
1

On the Exact Solution of the No-Wait Flow Shop Problem with Due

Date Constraints

Hamed Samarghandi

Department of Finance and Management Science, Edwards School of Business,

University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A7

samarghandi@edwards.usask.ca

Mehdi Behroozi

Department of Mechanical and Industrial Engineering, Northeastern University

334 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115, United States

m.behroozi@neu.edu

Abstract
This paper deals with the no-wait flow shop scheduling problem with due date constraints. In the no-

wait flow shop problem, waiting time is not allowed between successive operations of jobs. Moreover, the

jobs should be completed before their respective due dates; due date constraints are dealt with as hard

constraints. The considered performance criterion is makespan. The problem is strongly NP-hard. This

paper develops a number of distinct mathematical models for the problem based on different decision

variables. Namely, a mixed integer programming model, two quadratic mixed integer programming models,

and two constraint programming models are developed. Moreover, a novel graph representation is

developed for the problem. This new modeling technique facilitates the investigation of some of the

important characteristics of the problem; this results in a number of propositions to rule out a large number

of infeasible solutions from the set of all possible permutations. Afterward, the new graph representation

and the resulting propositions are incorporated into a new exact algorithm to solve the problem to

optimality. To investigate the performance of the mathematical models and to compare them with the

developed exact algorithm, a number of test problems are solved and the results are reported. Computational

results demonstrate that the developed algorithm is significantly faster than the mathematical models.

Keywords: No-Wait Flow Shop; Due Date Constraints; Mixed Integer Programming; Constraint

Programming; Enumeration Algorithm

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226124820?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:samarghandi@edwards.usask.ca
mailto:m.behroozi@neu.edu

2

1 Introduction
In the classical flow shop scheduling problem there is a set of n jobs that has to be processed with a

predefined order of operations on m machines, and the optimal sequence of jobs on each machine with

respect to some performance measure is desired. It is also common to assume that jobs have identical

sequence on all machines, which is known as the permutation flow shop scheduling problem.

Considered in this paper is a flow shop scheduling problem with the makespan criterion with two

additional assumptions, namely allowing no waiting time between the operations and considering due date

for each job. In the no-wait flow shop scheduling problem, no waiting time is allowed between successive

operations of jobs. In other words, once processing of a certain job is started, no interruption is permitted

between the operations of that job. In addition to the no-wait constraint we assume that the completion of

each job is associated with a due date, i.e. jobs must be completed before their due dates. Due date are

among the most applicable constraints in scheduling and sequencing literature because real-world jobs are

usually accompanied by a deadline for completion (Hunsucker and Shah 1992). In this paper, it is assumed

that all the jobs are ready at time zero (all release dates are zero) and no preemption or interruption in the

process of operations is allowed. According to the conventional three-field notation of the scheduling

problems (Graham et al. 1979), the problem can be designated as max| , |jF nwt d C .

It has been shown by Wismer (1972) and Bonney and Gundry (1976) that the no-wait flow shop

problem with makespan performance measure (max| |F nwt C) can be reduced to the asymmetric travelling

salesperson problem (ATSP). Based on this relation between no-wait flow shop and ATSP, King and

Spachis (1980) developed a heuristic to solve no-wait flow shop problems. It is proved by Lenstra and Kan

(1979), using a reduction from the directed Hamiltonian path problem, that the problem max| |F nwt C with

m machines is NP-hard, when 4m  . They also showed that with 2m  the problem is solvable in

polynomial time. The NP-hardness of the case with 3m  is shown by Röck (1984) using a reduction from

three-dimensional matching (3DM) problem. Röck (1984) summarizes the complexity of a group of similar

problems. Since max| |F nwt C is a special case of max| , |jF nwt d C it can be concluded that

max| , |jF nwt d C with at least three machines is also NP-hard in the strong sense.

Industrial applications mentioned in the literature for max| , |jF nwt d C include chemical industries

(Rajendran 1994), food industries (Hall and Sriskandarajah 1996), steel production (Wismer 1972),

pharmaceutical industries (Raaymakers and Hoogeveen 2000), and production of concrete products

3

(Grabowski and Pempera 2000). Hall and Sriskandarajah (1996) provide a comprehensive review of the

applications of the problem.

The reputation of a company as a reliable firm will be tremendously damaged if it frequently delivers

jobs after their due dates are passed (even if the number of late days is relatively small). Moreover, trust

between companies will be damaged if late jobs are not frequent, but a few jobs are delivered considerably

past their due dates. Note that on-time delivery of the jobs can be only one of the goals of a company.

Companies can be interested in optimizing other criteria such as makespan, while avoiding late days or

tardy jobs. Hence, max| , |jF nwt d C is not only an applicable problem with many real-world applications,

but it is proved to be NP-hard and theoretically interesting.

The rest of the paper is organized as follows. Section 3 describes the notations used. Section 4

formulates the mathematical programming models. Section 5 describes the novel graph representation and

the enumeration algorithm. Computational experiments are reported in section 6. Section 6.3 gives

concluding remarks and discusses future research directions.

2 Related Work
The literature is rich with studies that develop heuristic or metaheuristic methods in order to deal with

no-wait flow shop scheduling problems with or without due dates constraints. For the case of

| , |jF nwt d  , due date constraints have been traditionally considered as soft constraints. In other words,

violating due date constraints has been permitted with the objective function of minimizing a measure of

the tardiness (e.g., number of tardy jobs or number of late days); tardiness measures have frequently been

combined with other performance measures such as makespan, total flow time, etc.

Since no-wait flow shop problem with due date constraints is strongly NP-hard, several algorithms have

been devised to deal with the problem. These efforts are reviewed in two categories, namely the heuristic

or metaheuristic methods and exact methods, since both approaches can be useful depending on the size of

the problems.

2.1 Heuristic and Metaheuristic Methods
Table 1 summarizes some of the early efforts to solve the scheduling problems with a form of due date

constraints using a non-exact method. More recently, Tang et al. (2011) developed a metaheuristic to deal

with fuzzy due dates in a flow shop environment. Panwalkar and Koulamas (2012) considered a two-

machine flow shop problem with the objective of minimizing the total tardy jobs and finding a common

due date for the jobs, and developed a heuristic algorithm with computational complexity of
2()O n for a

4

special case of the problem. This algorithm was further improved to an improved (log)O n n algorithm by

Ilić (2015).

Aldowaisan and Allahverdi (2012) considered the flow shop scheduling problem with the objective of

minimizing the number of tardy jobs and proposed a number of metaheuristics to deal with the problem.

Arabameri and Salmasi (2013) considered the no-wait flow shop problem with the objective of minimizing

the weighted earliness and tardiness penalties; they developed a MILP as well as a number of metaheuristics

for the problem. The developed mathematical model of Arabameri and Salmasi (2013) is very similar to

the model of Samarghandi (2015); however, it lacks some of the constraints of the model of Samarghandi

(2015).

5

Table 1 - Early efforts to solve the flow shop problems with a form of due date constraints

using a non-exact method

Reference Addressed Problem Objective Function Solution Method

Rajasekera et al. (1991) Flow shop
Due date assignment for

the jobs
Queueing theory

Hunsucker and Shah

(1992)

Multiple processor flow

shop

Minimizing mean

tardiness and number of

tardy jobs

Simulation of the various

priority rules

Sarper (1995) Two-machine flow shop

Minimization of the sum

of absolute deviation of

job completion times

from a common due date

Various heuristic methods

Brah (1996) Flow shop and job shop

Minimizing mean

tardiness and maximum

tardiness

Comparison of various

priority rules

Gupta et al. (2000)

Two-machine flow shop

problem with a common

due date

Minimizing earliness and

tardiness

Heuristics derived from a

branch and bound

approach

Gowrishankar et al.

(2001)
Flow shop

Minimizing the variance

of completion times of

jobs, and minimizing the

sum of squares of

deviations of job

completion times from a

common due date

Branch and bound and

heuristics

Kaminsky and Lee (2002) Flow shop

Due date assignment for

the jobs; minimizing the

sum of assigned due dates

Heuristics

Błażewicz et al. (2005)
Two-machine flow shop

with common due date

Minimizing the total

weighted late work
Dynamic programming

Błażewicz et al. (2008)
Two-machine flow shop

with common due date

Minimizing the total

weighted late work
Various metaheuristics

Hasanzadeh et al. (2009)
Two-machine flow shop

with common due date

Minimizing the total

weighted late work
Various metaheuristics

Dhingra and Chandna

(2010)

Flow shop with sequence

dependent setup times and

due dates

Total weighted squared

tardiness

Hybrid Genetic Algorithm

(HGA)

Pang (2013) developed a genetic algorithm to deal with a two-machine no-wait flow shop problem

with the objective of minimizing the maximum lateness of the jobs. Tasgetiren et al. (2013) considered

the no-idle permutation flow shop scheduling problem with the total tardiness criterion and proposed an

artificial bee colony algorithm to deal with the problem. Liu et al. (2013) proposed numerous heuristics

for the no-wait flow shop problem with the objective of minimizing the total tardiness, and compared the

results of the heuristics with each other.

6

Tari and Olfat (2014) considered a flow shop problem with due date constraints and proposed a

number of heuristics to minimize the total tardiness. Ebrahimi et al. (2014) considered a hybrid flow shop

problem in which each job is accompanied with an uncertain due date. The considered objective function

is a combination of makespan and total tardiness; they proposed a number of metaheuristics to deal with

this problem.

Ding et al. (2015) considered a no-wait flow shop problem with the objective of minimizing the total

tardiness; they proposed a heuristic that is designed to speed up the search by focusing on a subset of the

jobs rather than all the jobs. Fernandez-Viagas and Framinan (2015) studied a permutation flow show

problem with a common due date for the jobs; they proposed two metaheuristics to deal with the problem

and compared their results with the competitive methods. Shen et al. (2015) developed a metaheuristic to

deal with the no-idle permutation flow-shop scheduling problem with the objective of minimizing the total

tardiness.

Perez-Gonzalez and Framinan (2015) studied a permutation flow shop problem in which the jobs have

a common due date. They considered two scenarios when a primary schedule is set up and new jobs arrive;

first, to freeze the schedule and do not change it until all of the jobs are completed. Alternatively, to modify

the schedule and accommodate the new jobs as long as the common due date is not violated. They

performed computational experiments to determine which strategy works better when the jobs have certain

characteristics.

Aldowaisan and Allahverdi (2012) and later on, Aldowaisan and Allahverdi (2015) considered the no-

wait flow shop problem with due date constraints with the objective function of minimizing the total

tardiness. They investigated the performance of various dispatching rules and introduced a simulated

annealing and a genetic algorithm to deal with the problem.

Gupta and Kumar (2015) developed a heuristic algorithm to minimize a combination of total tardiness

and makespan. Samarghandi (2015) studied the max| , |jF nwt d C and developed a particle swarm

optimization to minimize the makespan; a Lagrangian relaxation method was proposed to deal with the

violated due date constraints.

As one can notice, a common theme between all of the cited methods is that they first relax the due date

constraints and then solve the remaining scheduling problem with a variant of the lateness/tardiness

measure in the objective function by means of a heuristic or a metaheuristic algorithm.

7

2.2 Exact Methods
Mathematical programming techniques have long been employed to solve sequencing and

scheduling problems. Selen and Hott (1986) developed a mixed integer programming for the flow shop

problem. Stafford (1988) developed a mixed integer linear programming (MILP) based on the all-integer

model of Wagner (1959).

