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ABSTRACT
This paper presents an enhanced version of a novel radio in-
terferometric positioning technique for node localization in
wireless sensor networks that provides both high accuracy
and long range simultaneously. The ranging method utilizes
two transmitters emitting radio signals at almost the same
frequencies. The relative location is estimated by measuring
the relative phase offset of the generated interference signal
at two receivers. Here, we analyze how the selection of car-
rier frequencies affects the precision and maximum range.
Furthermore, we describe how the interplay of RF multi-
path and ground reflections degrades the ranging accuracy.
To address these problems, we introduce a technique that
continuously refines the range estimates as it converges to
the localization solution. Finally, we present the results of
a field experiment where our prototype achieved 4 cm av-
erage localization accuracy for a quasi-random deployment
of 16 COTS motes covering the area of two football fields.
The maximum range measured was 170 m, four times the
observed communication range. Consequently, node deploy-
ment density is no longer constrained by the localization
technique, but rather by the communication range.

Categories and Subject Descriptors: C.2.4[Computer-
Communications Networks]:Distributed Systems

General Terms: Algorithms, Experimentation, Theory

Keywords: Sensor Networks, Radio Interferometry, Rang-
ing, Localization, Location-Awareness
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1. INTRODUCTION
We have recently proposed a novel approach to sensor

node localization, the Radio Interferometric Positioning Sys-
tem (RIPS) [4]. RIPS creates a low-frequency interference
signal by one pair of nodes transmitting simultaneously at
close frequencies. The relative phase offset at a pair of re-
ceiver nodes is used to determine a distance measure be-
tween the transmitting and receiving nodes. Unlike tradi-
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tional ranging approaches, which determine the pairwise dis-
tance between two sensor nodes, RIPS measures dABCD, a
distance aggregate called the “q-range” involving four nodes:
two transmitters A, B and two receivers C, D. We reported
a localization accuracy of 3 cm in a 16-node setup covering
an area of 324 m2. We estimated the maximum range of
RIPS on Mica2 motes to be 160 m, but this was not exper-
imentally verified.

1.1 New contributions
In this paper we show that, although not straightforward,

the 160 m range is indeed attainable while keeping the rang-
ing error down to a few centimeters. This result is a sig-
nificant improvement over the existing ranging solutions in
wireless sensor networks (WSNs), both in terms of the ac-
curacy and the maximum range. A 160 m range is approx-
imately four times larger than the actual communication
range when deployed on the ground. Therefore, localization
no longer needs to constrain the deployment of WSNs.

Our analysis of interferometric ranging shows that it in-
troduces significant ranging errors at large distances, which
can be contributed to two major factors. The first prob-
lem is the ambiguity of the dABCD solution. Interferometric
ranging computes the dABCD values from the phase offsets
of the interference signal measured at two receivers C, D
using the following equation:

dABCD mod λ = ϕCD
λ
2π

,

where ϕCD is the measured relative phase offset of the re-
ceivers, and λ is the wavelength of the carrier frequency of
the received signal. In general, infinitely many dABCD val-
ues solve this equation. It was shown in [4] that measuring
the phase offsets using different wavelengths (λ) can elimi-
nate the incorrect solutions. However, the particular choice
of wavelengths used in [4] yields ambiguous results for q-
ranges larger than 57 m (or smaller than −57 m). Here we
explore how to ensure that dABCD is unique.

The second major error source is multipath radio propa-
gation, which can distort the phase of the interference signal
measured at the receivers. Multipath may become a signifi-
cant error source with increasing node distances, even in the
same relatively benign environment. The reason is that the
ground-reflected radio signals are 180 degrees phase-shifted
for small angles of incidence and travel almost the same dis-
tance as the direct line-of-sight (LOS) signal. Hence, the
composite signal is attenuated and its amplitude becomes
comparable to those of additional relatively weak multipath
signals, causing noticeable phase deviations at the receivers.



We propose a novel ranging algorithm that executes q-range
estimation and localization in an interleaved and iterative
manner. That is, feedback from the current localization re-
sult is used to constrain the search space of q-range estima-
tion, then the new estimates are used in the next localization
phase, thereby iteratively refining the result. We show that
this technique effectively corrects ranging errors and signif-
icantly improves the localization results.

