417,579 research outputs found

    SIP-based mobility management in next generation networks

    Get PDF
    The ITU-T definition of next generation networks includes the ability to make use of multiple broadband transport technologies and to support generalized mobility. Next generation networks must integrate several IP-based access technologies in a seamless way. In this article, we first describe the requirements of a mobility management scheme for multimedia real-time communication services; then, we report a survey of the mobility management schemes proposed in the recent literature to perform vertical handovers between heterogeneous networks. Based on this analysis, we propose an application-layer solution for mobility management that is based on the SIP protocol and satisfies the most important requirements for a proper implementation of vertical handovers. We also implemented our proposed solution, testing it in the field, and proving its overall feasibility and its interoperability with different terminals and SIP servers

    DoS Protection through Credit Based Metering -- Simulation-Based Evaluation for Time-Sensitive Networking in Cars

    Full text link
    Ethernet is the most promising solution to reduce complexity and enhance the bandwidth in the next generation in-car networks. Dedicated Ethernet protocols enable the real-time aspects in such networks. One promising candidate is the IEEE 802.1Q Time-Sensitive Networking protocol suite. Common Ethernet technologies, however, increases the vulnerability of the car infrastructure as they widen the attack surface for many components. In this paper proposes an IEEE 802.1Qci based algorithm that on the one hand, protects against DoS attacks by metering incoming Ethernet frames. On the other hand, it adapts to the behavior of the Credit Based Shaping algorithm, which was standardized for Audio/Video Bridging, the predecessor of Time-Sensitive Networking. A simulation of this proposed Credit Based Metering algorithm evaluates the concept.Comment: If you cite this paper, please use the original reference: P. Meyer, T. H\"ackel, F. Korf, and T. C. Schmidt. DoS Protection through Credit Based Metering - Simulation Based Evaluation for Time-Sensitive Networking in Cars. In: \emph{Proceedings of the 6th International OMNeT++ Community Summit}. September, 2019, Easychai

    A Unified Mobility Management Architecture for Interworked Heterogeneous Mobile Networks

    Get PDF
    The buzzword of this decade has been convergence: the convergence of telecommunications, Internet, entertainment, and information technologies for the seamless provisioning of multimedia services across different network types. Thus the future Next Generation Mobile Network (NGMN) can be envisioned as a group of co-existing heterogeneous mobile data networking technologies sharing a common Internet Protocol (IP) based backbone. In such all-IP based heterogeneous networking environments, ongoing sessions from roaming users are subjected to frequent vertical handoffs across network boundaries. Therefore, ensuring uninterrupted service continuity during session handoffs requires successful mobility and session management mechanisms to be implemented in these participating access networks. Therefore, it is essential for a common interworking framework to be in place for ensuring seamless service continuity over dissimilar networks to enable a potential user to freely roam from one network to another. For the best of our knowledge, the need for a suitable unified mobility and session management framework for the NGMN has not been successfully addressed as yet. This can be seen as the primary motivation of this research. Therefore, the key objectives of this thesis can be stated as: To propose a mobility-aware novel architecture for interworking between heterogeneous mobile data networks To propose a framework for facilitating unified real-time session management (inclusive of session establishment and seamless session handoff) across these different networks. In order to achieve the above goals, an interworking architecture is designed by incorporating the IP Multimedia Subsystem (IMS) as the coupling mediator between dissipate mobile data networking technologies. Subsequently, two different mobility management frameworks are proposed and implemented over the initial interworking architectural design. The first mobility management framework is fully handled by the IMS at the Application Layer. This framework is primarily dependant on the IMS’s default session management protocol, which is the Session Initiation Protocol (SIP). The second framework is a combined method based on SIP and the Mobile IP (MIP) protocols, which is essentially operated at the Network Layer. An analytical model is derived for evaluating the proposed scheme for analyzing the network Quality of Service (QoS) metrics and measures involved in session mobility management for the proposed mobility management frameworks. More precisely, these analyzed QoS metrics include vertical handoff delay, transient packet loss, jitter, and signaling overhead/cost. The results of the QoS analysis indicates that a MIP-SIP based mobility management framework performs better than its predecessor, the Pure-SIP based mobility management method. Also, the analysis results indicate that the QoS performances for the investigated parameters are within acceptable levels for real-time VoIP conversations. An OPNET based simulation platform is also used for modeling the proposed mobility management frameworks. All simulated scenarios prove to be capable of performing successful VoIP session handoffs between dissimilar networks whilst maintaining acceptable QoS levels. Lastly, based on the findings, the contributions made by this thesis can be summarized as: The development of a novel framework for interworked heterogeneous mobile data networks in a NGMN environment. The final design conveniently enables 3G cellular technologies (such as the Universal Mobile Telecommunications Systems (UMTS) or Code Division Multiple Access 2000 (CDMA2000) type systems), Wireless Local Area Networking (WLAN) technologies, and Wireless Metropolitan Area Networking (WMAN) technologies (e.g., Broadband Wireless Access (BWA) systems such as WiMAX) to interwork under a common signaling platform. The introduction of a novel unified/centralized mobility and session management platform by exploiting the IMS as a universal coupling mediator for real-time session negotiation and management. This enables a roaming user to seamlessly handoff sessions between different heterogeneous networks. As secondary outcomes of this thesis, an analytical framework and an OPNET simulation framework are developed for analyzing vertical handoff performance. This OPNET simulation platform is suitable for commercial use