Pekny and Miller (1991) compared the performance of an exact algorithm with a number of

heuristic and metaheuristic algorithms developed for | |F nwt  . This algorithm was initially introduced

by Miller and Pekny (1991) to solve large-scale asymmetric travelling salesman problems. Later on, Pekny

and Miller (1992) proposed a branch-and-bound algorithm for the ATSP to improve their previous

algorithms.

Tseng et al. (2004) performed an empirical study to evaluate the performance of the different mixed

integer programming (MIP) models for permutation flow shop problems; results of this study were in line

with the results of Pan (1997) for the case of regular job shop and flow shop problems. Pan (1997) reported

the models of Manne (1960), Wagner (1959), and Wilson (1989) as the first, second, and third best MILP

formulations respectively; models developed by Bowman (1959), Gupta (1971), Morton and Pentico

(2010), Baker and Baker (1974), and Stafford (1988) come next. It should be noted that these models are

not reported in any special order.

More recently, Pan and Chen (2005) developed a mixed binary integer programming (MBIP) model

for reentrant job shop scheduling problem. Ziaee and Sadjadi (2007) developed seven MBIP formulations

for the flow shop sequencing problem and considered different constraints such as due dates, ready times,

etc., and studied makespan, weighted mean flow time, and weighted mean tardiness as their performance

measures. Javadi et al. (2008) developed a linear programming model for the no-wait flow shop problem

with fuzzy objective functions.

Keha et al. (2009) reviewed the computational performance of four different MIP formulations for

the single machine scheduling problem and its variants; they considered the due date constraints in some

of these models. Finally, they introduced different sets of inequalities to improve these formulations.

Ramezanian et al. (2010) developed a mathematical programming model to minimize the earliness and

tardiness costs in a flow shop context, where processing times can be zero.

Demir and İşleyen (2013) compared the mathematical models developed for the flexible job shop

problem; this problem can be considered as a generalization of | |F nwt  . They noticed that certain types

8

of modeling generate better results; specifically, precedence variables usually require less CPU time, when

being solved.

2.3 Contributions of the Paper
The above literature review clarifies that:

1. Due date constraints have rarely been studied as hard constraints. This is mainly due to the fact

that generating a feasible solution for the problem, or proving that a feasible solution does not

exist, turns into a very challenging task, especially when due dates are not too loose or too tight.

This is true regardless of the employed solution methodology (Perez-Gonzalez and Framinan

2015).

2. Majority of the available methods in the literature of the flow shop problem with due date

constraints are non-exact approaches. Hence, the need for developing effective and efficient

exact methods for this problem, when the problem size justifies the use of exact algorithms, is

deeply felt.

3. To the best of the authors’ knowledge, there is no work in the literature that proposes an exact

algorithm for the flow shop problem with no-wait and due date constraints.

As such, the main contributions of the current paper can be summarized as follows:

1. The due date requirements have been considered and dealt with as hard constraints, i.e.,

violation of the due dates is not allowed.

2. This study develops several mathematical programming formulations for max| , |jF nwt d C .

More specifically, an MIP, two quadratic MIPs, and two constraint programming (CP) models

are developed. Baker and Keller (2010) reported that for the case of single machine sequencing

problems mathematical programming models can be employed to optimally solve instances

with as many as 50 jobs. However, computational experiments in this paper reveal that the

number of jobs in max| , |jF nwt d C instances, which are normally more complex than single

machine instances, should be smaller so that the problem can be solved to optimality using

mathematical models.

3. This paper considers a new graph representation for the no-wait flow shop problem and proves

a number of theorems based on the characteristics of the max| , |jF nwt d C .

4. An enumeration algorithm is proposed to solve max| , |jF nwt d C to optimality; this algorithm

employs the results of the proven propositions to shrink the feasible region of the problem and

9

to accelerate the search speed. Computational results reveal that the proposed algorithm is

significantly faster than the discussed mathematical models.

3 Problem Description
In the considered max| , |jF nwt d C it is assumed that: 1) all jobs follow the same predefined order of

operations; 2) no preemption or interruption is allowed; 3) no job can be processed by more than one

machine at the same time, and no machine can process more than one operation at the same time; 4) all jobs

must visit all machines with strictly positive processing time on all of the machines; and 5) there should be

no waiting time between consecutive operations of a job. The following notation is used throughout the rest

of this paper:

m

Number of machines

n Number of jobs

jJ Job j

ijp

Processing time of i th operation of jJ

jkc

Contribution of kJ to the objective function when placed immediately after jJ

ijS

Starting time of i th operation of jJ

jF Finish time of jJ

jd Due date of jJ

A solution of max| |F nwt C can be described with a sequence
1 2(, ,...,)n    of n jobs. It is

worth to be reminded that max| |F nwt C is a permutation scheduling, i.e. the sequence of the jobs on all

machines is the same. Hence, the contribution of job k when placed immediately after job j (jkc) is not

dependent to the machines. Contribution of jJ to maxC when jJ is the first scheduled job in a sequence

is calculated as follows:

0

1

; 1,2,...,
m

j ij

i

c p j n


  (1)

The algorithm of (Samarghandi (2015)) can be employed with small modifications to calculate

; , 1,2,..., ;jkc j k n k j  . Note that 0; 1,2,...,jjc j n  .

Step 1: Define a counter for the operations of j and a counter for operations of 1k j   ; call the

former counter t and the latter w .

10

Step 2: Set 2; 1t w  .

Step 3: If tj wkp p , set 1t t  and 1w w  . If 1t m  , proceed to step 8; otherwise go back

to the beginning of step 3. If tj wkp p , proceed to step 4.

Step 4: Set min | 0
h

lj wk

l t

z h p p


  
    

  
 and proceed to step 5. If the value of z cannot be

determined, go to step 7.

Step 5: Set

z

zj lj wk

l t

p p p


 
  

 
 . Proceed to the next step.

Step 6: Set 1w w  and t z . If 1t m  , go to step 8; otherwise, go back to step 3.

Step 7: Set

m m

jk lk lj

l w l t

c p p
 

   
    

   
  . Stop.

Step 8: Set jk mkc p . Stop.

The contribution matrix C is an (1)n n  matrix that lists the contribution of each job to the

makespan if placed after a certain job in the sequence.

01 0

1

[; 0,1,..., ; 1,2,...,]

n

jk

n nn

c c

C c j n k n

c c

 
    
 
  

 (2)

The first row of C can be computed using (1). To calculate the rest of this matrix, the above algorithm

should be used. Moreover, 0; 1,2,...,jjc j n  .

4 The Developed Models
This section presents the developed mathematical models.

4.1 Model I
The first model is based on the developed model of Samarghandi (2015) and employs the decision

variable defined by (3). This model works directly with the problem data and does not require the algorithm

of section 3 to calculate the contribution matrix.

11

, 1,2,...,

1 if isplaced immediatelyafter in thesequence

0 Otherwise

k j

jk

j k n

J J
x



 


 (3)

The model, which is a mixed integer programming, is as follows:

maxminimize C (4)

max ; 1,2,...,mj mjC S p j n   (5)

(1) ; 1,2,..., ; , 1,2,...,ik jk ij ijS M x S p i m j k n      (6)

(1) ; 1,2,..., 1; 1,2,...,i j ij ijS S p i m j n      (7)

; 1,2,...,mj mj jS p d j n   (8)

1

1; 1,2,...,
n

jk

j

x k n


  (9)

1

1; 1,2,...,
n

jk

k

x j n


  (10)

1; , 1,2,...,jk kjx x j k n   (11)

1 1

1
n n

jk

j k

x n
 

  (12)

0; 1,2,...,jjx j n  (13)

0; 1,2,..., ; 1,2,...,ijS i m j n   (14)

{0,1}; , 1,2,...,jkx j k n  (15)

In this model, the objective function is to minimize the makespan; M is a sufficiently large number.

(5) defines that makespan equals the finish time of the last operation of the last job. (6) assures that the

operations do not overlap; this constraint is binding if
kJ is scheduled immediately after jJ in the

sequence. (7) imposes the no-wait constraints. (8) represents the due date constraint; according to (8), the

last operation of each job should finish before its associated due date. Constraints (9), (10), (11), and (12)

guarantee that all the jobs will appear exactly once in the sequence.

12

4.2 Model II

The sequence  is modified to include two dummy jobs, 0 and 1n  with zero processing times.

Contribution matrix C of equation (2) is modified to C  to confirm that 0 and 1n  will be located in

the first and the last positions in the sequence accordingly. In this matrix, 0; 1,2,...,jjc j n  .

01 0

(2) (2)

1

0 0

0 0
[; , 0,1,..., 1]

0 0

0 0 0

n

n n jk

n nn

c c

C c j k n
c c

M

  

 
 
     
 
 
 

 (16)

; , 0,1,..., 1jkx j k n  is the binary decision variable of the model; 1jkx  indicates that
kJ is

placed immediately after jJ . If 0 1kx  , then
kJ is the first job in the sequence. Accordingly, the following

model is formulated.

1 1

0 0

minimize
n n

jk jk

j k

c x
 

 

 (17)

0

1; 1,2,..., 1
n

jk

j

x k n


   (18)

1

1

1; 0,1,...,
n

jk

k

x j n




  (19)

0 0; 0,1,..., 1jx j n   (20)

(1) 0; 0,1,2,..., 1n kx k n    (21)

0 1u  (22)

2 2; 1,2,..., 1ju n j n     (23)

  1 1 1 ; , 1,2,..., 1;j k jku u n x j k n j k        (24)

0; 0,1,2,..., 1jjx j n   (25)

0 0F  (26)

 
1

0

; 1,2,..., 1
n

k jk j jk

j

F c F x k n




    (27)

13

; 0,1,2,..., 1j jF d j n   (28)

 0,1 ; , 0,1,..., 1jkx j k n   (29)

where (20) and (21) force the model to place the dummy jobs in their intended locations in the sequence.

Equations (22), (23) and (24) are similar to the Miller-Tucker-Zemlin (MTZ) equations (Desrochers and

Laporte 1991) and are used to avoid sub-tours when scheduling jobs in the sequence. According to (25) no

job can be placed after itself. The recursive quadratic equation (27) calculates the finish time of
kJ based

on its predecessors. Due date constraints are enforced by (28). The following equations can be used to

extract the sequence from the decision variables once the model is solved:

1 0

1

n

k

k

kx




(1) ,

1

; 2,3,...,
j

n

j k

k

kx j n




 

4.3 Model III
Although this model employs the same contribution matrix as Model I and Model II, the decision

variable of this model, is defined as follows (as there are n jobs and n possible locations in the sequence):

, 1,2,...,

1 if

0 otherwise

l j

lj

l j n

J
x






 


 (30)

In this model, lL is a variable that will be used to calculate the finish time of l . Based on this definition

for the decision variables, the model can be formulated as:

minimize nL (31)

1

1; 1,2,...,
n

lj

l

x j n


  (32)

1

1; 1,2,...,
n

lj

j

x l n


  (33)

1 1

n n

lj

l j

x n
 

 (34)

1 0 1

1

n

j j

j

L c x


 (35)

14

(1) 1

1 1

; 2,3,...,
n n

l l j lk jk l

j k
k j

L x x c L l n 

 


   (36)

1

; 1,2,...,
n

l j lj

j

L d x l n


  (37)

0; 1,2,...,lL l n  (38)

 0,1 ; , 1,2,...,ljx l j n  (39)

In this model, (31) minimizes the makespan by minimizing the finish time of
n . (35) calculates the

finish time of 1 ; the first term of (36) calculates the contribution of
kJ to the makespan when it is located

after jJ . (37) is the due date constraint.