Today’s typical sensor network deployments are relatively
dense, the nearest neighbor distance being at most 20 m.
Consequently, the 160 m radius of the interferometric rang-
ing can easily cover hundreds of sensor nodes introducing
scalability problems for RIPS. Therefore, it is important to
limit the amount of ranging data collected while ensuring
that enough remains to solve the localization. First, we
revisit the interesting problem of how many linearly inde-
pendent interferometric ranging measurements exist for a
set of n nodes and give a sharp upper bound improving
the result given in [4]. Next, we present an algorithm that
schedules the transmitters and receivers for the interfero-
metric measurements. It limits the amount of acquired data
and prevents uneven data sets that may otherwise result in
the formation of well-localized clusters, but may not provide
enough data to localize the whole network.

We present an evaluation of the improved RIPS technique
based on two experiments using XSM motes [2]. First, we
deployed 50 motes in an 8000 m2 area with the neighbors 9 m
apart. In this moderate multipath environment, we achieved
a mean precision of 10 cm. In the second experiment, we
deployed 16 motes in a rural area larger than two football
fields. This setup demonstrated the maximum range to be
170 m, while the mean localization error was 4 cm.

We organize the remainder of the paper as follows. Sec-
tion 2 revisits the theoretical background of RIPS. Section 3
describes the problems we face when increasing the maxi-
mum range. Section 4 addresses the scalability issues. We
evaluate our system in Section 5 and discuss related research
in Section 6. Finally, we offer our conclusions and future di-
rections in Section 7.

2. INTERFEROMETRIC POSITIONING
Radio-based ranging techniques tend to estimate the range

between two nodes from the known rate of radio signal atten-
uation over distance by measuring the radio signal strength
(RSS) at the receiver. However, this technique is very sensi-
tive to channel noise, reflections, interference from the envi-
ronment among others. It was suggested in [4] to emit pure
sine wave radio signals at two locations at slightly different
frequencies. The composite radio signal has a low beat fre-
quency and its envelope signal can be measured with low
precision RF chips as the RSS Indicator (RSSI) signal (Fig-
ure 1). The phase offset of this signal depends on many
factors, including the times when the transmissions were
started. However, the relative phase offset between two re-
ceivers depends only on the distances between the two trans-
mitters and two receivers and on the wavelength of the car-
rier signal. More formally, the following theorem was proven
in [4]:

Theorem 1. Assume that two nodes A and B transmit
pure sine waves at two frequencies fA > fB, and two other
nodes C and D measure the filtered RSSI signal. If fA−fB <
2 kHz, and dAC , dAD, dBC , dBD ≤ 1 km, then the relative
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Figure 1: Radio-interferometric ranging technique.

phase offset of RSSI signals measured at C and D is

2π
dAD − dBD + dBC − dAC

c/f
(mod 2π),

where f = (fA + fB)/2.

We call the ordered quadruple of distinct nodes A, B, C, D
a quad and the linear combination of distances dAD−dBD +
dBC −dAC for quad (A, B, C, D) the q-range dABCD. Note
that the q-range is related to the range in the traditional
sense, which is the distance between two nodes, but there is
a significant difference between the two measures. If dmax

is the maximum distance between any pair of the quad
nodes, then the dABCD can be anywhere between −2dmax

and 2dmax, depending on the positions of the four nodes.
Next, denote by ϕX the absolute phase offset of the RSSI

signal measured by node X at a synchronized time instant,
the relative phase offset between X and Y by ϕXY = ϕX −
ϕY , and the wavelength of the carrier frequency f of the
radio signal by λ = c/f . Using this notation, Theorem 1
can be rewritten as

dABCD mod λ = ϕCD
λ
2π

.

ϕCD can be measured by the receivers C and D and λ
is known. Note that a single ϕCD measurement does not
yield a unique dABCD q-range because of the (mod λ) in the
equation. However, we can measure ϕCD at different carrier
frequencies, narrowing down the dABCD solution space un-
til it contains a single q-range satisfying the maximum radio
range constraint. Q-ranges can be used to determine 2D or
3D positions of the nodes, although the process is more com-
plicated than determining positions from traditional ranges.
An important difference between the interferometry and tra-
ditional ranging approaches is that we can measure at most
n(n−3)/2 linearly independent q-ranges for a group of n



nodes, as shown in Section 4.1, as opposed to n(n−1)/2 lin-
early independent traditional pairwise ranges. Therefore,
more nodes are required to determine the relative positions
using interferometry. It was shown that at least 6 nodes are
required to determine the 2D positions of all the nodes in
the network and 8 nodes for 3D.

3. MAXIMUM RANGE OF RIPS
As discussed before, RIPS is capable of measuring the rel-

ative phase offsets of relatively weak radio signals enabling
ranging well beyond the communication range. Therefore,
RIPS requires multi-hop communication and time synchro-
nization. Furthermore, the original prototype introduced
in [4] may incur significant ranging errors at large distances.
We analyze the sources of these errors and suggest solutions
to mitigate their effects in this section.