    World Class Supply Chain 2019: Next Generation Ideas

    Get PDF
    Next Generation Ideas, being the theme for the Fourth Annual World Class Supply Chain Summit, reflected summit’s focus on understanding what is becoming and what will continue to be of increasingly of high priority for current and future supply chain professionals. The summit, which was held on May 8th, 2019 in Milton, Ontario, brought together invited executives, scholars, and students to present and carefully examine a range of emerging ideas that are worthy of the supply chain community’s interest. The diversity of such ideas (e.g., new technologies, geopolitical developments, and the role of supply chain analytics) necessitated a diverse range of perspectives for structuring the summit deliberations. This was done through a summit program comprising three presentations to feature the following perspectives: Perspectives of a vastly experienced industry executive perspective who has amassed an extensive body of material on ecological considerations in supply chains Perspectives of an economist with evidence-based understanding of how decisions by national governments impact firms with both domestic and transnational supply chains Perspectives of a supply chain scholar whose research projects are strongly motivated by how companies have had (and will have) to rethink their distribution networks From the formal presentations and the question and answer component for each presentation, the essence of the insights could be summarized by this notion: While firms must still exemplify traditional supply chain fundamentals (trusted partners, robust IT infrastructure, etc.), they face the additional and an increasingly pressing imperative of needing the agility to be responsive to changes, especially from customers and competitors. Arguably, this is not an original statement because one can make a convincing case that dynamic change has always been a feature of the business landscape. Rather than originality, the statement is meant to underscore that, at this time in the development of the supply chain field, practitioners seem to be experiencing a very distinct level of bewilderment about the array of changes to be contemplated. The summit not only brought that bewilderment to the fore, it also: facilitated discussion of the opportunities resulting from the changes presented real-world examples of innovative and entrepreneurial responses to the changes addressed the interests and concerns of students - the next generation of supply chain professionals This white paper reports on (1) the substantive specifics of those elements of the summit and (2) issues requiring further study in order to be understood more clearly

    Enhanced Mobile Networking using Multi-connectivity and Packet Duplication in Next-Generation Cellular Networks

