20 research outputs found

    Channel Hardening-Exploiting Message Passing (CHEMP) Receiver in Large-Scale MIMO Systems

    Full text link
    In this paper, we propose a MIMO receiver algorithm that exploits {\em channel hardening} that occurs in large MIMO channels. Channel hardening refers to the phenomenon where the off-diagonal terms of the HHH{\bf H}^H{\bf H} matrix become increasingly weaker compared to the diagonal terms as the size of the channel gain matrix H{\bf H} increases. Specifically, we propose a message passing detection (MPD) algorithm which works with the real-valued matched filtered received vector (whose signal term becomes HTHx{\bf H}^T{\bf H}{\bf x}, where x{\bf x} is the transmitted vector), and uses a Gaussian approximation on the off-diagonal terms of the HTH{\bf H}^T{\bf H} matrix. We also propose a simple estimation scheme which directly obtains an estimate of HTH{\bf H}^T{\bf H} (instead of an estimate of H{\bf H}), which is used as an effective channel estimate in the MPD algorithm. We refer to this receiver as the {\em channel hardening-exploiting message passing (CHEMP)} receiver. The proposed CHEMP receiver achieves very good performance in large-scale MIMO systems (e.g., in systems with 16 to 128 uplink users and 128 base station antennas). For the considered large MIMO settings, the complexity of the proposed MPD algorithm is almost the same as or less than that of the minimum mean square error (MMSE) detection. This is because the MPD algorithm does not need a matrix inversion. It also achieves a significantly better performance compared to MMSE and other message passing detection algorithms using MMSE estimate of H{\bf H}. We also present a convergence analysis of the proposed MPD algorithm. Further, we design optimized irregular low density parity check (LDPC) codes specific to the considered large MIMO channel and the CHEMP receiver through EXIT chart matching. The LDPC codes thus obtained achieve improved coded bit error rate performance compared to off-the-shelf irregular LDPC codes

    Advanced receivers for distributed cooperation in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are rapidly deployable wireless communications systems, operating with minimal coordination in order to avoid spectral efficiency losses caused by overhead. Cooperative transmission schemes are attractive for MANETs, but the distributed nature of such protocols comes with an increased level of interference, whose impact is further amplified by the need to push the limits of energy and spectral efficiency. Hence, the impact of interference has to be mitigated through with the use PHY layer signal processing algorithms with reasonable computational complexity. Recent advances in iterative digital receiver design techniques exploit approximate Bayesian inference and derivative message passing techniques to improve the capabilities of well-established turbo detectors. In particular, expectation propagation (EP) is a flexible technique which offers attractive complexity-performance trade-offs in situations where conventional belief propagation is limited by computational complexity. Moreover, thanks to emerging techniques in deep learning, such iterative structures are cast into deep detection networks, where learning the algorithmic hyper-parameters further improves receiver performance. In this thesis, EP-based finite-impulse response decision feedback equalizers are designed, and they achieve significant improvements, especially in high spectral efficiency applications, over more conventional turbo-equalization techniques, while having the advantage of being asymptotically predictable. A framework for designing frequency-domain EP-based receivers is proposed, in order to obtain detection architectures with low computational complexity. This framework is theoretically and numerically analysed with a focus on channel equalization, and then it is also extended to handle detection for time-varying channels and multiple-antenna systems. The design of multiple-user detectors and the impact of channel estimation are also explored to understand the capabilities and limits of this framework. Finally, a finite-length performance prediction method is presented for carrying out link abstraction for the EP-based frequency domain equalizer. The impact of accurate physical layer modelling is evaluated in the context of cooperative broadcasting in tactical MANETs, thanks to a flexible MAC-level simulato

    Error-correction coding for high-density magnetic recording channels.