3.1 Ambiguity of q-ranges
Denote the relative phase offset of the receivers X and

Y relative to the wavelength of the carrier frequency λ as
γXY = ϕXY

λ
2π , where ϕXY is the phase offset of X and Y .

Theorem 1 can then be restated

dABCD = γCD + nλ,

where n ∈ Z, and both γCD and λ are known. Clearly,
infinitely many dABCD values solve this equation (n is un-
known). We can decrease the size of the dABCD solution
space by measuring the phase offset γCD at m different
carrier frequencies λi, giving γi, i = 1 . . . m. The result-
ing system of m equations has m + 1 unknowns, dABCD ∈
[−2dmax, 2dmax], where dmax is the maximum distance be-
tween any pair of nodes, and n1, . . . , nm ∈ Z:

dABCD = γi + niλi, i = 1 . . . m (1)

Note that this system may still have multiple solutions.
Before proceeding, we give a constraint on the ni for later

use. The phase offsets are less than 2π, so |γi| < λi. From
ni = (dABCD − γi)/λi and −2dmax ≤ dABCD ≤ 2dmax, we
find |ni| < 2dmax/λi + 1.

The problem is further complicated by measurement er-
rors. The difference between the nominal and actual radio
frequencies for a 100 ppm crystal causes an error in the wave-
length of at most 0.0001 λ, which can be disregarded. But
the error of the absolute phase measurement on the Mica2
hardware can be as high as 0.3 rad or 0.05 λ, according to
our experiments, so the error of the relative phase offset γi

can be as high as 0.1 λ. We denote the maximum phase
offset error with εmax and rewrite equations (1) into the fol-
lowing (implicit) inequalities, i = 1 . . . m:

dABCD ∈ [γi + niλi − εmax, γi + niλi + εmax]. (2)

This system only has a solution if the intersection of these m
intervals is non-empty. However, it is possible that the same
system (with the same γi and λi values) has solutions for
different assignments to the unknowns ni, in which case the
system is ambiguous. Note, that the γi quantities cannot
be controlled. Therefore, if we want to avoid the ambigu-
ity problem, we need to choose values for the λi such that
ambiguity is excluded. We now derive a necessary condition
for ambiguity; by contraposition, its negation is a sufficient
condition for avoiding ambiguity.

So assume that also for some different vector of integers
n′i, i = 1 . . . m, the intersection of the intervals [γi + n′iλi −

εmax, γi + n′iλi + εmax] is non-empty, and let d′ABCD be a
point in the resulting interval. Putting pi = ni − n′i, we
have then, i = 1 . . . m:

d′ABCD − dABCD ∈ [piλi − 2εmax, piλi + 2εmax].

Since the intersection of these m intervals is non-empty, so
is the intersection of any pair. This means that, for all pairs
i, j in the range 1 . . . m:

|piλi − pjλj | ≤ 4εmax. (3)

A further constraint on the pi values, which are integers, is
found from the constraint given earlier on ni: |pi| = |ni −
n′i| < 4dmax/λi + 2. The distinctness of the vectors ni and
n′i, finally, requires at least one pi to be non-zero.

If, conversely, we can find λi such that system (3) has no
solution in integers pi—subject to the further constraints—
then system (1) is guaranteed to be unambiguous for all
possible outcomes for the γi.

We put this in context by providing concrete characteris-
tics of our radio driver used for the Chipcon CC1000 chip:
the frequency range is 400–460 MHz, the minimum separa-
tion fsep between the possible frequencies is 0.527 MHz, and
εmax is 0.075 m.

Within these parameters, it is actually impossible to find
a set of frequencies for which (3) is unsolvable. To start,
there are solutions for very small pi. In particular, taking
pi = 1 for all i, insolvability requires that εmax < 1

4 |λi − λj |
for some pair i, j. But the range of wavelengths is 0.65–
0.75 m, requiring then that εmax < 0.025 m, way below the
actually obtainable precision. In practice the situation is not
that dire; for this to result in an actual ambiguity, all phase-
measurements errors have to “conspire”, with those for the
smaller wavelengths being high (positive), and those for the
larger wavelengths low (negative). For a set of, say, seven
wavelengths, this is rather unlikely, although not impossi-
ble. Should an ambiguity of this type occur, and should
the methods explained in subsection C below not lead to
the correct disambiguation, then at least the error is not
extremely large.

