aaaj2[��1] < 0. Hence,
~sss1 = 
1MMM

�1=2�aaa and ~sss2 = 
2MMM
�1=2�aaa with 
1 > 1=kMMM�1=2�aaak and


2 < 1=kMMM�1=2�aaak are such vectors. It follows that the optimal value
of the primal problem (15) will be identical to the optimal value of the

dual problem. Therefore, we turn to the derivation of the latter. The
dual function associated with L(~sss; �; �) is [17]

g(�; �) = inf
~sss
L(~sss; �; �)

= inf
~sss
~sssH [�AAA + �III + �QQQ]~sss� �

=
��; if �AAA+ �III + �QQQ � 0

�1; otherwise
: (19)

The dual problem is thus feasible if � � 0 and �AAA + �III + �QQQ � 0,
in which case we need to solve

max
�;�

�� subject to
� � 0

�AAA + �III + �QQQ � 0
(20a)

,min
�;�

� subject to
� � 0

�AAA + �III + �QQQ � 0
: (20b)

The problem in (20) is a convex optimization problem, more precisely
a semidefinite program [17]. It can be solved efficiently, in polynomial
time, using interior-point methods. Moreover, these methods are now
available through software packages such as SeDuMi [19].

Let us denote [�̂ �̂]T as the so-obtained solution; observe that �̂
is the largest eigenvalue of AAA � �̂QQQ. Let ~̂sss denote the corresponding
eigenvector, i.e., (AAA � �̂QQQ � �̂III)~̂sss = 0. Since there is a zero duality
gap between the problems (17) and (20), �̂ is the maximum value of
~sssHAAA~sss under the constraints ~sssH~sss = 1 and ~sssHQQQ~sss � 0. Furthermore,
the maximum value is attained when ~sss = ~̂sss. This implies, in particular,
that ~̂sss

H
QQQ~̂sss = 0, and hence the solution lies on the boundary of the

cone.
The GLRT for known MMM can thus be written as

GLRT =
~̂sss
H
AAA~̂sss

TrfAAAg
=
ŝssHMMM�1XXXXXXHMMM�1ŝss

TrfXXXXXXHMMM�1g

H

H
� (21)

where ŝss = MMM1=2~̂sss. Note the numerator in (21) is simply �̂. When MMM
is unknown, it is replaced by its MLE based on the secondary data,
namely

SSS = N�1

s YYY YYY H : (22)

Doing so, the two-step GLRT is given by

ŝssHSSS�1XXXXXXHSSS�1ŝss

TrfXXXXXXHSSS�1g

H

H
�: (23)

It should be understood that ŝss in (23) differs from ŝss in (21) as the former
is the solution of (14) with SSS replacing MMM . However, for the sake of
simplicity, we keep the same notation. We point out that the detector
above is invariant to the group of transformations defined in (4). In
fact, the numerator of (23), which coincides with the maximal value
of the criterion in (14), will be multiplied by a factor j�j2j�j�2 (and
the solution of (14) becomes TTTŝss). This scaling factor is canceled in
the GLR as the denominator of (23) will also be scaled by the same
quantity. Hence, our two-step GLRT enjoys the natural invariances of
the problem. However, we cannot assert that the present detector pos-
sesses the CFAR property with respect to the noise covariance matrix.
In fact, a detector may be invariant but not CFAR (see [14]), although
the most encountered situation is that invariance implies CFARness. In-
deed, to prove CFARness, one should prove that the induced maximal
invariant is a function of parameters that are relevant under H1 only.
In other words, one should prove that the distribution of the maximal
invariant statistic is parameter-free underH0 (see, e.g., [7] and [14] for
a comprehensive discussion). In our case, since the induced maximal
invariant is unknown, we cannot assess theoretically the performance
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of the two-step GLRT. Another route would be to derive directly the
distribution of the test statistic in (23). However, this seems quite com-
plicated as we do not have any closed-form expression for ŝss. Therefore,
in the next section, the performance of the detector will be evaluated
by numerical simulations.