Model III is formulated based on the finish time of the jobs in different positions; finish times were

calculated by equations that were independent from the job that is located in each position. However, it is

possible to modify Model III to calculate the finish times of the jobs rather than the finish times of the

positions. In Model III, lL is calculated by searching the rows of the C  matrix. In the modified model,

finish time calculations are performed by exploring both the rows and the columns of C  . Assume that jF

is the finish time of jJ . Therefore, in the modified model, equations (35) and (36) should be replaced with

the following:

1 0 1 0

(1) (1)1,2,...
1

,
2 2 1

if 0, 1,2,...,

otherwise
n n n n

l j lk jk l j lk j

k k k k

n
k

k
j j
j k j k

l l

x c x c n

F x x c

k

x x F
 
 

 
 

 


  



  (40)

The first condition of (40) is true only for 1 . All the other jobs will utilize the second condition. Finish

time of
kJ dependents on the finish time of its immediate predecessor jJ . Once the finish times are defined

by (40), the objective function of Model III and the due date constraints will be modified accordingly:

minimize max j
j

F

; 1,2,...,j jF d j n 

15

In the modified model equations (35) and (36) should be replaced with (40), which is a quadratic non-

convex equation. This makes the model complicated and difficult to solve. Therefore, although the modified

model is of theoretical interest, it will not be further investigated for the computational experiments.

4.4 Model IV
Unlike previous models, Model IV and Model V are formulated based on the special characteristics

and properties of constraint programming (CP). The decision variable that will be used for Model IV and

Model V is defined as lx j if jJ is placed in location l ; one should define 0 0x  . The contribution

of the jobs to the makespan is defined the same way as in the previous models, which is based on placing a

certain job after another job; however, for Model IV and Model V it is assumed that ; 1,2,...,jjc M j n 

(M is a sufficiently large number). This will prevent the CP model from placing a certain job after itself.

Accordingly, the first CP model will be as follows:

1 10, ,

2

minimize
l l

n

x x x

l

c c




 (41)

1 2All Different(, ,...,)nx x x (42)

(1) ,

1

; 1,2,...,
l l j

j

x x x

l

c d j n




  (43)

 1,2,..., ; 1,2,...,lx n l n  (44)

The objective function is defined based on the contribution of the jobs once the sequence is determined.

The combination of (42) and (44) guarantees that all the jobs will be placed in the sequence, and each job

will appear in the sequence only once. (43) is the due date constraint; finish times of the jobs are calculated

based on the contribution of the previous jobs in the sequence.

4.5 Model V
This model is based on the same decision variable as Model IV. However, Model V unlike Model IV,

works directly with the problem data and therefore, does not require the contribution matrix.

, ,minimize
n nm x m xS p (45)

1 2All Different(, ,...,)nx x x (46)

(1), , , ; 1,2,..., ; 1,2,..., 1
j j ji x i x i xS S p i m j n

     (47)

(1), , , ; 1,2,..., 1; 1,2,...,
j j ji x i x i xS S p i m j n      (48)

16

, , ; 1,2,...,
j j jm x m x xS p d j n   (49)

0; 1,2,..., ; 1,2,...,ijS i m j n   (50)

 1,2,..., ; 1,2,...,jx n j n  (51)

In this model, (47) means that the jobs should not overlap. (48) represents the no-wait constraints and

(49) belongs to the due date constraints. The enumeration algorithm will be presented in the next section.

A comparison between Model IV and Model V is presented in Table 4.

4.6 Model Validation and Efficiency Comparison
The validation of the proposed models has been tested by: 1) a comparative analysis of the models with

the existing models for F ||C
max

 and max| |F nwt C problems and also with one another, and 2) thoroughly

checking the assumptions, definitions, variables, and constraints in both subjective and objective ways.

Moreover, the correctness of the models has been verified by their ability to find the optimal solutions of

the standard benchmark problems from the OR-Library1.

In order to comparatively analyze the computational efficiency of the models, a comparison between

the number of variables and constraints of Model I, Model II, and Model III is presented in Table 2. Among

these models, Model I can be compared to the classical models of the flow shop problem by removing the

due date and no-wait constraints. This is impossible for Model II and Model III, since they follow a different

logic and are based on the concept of contribution matrix. Pan (1997) reports the number of variables and

constraints for some of the classical models and states that Manne model is the best among them. Table 3

compares the computational efficiency of Model I with best three of the models mentioned in Pan (1997)

that includes Manne (1960), Wilson (1989), and Wagner (1959) as well as two other models, Stafford

(1988) and Šeda (2007). In section 6, Manne model, as one of the best and most commonly used models,

is used again to verify the performance of the developed models and algorithms on the test problems. This

also serves as another tool for model validation and verification purposes. Table 5 compares the

computational efficiency of the two constraint programming models, Model IV and Model V.

1 Retrieved June 04, 2016, from http://people.brunel.ac.uk/~mastjjb/jeb/info.html

17

Table 2 - Comparison of the MIP models for max| , |jF nwt d C

Number of

binary

variables

Number of

continuous

variables

Total number of

constraints

Number of due

date

constraints

Model I 2n mn 2(1) (4) 1m n m n    n

Model II
2(2)n  2n  2 8 14n n  2 4n 

Model III 2n n 4 1n  n

Table 3 - Comparison of the MIP models for F ||C
max

 Number of binary

variables

Number of

continuous variables

Total number of

constraints

Model I – without

due date and no-

wait constraints

2n mn 2(1) 4 1m n n  

Wagner (1959)
2 (2)n m  2 1mn 

3(1) 3n m mn 

Manne (1960)
(2) (1)

2

m n n 

(1)
1

2

mn n


(1)

2

mn n

Stafford (1988) 2n (2m-1)n (1) 1n m n  

Wilson (1989)
2 (2)n m  1mn 

3(1) 3 1n m mn m   

Šeda (2007) 2n 2mn mn m n 

Table 4 - Comparison of the constraint programming models

Number of

integer

variables

Number of

continuous

variables

All different

constraints

Number of

due date

constraints

Number of

other

constraints

Model IV n 0 1 n 0

Model V n mn 1 n 2mn m n 

5 A Novel Graph Representation and Enumeration Algorithm
In this section a new graph representation of the problem max| , |jF nwt d C is proposed. In the rest of

the paper this graph will be called search graph. The search graph enables us to exploit the characteristics

of the solution set of the problem max| , |jF nwt d C

and use them to efficiently develop the enumeration

algorithm by removing a large chunk of uncompetitive solutions. Figure 1 describes a search graph that

represents the max| , |jF nwt d C :

18

S

1

2

n

1

2

n

1

2

n

T

Figure 1 - The search graph respresenting max| , |jF nwt d C

Let G ={V ,E} denote the search graph, which contains n rows and columns. It is easy to see that G

has |V |= n2 +2 nodes; each node if located in the intersection of row ;1j j n  and column ;1l l n 

represents job j if located in position l of permutation  . Nodes S and T are dummy jobs with zero

processing times, which represent the start and the finish of the flow shop system. An arc exists between

two nodes if and only if these nodes belong to two adjacent columns and they do not represent the same

job; as a result, the number of arcs between two adjacent columns are (1)n n  and the total number of arcs

are
2(1)n n . Arcs that start from node S or end at node T are excluded in the above calculations. Figure

2 describes an instance of max| , |jF nwt d C with three jobs.

S

1

2

3

1

2

3

1

2

3

T

Figure 2 - An instance of max| , |jF nwt d C

19

5.1 Feasible Solution of max| |F nwt C In a Search Graph

A feasible solution of max| |F nwt C starts with S and ends with T ; it includes one and only one node

in each row and in each column. As a result, Figure 3 characterizes the permutation (2,1,3)  and

represents a feasible solution of max| |F nwt C with three jobs.

S

1

2

3

1

2

3

1

2

3

T

Figure 3 – A feasible solution of max| |F nwt C with three jobs and three machines

Each arc ;1 ,jka j k n  , when
jka exists, can be labeled with

jkc as defined by (2). Sja represents

the arc that connects S to jJ in column 1 and is labeled with 0 jc defined by (1). As a result, for Figure

3, the makespan is as follows:

max 02 21 13C c c c   (52)

It can be noted that the permutation (2,1,3)  in Figure 3 is a feasible solution of max| , |jF nwt d C

if:

02 2

02 21 1

02 21 13 3

c d

c c d

c c c d



 

  

 (53)

Moreover, if (2,1,3)  is the shortest path from S to T ,  is the optimum solution of the

max| , |jF nwt d C instance which is described in Figure 3. It can be verified that the number of permutations

for an instance of max| , |jF nwt d C with n jobs and m machines, as described by Figure 1, is !n .

20

Observation 1. Suppose that
, ljLP 

 represents the longest path from S to the node in the intersection of

column l and row j . If
, ; {1,2,..., }, {1,2,..., }

lj jLP d j n l n      , then the due date constraints can

be removed and the problem reduces to max| |F nwt C .

Observation 2. If
, ; {1,2,..., }

nj jLP d j n    , then the due date constraints can be removed and the

problem reduces to max| |F nwt C .

Observation 3. If
,{1,2,..., } |

nj jj n LP d   , then the due date constraints for
jJ can be removed from

the problem.

Observation 4. Suppose that
, ljSP 

 represents the shortest path from S to the node in the intersection of

column l and row j . If
,{1,2,..., }| , {1,2,..., }

lj jj n SP d l n     , then the problem is infeasible. If

,{1,2,..., }| , {1,2,..., }
lj jj n SP d l n     or

,{1,2,..., }| , {1,2,..., }
lj jl n SP d j n     , then the

problem is infeasible.

5.2 Eliminating Infeasible Solutions
In order to shrink the size of the set of solutions to enumerate to find the optimal solution, the following

results are useful.

Observation 5. Due to the no-wait constraints, any feasible solution of max| |F nwt C with 0, ,ijp i j 

is a permutation schedule, i.e. the order of jobs on all machines remains the same.

Observation 6. For max| |F nwt C , any non-semi-active feasible schedule can be easily transformed to a

semi-active feasible schedule considering the no-wait constraint, with the same or a better objective

function value. This can be done by simply removing the non-necessary delays for all operations without

changing the sequence or violating the no-wait constraints.

Observation 7. For any two consecutive jobs in a semi-active feasible solution of max| |F nwt C , there

exists at least one machine with no idle time between processing of the operations of these two jobs,

otherwise the solution would not be semi-active.

Proposition 1. For max| |F nwt C with 0, ,ijp i j  with a non-empty feasible set, the set of semi-active

feasible schedules and the set of active feasible schedules are non-empty and equal.

21

Proof. By Observation 6 it is clear that as long as the set of feasible solutions is not empty, then the set of

all semi-active schedules is non-empty. Since the set of all active schedules is a subset of the set of all semi-

active schedules, it is enough to prove that each semi-active schedule is also active. Due to the no-wait

constraints and Observation 5 and Observation 7, it is impossible to construct a new schedule, through

reordering the sequence, with at least one operation finishing earlier without delaying another operation.

