931 research outputs found

    A novel cooperative opportunistic routing scheme for underwater sensor networks

    Get PDF
    Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes’ collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance

    Critical Analysis of Data Forwarding Routing Protocols Based on Single path for UWSN

    Get PDF
    In Underwater Wireless Sensor Network (UWSN); the sensor node is responsible to extract the valuable application based information from underwater environment. The application based information covers the applications like: tactical surveillance, assisted navigation, disaster prevention, offshore exploration, pollution monitoring and oceanographic data collection. The design of routing protocol in underwater environment is one of the challenging issues for researchers. This research article focuses the designing issues of the data forwarding routing protocols based on single path. In this article the designing of 2D and 3D architecture of routing protocols are discussed with their different issues. This article also focuses the analytical approach of proposed routing protocols with different parameters, the simulation scenarios of the single path routing protocols with critical analysis; and the open research issues; will help the researchers to further research in the field of routing protocols for UWSN

    Review on Localization based Routing Protocols for Underwater Wireless Sensor Network

    Get PDF
    Underwater Wireless Sensor Network (UWSN) can enable many scientific, military, safety, commercial and environmental applications. Majority of the network models has been introduced for the deployment of sensor nodes through routing schemes and methodologies along with different algorithms but still the design of routing protocol for underwater environment is a challenging issue due to distinctive characteristics of underwater medium. The majority of the issues are also needed to fulfill the appropriate approach for the underwater medium like limited bandwidth, high bit error rates, propagation delay, and 3D deployment. This paper focuses the comparative analysis of the localization based routing protocols for UWSN. This comparative analysis plays a significant attention to construct a reliable routing protocol, which provides the effectual discovery of the route between the source node and the sink node. In addition this comparative analysis also focuses the data packets forwarding mechanism, the deployment of sensor nodes and location based routing for UWSN in different conditions
    • 

    corecore