42 research outputs found

    Multicriteria hybrid flow shop scheduling problem: literature review, analysis, and future research

    Get PDF
    This research focuses on the Hybrid Flow Shop production scheduling problem, which is one of the most difficult problems to solve. The literature points to several studies that focus the Hybrid Flow Shop scheduling problem with monocriteria functions. Despite of the fact that, many real world problems involve several objective functions, they can often compete and conflict, leading researchers to concentrate direct their efforts on the development of methods that take consider this variant into consideration. The goal of the study is to review and analyze the methods in order to solve the Hybrid Flow Shop production scheduling problem with multicriteria functions in the literature. The analyses were performed using several papers that have been published over the years, also the parallel machines types, the approach used to develop solution methods, the type of method develop, the objective function, the performance criterion adopted, and the additional constraints considered. The results of the reviewing and analysis of 46 papers showed opportunities for future researchon this topic, including the following: (i) use uniform and dedicated parallel machines, (ii) use exact and metaheuristics approaches, (iv) develop lower and uppers bounds, relations of dominance and different search strategiesto improve the computational time of the exact methods,  (v) develop  other types of metaheuristic, (vi) work with anticipatory setups, and (vii) add constraints faced by the production systems itself

    Approximation algorithms for solving multi-objective optimization problems

    Get PDF
    This paper tries to cover the main aspects/properties related to scheduling problems, approximation algorithms, and multi-objective combinatorial optimization. Then, we try to describe the main techniques that can be used to solve such problems. In this paper, the reviews results relate to multi-objective optimization problems, exact and approximation search, with the aim of getting all Pareto optimal solutions for some NP-hard problems

    Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Get PDF
    Purpose: Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.Peer Reviewe

    On the exact solution of the no-wait flow shop problem with due date constraints

    Get PDF
    Peer ReviewedThis paper deals with the no-wait flow shop scheduling problem with due date constraints. In the no-wait flow shop problem, waiting time is not allowed between successive operations of jobs. Moreover, the jobs should be completed before their respective due dates; due date constraints are dealt with as hard constraints. The considered performance criterion is makespan. The problem is strongly NP-hard. This paper develops a number of distinct mathematical models for the problem based on different decision variables. Namely, a mixed integer programming model, two quadratic mixed integer programming models, and two constraint programming models are developed. Moreover, a novel graph representation is developed for the problem. This new modeling technique facilitates the investigation of some of the important characteristics of the problem; this results in a number of propositions to rule out a large number of infeasible solutions from the set of all possible permutations. Afterward, the new graph representation and the resulting propositions are incorporated into a new exact algorithm to solve the problem to optimality. To investigate the performance of the mathematical models and to compare them with the developed exact algorithm, a number of test problems are solved and the results are reported. Computational results demonstrate that the developed algorithm is significantly faster than the mathematical models

    Permutation Flow Shop via Simulated Annealing and NEH

    Full text link
    Permutation Flow Shop Scheduling refers to the process of allocating operations of jobs to machines such that an operation starts to process on machine j only after the processing completes in j-1machine. At a time a machine can process only one operation and similarly a job can have only one operation processed at a time. Finding a schedule that minimizes the overall completion times for Permutation Flow Shop problems is NP-Hard if the number of machines is greater than 2. Sowe concentrates on approaches with approximate solutions that are good enough for the problems. Heuristics is one way to find the approximate solutions for a problem. For our thesis, we have used two heuristics - NEH and Simulated Annealing, both individually and in a combined form, to find the solutions for Permutation Flow Shop problems. We have compared NEH and Simulated Annealing algorithm based on result and execution time and also compared the combined algorithm with existing ones. Standard benchmarks are used to evaluate the performances of the implemented algorithm

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
    corecore