Hence any semi-active schedule is also active.

Corollary 1. There exists for max| |F nwt C an optimal schedule that is active considering the no-wait

constraints.

Proposition 2. For an active feasible solution of max| |F nwt C with the partial permutation

(..., , ,..., ,...)j k q , it can be proved that jk jq qkc c c  .

Proof. The proof is by contradiction. Assume that this is not true; then jk jq qkc c c  . Let max

jC be the

objective function of the partial solution (...,)j  ; then
max max

j j

jk jq qkC c C c c    . This means by

scheduling job q between job j and job k the finish time of job k (kF) must either remain the same or

be reduced by some positive amount. In either case, none of the operations of job k will be delayed since

there is no waiting time between the operations of a job. This means that one is able to schedule job q

between job j and job k without delaying any of the operations of job k . This contradicts the assumption

of the solution being active.

Corollary 2. Given a partial permutation  for max| |F nwt C with ,j jF d j    , if constructing the

partial permutation (,)k   for some k results in k kF d , then any permutation of the form

(..., ,..., ,...)k   , which places k after  , is infeasible.

Proof. Finish time of each job is the sum of the contribution of the jobs in the partial sequence ending to

that job. Therefore by Proposition 2, kF will be increased by placing more jobs between  and job k .

Among all permutations that place job k after  , the permutation (, ,...)k will have the smallest kF

which is still infeasible.

Observation 8. If
,{2,3,..., }, {1,2,..., } |

lj jl n j n SP d    , then it is possible to remove this node as

well as all of the arcs that start from or end at this node from G . In other words, by placing this job in

22

location l of the permutation, the due date constraints will be violated. Removing a node in column 1

means that the problem is infeasible; removing a node in column ;2 1l l n    results in the removal

of 2(1)n  arcs from G ; removing a node from column n results in the removal of n arcs from G .

5.3 The Enumeration Algorithm

Algorithm 1. The following algorithm represents the enumeration algorithm that solves max| , |jF nwt d C

to optimality.

1. If
1,{1,2,..., } | j jj n SP d   , stop. The problem is infeasible.

2. If
, ; {1,2,..., }

nj jLP d j n    , remove the due date constraints to reduce the problem to

max| |F nwt C .

3. Calculate
, ; {2,3,..., }, {1,2,..., }

ljSP l n j n   . If
,{1,2,..., } | ; {2,3,..., }

lj jj n SP d l n    ,

remove the corresponding node and all of its arcs from the graph G ; call the remaining graph G  .

4. Find the shortest path between S and T with attention to the definition of the feasible solution of

max| |F nwt C . If the found shortest path does not violate any of the due date constraints, it is optimal;

compute the total contribution values of this path to calculate the makespan. Otherwise, proceed to step

5.

5. This step describes an enumeration sub-algorithm to solve G  to optimality. The objective of this sub-

algorithm is to fathom all of the paths of the modified search graph (or G ) from S to T until the

optimum solution is found. The root node is S .

5.1. Branch from S to all of the nodes in 1 . Define l as the index for the positions in the permutation;

in other words, l represents the current column in G  . Set 1l  . Objective function value for

node ; {1,2,..., }j j n is
0

l

j jC c . Fathom all nodes in G  for 1l  .

5.2. Assume that  max | 1,2,..., ; isnot selected or fathomed yetl l

q j
j

C C j n j  ; update the

current node to q ; break the ties by random selection, unfathom all the nodes in column

|t t l , and branch from q to all of its adjacent nodes in G  ; calculate

 1 ; 1,2,..., | and areadjacentl l

j q qjC C c j n q j    .

5.3. Fathom the nodes that violate the due date of their respective jobs in column 1l  , and go to step

5.6 if 1l n  ; otherwise proceed to step 5.4. Note that if due date constraints are violated when

1l  , according to step 1 the problem is infeasible.

23

5.4. Compare  1; 1,2,...,l

jC j n  with
max

bestC , the makespan of the best-known feasible solution (if

the list of the complete feasible solutions is not empty); if  1

max ; 1,2,...,l best

jC C j n   , fathom

node j in column 1l  .

5.5. If 1l n  and there is at least one node in column 1l  which is not fathomed yet, then the

paths to such nodes define different feasible solutions each with makespan which is at least as

desirable as
max

bestC . Accordingly, compare the makespan of such nodes with each other and update

max

bestC with the best found makespan. Then, fathom all the nodes in column 1l  and proceed to

5.6.

5.6. If all of the nodes in 1l  are fathomed, then fathom the current node and proceed to 5.6.1.

Otherwise, set 1l l  and go to step 5.2.

5.6.1. If there are nodes in the current column l , which have not yet been selected or fathomed

during the course of the algorithm, do not change the value of l ; go to step 5.2. Otherwise

proceed to 5.6.2.

5.6.2. Set 1l l  . If 0l  , stop. Report
max

bestC and its corresponding route as the optimum

solution. If the list of the feasible solutions is empty, the problem is infeasible. Otherwise,

restart step 5.6 from the beginning. ■

Figure 4 illustrates the enumeration sub-algorithm. Note that the above algorithm does not exploit the

results of Corollary 2. In order to integrate Corollary 2 in the algorithm, steps 5.3 and 5.4 of Algorithm

1 should be modified as follows; this results in Algorithm 2. The rest of the steps remain unchanged.

24

Branch from S

to all of the

adjacent nodes

Calculate the

partial objective

functions

Set l←1

Select the node

with the greatest

objective

function value

Branch from the

selected node to

all of its

adjacent nodes

Calculate the

partial objective

functions

Can the node

be fathomed

according to steps

5.3, 5.4 or 5.5?

Fathom the

node

Yes

No

Stop. Report the

final solution

according to

step 5.6.2.

Yes

Are all the

nodes in l+1

fathomed?

Are there

unfathomed nodes

in the current

level l?

Yes

Yes

Set l← l-1

No

l← l+1

No

Start

Is l=0?

No

Figure 4 – Flow chart of the Algorithm 1

Algorithm 2. Modify steps 5.3 and 5.4 of Algorithm 1 as follows:

5.3. Fathom all the nodes in column 1l  ; if 1l n  , then go to step 5.6. Otherwise, proceed to step

5.4 . Note that if due date constraints are violated when 1l  , according to step 1 of Algorithm 1 the

problem is infeasible.

25

5.4. Compare  1; 1,2,...,l

jC j n  with
max

bestC , the makespan of the best-known feasible solution (if

the list of the complete feasible solutions is not empty); if  1

max ; 1,2,...,l best

jC C j n   , fathom all the nodes

in column 1l  . ■

5.4 Proof of the Correctness of the Enumeration Algorithms
Algorithm 1 and Algorithm 2 are correct because:

1. The max| , |jF nwt d C with the assumptions of section 3 is a permutation problem, i.e., a sequence of

the jobs is enough to describe a potential solution. Makespan of a given permutation can be calculated

by adding the contributions of the jobs. Section 3 also proposed as a method for calculating the

contributions. This validates the graph modeling of section 5.1.

2. Step 5 of Algorithm 1 is designed to generate all the possible !n permutations of n jobs in a

max| , |jF nwt d C .

2.1. Steps 5.1, 5.2 and 5.6 describe the branching strategy of the enumeration algorithm; they explain

how a sequence of n jobs will be created. In other words, steps 5.1 and 5.2 create all of the possible

solutions, and step 5.6 explains how the algorithm moves from one sequence to another

permutation.

3. The proposed algorithm does not ignore any feasible solutions throughout the search. Only the

infeasible or uncompetitive solutions will be removed:

3.1. Step 5.3 mentions that a sequence of jobs that violates the due date requirements of some of the

jobs is considered exempt from further consideration.

3.2. Step 5.4 assures that a partial sequence with a makespan worse than the makespan of a complete

solution is exempt from further consideration. This is because the makespan can never be reduced

by adding more jobs to a partial sequence. In other words, contributions are always non-negative.

4. The proposed algorithm compares the makespan of all of the feasible solutions, and returns the best

makespan as the final solution after all of the feasible solutions have been considered:

4.1. Step 5.5 compares the makespan of a complete sequence with the makespan of the best-found

sequence, and updates the best-found sequence and its makespan if necessary.

5. Rest of the steps in Algorithm 1 limit the enumeration as much as possible and are based on the proved

propositions of section 5.

6. The described enumerative procedure guarantees that all of the feasible solutions are considered and

the optimum solution is found before the termination of the algorithm.

26

7. Algorithm 2 simply strengthens steps 5.3 and 5.4 of the Algorithm 1 based on Proposition 1 and

Corollary 2 of section 5.

Numerical results will be presented in the next section.

6 Computational Experiments
Conducting numerical experiments is an effective approach to compare the performance of the

developed models. IBM ILOG CPLEX V12.6 was used to solve the developed mathematical models.

Algorithms of Section 5 were coded by Microsoft Visual C++ 2013. All the numerical experiments were

performed on a PC equipped with a 2GHz Intel Pentium IV CPU and 2 GB of RAM. To perform the

computational analysis, a number of test problems generated by Samarghandi (2015) were selected; namely,

eight test problems for max| |F nwt C accompanied with four different due date settings for each test

problem. Moreover, 26 other test problems with larger instances for max| |F nwt C were generated. Each

test problem was then accompanied by four different due date settings. All the test problems were generated

based on the same approach described by Samarghandi (2015). Accordingly, a total of 104 test problems

for max| , |jF nwt d C and 14 test problems for max| |F nwt C were investigated in this paper; each distinct

due date setting will be called a tightness factor and will be abbreviated as TF hereinafter. Sam01 through

Sam08 are test problems for max| |F nwt C from Samarghandi (2015) and Sam01+DD through

Sam08+DD are test problems with due date constraints from Samarghandi (2015); problems generated in

this study are Sam09 through Sam14 and Sam09+DD through Sam26+DD.

Best solutions of the models for the test problems will be reported at 60T  , 300T  , 600T  and

7200T  seconds. Before the results are presented, some of the complications when solving the problems

will be discussed.

6.1 Implementation Complications
Formulation of Model I is based on a very large number (M) in (6) that replicates either-or constraints.

Although this is an effective method to prototype either-or constraints, the numerical value of M may

result in complication in implementation of the model in any software package designed for solving

mathematical modeling problems; IBM CPLEX is not an exception. If the value of M is not carefully

chosen, CPLEX may eliminate M in the pre-solve phase. It is therefore recommended2 that either-or

constraints should be modeled by indicator constraints in order to eradicate the need for the numerical value

of M . However, employing indicator constraints results in a reduction in the effectiveness of the branching

2 http://www-01.ibm.com/support/docview.wss?uid=swg21400084

27

algorithm; this can result in an increase in the solution time. Numerical results of both of these approaches

to implement Model I will be presented in section 6.2.

6.2 Numerical Results of the Developed Models
The equality (27) in Model II is a quadratic equation, which makes it a non-convex constraint. The

same argument holds for equation (36) in Model III. Hence solving these two models even after relaxing

the integrality constraint is not easy. There is a bulk of research on finding approximate solutions for non-

convex binary integer programming using convex optimization techniques like SDP relaxation (see e.g. the

pioneering paper of Goemans and Williamson (1995) on MAX-CUT Problem). However, this paper does

not seek approximate solutions so the authors have taken this problem as an interesting future research

direction. For this reason, in this paper Model II and Model III will not be included in the numerical

experiments for max| , |jF nwt d C .