    Get PDF
    Finally, a promising algorithm which combines RS decoding algorithm with LDPC decoding algorithm together is investigated, and a reduced-complexity modification has been proposed, which not only improves the decoding performance largely, but also guarantees a good performance in high signal-to-noise ratio (SNR), in which area an error floor is experienced by LDPC codes.The soft-decision RS decoding algorithms and their performance on magnetic recording channels have been researched, and the algorithm implementation and hardware architecture issues have been discussed. Several novel variations of KV algorithm such as soft Chase algorithm, re-encoded Chase algorithm and forward recursive algorithm have been proposed. And the performance of nested codes using RS and LDPC codes as component codes have been investigated for bursty noise magnetic recording channels.Future high density magnetic recoding channels (MRCs) are subject to more noise contamination and intersymbol interference, which make the error-correction codes (ECCs) become more important. Recent research of replacement of current Reed-Solomon (RS)-coded ECC systems with low-density parity-check (LDPC)-coded ECC systems obtains a lot of research attention due to the large decoding gain for LDPC-coded systems with random noise. In this dissertation, systems aim to maintain the RS-coded system using recent proposed soft-decision RS decoding techniques are investigated and the improved performance is presented

    Novel LDPC coding and decoding strategies: design, analysis, and algorithms

    Get PDF
    In this digital era, modern communication systems play an essential part in nearly every aspect of life, with examples ranging from mobile networks and satellite communications to Internet and data transfer. Unfortunately, all communication systems in a practical setting are noisy, which indicates that we can either improve the physical characteristics of the channel or find a possible systematical solution, i.e. error control coding. The history of error control coding dates back to 1948 when Claude Shannon published his celebrated work “A Mathematical Theory of Communication”, which built a framework for channel coding, source coding and information theory. For the first time, we saw evidence for the existence of channel codes, which enable reliable communication as long as the information rate of the code does not surpass the so-called channel capacity. Nevertheless, in the following 60 years none of the codes have been proven closely to approach the theoretical bound until the arrival of turbo codes and the renaissance of LDPC codes. As a strong contender of turbo codes, the advantages of LDPC codes include parallel implementation of decoding algorithms and, more crucially, graphical construction of codes. However, there are also some drawbacks to LDPC codes, e.g. significant performance degradation due to the presence of short cycles or very high decoding latency. In this thesis, we will focus on the practical realisation of finite-length LDPC codes and devise algorithms to tackle those issues. Firstly, rate-compatible (RC) LDPC codes with short/moderate block lengths are investigated on the basis of optimising the graphical structure of the tanner graph (TG), in order to achieve a variety of code rates (0.1 < R < 0.9) by only using a single encoder-decoder pair. As is widely recognised in the literature, the presence of short cycles considerably reduces the overall performance of LDPC codes which significantly limits their application in communication systems. To reduce the impact of short cycles effectively for different code rates, algorithms for counting short cycles and a graph-related metric called Extrinsic Message Degree (EMD) are applied with the development of the proposed puncturing and extension techniques. A complete set of simulations are carried out to demonstrate that the proposed RC designs can largely minimise the performance loss caused by puncturing or extension. Secondly, at the decoding end, we study novel decoding strategies which compensate for the negative effect of short cycles by reweighting part of the extrinsic messages exchanged between the nodes of a TG. The proposed reweighted belief propagation (BP) algorithms aim to implement efficient decoding, i.e. accurate signal reconstruction and low decoding latency, for LDPC codes via various design methods. A variable factor appearance probability belief propagation (VFAP-BP) algorithm is proposed along with an improved version called a locally-optimized reweighted (LOW)-BP algorithm, both of which can be employed to enhance decoding performance significantly for regular and irregular LDPC codes. More importantly, the optimisation of reweighting parameters only takes place in an offline stage so that no additional computational complexity is required during the real-time decoding process. Lastly, two iterative detection and decoding (IDD) receivers are presented for multiple-input multiple-output (MIMO) systems operating in a spatial multiplexing configuration. QR decomposition (QRD)-type IDD receivers utilise the proposed multiple-feedback (MF)-QRD or variable-M (VM)-QRD detection algorithm with a standard BP decoding algorithm, while knowledge-aided (KA)-type receivers are equipped with a simple soft parallel interference cancellation (PIC) detector and the proposed reweighted BP decoders. In the uncoded scenario, the proposed MF-QRD and VM-QRD algorithms are shown to approach optimal performance, yet require a reduced computational complexity. In the LDPC-coded scenario, simulation results have illustrated that the proposed QRD-type IDD receivers can offer near-optimal performance after a small number of detection/decoding iterations and the proposed KA-type IDD receivers significantly outperform receivers using alternative decoding algorithms, while requiring similar decoding complexity