Potentially much more pernicious are errors with large
values of pi. To express them, we rewrite system (3) into
|pi(λi − λj)− (pj − pi)λj | ≤ 4εmax and then into

|pi − (pj − pi)λj/(λi − λj)| ≤ 4εmax/(λi − λj). (4)

Putting d = pj − pi, we have then:

pi ∈ [
dλj

λi − λj
− 4εmax

λi − λj
,

dλj

λi − λj
+

4εmax

λi − λj
].

It is easy to see that all large pi correspond to the integer

multiples of
λj

λi−λj
, which means errors of

λiλj

λi−λj
in dABCD

solution space. Note, that λiλj/(λi−λj) corresponds to the
wavelength c/fsep, where fsep = |fi − fj | is the frequency
separation of fi, fj . We later use these two notions inter-
changeably. Fortunately, it is not hard to find relatively
small “perfect” sets of frequencies, i.e., sets of frequencies
for which such large errors are excluded.

The carrier frequencies at which the phase offsets were
measured in the previous work [4] were equally distributed
in the 400–460 MHz range with fsep = 5.27 MHz, the wave-
length of which is 57 m. Therefore, to increase the range,
we currently use 0.527 MHz separation with wavelength of
about 569 m, allowing q-ranges up to 275 m.



3.2 Multipath effects
The results reported in [4] were obtained on a grassy area

on campus near buildings and trees. As we experimented
with extending the range of RIPS, the results quickly dete-
riorated. Once the cell size reached 10 m in the grid setup,
the ranging error distribution got significantly worse. How-
ever, if we elevated the motes off the ground, the results im-
proved markedly again. The nodes needed to be less than
10 m apart if they were on the ground, but could be more
than 20 m apart if they were 4 feet high on tripods.

Figure 2 shows representative phase offset measurements
on 120 channels in the 400–460 MHz frequency range with
the nodes on the ground (a) and 1.3 m elevated (b). No-
tice that the variance of the measured phase offsets is sig-
nificantly smaller in the elevated scenario, while there are
severe fluctuations in case of ground deployment. When we
repeated the same experiment in a rural area far from build-
ings and trees, the results were very close to the ideal case
irrespective of the deployment height. The last observation
suggests that multipath propagation is at play here, but why
does elevating the motes apparently fix the problem?
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Figure 2: Phase offset measurements on 120 chan-
nels with vertical monopole antennas directly on the
ground (a) and 1.3 m elevated (b).

Up till now, we have considered the radio nodes as if they
were operating in free space. However, the ground around
and under the antenna and other nearby objects such as
trees or buildings can have significant impact on the shape
and strength of the radiated pattern. These interactions
can be explored in two distinctive regions surrounding the
antenna. The reactive near field is within one quarter of the
wavelength, therefore we do not consider it in this paper.

In the radiative far field, ground reflections—especially for
vertically polarized antennas—and additional paths through
reflective objects profoundly influence the received signal.
When the radio wave strikes a surface, it is reflected with
an angle that is equal to the angle of incidence. For sur-
faces with infinite conductivity, the reflected wave has the
same amplitude and the same phase—or opposite, depend-
ing upon polarization—as that of the incident signal. For
real surfaces, the reflected amplitude tends to be smaller and
the phase relationship is more intricate. At small angles, the

phase is −π, while for larger ones, it is 0. At a certain an-
gle, called the Pseudo-Brewster Angle (PBA) [7], the phase
is −π/2. The change from −π to 0 with increasing angle of
incidence around the PBA is very steep. Thus, reflections
at low angles have significant amplitude and opposite phase.
As the distance difference between the line-of-sight (LOS)
and the ground reflected signals is the smallest at small an-
gles, the phase shift between them remains close to −π and
hence, the composite signal is significantly attenuated.

Figure 3 shows the simulation results of the effect of the
ground reflected signal on the LOS wave over average ground
surface. We used a two-node setup, where the distance be-
tween the nodes was fixed at 30 meters, while we elevated
the nodes off the ground up to 5 meters—sweeping the an-
gle of incidence between 0 and 20◦. The figure shows the
amplitude coefficient and the received composite signal, for
which the path loss was simulated (both for the direct and
reflected signals) using λ2/(4πd)2 decay. We experimentally
validated the results for a smaller range of angles in a ru-
ral area where no multipath effects were present other than
ground reflections and obtained data similar to the predicted
values.
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Figure 3: The reflection coefficient and the ampli-
tude of the composite signal for vertically polarized
waves. The composite signal is shaped by the inter-
play of the decreasing ground-reflection coefficient,
and the phase offset and attenuation change due to
the increasing distance the reflected signal travels.

