7,894 research outputs found

    Design of the 12-bit Delta-Sigma Modulator using SC Technique for Vibration Sensor Output Processing

    Get PDF
    The work deals with the design of the 12-bit Delta-Sigma modulator using switched capacitors (SC) technique. The modulator serves to vibration sensor output processing. The first part describes the Delta-Sigma modulator parameters definition. Results of the proposed topology ideal model were presented as well. Next, the Delta-Sigma modulator circuitry on the transistor level was done. The ONSemiconductor I2T100 0.7 um CMOS technology was used for design. Then, the Delta-Sigma modulator nonidealities were simulated and implemented into the MATLAB ideal model of the modulator. The model of real Delta-Sigma modulator was derived. Consequently, modulator coefficients were optimized. Finally, the corner analysis of the Delta-Sigma modulator with the optimized coefficients was simulated. The value of SNDR = 82.2 dB (ENOB = 13.4 bits) was achieved

    High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring

    Get PDF
    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation

    A closed-loop digitally controlled MEMS gyroscope with unconstrained Sigma-Delta force-feedback

    Get PDF
    In this paper, we describe the system architecture and prototype measurements of a MEMS gyroscope system with a resolution of 0.025 degrees/s/root Hz. The architecture makes extensive use of control loops, which are mostly in the digital domain. For the primary mode both the amplitude and the resonance frequency are tracked and controlled. The secondary mode readout is based on unconstrained Sigma Delta force-feedback, which does not require a compensation filter in the loop and thus allows more beneficial quantization noise shaping than prior designs of the same order. Due to the force-feedback, the gyroscope has ample dynamic range to correct the quadrature error in the digital domain. The largely digital setup also gives a lot of flexibility in characterization and testing, where system identification techniques have been used to characterize the sensors. This way, a parasitic direct electrical coupling between actuation and readout of the mass-spring systems was estimated and corrected in the digital domain. Special care is also given to the capacitive readout circuit, which operates in continuous time

    Development of a radiation hard version of the Analog Pipeline Chip APC128

    Get PDF
    The Analog Pipeline Chip (APC) is a low noise, low power readout chip for silicon micro strip detectors with 128 channels containing an analog pipeline of 32 buffers depth. The chip has been designed for operation at HERA with a power dissipation of 300-400 muW per channel and has been used also in several other particle physics experiments. In this paper we describe the development of a radiation hard version of this chip that will be used in the H1 vertex detector for operation at the luminosity upgraded HERA machine. A 128 channel prototyping chip with several amplifier variations has been designed in the radiation hard DMILL technology and measured. The results of various parameter variations are presented in this paper. Based on this, the design choice for the final production version of the APC128-DMILL has been made.Comment: 10 pages, 10 figure

    Realization of a ROIC for 72x4 PV-IR detectors

    Get PDF
    Silicon Readout Integrated Circuits (ROIC) for HgCdTe Focal Plane Arrays of 1x4 and 72x4 photovoltaic detectors are represented. The analog circuit blocks are completely identical for both, while the digital control circuit is modified to take into account the larger array size. The manufacturing technology is 0.35μm, double poly-Si, three-metal CMOS process. ROIC structure includes four elements TDI functioning with a super sampling rate of 3, bidirectional scanning, dead pixel de-selection, automatic gain adjustment in response to pixel deselection besides programmable four gain setting (up to 2.58pC storage), and programmable integration time. ROIC has four outputs with a dynamic range of 2.8V (from 1.2V to 4V) for an output load of 10pF capacitive in parallel with 1MΩ resistance, and operates at a clock frequency of 5 MHz. The input referred noise is less than 1037 μV with 460 fF integration capacitor, corresponding to 2978 electrons