On the other hand, in order to review the performance of Model II, the due date constraints of this

model, including the non-convex constraint, will be relaxed and computational experiments will be

conducted for max| |F nwt C and compared with the no-wait version of the Manne model, which simply is

the Manne model with the no-wait constraints added to it, as well as the relaxed version of Model I, Model

IV and Model V. The reason for selecting the Manne model as a comparison basis is that Pan (1997) finds

it as the best MILP model for max||F C . Afterwards, Model I, Model IV and Model V will be considered

for further numerical experiments of max| , |jF nwt d C .

Table 5 presents the numerical results of the following models: no-wait version of the Manne model,

original formulation of Model I when due date constraints are relaxed, Model I when equation (6) is

replaced with indicator constraints and due date constraints are relaxed, Model II, Model IV and Model V

when due date constraints are relaxed. In all of the following tables, OFV represents objective function

value and all of the CPU times are reported in seconds. The time when the optimal solution was found is

reported as well. For instance, according to Table 5 the optimal solution of Sam04 is 9159; this solution

has been found by the original formulation of Model I after 200 seconds. Moreover, numbers in boldface

indicate that the reported solution is optimal. Therefore, NFS in boldface means that the problem has no

feasible solutions; however, non-bold NFS means that although the algorithm has not been able find a

feasible solution in the given time, the problem may or may not have feasible solutions.

28

Table 5 - Numerical results of max| |F nwt C

Problem
Size

n*m

Manne

Model with

no-wait

constraints

Model I -

original

formulation

Model I -

indicator

variable

Model II Model IV Model V

Sam01 7*7 7705, 2 7705, 1 7705, 39 7705, 1 7705, 1 8030

Sam02 8*8 9372, 2 9372, 2 9372 9372, 1 9372, 5 10948

Sam03 8*9 9690, 2 9690, 2 9690 9690, 1 9690, 2 12820

Sam04 10*6 9159, 2 9159, 200 9159 9159, 1 9159, 203 10805

Sam05 11*5 8142, 45 8142 8142 8142, 2 8142 10667

Sam06 12*5 8866, 180 8866 8866 8866, 6 8866 11774

Sam07 13*4 8242, 150 8242 8299 8242, 1 8247 12288

Sam08 14*4 9159 9195 9467 9195, 5 9159 43966

Sam09 15*6 13492 13514 NFS 13330 13411 18724

Sam10 16*7 8983 8953 9129 8869 8909 14390

Sam11 17*5 11296 11134 11903 10950 11096 14459

Sam12 18*9 9242 9224 NFS 8824 8909 11383

Sam13 19*8 19240 17790 NFS 17428 18143 52012

Sam14 20*10 31435 31370 37575 29318 29824 89847

Optimality

proved
50% 29% 7% 57% 29% 0%

Average of best

performance gap
2.00% 1.29% 3.99% 0.03% 0.66% 80.92%

It can be noted that the CPU times of Model II were under 10 seconds for problems Sam01 through

Sam08; the CPU time jumps to 808 seconds to solve Sam09 to optimality. Note that none of the models

were able to find an optimal solution for the problems with more than 16 jobs. On the other hand, the

original formulation of Model I did not fathom all the nodes to prove the optimality of the proposed

solutions in less than 600 seconds once the problem instance consisted of more than 10 jobs. As mentioned

before, employing indicator constraints reduces the branching efficiency of CPLEX. Table 5 shows that

Model I with indicator constraints is the least competitive model and is able to prove the optimality of only

one of the test cases. This table is another pointer for the competitiveness of Model II; as mentioned before,

solving max| , |jF nwt d C using Model II can be considered as an interesting future research. At the

maximum allowed CPU time (600T  seconds), the best performance gap for the non-NFS problems can

be calculated as follows:

OFV Best OFV
Best PerformanceGap 100

OFV


  (54)

In (54), “OFV” represents the objective function value of the model for a certain test problem, and

“Best OFV” is the best objective function value found for that test problem. It can be noted that Model II

in Table 5 has the best average performance gap.

29

Table 6 summarizes the numerical results of Model I with the original formulation of section 4.1 as

well as when equation (6) is replaced with indicator constraints. Superiority of the original formulation of

Model I over the indicator constraints formulation is evident from this table. Therefore, only the results of

the original formulation of Model I will be reported for 7200T  . Both of these formulations proved to

be most effective for the test problems with less than 12 jobs. Moreover, the original formulation of Model

I has found the optimal solution of 44% of the test problems in 7200T  in Table 6.

Table 7 summarizes the results of Model IV and Model V. In this table only the results of Model IV

will be reported for 7200T  due to its numerical supremacy over Model V. A comparison between Table

6, and Table 7 reveals the superiority of the original formulation of Model I over the rest of the formulations.

Computational results of the enumeration algorithms are presented in Table 8. In this table only the results

of Algorithm 2 will be reported for 7200T  due to its numerical supremacy over Algorithm 1.

According to Table 8, Algorithm 2 finds the optimal solution of the test problems Sam01+DD through

Sam08+DD in under 60 seconds. Overall, this algorithm finds the optimal solution of 80% of the test

problems at 7200T  , which is superior to all of the mathematical and constraint programming models

studied in this paper.

A closer comparison between Algorithm 2, Manne Model with the no-wait and due date constraints,

Model IV, and Model I with the original formulation is presented in Table 9. All of results in this table are

for 7200T  . Computational supremacy of Algorithm 2 over the competitive methods is evident from

this table. Algorithm 2 not only finds the optimal solution of 80% of the test problems, it is also able to

find at least one feasible solution for one of the test problems (Sam12+DD with tightness factor 3) for

which Model I and Model IV have returned no feasible solutions in 7200T  . In addition, Algorithm 2

outperforms Manne model, Model I and Model IV when CPU times are compared with each other.

30

Table 6 – Computational results of Model I
 Original formulation - OFV Indicator constraints - OFV

Problem Size n*m Due date TF T=60 T=300 T=600 T=7200 T=60 T=300 T=600

Sam01+DD 7*7

TF=1 7705, 2 7705, 2 7705, 2 7705, 2 7705, 20 7705, 20 7705, 20

TF=2 7705, 2 7705, 2 7705, 2 7705, 2 7705, 9 7705, 9 7705, 9

TF=3 7705, 2 7705, 2 7705, 2 7705, 2 7705, 2 7705, 2 7705, 2

TF=4 NFS, 14 NFS, 14 NFS, 14 NFS, 14 NFS, 54 NFS, 54 NFS, 54

Sam02+DD 8*8

TF=1 9372, 11 9372, 11 9372, 11 9372, 11 9485 9448 9372

TF=2 9372, 11 9372, 11 9372, 11 9372, 11 9372 9372, 205 9372, 205

TF=3 9573, 11 9573, 11 9573, 11 9573, 11 9573, 51 9573, 51 9573, 51

TF=4 NFS, 12 NFS, 12 NFS, 12 NFS, 12 NFS, 48 NFS, 48 NFS, 48

Sam03+DD 8*9

TF=1 9690, 10 9690, 10 9690, 10 9690, 10 9690 9690 9690

TF=2 9690, 10 9690, 10 9690, 10 9690, 10 9874 9690, 183 9690, 183

TF=3 9690, 10 9690, 10 9690, 10 9690, 10 9690, 50 9690, 50 9690, 50

TF=4 NFS NFS, 290 NFS, 290 NFS, 290 NFS NFS NFS

Sam04+DD 10*6

TF=1 9159 9159 9159, 334 9159, 334 9188 9159 9159

TF=2 9483 9454, 224 9454, 224 9454, 224 9817 9454 9454

TF=3 NFS 11537, 174 11537, 174 11537, 174 NFS 11537, 254 11537, 254

TF=4 NFS, 25 NFS, 25 NFS, 25 NFS, 25 NFS NFS, 132 NFS, 132

Sam05+DD 11*5

TF=1 8152 8152 8152 8152, 3966 8164 8164 8164

TF=2 8381 8381 8168 8164, 3402 8284 8284 8164

TF=3 NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 4 NFS, 4 NFS, 4 NFS, 4 NFS NFS, 62 NFS, 62

Sam06+DD 12*5

TF=1 9273 9170 9102 9084 9219 9219 9219

TF=2 9339 9148 9120 9120 9980 9236 9226

TF=3 NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS NFS NFS, 305 NFS, 305 NFS NFS NFS

Sam07+DD 13*4

TF=1 8496 8496 8476 8465 9297 8895 8476

TF=2 NFS NFS 9139 9002 NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS NFS, 298 NFS, 298 NFS, 298 NFS NFS NFS, 330

Sam08+DD 14*4

TF=1 9802 9721 9674 9674 10845 10856 10266

TF=2 NFS NFS NFS NFS NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 4 NFS, 4 NFS, 4 NFS, 4 NFS NFS NFS

Sam09+DD 15*6

TF=1 14260 14260 14260 13472 NFS NFS NFS

TF=2 NFS NFS NFS 14666 NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 3 NFS, 3 NFS, 3 NFS, 3 NFS NFS NFS

Sam10+DD 16*7

TF=1 9201 9192 9192 9017 9678 9544 9420

TF=2 9188 9113 9113 8977 9163 9136 9136

TF=3 NFS NFS NFS 9262 NFS NFS NFS

TF=4 NFS NFS NFS NFS NFS NFS NFS

Sam11+DD 17*5

TF=1 12246 12246 12162 11371 NFS NFS NFS

TF=2 NFS NFS NFS NFS NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS NFS NFS

Sam12+DD 18*9

TF=1 9360 9360 9360 8904 10441 9736 9736

TF=2 10172 9680 9600 9232 NFS 10338 10215

TF=3 NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 54 NFS, 54 NFS, 54 NFS, 54 NFS NFS NFS

Sam13+DD 19*8

TF=1 19361 19006 19006 17970 NFS NFS NFS

TF=2 NFS NFS NFS NFS NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS NFS NFS NFS NFS NFS NFS

Sam14+DD 20*10

TF=1 33602 33602 32626 31199 NFS NFS NFS

TF=2 NFS NFS NFS 34399 NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS NFS NFS NFS NFS NFS NFS

Percent of efforts with optimum solution 32% 38% 41% 45% 13% 21% 23%

31

Table 7 – Computational results of Model IV and Model V
 Model IV - OFV Model V - OFV

Problem Size n*m Due date TF
Best solution

from Table 6
T=60 T=300 T=600 T=7200 T=60 T=300 T=600

Sam01+DD 7*7

TF=1 7705, 2 7705, 1 7705, 1 7705, 1 7705, 1 7705, 42 7705, 42 7705, 42

TF=2 7705, 2 7705, 1 7705, 1 7705, 1 7705, 1 7705, 40 7705, 40 7705, 40

TF=3 7705, 2 7705, 1 7705, 1 7705, 1 7705, 1 7705, 19 7705, 19 7705, 19

TF=4 NFS, 14 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1

Sam02+DD 8*8

TF=1 9372, 11 9372, 22 9372, 22 9372, 22 9372, 22 9372 9372 9372

TF=2 9372, 11 9372, 16 9372, 16 9372, 16 9372, 16 9372 9372 9372

TF=3 9573, 11 9573, 25 9573, 25 9573, 25 9573, 25 9573 9573 9573

TF=4 NFS, 12 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 8 NFS, 8 NFS, 8