We observed that the amplitude of the composite signal
grows tenfold when we elevate the nodes from ground level
to 1 m (at 30 m distance). This significant attenuation is not
a problem in and of itself, as long as we can still measure
the phase of the signal accurately. It definitely decreases
the effective range of the method, but it does not by itself
impact the accuracy noticeably. However, in a moderate
multipath environment, such as the campus area we used,
reflections from buildings and other surfaces distort the re-
sults. As these reflections travel longer distances, they are
markedly attenuated. As long as the direct LOS signal is
strong, the additional phase shift these components cause is
small. However, when the ground reflection significantly at-
tenuates the LOS signal, the phase shift caused by additional
multipath components is large enough to distort the results
considerably, as shown in Figure 2. We found that the mea-
sured strength of the received signals (not shown in the fig-
ure) was 8 dB stronger with elevated nodes. Since the overall
topology, the node-to-node distances and the environment



were identical in the two measurements, we have experimen-
tally verified that the differences are indeed caused by the
angle—thus elevation—dependent ground reflection.

3.3 Coping with the q-range error
Intuitively, solving the ranging problem can be thought

of as fitting a straight line to the measured data. As shown
in Figure 2, the ideal phase offset is linear as a function of
the frequency if we allow for wraparound at 2π. If we have
data distorted by multipath and other errors, we can still fit
a line relatively accurately, provided we have enough good
data points. Therefore, a trivial enhancement is to make
measurements at as many frequency channels as possible.
However, this also increases the required time of the actual
ranging, and a balance must be struck.

We now show how to further improve the q-range estima-
tion and the overall localization results, even in the face of
q-range ambiguity and moderate multipath effects. Let us
first revisit how the baseline q-range estimation works.
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Figure 4: Phase-offset discrepancy function in a se-
vere multipath environment. The numbers show the
search intervals of consecutive error correction it-
erations and the corresponding minima. The spot
labeled 3 is the real solution.

To get the q-range dABCD we have to solve the inequali-
ties (2). Given a possible q-range r, for each i we can find
the value of ni that brings γi +niλi the closest to r, namely

ni = round
“

r−γi
λi

”
. Then we define the phase-offset dis-

crepancy function to be the average value of the squares of
γi+niλi−r values as a function of r. Ideally, the global min-
imum of the discrepancy function is 0, attained at the true
q-range. However, measurement errors, multipath effects
and the ambiguity due to the limited number of channels
and the minimum channel separation, distort the results.
Frequently, the global minimum is not at the true solution.
Figure 4 shows an example of the phase-offset discrepancy
function in a severe multipath environment indoors. The
true q-range is at the local minimum labeled 3.

Given a sufficient number of q-range measurements, it is
possible to estimate the node locations (up to Euclidean iso-
metric transformations) by finding the locations that mini-
mize the q-range discrepancy, defined as the average value
of the squares of the differences between each measured q-
range and the corresponding q-range “on the map”, i.e., the
dABCD value computed from the node locations.

After analyzing several experiments, the following obser-

vations were made:
1. If 30–40% of the q-ranges have less than 30 cm error,

the localization algorithm converges and finds approximate
locations with errors smaller than a few meters.

2. Even in multipath environments the phase-offset dis-
crepancy function has a sharp local minimum at the real
q-range in most of the cases. See Figure 4.

These two observations led to the idea of the iterative
phase-offset discrepancy correction algorithm:

1. Initialize the value of R, the search radius, and set all
q-range estimates to 0.

2. Calculate the q-range estimates by finding the mini-
mum of the sum of the phase-offset discrepancy func-
tions, searching within radius R from the current q-
range estimates.

3. Calculate optimal node locations.

4. If R is small enough, stop. Otherwise, decrease R and
go to step 2.

In other words, the current localization solution is used
to constrain the search space of the ranging algorithm, so
that it can progressively eliminate large errors. Due to this
feedback method, the q-range estimates get more and more
accurate at each iteration.

It is easy to see that if the current value of R is always
larger than the maximum q-range error in our current lo-
calization, bounding the search will not exclude the correct
q-range. In our current prototype, we use fixed decreasing R
values, such as R1 = 50 m, R2 = 5 m, R3 = 0.5 m. The differ-
ence between the measured q-range and the corresponding
q-range on the map is known and has a strong correlation
with the localization error. This distance error could be
used to drive the actual value of R and make this iterative
method more adaptive. We leave this idea as a topic for
future research.

4. SCALABILITY OF RANGING IN TIME
We revisit the theoretical bound on the maximum number

of linearly independent q-range measurements for a set of n
nodes, improving the result given in [4].