    A Fully Differential CMOS Potentiostat

    Get PDF
    A CMOS potentiostat for chemical sensing in a noisy environment is presented. The potentiostat measures bidirectional electrochemical redox currents proportional to the concentration of a chemical down to pico-ampere range. The fully differential architecture with differential recording electrodes suppresses the common mode interference. A 200μm×200μm prototype was fabricated in a standard 0.35μm standard CMOS technology and yields a 70dB dynamic range. The in-channel analog-to-digital converter (ADC) performs 16-bit current-tofrequency quantization. The integrated potentiostat functionality is validated in electrical and electrochemical experiments

    Accurate Settling-Time Modeling and Design Procedures for Two-Stage Miller-Compensated Amplifiers for Switched-Capacitor Circuits

    Get PDF
    We present modeling techniques for accurate estimation of settling errors in switched-capacitor (SC) circuits built with Miller-compensated operational transconductance amplifiers (OTAs). One distinctive feature of the proposal is the computation of the impact of signal levels (on both the model parameters and the model structure) as they change during transient evolution. This is achieved by using an event-driven behavioral approach that combines small- and large-signal behavioral descriptions and keeps track of the amplifier state after each clock phase. Also, SC circuits are modeled under closed-loop conditions to guarantee that the results remain close to those obtained by electrical simulation of the actual circuits. Based on these models, which can be regarded as intermediate between the more established small-signal approach and full-fledged simulations, design procedures for dimensioning SC building blocks are presented whose targets are system-level specifications (such as ENOB and SNDR) instead of OTA specifications. The proposed techniques allow to complete top-down model-based designs with 0.3-b accuracy.Ministerio de Educación y Ciencia TEC2006-03022Junta de Andalucía TIC-0281

    Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy

    Get PDF
    This paper presents a multi-channel dual-mode CMOS analogue front-end (AFE) for electrochemical and bioimpedance analysis. Current-mode and voltage-mode readouts, integrated on the same chip, can provide an adaptable platform to correlate single-cell biosensor studies with large-scale tissue or organ analysis for real-time cancer detection, imaging and characterization. The chip, implemented in a 180-nm CMOS technology, combines two current-readout (CR) channels and four voltage-readout (VR) channels suitable for both bipolar and tetrapolar electrical impedance spectroscopy (EIS) analysis. Each VR channel occupies an area of 0.48 mm 2 , is capable of an operational bandwidth of 8 MHz and a linear gain in the range between -6 dB and 42 dB. The gain of the CR channel can be set to 10 kΩ, 50 kΩ or 100 kΩ and is capable of 80-dB dynamic range, with a very linear response for input currents between 10 nA and 100 μ A. Each CR channel occupies an area of 0.21 mm 2 . The chip consumes between 530 μ A and 690 μ A per channel and operates from a 1.8-V supply. The chip was used to measure the impedance of capacitive interdigitated electrodes in saline solution. Measurements show close matching with results obtained using a commercial impedance analyser. The chip will be part of a fully flexible and configurable fully-integrated dual-mode EIS system for impedance sensors and bioimpedance analysis

    Oversampling Successive Approximation Technique for MEMS Differential Capacitive Sensor

    Get PDF
    This paper proposed an over sampling successive approximation (OSSA) technique to build switched-capacitor capacitance-to-voltage convertor (SC-CVC) for readout circuit of MEMS differential capacitive sensor. The readout circuit employing the OSSA technique has significantly improved resistance to common-mode parasitic capacitance of the input terminal of the readout circuit. In the OSSA readout circuit, there are 5 main non-ideal characteristics: holding error, recovery degradation, increment degradation, rise-edge degradation and charge injection which reduce the accuracy and the settling time of the circuit. These problems are explained in detail and their solutions are given in the paper. The OSSA readout circuit is fabricated in a commercial 0.18um BCD process. To show the improvement evidently, a reported traditional readout circuit is also reproduced and fabricated using the same process. Compared with the traditional readout circuit, the proposed readout circuit reduces the affect of common-mode parasitic capacitance on the accuracy of SC-CVC by more than 23.8 dB, reduces power dissipation by 69.3%, and reduces die area by 50%
    corecore