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ABSTRACT 

This paper tries to cover the main aspects/properties related to scheduling problems, approximation 

algorithms, and multi-objective combinatorial optimization. Then, we try to describe the main 

techniques that can be used to solve such problems. In this paper, the reviews results relate to multi-

objective optimization problems, exact and approximation search, with the aim of getting all Pareto 

optimal solutions for some NP-hard problems. 
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1. INTRODUCTION  

Generally, Multi-criteria Decision Making (MCDM) refers to the 

decision-making process in multiple/conflicting criteria. Indeed, there 

are two types of MCDM problems: the first type is Multi-objective 

Decision Making that contains an infinite number of alternative 

solutions. Thus, the non-dominated Frontier has an infinite number of 

non-dominated points. The second type of MCDM problems is Multi-

attribute Decision Making that contains a finite number of alternative 

solutions. Thus, the non-dominated frontier has a finite number of non-

dominated points. Noteworthy, MCDM problems may not always have 

a definitive or unique solution. Therefore, different names are given to 

different solutions depending on the nature of the solutions. Multi-

objective Optimization (also known as, multi-criteria optimization, 

multi-attribute optimization, or Pareto optimization) was highlighted as 

an area of MCDM that takes into account optimization problems 

involving more than one objective function. This problem aims in 

general at finding a special subset of "good" solutions. These solutions 

are called "Pareto-optimal" and they are defined as those not dominated 

by other solutions.  

The organization of this paper is as follows: the next Section 2 covers 

the main aspects related to multiple-objective optimization problem. 

Section 3 provides a description of dominated and non-dominated 

solutions. In Section 4, we present the main techniques for solving 

multi-objective problems. Section 5 presents the approximation 

concepts. The review of multi-objective optimization has been 

presented in Section 6, and the last Section 7 concludes the paper. 

2. MULTIPLE-OBJECTIVE OPTIMIZATION 

PROBLEM 

Multiple-objective optimization problem is one of the challenging areas 

faced by researchers in decision sciences since the 1950s, with many 

papers and books (see for example [1-8]).  The importance of multiple-

objective optimization derives from the proliferation of multicriteria 

problems in almost all deciding-making areas such as manufacturing, 

engineering, transportation, biology, economics, business, healthcare 

systems, and supplies. For instance, the development of a new 

component may involve reducing the weight to a minimum, while 

increasing the strength or choosing a portfolio may include maximizing 

the expected return while minimizing the opportunity. Noteworthy, 

there are significant differences between the multi-objective 

optimization problems that allow the preemption, which are called 

preemptive (often easier in mathematical terms and have an infinite 

number of schedules), and those that are non-preemptive (having a 

finite number of schedules). It should be noted that many multi-

objective scheduling problems are NP-hard. Thus, it is necessary to 

find schedules with better performance. The good news is that there are 

various modifications of traditional approaches that can be exploited to 

solve multiple objective scheduling problems. These approaches 

include: Procedures based on dispatching rules; Branch-and-bound and 

filtered beam search; Perturbation analysis; Local search technique; 

Approximation algorithms [9]. Multi-objective optimization involves in 

the most of times a set of conflicting objectives. We can use one 

objective function by connecting the two objectives with a common 

cost advantage. Typically, some optimization problems cannot achieve 

some way to reach the competitive objectives. Therefore, the relative 

importance of those objectives cannot be measured numerically [10]. 
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In general, a Multi-objective Optimization Problem (MOP) can be 

defined by a vector function as follows: 

     {
 ( )    ( )   ( )     ( ) 

       
 

We assume that: for each decision vector x   X assigns an objective 

vector z   Z, where X is the feasible set in the decision space and Z is 

the feasible set in the objective space. Here, the possible values of the 

objective function  ( )    ( )   ( )     ( ) constitute the 

objective space Z, where n ≥ 2 (see Fig.1). 
 

 
Fig.1 Decision space and objective space 

3. DOMINATED AND NON-DOMINATED 

SOLUTIONS 
Suppose we aim to minimize two objectives (     ), we can say that 

the objective vector     dominates an objective vector      , if 

both of the following conditions are true:    *       +        
  ; 

   *       +         
 . For example, as we can see in Fig. 2, 

solution A dominates solution B, because A is better than B for all 

objectives (     ). 