4.1 Independent q-range measurements
We assume that the network has at least three nodes, and

that the nodes forming the network are numbered 0 through
n−1. Let N = {0 . . n−1} denote the set of nodes. In the
notation dAB , we always assume that A and B are nodes in
N . By convention, dBA means the same as dAB . Clearly,
there is no need to determine quantities dAA, so without loss
we require in the notation dAB that A $= B. Then in the
network there are in all n(n−1)/2 such quantities dAB .

These distances are not independent in the sense of being
mutually unconstrained. To start with, there is the triangle
inequality: dAC ≤ dAB +dBC . Assuming that the nodes live
in Euclidean 2D space, there is the further constraint that
the Cayley-Menger determinant on any quad (A, B, C, D)
vanishes. Here we are concerned with a more technical no-
tion of independence: linear independence of a collection of
vectors in a vector space.

Recall that, given a vector space V and a set of vectors
{vi} of V , the subspace spanned by that set consists of the



collection of vectors that can be written as
P

i λivi for some
assignment of scalar values λi. The set of vectors is called
linearly independent when

P
i λivi = 0 ≡ ∀i λi = 0. A

basis of V is then a linearly independent set of vectors of V
that spans V .

Now take an n(n−1)/2 dimensional vector space over the
field of the real numbers, and label the vectors of some basis
with dAB , for A and B distinct nodes from N — also here
label dAB is identified with label dBA.

Define, for quad (A, B, C, D),

dABCD = dAD − dBD + dBC − dAC .

Thus defined, dABCD is a vector in our vector space. We
call it a measurement, because it corresponds to a possi-
ble measurement that could be carried out by the radio-
interferometric technique, the outcome being (modulo ex-
perimental error) the value of the right-hand side under
some valuation of the basis vectors dAB . Clearly, dABCD +
dBACD = 0 and dABCD − dCDAB = 0, so these vectors are
not all mutually independent. To rule out these pairwise
dependencies, we require that in any index ABCD we have:

A < B, A < C < D, B $= C, B $= D ,

in which the last two inequalities, required by the distinct-
ness of the four nodes, are given for the sake of completeness.
We call an index satisfying these inequalities normalized. If
some of the other inequalities are violated, the correspond-
ing measurement can be found from one with a normalized
index by using the pairwise dependencies given above.

Since there are three orderings of A, B, C and D compat-
ible with the index inequalities, A<B<C<D, A<C<B<D
and A<C<D<B, any choice of four distinct nodes from N
leads to three normalized indices, and so the set of normal-
ized indices ABCD has size 3

`n
4

´
= n(n−1)(n−2)(n−3)/8.

We want to determine the dimension of the vector space
spanned by the set of all possible measurements; i.e., the
size of a basis of that space. This is then the size of any
maximally large set of linearly independent measurements.

Theorem 2. The dimension of the vector space spanned
by the measurements dABCD on a set of n nodes, n ≥ 3, is
n(n−3)/2.

Proof. Partition the set of normalized indices into six
classes:

Class 0: { 0 12 D | 2 <D} with n−3 elements;

Class 1: { 0B 1D | 1 <B<D} with
`n−2

2
´

elements;

Class 2: { 0 1C D | 2 <C<D} with
`n−3

2
´

elements;

Class 3: { 0B 1D | 1 <D<B} with
`n−2

2
´

elements;

Class 4: { 0BC D | 1 <B, 1<C<D, B $= C, B $= D}
with 3

`n−2
3

´
elements;

Class 5: {ABC D | 0 <A<B, A<C<D, B $= C, B $= D}
with 3

`n−1
4

´
elements.

It is easily verified that all these indices are normalized and
that the classes are disjoint. The sizes sum up to the car-
dinality of the set of all normalized indices, so this indeed
constitutes a partitioning.

First we show that the measurements having indices of
classes 0 and 1 together form a linearly independent set.

Next, we show that all measurements indexed by elements
of classes 2–5 can be reduced to a linear combination of
measurements with lower class numbers, ultimately leading
to a linear combination of elements from classes 0 and 1.
Combined, this gives us that classes 0 and 1 together form
a basis. Since there are n(n−3)/2 elements in these two
classes, the claim then follows.

As to the linear independence of the measurements in-
dexed by classes 0 and 1, assume some linear combination
of these measurements vanishes:

X

2<D

λDd012D +
X

1<B<D

µBDd0B1D = 0 ,

or, equivalently, using the definition of dABCD:
X

2<D

λD(d0D − d1D + d12 − d02) +

X

1<B<D

µBD(d0D − dBD + d1B − d01) = 0 .