    Advanced channel coding techniques using bit-level soft information

    Get PDF
    In this dissertation, advanced channel decoding techniques based on bit-level soft information are studied. Two main approaches are proposed: bit-level probabilistic iterative decoding and bit-level algebraic soft-decision (list) decoding (ASD). In the first part of the dissertation, we first study iterative decoding for high density parity check (HDPC) codes. An iterative decoding algorithm, which uses the sum product algorithm (SPA) in conjunction with a binary parity check matrix adapted in each decoding iteration according to the bit-level reliabilities is proposed. In contrast to the common belief that iterative decoding is not suitable for HDPC codes, this bit-level reliability based adaptation procedure is critical to the conver-gence behavior of iterative decoding for HDPC codes and it significantly improves the iterative decoding performance of Reed-Solomon (RS) codes, whose parity check matrices are in general not sparse. We also present another iterative decoding scheme for cyclic codes by randomly shifting the bit-level reliability values in each iteration. The random shift based adaptation can also prevent iterative decoding from getting stuck with a significant complexity reduction compared with the reliability based parity check matrix adaptation and still provides reasonable good performance for short-length cyclic codes. In the second part of the dissertation, we investigate ASD for RS codes using bit-level soft information. In particular, we show that by carefully incorporating bit¬level soft information in the multiplicity assignment and the interpolation step, ASD can significantly outperform conventional hard decision decoding (HDD) for RS codes with a very small amount of complexity, even though the kernel of ASD is operating at the symbol-level. More importantly, the performance of the proposed bit-level ASD can be tightly upper bounded for practical high rate RS codes, which is in general not possible for other popular ASD schemes. Bit-level soft-decision decoding (SDD) serves as an efficient way to exploit the potential gain of many classical codes, and also facilitates the corresponding per-formance analysis. The proposed bit-level SDD schemes are potential and feasible alternatives to conventional symbol-level HDD schemes in many communication sys-tems

    Decoding the `Nature Encoded\u27 Messages for Wireless Networked Control Systems

    Get PDF
    Because of low installation and reconfiguration cost wireless communication has been widely applied in networked control system (NCS). NCS is a control system which uses multi-purpose shared network as communication medium to connect spatially distributed components of control system including sensors, actuator, and controller. The integration of wireless communication in NCS is challenging due to channel unreliability such as fading, shadowing, interference, mobility and receiver thermal noise leading to packet corruption, packet dropout and packet transmission delay. In this dissertation, the study is focused on the design of wireless receiver in order to exploit the redundancy in the system state, which can be considered as a `nature encoding\u27 for the messages. Firstly, for systems with or without explicit channel coding, a decoding procedures based on Pearl\u27s Belief Propagation (BP), in a similar manner to Turbo processing in traditional data communication systems, is proposed to exploit the redundancy in the system state. Numerical simulations have demonstrated the validity of the proposed schemes, using a linear model of electric generator dynamic system. Secondly, we propose a quickest detection based scheme to detect error propagation, which may happen in the proposed decoding scheme when channel condition is bad. Then we combine this proposed error propagation detection scheme with the proposed BP based channel decoding and state estimation algorithm. The validity of the proposed schemes has been shown by numerical simulations. Finally, we propose to use MSE-based transfer chart to evaluate the performance of the proposed BP based channel decoding and state estimation scheme. We focus on two models to evaluate the performance of BP based sequential and iterative channel decoding and state estimation. The numerical results show that MSE-based transfer chart can provide much insight about the performance of the proposed channel decoding and state estimation scheme. In this dissertation, the study is focused on the design of wireless receiver in order to exploit the redundancy in the system state, which can be considered as a `nature encoding\u27 for the messages. Firstly, for systems with or without explicit channel coding, a decoding procedures based on Pearl\u27s Belief Propagation (BP), in a similar manner to Turbo processing in traditional data communication systems, is proposed to exploit the redundancy in the system state. Numerical simulations have demonstrated the validity of the proposed schemes, using a linear model of electric generator dynamic system. Secondly, we propose a quickest detection based scheme to detect error propagation, which may happen in the proposed decoding scheme when channel condition is bad. Then we combine this proposed error propagation detection scheme with the proposed BP based channel decoding and state estimation algorithm. The validity of the proposed schemes has been shown by numerical simulations. Finally, we propose to use MSE-based transfer chart to evaluate the performance of the proposed BP based channel decoding and state estimation scheme. We focus on two models to evaluate the performance of BP based sequential and iterative channel decoding and state estimation. The numerical results show that MSE-based transfer chart can provide much insight about the performance of the proposed channel decoding and state estimation scheme