Sam03+DD 8*9

TF=1 9690, 10 9690, 9 9690, 9 9690, 9 9690, 9 9690 9690 9690

TF=2 9690, 10 9690, 10 9690, 10 9690, 10 9690, 10 10399 9690 9690

TF=3 9690, 10 9690, 5 9690, 5 9690, 5 9690, 5 10229 9874 9690

TF=4 NFS, 290 NFS, 4 NFS, 4 NFS, 4 NFS, 4 NFS, 15 NFS, 15 NFS, 15

Sam04+DD 10*6

TF=1 9159, 334 9332 9159 9159 9159, 1264 9959 9623 9423

TF=2 9454, 224 9454 9454 9454 9454, 682 10251 10251 9558

TF=3 11537, 174 11537 11537 11537 11537, 504 NFS NFS NFS

TF=4 NFS, 25 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 4 NFS, 4 NFS, 4

Sam05+DD 11*5

TF=1 8152, 3966 8211 8211 8152 8152 8723 8652 8336

TF=2 8164, 3402 8164 8164 8164 8164 9287 9261 8284

TF=3 NFS NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 4 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS, 2

Sam06+DD 12*5

TF=1 9084 9091 9091 9091 9084 9972 9972 9733

TF=2 9120 9148 9148 9120 9120 10197 9877 9662

TF=3 NFS NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 305 NFS, 9 NFS, 9 NFS, 9 NFS, 9 NFS, 13 NFS, 13 NFS, 13

Sam07+DD 13*4

TF=1 8465 8471 8471 8465 8465 10488 9829 8818

TF=2 9002 9175 9002 9002 9002 NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 298 NFS NFS, 210 NFS, 210 NFS, 210 NFS, 24 NFS, 24 NFS, 24

Sam08+DD 14*4

TF=1 9674 10494 10290 9798 9746 12219 12114 11309

TF=2 NFS NFS NFS NFS NFS NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 4 NFS NFS NFS, 570 NFS, 570 NFS NFS NFS

Sam09+DD 15*6

TF=1 13472 14226 14001 14001 13491 17033 16324 16324

TF=2 14666 13706 13583 13583 13330 NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 3 NFS NFS NFS NFS NFS NFS NFS

Sam10+DD 16*7

TF=1 9017 9013 9011 9011 8912 9740 9552 9509

TF=2 8977 9210 9030 9030 8975 10104 9566 9489

TF=3 9262 9334 9223 9221 9116 NFS NFS NFS

TF=4 NFS NFS NFS NFS NFS NFS NFS NFS

Sam11+DD 17*5

TF=1 11371 11639 11530 11530 11268 14127 12641 12641

TF=2 NFS NFS NFS 12243 11576 NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 2 NFS NFS NFS NFS NFS NFS NFS

Sam12+DD 18*9

TF=1 8904 9174 9036 9036 8902 10883 10463 10463

TF=2 9232 9695 9568 9485 9304 NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS, 54 NFS NFS NFS NFS NFS NFS NFS

Sam13+DD 19*8

TF=1 17970 18621 18621 18621 17996 NFS NFS NFS

TF=2 NFS NFS 19954 19373 18453 NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS NFS NFS NFS NFS NFS NFS NFS

Sam14+DD 20*10

TF=1 31199 32949 32949 32635 30822 NFS 38299 38299

TF=2 34399 NFS 32511 32511 30715 NFS NFS NFS

TF=3 NFS NFS NFS NFS NFS NFS NFS NFS

TF=4 NFS NFS NFS NFS NFS NFS NFS NFS

Percent of efforts with optimum solution 45% 27% 29% 30% 36% 18% 18% 18%

32

Table 8 – Computational results of The Enumeration Algorithms
 Algorithm 2 - OFV Algorithm 1 - OFV

Problem Size n*m Due date TF T=60 T=300 T=600 T=7200 T=60 T=300 T=600

Sam01+DD 7*7

TF=1 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0

TF=2 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0

TF=3 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0

TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam02+DD 8*8

TF=1 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0

TF=2 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0

TF=3 9573, 0 9573, 0 9573, 0 9573, 0 9573, 0 9573, 0 9573, 0

TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam03+DD 8*9

TF=1 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0

TF=2 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0

TF=3 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0

TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam04+DD 10*6

TF=1 9159, 0 9159, 0 9159, 0 9159, 0 9159, 2 9159, 2 9159, 2

TF=2 9454, 0 9454, 0 9454, 0 9454, 0 9454, 0 9454, 0 9454, 0

TF=3 11537, 0 11537, 0 11537, 0 11537, 0 11537, 0 11537, 0 11537, 0

TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam05+DD 11*5

TF=1 8152, 2 8152, 2 8152, 2 8152, 2 8152, 17 8152, 17 8152, 17

TF=2 8164, 1 8164, 1 8164, 1 8164, 1 8164, 9 8164, 9 8164, 9

TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam06+DD 12*5

TF=1 9084, 9 9084, 9 9084, 9 9084, 9 9084, 54 9084, 54 9084, 54

TF=2 9120, 2 9120, 2 9120, 2 9120, 2 9120, 25 9120, 25 9120, 25

TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam07+DD 13*4

TF=1 8465, 11 8465, 11 8465, 11 8465, 11 9002 8465, 226 8465, 226

TF=2 9002, 1 9002, 1 9002, 1 9002, 1 9002, 11 9002, 11 9002, 11

TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam08+DD 14*4

TF=1 9674, 59 9674, 59 9674, 59 9674, 59 10613 9699 9699

TF=2 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 24 NFS, 24 NFS, 24

TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 6 NFS, 6 NFS, 6

TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam09+DD 15*6

TF=1 14976 14386 14136 14136 15999 14991 14976

TF=2 13636 13330, 103 13330, 103 13330, 103 15809 15014 14031

TF=3 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 59 NFS, 59 NFS, 59

TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1

Sam10+DD 16*7

TF=1 9419 9419 9402 9364 9419 9419 9402

TF=2 9445 9402 9402 9402 9451 9432 9402

TF=3 9265 9142 9057 9057, 716 NFS 9374 9374

TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 11 NFS, 11 NFS, 11

Sam11+DD 17*5

TF=1 12077 11829 11829 11829 12680 12627 12625

TF=2 12503 11571 11534 11534, 860 NFS NFS NFS

TF=3 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS NFS, 137 NFS, 137

TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1

Sam12+DD 18*9

TF=1 10913 10813 10432 10432 10980 10886 10813

TF=2 10615 10363 10363 10349 11199 10943 10943

TF=3 NFS NFS 9663 9663 NFS NFS NFS

TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 2 NFS, 2 NFS, 2

Sam13+DD 19*8

TF=1 20699 20589 20497 20321 21204 21108 21023

TF=2 20243 20119 19944 19849 NFS NFS NFS

TF=3 NFS, 42 NFS, 42 NFS, 42 NFS, 42 NFS NFS NFS

TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 2 NFS, 2 NFS, 2

Sam14+DD 20*10

TF=1 35847 35847 35847 35847 37045 36754 36754

TF=2 34575 34430 33349 33065 NFS NFS NFS

TF=3 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS NFS NFS

TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 17 NFS, 17 NFS, 17

Percent of efforts with optimum solution 75% 77% 77% 80% 66% 70% 70%

33

Table 9 – Overall comparison of the computational results at 7200T 

Problem Size n*m
Due date

TF

Manne Model with no-wait

and due date constraints

Model I – original

Formulation
Model IV Algorithm 2

Sam01+DD 7*7

TF=1 7705, 1 7705, 2 7705, 1 7705, 0

TF=2 7705, 1 7705, 2 7705, 1 7705, 0

TF=3 7705, 1 7705, 2 7705, 1 7705, 0

TF=4 NFS, 1 NFS, 14 NFS, 1 NFS, 0

Sam02+DD 8*8

TF=1 9372, 1 9372, 11 9372, 22 9372, 0

TF=2 9372, 1 9372, 11 9372, 16 9372, 0

TF=3 9573, 1 9573, 11 9573, 25 9573, 0

TF=4 NFS, 1 NFS, 12 NFS, 1 NFS, 0

Sam03+DD 8*9

TF=1 9690, 1 9690, 10 9690, 9 9690, 0

TF=2 9690, 1 9690, 10 9690, 10 9690, 0

TF=3 9690, 1 9690, 10 9690, 5 9690, 0

TF=4 NFS, 13 NFS, 290 NFS, 4 NFS, 0

Sam04+DD 10*6

TF=1 9195, 1 9159, 334 9159, 1264 9159, 0

TF=2 9454, 1 9454, 224 9454, 682 9454, 0

TF=3 11537, 1 11537, 174 11537, 504 11537, 0

TF=4 NFS, 3 NFS, 25 NFS, 1 NFS, 0

Sam05+DD 11*5

TF=1 8152, 3 8152, 3966 8152 8152, 2

TF=2 8164, 4 8164, 3402 8164 8164, 1

TF=3 NFS, 37 NFS NFS NFS, 0

TF=4 NFS, 3 NFS, 4 NFS, 2 NFS, 0

Sam06+DD 12*5

TF=1 9084, 29 9084 9084 9084, 9

TF=2 9120, 9 9120 9120 9120, 2

TF=3 NFS NFS NFS NFS, 0

TF=4 NFS, 39 NFS, 305 NFS, 9 NFS, 0

Sam07+DD 13*4

TF=1 8465, 17 8465 8465 8465, 11

TF=2 9002, 5 9002 9002 9002, 1

TF=3 NFS, 43 NFS NFS NFS, 0

TF=4 NFS, 5 NFS, 298 NFS, 210 NFS, 0

Sam08+DD 14*4

TF=1 9693 9674 9746 9674, 59

TF=2 NFS NFS NFS NFS, 1

TF=3 NFS NFS NFS NFS, 0

TF=4 NFS NFS, 4 NFS, 570 NFS, 0

Sam09+DD 15*6

TF=1 14153 13472 13491 14136

TF=2 13330 14666 13330 13330, 103

TF=3 NFS NFS NFS NFS, 1

TF=4 NFS NFS, 3 NFS NFS, 1

Sam10+DD 16*7

TF=1 9297 9017 8912 9364

TF=2 9310 8977 8975 9402

TF=3 NFS 9262 9116 9057, 716

TF=4 NFS NFS NFS NFS, 1

Sam11+DD 17*5

TF=1 11653 11371 11268 11829

TF=2 NFS NFS 11576 11534, 860

TF=3 NFS NFS NFS NFS, 1

TF=4 NFS NFS, 2 NFS NFS, 1

Sam12+DD 18*9

TF=1 9368 8904 8902 10432

TF=2 9666 9232 9304 10349

TF=3 NFS NFS NFS 9663

TF=4 NFS NFS, 54 NFS NFS, 1

Sam13+DD 19*8

TF=1 18659 17970 17996 20321

TF=2 NFS NFS 18453 19849

TF=3 NFS NFS NFS NFS, 42

TF=4 NFS NFS NFS NFS, 1

Sam14+DD 20*10

TF=1 31820 31199 30822 35847

TF=2 40035 34399 30715 33065

TF=3 NFS NFS NFS NFS, 1

TF=4 NFS NFS NFS NFS, 1

Percent of efforts with optimum solution 48% 45% 36% 80%

Average of best performance gap 2.22% 0.92% 0.09% 2.85%

Average CPU time 3732.57 4149.46 4688.18 1446.71

34

6.3 The Effect of Increasing the Number of Machines
Test problems considered so far generally contain a small number of machines. In order to demonstrate

the effect of increasing the number of machines (m) on the performance of the developed models and the

proposed algorithm, 12 new test problems were generated. Similar to the previous sections, each test

problem was accompanied with four different set of due dates, generated based on the different tightness

factors of Samarghandi (2015).