Recall that the vectors dAB form a basis. The coefficient
of each vector dBD, 1<B<D, is −µBD. So each µBD = 0.
Then the coefficient of each vector d1D, 2<D, is −λD. So
also each λD = 0. Therefore a linear combination of the
measurements only vanishes if all coefficients are zero: they
are independent.

The reductions of measurements from higher classes to
classes 0 and 1 are as follows:

Class 2: d 0 1C D = −d 0 12 C + d 0 12 D ;

Class 3: d 0B 1D = −d 0 1D B + d 0D 1B ;

Class 4: d 0B C D = −d 0B 1C + d 0B 1D ;

Class 5: dAB C D = −d 0AC D + d 0B C D .

In each case it is straightforward to verify that the measure-
ments in the right-hand side are indexed by indices from a
lower class. For example, the index 0D1B occurring in the
reduction for class 3 has D < B (because the left-hand side
satisfies the constraints of class 3) and therefore belongs to
class 1. It is equally easy to verify that each reduction rep-
resents a valid identity; for example, for class 3, expanding
the definition of dABCD and using dBA = dAB , we obtain:

d0D − dBD + d1B − d01 =

−(d0B − d1B + d1D − d0D) + (d0B − dBD + d1D − d01) .

4.2 Practical solution
Measuring the q-range of all possible node quads is waste-

ful, as there are O(n4) quads but only O(n2) independent
measurements and O(n) unknowns. Furthermore, this would
take an excessive amount of time in larger networks. How-
ever, trying to measure a maximal set of independent mea-
surements is impractical when the geometry of the deploy-
ment is not known and we cannot know in advance what
node quads can be measured at all. Furthermore, even
successful measurements can be lost in transition. Conse-
quently, we schedule a larger number of measurements than
necessary, thereby compensating for their possible depen-
dence, for which we do not check, while also helping to av-
erage out measurement errors.



Given a deployment, we need to select a list of trans-
mitter pairs and the corresponding set of receivers (called
a schedule) such that the collected q-range measurements
are sufficient to localize. Conducting q-range measurements
involving a pair of transmitters takes constant time inde-
pendent of the number of receivers. Therefore, bounding
the number of transmitter pairs bounds the time required
to run the whole schedule. We need to consider the number
of receivers that correspond to a given transmitter pair as
well. Since the calculation of the q-ranges is carried out on
the base station, the time required to route the phase offset
measurements to the base station increases with the number
of receivers, while the packet-delivery ratio decreases.

The algorithm, thus, has the following main objectives:
a) To select transmitter pairs with the most potential re-

ceivers. Since the number of linearly independent relative
phase offset measurements for a given transmitter pair is
r − 1, where r is the number of receivers, this will maxi-
mize the number of phase-offset measurements collected per
transmitter pair.

b) From the set of potential receivers for each transmitter
pair, to select only the best ones. This will curb the routing
overhead.

c) To assure a well-connected network in terms of the
node quads. This will avoid cases where some clusters of
the network can be localized, but overall localization fails
due to the lack of inter-cluster q-range measurements.

A simple neighborhood-discovery service provides the net-
work connectivity as an input to the scheduler. The heuristic
scheduling algorithm ranks all possible transmitter pairs by
the number of neighbors the two nodes share; then picks the
best ones. Next the receivers for each transmitter pair are
selected based on the quality of their links from the trans-
mitters. Coverage and connectivity is assured by best-effort
heuristics: each node has to be selected as a transmitter at
Rt times, and has to be a receiver at least Rr times, where
Rt and Rr are empirically selected constants.

5. EVALUATION
We evaluated the improved interferometric ranging and lo-

calization in different settings. First, we had a field demon-
stration at the UCB Richmond Field Station. We used a
50-node approximate grid setup with a cell size of 9 m in a
moderate RF multipath environment. The ground truth was
obtained using differential GPS with an estimated accuracy
of 1 m. 68% of the measured q-ranges had less than 1 m
error, while 89% was within 2 m. Because of the inaccurate
ground truth, these numbers are not revealing. However,
the experiment did provide an important datapoint.

We successfully verified the performance of the scheduler
because an exhaustive schedule would have taken too long,
as the number of possible transmitter pairs for 50 nodes is
1225. The auto-generated schedule contained 188 transmit-
ter pairs and 8116 dABCD measurements altogether. The
actual number of q-ranges received by the base station was
4629. The 45% decrease is due to filtering and packet loss.