    Channel Detection and Decoding With Deep Learning

    Full text link
    In this thesis, we investigate the designs of pragmatic data detectors and channel decoders with the assistance of deep learning. We focus on three emerging and fundamental research problems, including the designs of message passing algorithms for data detection in faster-than-Nyquist (FTN) signalling, soft-decision decoding algorithms for high-density parity-check codes and user identification for massive machine-type communications (mMTC). These wireless communication research problems are addressed by the employment of deep learning and an outline of the main contributions are given below. In the first part, we study a deep learning-assisted sum-product detection algorithm for FTN signalling. The proposed data detection algorithm works on a modified factor graph which concatenates a neural network function node to the variable nodes of the conventional FTN factor graph to compensate any detrimental effects that degrade the detection performance. By investigating the maximum-likelihood bit-error rate performance of a finite length coded FTN system, we show that the error performance of the proposed algorithm approaches the maximum a posterior performance, which might not be approachable by employing the sum-product algorithm on conventional FTN factor graph. After investigating the deep learning-assisted message passing algorithm for data detection, we move to the design of an efficient channel decoder. Specifically, we propose a node-classified redundant decoding algorithm based on the received sequence’s channel reliability for Bose-Chaudhuri-Hocquenghem (BCH) codes. Two preprocessing steps are proposed prior to decoding, to mitigate the unreliable information propagation and to improve the decoding performance. On top of the preprocessing, we propose a list decoding algorithm to augment the decoder’s performance. Moreover, we show that the node-classified redundant decoding algorithm can be transformed into a neural network framework, where multiplicative tuneable weights are attached to the decoding messages to optimise the decoding performance. We show that the node-classified redundant decoding algorithm provides a performance gain compared to the random redundant decoding algorithm. Additional decoding performance gain can be obtained by both the list decoding method and the neural network “learned” node-classified redundant decoding algorithm. Finally, we consider one of the practical services provided by the fifth-generation (5G) wireless communication networks, mMTC. Two separate system models for mMTC are studied. The first model assumes that low-resolution digital-to-analog converters are equipped by the devices in mMTC. The second model assumes that the devices' activities are correlated. In the first system model, two rounds of signal recoveries are performed. A neural network is employed to identify a suspicious device which is most likely to be falsely alarmed during the first round of signal recovery. The suspicious device is enforced to be inactive in the second round of signal recovery. The proposed scheme can effectively combat the interference caused by the suspicious device and thus improve the user identification performance. In the second system model, two deep learning-assisted algorithms are proposed to exploit the user activity correlation to facilitate channel estimation and user identification. We propose a deep learning modified orthogonal approximate message passing algorithm to exploit the correlation structure among devices. In addition, we propose a neural network framework that is dedicated for the user identification. More specifically, the neural network aims to minimise the missed detection probability under a pre-determined false alarm probability. The proposed algorithms substantially reduce the mean squared error between the estimate and unknown sequence, and largely improve the trade-off between the missed detection probability and the false alarm probability compared to the conventional orthogonal approximate message passing algorithm. All the aforementioned three parts of research works demonstrate that deep learning is a powerful technology in the physical layer designs of wireless communications

    Advances in Modeling and Signal Processing for Bit-Patterned Magnetic Recording Channels with Written-In Errors