 
Fig. 2 Solution A dominates solution B 

It should be noted that the set of all non-dominated solutions is called a 

Pareto-optimal set (or Pareto-optimal solutions) and its mapping in the 

objective space is called Pareto front (See Fig. 3). Clearly, Pareto 

solutions are solutions that are not dominated by other solutions [11]. 

 
Fig.3 Illustration of Pareto front and the dominated and non-dominated 

solutions in objective space 

It is worth mentioning that multi-objective optimization (MOP) as a 

part of the decision making process can be classified into three classes. 

These classes have an interaction between the algorithm and the 

decision maker. Clearly, the decision maker preferences may be 

expressed as follows: 

1. A priori: before the results of the optimization process are 

known (i.e. before the resolution process). 

2. A posteriori: which has no preferences before (i.e. after the 

resolution process). 

3. Interactive: in this case, the decision maker interaction will 

be during the resolution process. 

In fact, optimization algorithms for solving multi-objective 

optimization algorithms can be classified into exact and approximate 

algorithms. Noteworthy, during the last decades, the bi-criteria 

optimization problems have attracted many researchers from all over 

the world and have been widely studied in the literature using exact 

methods such as Branch and Bound and Dynamic Programming 

algorithms. Indeed, exact search methods are effective for small-size 

problems. For problems with more than two criteria, there are no 

accurate and effective measures due to simultaneous difficulties of the 

NP-hard complexity and the framework of multi criteria optimization 

problems. However, there are some new techniques proposed in the 

literature for multi-objective problems. Heuristic methods can be used 

to solve large-scale or multi-criteria problems to find the Pareto 

approximation set. Hence, approximate methods can be divided into 

two classes: The algorithms for a particular problem using some 

knowledge about the problem; and the metaheuristics (general purpose 

algorithms) that can be used for a large variety of multi-objective 

problems. It is noteworthy that the application of metaheuristics to 

solve multi-objective problems have attracted numerous researchers 

from all the world and has become an active development area to 

obtain an approximate set of Pareto optimal solutions. In fact, the 

approximation theory can provide many tools to carry out such an 

analysis [8-9].  

4. APPROXIMATION CONCEPTS 

 

For self-consistency, we recall some necessary definitions related to the 

approximation area (See [25]).  
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Let suppose   an optimization problem,   an approximation algorithm, 

  an instance of problem  ,  ( ) is the value for the instance   

generated by algorithm   and   ( ) the optimal value for instance  .  

Definition   is an approximation algorithm for problem   if for any 

given instance   of that problem, algorithm   returns an approximate 

solution, which is a feasible solution. 

In the rest of this section, we will focus on the used techniques and on 

the approximation schemes. Two types of schemes can be 

distinguished in absolute approximation: Polynomial Time 

Approximation Schemes (PTAS) and Fully Polynomial Time 

Approximation Schemes (FPTAS). Noteworthy, an approximation 

scheme is a suboptimal approach based on an input parameter: the 

accepted error bound. It works quickly, with the aim of getting a 

solution for an NP-hard problem by respecting the accepted error 

bound. It is important to mention that these techniques can use linear 

programming tools or sophisticated algorithmic techniques which lead 

to difficult implementation problems. Furthermore, some 

approximation algorithms have impractical running times even though 

they are polynomial time [26]. 

Definition Let ε > 0. An algorithm A is called a PTAS for an NP-hard 

problem, if for any instance I of that problem the algorithm A yields, 

within a polynomial time for the fixed ε, a feasible solution with an 

objective value A(I) such that [27]: 

  ( )      ( )         ( )  

where,    ( ) is the optimal value of instance  . For the minimization 

problems, this leads to inequality  ( )    (     )   ( )). For the 

maximization problems, it leads to inequality  ( )    (   

  )   ( )). 

When a PTAS runs polynomially in     and the instance size, it 

becomes an FPTAS. Such a scheme is the most powerful 

approximation algorithm that we can expect for an NP-hard problem. 

Hence, it is clear that approximation schemes are clearly stronger than 

constant approximation algorithms. 