Before closing this section, we make the following observation.
When sss is known to be aligned with �aaa, derivation of the GLRT ends
with (11), and the two-step GLRT becomes

�aaaHSSS�1XXXXXXHSSS�1�aaa

(�aaaHSSS�1�aaa)TrfXXXXXXHSSS�1g

H

H

�: (24)

The detector in (24) coincides with the two-step GLRT derived in [4,
eq. (26)], where it is referred to as the generalized adaptive subspace
detector (GASD). Note that, when sss is known to be aligned with �aaa, the
GASD is CFAR with respect to the noise covariance matrix, i.e., for
a given probability of false alarm, the threshold � can be set indepen-
dently of MMM . In the present case where sss belongs to a cone, the CFAR
property can no longer be claimed for the GASD. Finally, observe that,
as �c goes to 0, the cone reduces to its axis �aaa, and the two-step GLRT
converges to the GASD.

III. NUMERICAL EXAMPLES

In this section, we assess the performance of the detector in (23) and
compare it with that of the GASD (24). We consider different scenarios
depending on wether sss is aligned with �aaa or not. We also investigate
the influence of the choice of the cone angle �c. More precisely, we
let � denote the actual angle between sss and �aaa, and we consider cases
where � � �c and cases where � � �c. In other words, the cone angle
can overestimate or underestimate the true angle between the steering
vector and its nominal value. This enables us to test for the robustness
of our detector and to assess the sensitivity of the detection performance
towards the user-defined parameter �c.

In all simulations, we consider an array with m = 8 elements and
an exponentially shaped noise covariance matrix. The (k; `)th element
of MMM is

MMMk;` = �
jk�`j (25)

with � = 0:9 in the simulations below. In order to set the thresh-
olds � and � for a given probability of false alarm Pfa, Monte Carlo
counting techniques are used. 106 simulations of the data under the
null hypothesis were run, and the test statistics in (23) and (24) were
computed and sorted. The thresholds were set from the 1� Pfa quan-
tile. In the simulations shown below, Pfa = 10�3. The probability
of detection Pd is obtained from 105 independent trials. Pd is plotted
as a function of the signal-to-noise ratio (SNR), which is defined as
SNR = (tttHttt)[sssH(
MMM)�1sss]. The number of snapshots in the primary
and secondary data is set to Np = 4 and Ns = 20, respectively. In all
simulations, SeDuMi was used to obtain the ML estimates.

First, we consider a scenario for which � = 0, i.e., the actual steering
vector is aligned with the presumed steering vector �aaa. In this case,
GASD is expected to perform better than the two-step GLRT, which
does not know sss. In Fig. 1, we display the probability of detection of
both detectors, with different values of the cone angle, namely cos �c =
0:97; cos �c = 0:95, and cos �c = 0:9. Observe that, as cos �c de-
creases, the cone angle increases, and, hence, one may expect that
the performance of the two-step GLRT degrades. From inspection of
these figures, it turns out that the GASD performs slightly better than
the two-step GLRT: the difference is about 1 dB at Pd = 0:8 for
cos �c = 0:97 and cos �c = 0:95. Obviously, with cos � = 1 and
cos �c = 0:9, the cone is chosen too large and a detection loss is in-
curred by the two-step GLRT.

Fig. 1. P of the two-step GLRT and GASD versus SNR. sss is aligned with
�aaa; (cos � = 1), varying cone angle � .

Fig. 2. P of the two-step GLRT and GASD versus SNR. sss is not aligned with
�aaa; (cos� = 0:95), varying cone angle � .

Next, we consider a scenario where cos � = 0:95, i.e., the actual
steering vector is not aligned with �aaa. The results for this case are shown
in Fig. 2. It can be observed that the two-step GLRT now performs
better than the GASD; the difference is about 3, 2, and 1 dB atPd = 0:8
for cos �c = 0:97; cos �c = 0:95 and cos �c = 0:9, respectively.
However, if the cone angle was chosen too large, the GASD would
finally perform better than the two-step GLRT. Interestingly enough,
the improvement is more pronounced when cos �c = 0:97, indicating
that it is not necessary to have a cone perfectly suited to the actual
mismatch between the true and the presumed steering vector. In fact,
it seems preferable to slightly underestimate the cone angle than to
overestimate it. In any case, the two-step GLRT provides a significant
robustness improvement compared to the GASD. This improvement
increases when � increases.