    Get PDF
    In the past perpendicular magnetic recording on continuous media has served as the storage mechanism for the hard-disk drive (HDD) industry, allowing for growth in areal densities approaching 0.5 Tb/in2. Under the current system design, further increases are limited by the superparamagnetic effect where the medium's thermal energy destabilizes the individual bit domains used for storage. In order to provide for future growth in the area of magnetic recording for disk drives, a number of various technology shifts have been proposed and are currently undergoing considerable research. One promising option involves switching to a discrete medium in the form of individual bit islands, termed bit-patterned magnetic recording (BPMR).When switching from a continuous to a discrete media, the problems encountered become substantial for every aspect of the hard-disk drive design. In this dissertation the complications in modeling and signal processing for bit-patterned magnetic recording are investigated where the write and read processes along with the channel characteristics present considerable challenges. For a target areal density of 4 Tb/in2, the storage process is hindered by media noise, two-dimensional (2D) intersymbol interference (ISI), electronics noise and written-in errors introduced during the write process. Thus there is a strong possibility that BPMR may prove intractable as a future HDD technology at high areal densities because the combined negative effects of the many error sources produces an environment where current signal processing techniques cannot accurately recover the stored data. The purpose here is to exploit advanced methods of detection and error correction to show that data can be effectively recovered from a BPMR channel in the presence of multiple error sources at high areal densities.First a practical model for the readback response of an individual island is established that is capable of representing its 2D nature with a Gaussian pulse. Various characteristics of the readback pulse are shown to emerge as it is subjected to the degradation of 2D media noise. The writing of the bits within a track is also investigated with an emphasis on the write process's ability to inject written-in errors in the data stream resulting from both a loss of synchronization of the write clock and the interaction of the local-scale magnetic fields under the influence of the applied write field.To facilitate data recovery in the presence of BPMR's major degradations, various detection and error-correction methods are utilized. For single-track equalization of the channel output, noise prediction is incorporated to assist detection with increased levels of media noise. With large detrimental amounts of 2D ISI and media noise present in the channel at high areal densities, a 2D approach known as multi-track detection is investigated where multiple tracks are sensed by the read heads and then used to extract information on the target track. For BPMR the output of the detector still possesses the uncorrected written-in errors. Powerful error-correction codes based on finite geometries are employed to help recover the original data stream. Increased error-correction is sought by utilizing two-fold EG codes in combination with a form of automorphism decoding known as auto-diversity. Modifications to the parity-check matrices of the error-correction codes are also investigated for the purpose of attempting more practical applications of the decoding algorithms based on belief propagation. Under the proposed techniques it is shown that effective data recovery is possible at an areal density of 4 Tb/in2 in the presence of all significant error sources except for insertions and deletions. Data recovery from the BPMR channel with insertions and deletions remains an open problem

    Coherent receiver design and analysis for interleaved division multiple access (IDMA)

    Get PDF
    This thesis discusses a new multiuser detection technique for cellular wireless communications. Multiuser communications is critical in cellular systems as multiple terminals (users) transmit to base stations (or wireless infrastructure). Efficient receiver methods are needed to maximise the performance of these links and maximise overall throughput and coverage while minimising inter-cell interference. Recently a new technique, Interleave-Division Multiple Access (IDMA), was developed as a variant of direct-sequence code division multiple access (DS-CDMA). In this new scheme users are separated by user specific interleavers, and each user is allocated a low rate code. As a result, the bandwidth expansion is devoted to the low rate code and not weaker spreading codes. IDMA has shown to have significant performance gains over traditional DS-CDMA with a modest increase in complexity. The literature on IDMA primarily focuses on the design of low rate forward error correcting (FEC) codes, as well as channel estimation. However, the practical aspects of an IDMA receiver such as timing acquisition, tracking, block asynchronous detection, and cellular analysis are rarely studied. The objective of this thesis is to design and analyse practical synchronisation, detection and power optimisation techniques for IDMA systems. It also, for the first time, provides a novel analysis and design of a multi-cell system employing a general multiuser receiver. These tools can be used to optimise and evaluate the performance of an IDMA communication system. The techniques presented in this work can be easily employed for DS-CDMA or other multiuser receiver designs with slight modification. Acquisition and synchronisation are essential processes that a base-station is required to perform before user's data can be detected and decoded. For high capacity IDMA systems, which can be heavily loaded and operate close to the channel capacity, the performance of acquisition and tracking can be severely affected by multiple access interference as well as severe drift. This thesis develops acquisition and synchronisation algorithms which can cope with heavy multiple access interference as well as high levels of drift. Once the timing points have been estimated for an IDMA receiver the detection and decoding process can proceed. An important issue with uplink systems is the alignment of frame boundaries for efficient detection. This thesis demonstrates how a fully asynchronous system can be modelled for detection. This thesis presents a model for the frame asynchronous IDMA system, and then develops a maximum likelihood receiver for the proposed system. This thesis develops tools to analyse and optimise IDMA receivers. The tools developed are general enough to be applied to other multiuser receiver techniques. The conventional EXIT chart analysis of unequal power allocated multiuser systems use an averaged EXIT chart analysis for all users to reduce the complexity of the task. This thesis presents a multidimensional analysis for power allocated IDMA, and shows how it can be utilised in power optimisation. Finally, this work develops a novel power zoning technique for multicell multiuser receivers using the optimised power levels, and illustrates a particular example where there is a 50% capacity improvement using the proposed scheme. -- provided by Candidate

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts
    corecore