5. A REVIEW OF MULTI-OBJECTIVE 

OPTIMIZATION 

Given the aim of this work, we recall some representative and related 

existing works to the investigated subject: multiobjective scheduling, 

makespan and maximum lateness minimization, exact and 

approximation search. For example, Alhadi et al. [12] considered the 

scheduling problem on two-parallel machines, with the aim of 

minimizing the maximum lateness and the makespan. They showed 

that the problem is NP-hard only in the ordinary sense. Therefore, the 

authors proposed a dynamic programming algorithm, a PTAS, and two 

strongly polynomial FPTAS. Furthermore, they did some numerical 

experiments in order to compare their proposed approaches. The 

authors showed that the proposed algorithms for the considered 

problem are very efficient, especially for big instances composed of a 

lot of jobs. Huo and Zhao [13] considered two bi-criteria scheduling 

problems on   parallel machines with unavailable intervals, in two 

cases: In the first case, which is denoted by                     

∑         , each machine has only one unavailable period which 

starts at time zero. In the second case, which is denoted by 

                      ∑         , each machine may have 

multiple unavailable periods, but there is at most one machine 

unavailable at any time. The authors considered minimizing the 

makespan and total completion time. They showed that both problems 

are in   by developing optimal algorithms. A serial-batching machine 

for minimizing the maximum cost (    ) and makespan (    ) have 

been considered in [14]. The authors present a polynomial-time 

algorithm with a time complexity of  ( (  )) to produce all Pareto-

optimal solutions. Lin et al. [15] considered the scheduling problem on 

  unrelated parallel machines, with the aim of minimizing the 

makespan, total weighted completion time (TWC), and total weighted 

tardiness (TWT). They proposed two heuristics and a Genetic 

Algorithm to find non-dominated solutions. The first heuristic is to 

minimize the makespan and TWT (       , ∑    ), the second 

heuristic is to minimize the TWC and TWT (   ∑    , ∑    ), the 

proposed GA is to minimize the makespan, TWC and TWT  

(        ∑    , ∑    ). Li et al. [16] studied the scheduling 

problem on   identical parallel machines with release dates, due dates, 

and sequence-dependent setup times, to minimize the makespan 

(    ) and the total tardiness (∑  ). The authors showed that the 

problem is NP-hard in the strong sense. Thus, they developed a new 

mathematical model and approximated methods. A serial-batching 

machine, to minimize the maximum lateness and the makespan has 

been considered in [17] (               (          )). The 

authors present a polynomial-time algorithm with a time complexity of 

( (  )) to produce all Pareto-optimal solutions. In the special case 

when the processing times and deadlines are agreeable, they present an 

 (  )-time algorithm to produce all Pareto optimal solutions. Geng 

and Yuan [18] studied an unbounded parallel-batching machine to 

minimize the makespan and the maximum lateness (             ). 

For the strongly NP-hard problem considered, the authors proposed DP 

with a time complexity of   (    ). Moreover, they showed that the 

problem can be solved in  (     ) -time algorithm which is of 

polynomial-time when the number   of families is a constant. A 

parallel-batching machine to minimize the maximum lateness and the 

makespan has been considered in [19]. To solve the problem     

             (          ) (F: an unknown composition objective 

function), the authors present an algorithm with a time complexity of 

 (  ). In [19], the authors studied an unrelated machine with costs, to 

find a schedule, obtaining a tradeoff between the makespan and the 

total cost when the number of machines is constant. They present an 

FPTAS with a time complexity of  ( (   ) ). 

From the presented state-of-the-art, we can conclude that the multi-

objective problems have attracted numerous researchers from around 

the world to achieve various objectives. For more state-of-the-art, the 

reader is invited to consult the papers by Paschos (2018) [21], Kumar 

(2008) [22], Amor et al. (2017) [23], Amor and Martel (2014) [24] and 

Sarkar and Modak (2005) [4]. 

6. CONCLUSIONS 

This paper attempts to review approximation algorithms to solve multi-

objective optimization problems. In this paper, we covered the main 

aspects related to multi-objective combinatorial optimization and the 
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main techniques that can be used to solve such problems. Finally, we 

have seen some of the most important studies related to multi-objective 

combinatorial optimization. 
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