IV. CONCLUSION

We considered the problem of detecting a signal whose unknown sig-
nature lies in a cone, using multiple observations in the primary data,
and under a possible scaling inhomogeneity between the samples under
test and the training samples. A two-step GLRT was derived, which
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involves solving a semidefinite programming problem. The new de-
tector offers additional robustness compared to a detector that assumes
a known signature, and is a relevant alternative whenever there exists a
possible mismatch between the actual signature and the presumed one.
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ISI-Free Block Transceivers for Unknown Frequency
Selective Channels

Chih-Hao Liu, See-May Phoong, and Yuan-Pei Lin

Abstract—The orthogonal frequency-division multiplexing (OFDM)
transceiver has enjoyed great success in many wideband communication
systems. It has low complexity and robustness against channel-induced
intersymbol interference (ISI). When the channel order does not exceed
the length of cyclic prefix, any frequency-selective channel is converted
to a set of frequency-nonselective subchannels. This channel-independent
ISI-free property is useful for many applications. In this correspondence,
we study general block transceiver with such a property. We will show that
the solutions of channel-independent ISI-free block transceivers are given
in a closed form. It is found that except for some special cases, the solutions
are identical to the Lagrange–Vandermonde and Vandermonde–Lagrange
transceivers.

Index Terms—Filter bank, multicarrier, multitone, orthogonal fre-
quency-division multiplexing (OFDM), transceiver, transmultiplexer.

I. INTRODUCTION

In recent years, the orthogonal-frequency-division-multiplexing
(OFDM) system has been widely adopted for wideband communi-
cations [1]. One of the advantages of OFDM systems is their ability
to combat channel-induced intersymbol interference (ISI). In an
OFDM system, the transmitter and receiver perform respectively M
point inverse discrete Fourier transform (IDFT) and discrete Fourier
transform (DFT) operations. By adding a cyclic prefix of length L,
any frequency-selective channel of order L is converted to a set ofM
parallel frequency-nonselective subchannels. Symbol recovery can be
obtained by using simple one-tap equalizers at the receiver. Such a
channel-independent ISI-free property is useful for many applications.

Recently, there has been some interest in finding other trans-
ceivers with channel-independent ISI-free property [2]–[8]. The
first non-DFT-based transceiver with such a property was proposed
[2]. By judiciously selecting the zeros of the transmit filters, the
authors showed that when the number of trailing zeros is larger than
or equal to the channel order, ISI can be eliminated completely by
using a channel-independent receiver. The transmit filters are M
Lagrange interpolation polynomials, whereas the receive filters are
M Vandermonde filters, and therefore such a transceiver is called
a Lagrange–Vandermonde (LV) transceiver. A dual system called a
Vandermonde–Lagrange (VL) transceiver, where the transmit filters
are Vandermonde filters and the receive filters are Lagrange filters,
was derived in [3]. The LV and VL systems were generalized to
the so-called mutually orthogonal user code receiver (AMOUR)
system [4]. In [5] and [6], these LV and VL systems were studied
using a different framework. Using the multirate technique, it was
demonstrated that given an exponential vector input, the output of the
Toeplitz channel matrix is also an exponential vector. Exploiting this

Manuscript received November 14, 2005; revised June 27, 2006. The asso-
ciate editor coordinating the review of this manuscript and approving it for pub-
lication was Dr. Zoran Cvetkovic. This work was supported by the National
Science Council, Taiwan, R.O.C., under Grant NSC94-2752-E-002-006-PAE,
NSC94-2213-E-002-075, and NSC94-2213-E-009-038.

C.-H. Liu and S.-M. Phoong are with the Department of Electrical Engi-
neering and the Graduate Institute of Communication Engineering, National
Taiwan University, Taipei, Taiwan 106, R.O.C. (e-mail: smp@cc.ee.ntu.edu.tw).

Y.-P. Lin is with the Department of Electrical and Control Engineering, Na-
tional Chiao Tung University, Hsinchu, Taiwan 300, R.O.C.

Digital Object Identifier 10.1109/TSP.2006.890826

1053-587X/$25.00 © 2007 IEEE