To get a better assessment of the overall accuracy, we
hand-measured a 30-node subset of the network using mea-
suring tape. We estimate the ground truth obtained this
way to be about 5 cm accurate. The scheduler generated
107 transmitter pairs and 4517 dABCD measurements. We
collected 1392 actual q-ranges from the network, of which
82% had 20 cm error or less, while 95% was better than
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Figure 5: Error distribution of q-ranges (12000 m2

experiment) obtained using (a) regular and (b) iter-
atively corrected ranging.

1 m accurate. The localization algorithm achieved 10 cm
average accuracy, while the largest error was 20 cm.

Finally, we tested RIPS in a rural area where there were
no RF multipath effects other than ground reflection, using
16 XSM motes deployed on the ground in an approximately
12000 m2 area with an average closest-neighbor distance of
35 m and a maximum node distance of 170 m. We used
a laser range finder to obtain the locations of the nodes
with an estimated average error of 2 cm. We plot the error
distribution for both non-corrected and iteratively corrected
ranging in Figure 5. The original q-range error distribution
had only 72% below 30 cm. Within three error-correcting
iterations all q-range errors dropped below 1 m, while 98%
were under 30 cm. The results of the localization from these
q-ranges are shown in Figure 6.

The average localization error was 4 cm, while the largest
error was 12 cm, using the three anchor nodes shown by
triangles. Selecting the nodes in the four corners as anchors
instead resulted in no change in the average error, but a
decreased maximum error of 6 cm. The node density for
this setup was 1300 nodes/km2.

Using the corner nodes as anchors and keeping only four
other nodes results in an 8-node setup. The subset of the
measurements involving only these 8 nodes had 284 ele-
ments. This resulted in a 6 cm average and 8 cm maximum
localization error, at a node density of 650 nodes/km2.

6. RELATED WORK
Range-based approaches to sensor node localization pro-

vide higher accuracy than range-free methods. Ranging
in WSNs is typically based on acoustic or Radio Signal
Strength (RSS) measurements. Unless a powerful central
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Figure 6: The setup for the 12000 m2 experiment
showing the anchors (large triangles), motes (small
circles) and errors bars.

beacon is used as a sound source, the acoustic range is lim-
ited to 10 meters or so. The reliable range of RSS in urban
deployment is even less. The largest-scale acoustic localiza-
tion setup found in the literature used 45 nodes in an offset
grid of approximately 9 m cell size [3]. The average accu-
racy achieved was 2.4 m, while the deployment density was
larger than 104 nodes/km2. Ultrasonic methods provide
centimeter-scale accuracy, but due to their limited range
typical setups have > 105 nodes/km2 density [9, 5]. The ac-
curacy of RSS experiments is measured in meters, with a
required density of 105 nodes/km2 [9, 1].

Recently a novel approach, called Spotlight [6], was pro-
posed for sensor node localization. A powerful laser beacon
with precisely known position and orientation is used to scan
the sensor field. Nodes detect the light and record the time
of detection. Correlating the detection times with the ori-
entation of the laser, the node locations can be computed
using a 3D map of the area. While the accuracy and range
of Spotlight is comparable to that of RIPS, the need for an
expensive central beacon, light sensors and a map of the
area makes its overhead prohibitive for many deployments.

Interferometry is a widely used technique in both radio
and optical astronomy to determine the precise angular po-
sition of celestial bodies as well as objects on the ground.
For example, very-long-baseline interferometry, where the
antennas can be thousands of miles apart, is used to track
the motion of the tectonic plates on earth with millimeter
accuracy [8]. However, as these sophisticated techniques re-
quire very expensive equipment, it is just the underlying
idea of using radio interference for positioning that we have
borrowed and applied to the sensor network domain.

7. CONCLUSIONS AND FUTURE WORK
We have successfully demonstrated in multiple field ex-

periments that the accuracy of RIPS is as good as the best
ultrasonic techniques while allowing two orders of magni-
tude smaller node density. At the same time, RIPS works
at less than one tenth of the node density of current outdoor
acoustic methods and achieves two orders of magnitude bet-
ter precision.

The range that can be accurately measured with RIPS is
about 4 times the communication range. That means that
any deployment that forms a reasonable connected commu-
nication graph can be localized. In other words, the nec-
essary deployment density is determined by the commu-
nication (or sensing) needs of the application and not the
localization. In this sense, RIPS is indeed a node-density
independent localization method.

These results correspond to minor to moderate RF multi-
path environments such as rural areas or open spaces within
an urban area. Our current work focuses on extending the
approach to cluttered urban environments.
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