68,724 research outputs found

    Node-density independent localization

    Get PDF

    Distributed Maximum Likelihood for Simultaneous Self-localization and Tracking in Sensor Networks

    Full text link
    We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneously with target tracking. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a novel message passing algorithm. The latter allows each node to compute the local derivatives of the likelihood or the sufficient statistics needed for Expectation-Maximization. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we demonstrate that the developed algorithms are able to learn the localization parameters.Comment: shorter version is about to appear in IEEE Transactions of Signal Processing; 22 pages, 15 figure

    Data Imputation through the Identification of Local Anomalies

    Get PDF
    We introduce a comprehensive and statistical framework in a model free setting for a complete treatment of localized data corruptions due to severe noise sources, e.g., an occluder in the case of a visual recording. Within this framework, we propose i) a novel algorithm to efficiently separate, i.e., detect and localize, possible corruptions from a given suspicious data instance and ii) a Maximum A Posteriori (MAP) estimator to impute the corrupted data. As a generalization to Euclidean distance, we also propose a novel distance measure, which is based on the ranked deviations among the data attributes and empirically shown to be superior in separating the corruptions. Our algorithm first splits the suspicious instance into parts through a binary partitioning tree in the space of data attributes and iteratively tests those parts to detect local anomalies using the nominal statistics extracted from an uncorrupted (clean) reference data set. Once each part is labeled as anomalous vs normal, the corresponding binary patterns over this tree that characterize corruptions are identified and the affected attributes are imputed. Under a certain conditional independency structure assumed for the binary patterns, we analytically show that the false alarm rate of the introduced algorithm in detecting the corruptions is independent of the data and can be directly set without any parameter tuning. The proposed framework is tested over several well-known machine learning data sets with synthetically generated corruptions; and experimentally shown to produce remarkable improvements in terms of classification purposes with strong corruption separation capabilities. Our experiments also indicate that the proposed algorithms outperform the typical approaches and are robust to varying training phase conditions

    Quantum Network Models and Classical Localization Problems

    Full text link
    A review is given of quantum network models in class C which, on a suitable 2d lattice, describe the spin quantum Hall plateau transition. On a general class of graphs, however, many observables of such models can be mapped to those of a classical walk in a random environment, thus relating questions of quantum and classical localization. In many cases it is possible to make rigorous statements about the latter through the relation to associated percolation problems, in both two and three dimensions.Comment: 23 pages. To appear in '50 years of Anderson Localization', E Abrahams, ed. (World Scientific)

    Role of the impurity-potential range in disordered d-wave superconductors

    Full text link
    We analyze how the range of disorder affects the localization properties of quasiparticles in a two-dimensional d-wave superconductor within the standard non-linear sigma-model approach to disordered systems. We show that for purely long-range disorder, which only induces intra-node scattering processes, the approach is free from the ambiguities which often beset the disordered Dirac-fermion theories, and gives rise to a Wess-Zumino-Novikov-Witten action leading to vanishing density of states and finite conductivities. We also study the crossover induced by internode scattering due to a short range component of the disorder, thus providing a coherent non-linear sigma-model description in agreement with all the various findings of different approaches.Comment: 38 pages, 1 figur

    Connection Between System Parameters and Localization Probability in Network of Randomly Distributed Nodes

    Full text link
    This article deals with localization probability in a network of randomly distributed communication nodes contained in a bounded domain. A fraction of the nodes denoted as L-nodes are assumed to have localization information while the rest of the nodes denoted as NL nodes do not. The basic model assumes each node has a certain radio coverage within which it can make relative distance measurements. We model both the case radio coverage is fixed and the case radio coverage is determined by signal strength measurements in a Log-Normal Shadowing environment. We apply the probabilistic method to determine the probability of NL-node localization as a function of the coverage area to domain area ratio and the density of L-nodes. We establish analytical expressions for this probability and the transition thresholds with respect to key parameters whereby marked change in the probability behavior is observed. The theoretical results presented in the article are supported by simulations.Comment: To appear on IEEE Transactions on Wireless Communications, November 200

    Griffiths phases and localization in hierarchical modular networks

    Get PDF
    We study variants of hierarchical modular network models suggested by Kaiser and Hilgetag [Frontiers in Neuroinformatics, 4 (2010) 8] to model functional brain connectivity, using extensive simulations and quenched mean-field theory (QMF), focusing on structures with a connection probability that decays exponentially with the level index. Such networks can be embedded in two-dimensional Euclidean space. We explore the dynamic behavior of the contact process (CP) and threshold models on networks of this kind, including hierarchical trees. While in the small-world networks originally proposed to model brain connectivity, the topological heterogeneities are not strong enough to induce deviations from mean-field behavior, we show that a Griffiths phase can emerge under reduced connection probabilities, approaching the percolation threshold. In this case the topological dimension of the networks is finite, and extended regions of bursty, power-law dynamics are observed. Localization in the steady state is also shown via QMF. We investigate the effects of link asymmetry and coupling disorder, and show that localization can occur even in small-world networks with high connectivity in case of link disorder.Comment: 18 pages, 20 figures, accepted version in Scientific Report

    Spectral and Dynamical Properties in Classes of Sparse Networks with Mesoscopic Inhomogeneities

    Full text link
    We study structure, eigenvalue spectra and diffusion dynamics in a wide class of networks with subgraphs (modules) at mesoscopic scale. The networks are grown within the model with three parameters controlling the number of modules, their internal structure as scale-free and correlated subgraphs, and the topology of connecting network. Within the exhaustive spectral analysis for both the adjacency matrix and the normalized Laplacian matrix we identify the spectral properties which characterize the mesoscopic structure of sparse cyclic graphs and trees. The minimally connected nodes, clustering, and the average connectivity affect the central part of the spectrum. The number of distinct modules leads to an extra peak at the lower part of the Laplacian spectrum in cyclic graphs. Such a peak does not occur in the case of topologically distinct tree-subgraphs connected on a tree. Whereas the associated eigenvectors remain localized on the subgraphs both in trees and cyclic graphs. We also find a characteristic pattern of periodic localization along the chains on the tree for the eigenvector components associated with the largest eigenvalue equal 2 of the Laplacian. We corroborate the results with simulations of the random walk on several types of networks. Our results for the distribution of return-time of the walk to the origin (autocorrelator) agree well with recent analytical solution for trees, and it appear to be independent on their mesoscopic and global structure. For the cyclic graphs we find new results with twice larger stretching exponent of the tail of the distribution, which is virtually independent on the size of cycles. The modularity and clustering contribute to a power-law decay at short return times
    • …
    corecore