Since the superiority of the original formulation of Model I, Model IV and Algorithm 2 over the rest of

the methods are demonstrated in Table 9, the resulting 48 unique test cases were solved with these methods;

Manne model, once the no-wait and due date constraints are added to it, is used again as a basis for further

comparison. Table 10 summarizes the numerical results for test problems with 20 jobs, Table 11 and Table

12 belong to the test problems with 30 and 40 jobs, respectively. The models and the algorithm were applied

to each test problem and the maximum allowed CPU time was 600 seconds.

A comparison between the results of Table 10, Table 11 and Table 12 demonstrate that Algorithm 2 is

superior to the Manne model, original formulation of Model I and Model IV both in terms of the quality of

the proposed solutions, and CPU times. The original formulation of Model I and Model IV find the optimum

solutions for 38% and 31% of the test problems with 20 machines, respectively. For problems with 30 and

40 machines, these models were able to solve 25% of the test problems to optimality. This figure is

significantly higher for Algorithm 2. This algorithm finds the optimum solution of 63% of the test problems

in the given CPU time in all of the mentioned tables.

Algorithm 2 outperforms the rest of the models in terms of the quality of the generated solutions. It can

be noticed that in Table 10, Table 11 and Table 12 the best solutions always belong to Algorithm 2. This

fact is further visualized by Figure 5 using the best performance gap of equation (54). Figure 6 illustrates

the computational efficiency of Algorithm 2 compared to the rest of the studied models, when dealing with

problems for which there is either no feasible solution or a feasible solution cannot be obtained in less than

600 seconds. Algorithm 2, for all but one of the instances, is able to prove infeasibility in less than one

second.

35

Table 10 - Computational results for problems with 20 machines

Manne model with

no-wait and due

date constraints

Model I - Original

Formulation
Model IV Algorithm 2

Problem
Size

n*m

Due Date

Tightness Factor
OFV

Time

(Second)
OFV

Time

(Second)
OFV

Time

(Second)
OFV

Time

(Second)

Sam15+DD 5*20

TF=1 26,164 1 26,164 1 26,164 1 26,164 0

TF=2 26,164 1 26,164 1 26,164 1 26,164 0

TF=3 26,164 1 26,164 1 26,164 1 26,164 0

TF=4 27,100 1 27,100 1 27,100 1 27,100 0

Sam16+DD 10*20

TF=1 34,198 3 34,198 600 34,198 600 34,198 0.4

TF=2 34,198 3 34,198 600 34,198 600 34,198 0.4

TF=3 34,198 4 34,198 600 34,198 600 34,198 0.4

TF=4 NFS 3 NFS 5 NFS 14 NFS 0.0

Sam17+DD 15*20

TF=1 43,453 600 45,791 600 45,547 600 43,457 600

TF=2 43,711 600 45,791 600 45,800 600 43,649 600

TF=3 43,773 600 45,811 600 45,582 600 43,474 600

TF=4 NFS 17 NFS 74 NFS 600 NFS 0.0

Sam18+DD 20*20

TF=1 58,879 600 58,342 600 64,622 600 56,487 600

TF=2 60,171 600 58,608 600 63,798 600 56,603 600

TF=3 NFS 600 NFS 600 NFS 600 NFS 600

TF=4 NFS 600 NFS 600 NFS 600 NFS 0

Percent of efforts with optimum solution 56% 38% 31% 63%

Average of best performance gap** 0.95% 1.87% 3.48% 0.00%

Average CPU time 264.63 380.19 413.63 225.08

* Maximum allowed CPU time was 600 seconds.

** Smaller gaps are more desirable.

Table 11 - Computational results for problems with 30 machines

Manne model with

no-wait and due

date constraints

Model I - Original

Formulation
Model IV Algorithm 2

Problem
Size

n*m

Due Date

Tightness Factor
OFV

Time

(Second)
OFV

Time

(Second)
OFV

Time

(Second)
OFV

Time

(Second)

Sam19+DD 5*30

TF=1 34,680 1 34,680 1 34,680 1 34,680 0

TF=2 34,680 1 34,680 1 34,680 1 34,680 0

TF=3 34,680 1 34,680 1 34,680 1 34,680 0

TF=4 34,680 1 34,680 1 34,680 1 34,680 0

Sam20+DD 10*30

TF=1 43,179 4 43,202 600 43,179 600 43,179 0.4

TF=2 43,179 4 43,202 600 43,179 600 43,179 0.4

TF=3 43,179 4 43,202 600 43,179 600 43,179 0.4

TF=4 43,642 4 43,642 600 43,642 600 43,642 0.0

Sam21+DD 15*30

TF=1 51,138 600 55,817 600 53,717 600 50,942 600

TF=2 51,334 600 55,817 600 54,032 600 51,138 600

TF=3 52,386 600 55,627 600 54,692 600 52,222 600

TF=4 NFS 600 NFS 600 NFS 600 NFS 0.0

Sam22+DD 20*30

TF=1 68,290 600 76,694 600 70,439 600 67,155 600

TF=2 70,417 600 76,895 600 68,888 600 67,155 600

TF=3 NFS 600 74,101 600 NFS 600 68,995 600

TF=4 NFS 600 NFS 600 NFS 600 NFS 0

Percent of efforts with optimum solution 50% 25% 25% 63%

Average of best performance gap** 0.59% 4.16% 1.79% 0.00%

Average CPU time 301.25 450.25 450.25 225.08

* Maximum allowed CPU time was 600 seconds.

** Smaller gaps are more desirable.

36

Table 12 - Computational results for problems with 40 machines

Manne model with

no-wait and due

date constraints

Model I - Original

Formulation
Model IV Algorithm 2

Problem
Size

n*m

Due Date

Tightness Factor
OFV

Time

(Second)
OFV

Time

(Second)
OFV

Time

(Second)
OFV

Time

(Second)

Sam23+DD 5*40

TF=1 43,197 1 43,197 1 43,197 1 43,197 0

TF=2 43,197 1 43,197 1 43,197 1 43,197 0

TF=3 43,197 1 43,197 1 43,197 1 43,197 0

TF=4 43,197 1 43,197 1 43,197 1 43,197 0

Sam24+DD 10*40

TF=1 53,214 5 53,447 600 53,214 600 53,214 0.3

TF=2 53,214 4 53,214 600 53,214 600 53,214 0.3

TF=3 53,214 4 53,214 600 53,214 600 53,214 0.3

TF=4 56,200 1 56,738 600 56,200 600 56,200 0.0

Sam25+DD 15*40

TF=1 65,543 600 70,260 600 68,426 600 65,294 600

TF=2 67,003 600 70,260 600 66,028 600 65,543 600

TF=3 66,086 600 70,260 600 66,604 600 65,293 600

TF=4 NFS 600 NFS 600 NFS 600 NFS 0.1

Sam26+DD 20*40

TF=1 80,369 600 84,656 600 81,391 600 78,997 600

TF=2 80,762 600 84,656 600 81,802 600 78,997 600

TF=3 86,779 600 83,473 600 85,658 600 77,912 600

TF=4 NFS 600 NFS 600 NFS 600 NFS 0

Percent of efforts with optimum solution 50% 25% 25% 63%

Average of best performance gap** 0.60% 2.93% 1.09% 0.00%

Average CPU time 301.13 450.25 450.25 225.06

* Maximum allowed CPU time was 600 seconds.

** Smaller gaps are more desirable.

Figure 5 - Comparison of the best performance gaps, showing the superiority of Algorithm 2

0

2

4

6

8

10

12

1
5

*
2

0
 -

 T
F

=
1

1
5

*
2

0
 -

 T
F

=
2

1
5

*
2

0
 -

 T
F

=
3

1
5

*
3

0
 -

 T
F

=
1

1
5

*
3

0
 -

 T
F

=
2

1
5

*
3

0
 -

 T
F

=
3

1
5

*
4

0
 -

 T
F

=
1

1
5

*
4

0
 -

 T
F

=
2

1
5

*
4

0
 -

 T
F

=
3

2
0

*
2

0
 -

 T
F

=
1

2
0

*
2

0
 -

 T
F

=
2

2
0

*
3

0
 -

 T
F

=
1

2
0

*
3

0
 -

 T
F

=
2

2
0

*
4

0
 -

 T
F

=
1

2
0

*
4

0
 -

 T
F

=
2

2
0

*
4

0
 -

 T
F

=
3

B
es

t
P

er
fo

rm
a

n
ce

 G
a

p

Manne model with no-wait and due

date constraints

Model I - Original Formulation

Model IV

Algorithm 2

37

Figure 6 – CPU time to prove infeasibility or to reach the maximum allowed time (seconds)

Next section summarizes the concluding remarks.

7 Conclusions
The no-wait flow shop problem with due date constraints and makespan criterion has been considered

in this paper. The problem is strongly NP-hard. Five mathematical models have been developed for the

problem; namely, a mixed integer programming model, two quadratic mixed integer programming

formulations, and two constraint programming models. Some of these models work based on the definition

of contribution of a job to the makespan; an efficient algorithm has been proposed to calculate such

contributions.

Furthermore, a novel graph presentation of the problem as well as an exact enumeration algorithm that

employed such modeling have been presented based on the definition of the contributions. A number of

propositions have been proved to efficiently rule out infeasible solutions from the set of all possible

permutations of
max| , |jF nwt d C . The results of these propositions were integrated into the enumeration

algorithm. Moreover, solving complications as well as implementation difficulties have been discussed.

Finally, a thorough computational experiment has been conducted to compare the performance of the

developed models and the enumeration algorithm. Computational results illustrate that as the problem size

grows, finding a feasible solution for
max| , |jF nwt d C is not an easy task. Numerical results reveal that

the enumeration algorithm outperforms the other formulations when implemented by IBM ILOG CPLEX.

As for the directions for future research efforts, developing tight lower and upper bounds for

max| , |jF nwt d C is an interesting future research direction. Moreover, solving quadratic programming

models using semi-definite programming techniques, if possible, is very promising.

0

100

200

300

400

500

600

1
0
*

2
0
 -

 T
F

=
4

1
5
*

2
0
 -

 T
F

=
4

1
5
*

3
0
 -

 T
F

=
4

1
5
*

4
0
 -

 T
F

=
4

2
0
*

2
0
 -

 T
F

=
3

2
0
*

2
0
 -

 T
F

=
4

2
0
*

3
0
 -

 T
F

=
4

2
0
*

4
0
 -

 T
F

=
4

C
P

U
 T

im
e

Manne model with no-wait and

due date constraints
Model I - Original Formulation

Model IV

Algorithm 2

38

8 References
Aldowaisan, T. and A. Allahverdi (2012). "Minimizing total tardiness in no-wait flowshops." Foundations

of Computing and Decision Sciences 37(3): 149-162.

Aldowaisan, T. and A. Allahverdi (2015). "No-Wait Flowshops to Minimize Total Tardiness with Setup

Times." Intelligent Control and Automation 6(1): 38.

Aldowaisan, T. A. and A. Allahverdi (2012). "No-wait flowshop scheduling problem to minimize the

number of tardy jobs." The International Journal of Advanced Manufacturing Technology 61(1-4): 311-

323.

Arabameri, S. and N. Salmasi (2013). "Minimization of weighted earliness and tardiness for no-wait

sequence-dependent setup times flowshop scheduling problem." Computers & Industrial Engineering

64(4): 902-916.

Baker, K. R. and K. R. Baker (1974). Introduction to sequencing and scheduling, Wiley New York.

Baker, K. R. and B. Keller (2010). "Solving the single-machine sequencing problem using integer

programming." Computers & Industrial Engineering 59(4): 730-735.

Błażewicz, J., E. Pesch, M. Sterna and F. Werner (2005). "The two-machine flow-shop problem with

weighted late work criterion and common due date." European Journal of Operational Research 165(2):

408-415.

Błażewicz, J., E. Pesch, M. Sterna and F. Werner (2008). "Metaheuristic approaches for the two-machine

flow-shop problem with weighted late work criterion and common due date." Computers & Operations

Research 35(2): 574-599.

Bonney, M. and S. Gundry (1976). "Solutions to the constrained flowshop sequencing problem."

Operational Research Quarterly: 869-883.

Bowman, E. H. (1959). "The schedule-sequencing problem." Operations Research 7(5): 621-624.

Brah, S. (1996). "A comparative analysis of due date based job sequencing rules in a flow shop with

multiple processors." Production Planning & Control 7(4): 362-373.

Demir, Y. and S. K. İşleyen (2013). "Evaluation of mathematical models for flexible job-shop scheduling

problems." Applied Mathematical Modelling 37(3): 977-988.

Desrochers, M. and G. Laporte (1991). "Improvements and extensions to the Miller-Tucker-Zemlin subtour

elimination constraints." Operations Research Letters 10(1): 27-36.

Dhingra, A. and P. Chandna (2010). "Hybrid genetic algorithm for SDST flow shop scheduling with due

dates: a case study." International Journal of Advanced Operations Management 2(3): 141-161.

Ding, J., S. Song, R. Zhang, J. N. Gupta and C. Wu (2015). "Accelerated methods for total tardiness

minimisation in no-wait flowshops." International Journal of Production Research 53(4): 1002-1018.

Ebrahimi, M., S. F. Ghomi and B. Karimi (2014). "Hybrid flow shop scheduling with sequence dependent

family setup time and uncertain due dates." Applied Mathematical Modelling 38(9): 2490-2504.

Fernandez-Viagas, V. and J. M. Framinan (2015). "Efficient non-population-based algorithms for the

permutation flowshop scheduling problem with makespan minimisation subject to a maximum tardiness."

Computers & Operations Research 64: 86-96.

Goemans, M. X. and D. P. Williamson (1995). "Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming." Journal of the ACM (JACM) 42(6): 1115-1145.

39

Gowrishankar, K., C. Rajendran and G. Srinivasan (2001). "Flow shop scheduling algorithms for

minimizing the completion time variance and the sum of squares of completion time deviations from a

common due date." European Journal of Operational Research 132(3): 643-665.

Grabowski, J. and J. Pempera (2000). "Sequencing of jobs in some production systems." European Journal

of Operational Research 125: 535-550.

Graham, R. L., E. L. Lawler, J. K. Lenstra and A. R. Kan (1979). "Optimization and approximation in

deterministic sequencing and scheduling: a survey." Annals of discrete mathematics 5: 287-326.

Gupta, J. (1971). "The generalized n-job, m-machine scheduling problem." Opsearch 8(3): 173-185.

Gupta, J. N., V. Lauff and F. Werner (2000). On the solution of 2-machine flow shop problems with a

common due date. Operations Research Proceedings 1999, Springer.

Gupta, U. and S. Kumar (2015). "Minimization of weighted sum of total tardiness and make span in no

wait flow shop scheduling Using different heuristic algorithm: A Review." International Journal of

Advances in Engineering Sciences 5(4).

Hall, N. and C. Sriskandarajah (1996). "A survey of machine scheduling problems with blocking and no-

wait in process." Operations Research 44: 510-525.

Hasanzadeh, A., H. Afshari, K. Kianfar, M. Fathi and A. O. Jadid (2009). A GRASP algorithm for the two-

machine flow-shop problem with weighted late work criterion and common due date. IEEE International

Conference on Industrial Engineering and Engineering Management.

Hunsucker, J. and J. Shah (1992). "Performance of Priority Rules in a Due Date Flow Shop." Omega 20(1):

73-89.

Ilić, A. (2015). "On the variable common due date, minimal tardy jobs bicriteria two-machine flow shop

problem with ordered machines." Theoretical Computer Science 582: 70-73.

Javadi, B., M. Saidi-Mehrabad, A. Haji, I. Mahdavi, F. Jolai and N. Mahdavi-Amiri (2008). "No-wait flow

shop scheduling using fuzzy multi-objective linear programming." Journal of the Franklin Institute 345(5):

452-467.

Kaminsky, P. and Z.-H. Lee (2002). "On-line algorithms for flow shop due date quotation." University of

California, Berkeley(California, USA).

http://www.ieor.berkeley.edu/~kaminsky/papers/ddq_flowshop.pdf.

Keha, A. B., K. Khowala and J. W. Fowler (2009). "Mixed integer programming formulations for single

machine scheduling problems." Computers & Industrial Engineering 56(1): 357-367.

King, J. and A. Spachis (1980). "Heuristics for flowshop scheduling." International Journal of Production

Research 18: 343-357.

Lenstra, J. K. and A. H. G. R. Kan (1979). "Computational complexity of discrete optimization problems."

Annals of Discrete Mathematics 4: 121-140.

Liu, G., S. Song and C. Wu (2013). "Some heuristics for no-wait flowshops with total tardiness criterion."

Computers & operations research 40(2): 521-525.

Manne, A. S. (1960). "On the job-shop scheduling problem." Operations Research 8(2): 219-223.

Miller, D. L. and J. F. Pekny (1991). "Exact solution of large asymmetric traveling salesman problems."

Science 251(4995): 754-761.

Morton, T. and D. Pentico (2010). Heuristic scheduling systems. 1993, Wiley, New York.

Pan, C.-H. (1997). "A study of integer programming formulations for scheduling problems." International

Journal of Systems Science 28(1): 33-41.

http://www.ieor.berkeley.edu/~kaminsky/papers/ddq_flowshop.pdf

40

Pan, J. C.-H. and J.-S. Chen (2005). "Mixed binary integer programming formulations for the reentrant job

shop scheduling problem." Computers & Operations Research 32(5): 1197-1212.

Pang, K.-W. (2013). "A genetic algorithm based heuristic for two machine no-wait flowshop scheduling

problems with class setup times that minimizes maximum lateness." International Journal of Production

Economics 141(1): 127-136.

Panwalkar, S. and C. Koulamas (2012). "An O(n^2) algorithm for the variable common due date, minimal

tardy jobs bicriteria two-machine flow shop problem with ordered machines." European Journal of

Operational Research 221(1): 7-13.

Pekny, J. and D. Miller (1991). "Exact solution of the no-wait flowshop scheduling problem with a

comparison to heuristic methods." Computers & chemical engineering 15(11): 741-748.

Pekny, J. F. and D. L. Miller (1992). "A parallel branch and bound algorithm for solving large asymmetric

traveling salesman problems." Mathematical programming 55(1-3): 17-33.

Perez-Gonzalez, P. and J. M. Framinan (2015). "Assessing scheduling policies in a permutation flowshop

with common due dates." International Journal of Production Research 53(19): 5742-5754.

Raaymakers, W. and J. Hoogeveen (2000). "Scheduling multipurpose batch process industries with no-wait

restrictions by simulated annealing." European Journal of Operational Research 126: 131-151.

Rajasekera, J., M. Murr and K. So (1991). "A due-date assignment model for a flow shop with application

in a lightguide cable shop." Journal of Manufacturing Systems 10(1): 1-7.

Rajendran, C. (1994). "A no-wait flowshop scheduling heuristic to minimize makespan." Journal of the

Operational Research Society 45: 472-478.

Ramezanian, R., M. Aryanezhad and M. Heydari (2010). "A Mathematical Programming Model for Flow

Shop Scheduling Problems for Considering Just in Time Production." International Journal of Industrial

Engineering 21(2).

Röck, H. (1984). "Some new results in flow shop scheduling." Zeitschrift für Operations Research 28: 1-

16.

Samarghandi, H. (2015). "A particle swarm optimisation for the no-wait flow shop problem with due date

constraints." International Journal of Production Research 53(9): 2853-2870.

Sarper, H. (1995). "Minimizing the sum of absolute deviations about a common due date for the two-

machine flow shop problem." Applied mathematical modelling 19(3): 153-161.

Šeda, M. (2007). "Mathematical models of flow shop and job shop scheduling problems." World Academy

of Science, Engineering and Technology 1(31): 122-127.

Selen, W. J. and D. D. Hott (1986). "A mixed-integer goal-programming formulation of the standard flow-

shop scheduling problem." Journal of the Operational Research Society: 1121-1128.

Shen, J.-n., L. Wang and S.-y. Wang (2015). "A bi-population EDA for solving the no-idle permutation

flow-shop scheduling problem with the total tardiness criterion." Knowledge-Based Systems 74: 167-175.

Stafford, E. F. (1988). "On the development of a mixed-integer linear programming model for the flowshop

sequencing problem." Journal of the Operational Research Society: 1163-1174.

Tang, H. B., C. M. Ye and L. F. Jiang (2011). "A New Hybrid Particle Swarm Optimization for Solving

Flow Shop Scheduling Problem with Fuzzy Due Date." Advanced Materials Research 189: 2746-2753.

Tari, F. G. and L. Olfat (2014). "Heuristic rules for tardiness problem in flow shop with intermediate due

dates." The International Journal of Advanced Manufacturing Technology 71(1-4): 381-393.

41

Tasgetiren, M. F., Q.-K. Pan, P. Suganthan and A. Oner (2013). "A discrete artificial bee colony algorithm

for the no-idle permutation flowshop scheduling problem with the total tardiness criterion." Applied

Mathematical Modelling 37(10): 6758-6779.

Tseng, F. T., E. F. Stafford Jr and J. N. Gupta (2004). "An empirical analysis of integer programming

formulations for the permutation flowshop." Omega 32(4): 285-293.

Wagner, H. M. (1959). "An integer linear‐programming model for machine scheduling." Naval Research

Logistics Quarterly 6(2): 131-140.

Wilson, J. (1989). "Alternative formulations of a flow-shop scheduling problem." Journal of the Operational

Research Society: 395-399.

Wismer, D. (1972). "Solution of the flowshop scheduling with no intermediate queues." Operations

Research 20: 689-697.

Ziaee, M. and S. J. Sadjadi (2007). "Mixed binary integer programming formulations for the flow shop

scheduling problems. A case study: ISD projects scheduling." Applied mathematics and computation

185(1): 218-228.