    Get PDF
    Modern cellular communication systems need to handle an enormous number of users and large amounts of data, including both users as well as system-oriented data. 5G is the fifth-generation mobile network and a new global wireless standard that follows 4G/LTE networks. The uptake of 5G is expected to be faster than any previous cellular generation, with high expectations of its future impact on the global economy. The next-generation 5G networks are designed to be flexible enough to adapt to modern use cases and be highly modular such that operators would have the flexibility to provide selective features based on user demand that could be implemented without investment in additional infrastructure. Thus, the underlying cellular network that is capable of delivering these expectations must be able to handle high data rates with low latency and ultra-reliability to fulfill these growing needs. Communication in the sub-6 GHz range cannot provide high throughputs due to the scarcity of spectrum in these bands. Using frequencies in FR2 or millimeter wave (mmWave) range for communication can provide large data rates and cover densely populated areas, but only over short distances as they are susceptible to blockages. This is why dense deployments of mmWave base stations are being considered to achieve very high data rates. But, such architectures lack the reliability needed to support many V2X applications, especially under mobility scenarios. As we have discussed earlier, 5G and beyond 5G networks must also account for UE\u27s mobility as they are expected to maintain their level of performance under different mobility scenarios and perform better than traditional networks. Although 5G technology has developed significantly in recent years, there still exists a critical gap in understanding how all these technologies would perform under mobility. There is a need to analyze and identify issues that arise with mobility and come up with solutions to overcome these hurdles without compromising the performance of these networks. Multi-connectivity (MC) refers to simultaneous connectivity with multiple radio access technologies or bands and potentially represents an important solution for the ongoing 5G deployments towards improving their performance. To address the network issues that come with mobility and fill that gap, this dissertation investigates the impact of multi-connectivity on next-generation networks from three distinct perspectives, 1) mobility enhancement using multi-connectivity in 5G networks, 2) improving reliability in mobility scenarios using multi-Connectivity with packet duplication, and 3) single grant multiple uplink scheme for performance improvement in mobility scenarios. The traditional macro-cell architecture of cellular networks that cover large geographical areas will struggle to deliver the dense coverage, low latency, and high bandwidth required by some 5G applications. Thus, 5G networks must utilize ultra-dense deployment of access points operating at higher mmWave frequency bands. But, for such dense networks, user mobility could be particularly challenging as it would reduce network efficiency and user-perceived service quality due to frequent handoffs. Multi-connectivity is seen as a key enabler in improving the performance of these next-generation networks. It enhances the system performance by providing multiple simultaneous links between the user equipment (UE) and the base stations (BS) for data transfer. Also, it eliminates the time needed to deal with frequent handoffs, link establishment, etc. Balancing the trade-offs among handoff rate, service delay, and achievable coverage/data rate in heterogeneous, dense, and diverse 5G cellular networks is, therefore, an open challenge. Hence, in this dissertation, we analyze how mobility impacts the performance of current Ultra-dense mmWave network (UDN) architecture in a city environment and discuss improvements for reducing the impact of mobility to meet 5G specifications using multi-connectivity. Current handover protocols, by design, suffer from interruption even if they are successful and, at the same time, carry the risk of failures during execution. The next-generation wireless networks, like 5G New Radio, introduce even stricter requirements that cannot be fulfilled with the traditional hard handover concept. Another expectation from these services is extreme reliability that will not tolerate any mobility-related failures. Thus, in this dissertation, we explore a novel technique using packet duplication and evaluate its performance under various mobility scenarios. We study how packet duplication can be used to meet the stringent reliability and latency requirements of modern cellular networks as data packets are duplicated and transmitted concurrently over two independent links. The idea is to generate multiple instances (duplicates) of a packet and transmit them simultaneously over different uncorrelated channels with the aim of reducing the packet failure probability. We also propose enhancements to the packet duplication feature to improve radio resource utilization. The wide variety of use cases in the 5G greatly differs from the use cases considered during the design of third-generation (3G) and fourth-generation (4G) long-term evolution (LTE) networks. Applications like autonomous driving, IoT applications, live video, etc., are much more uplink intensive as compared to traditional applications. However, the uplink performance is often, by design, lower than the downlink; hence, 5G must improve uplink performance. Hence, to meet the expected performance levels, there is a need to explore flexible network architectures for 5G networks. In this work, we propose a novel uplink scheme where the UE performs only a single transmission on a common channel, and every base station that can receive this signal would accept and process it. In our proposed architecture, a UE is connected to multiple mmWave capable distributed units (DUs), which are connected to a single gNB-central unit. In an ultra-dense deployment with multiple mmWave base stations around the UE, this removes the need to perform frequent handovers and allows high mobility with reduced latency. We develop and evaluate the performance of such a system for high throughput and reliable low latency communication under various mobility scenarios. To study the impact of mobility on next-generation networks, this work develops and systematically analyzes the performance of the 5G networks under mobility. We also look into the effect of increasing the number of users being served on the network. As a result, these studies are intended to understand better the network requirements for handling mobility and network load with multi-connectivity. This dissertation aims to achieve clarity and also proposes solutions for resolving these real-world network mobility issues

    Nanosatellites constellation as an IoT communication platform for near equatorial countries

    Get PDF
    Anytime, anywhere access for real-time intelligence by Internet of Things (IoT) is changing the way that the whole world will operate as it moves toward data driven technologies. Over the next five years, IoT related devices going to have a dramatic breakthrough in current and new applications, not just on increased efficiency and cost reduction on current system, but it also will make trillion-dollar revenue generation and improve customer satisfaction. IoT communications is the networking of intelligent devices which enables data collection from remote assets. It covers a broad range of technologies and applications which connect to the physical world while allowing key information to be transferred automatically. The current terrestrial wireless communications technologies used to enable this connectivity include GSM, GPRS, 3G, LTE, WIFI, WiMAX and LoRa. These connections occur short to medium range distance however, none of them can cover a whole country or continent and the networks are getting congested with the multiplication of IoT devices. In this study, we discuss a conceptual design of a nanosatellite constellation those can provide a space-based communication platform for IoT devices for near Equatorial countries. The constellation design i.e. the orbital plane and number of satellites and launch deployment concepts are presented

    An AI-based incumbent protection system for collaborative intelligent radio networks

    Get PDF
    Since the early days of wireless communication, wireless spectrum has been allocated according to a static frequency plan, whereby most of the spectrum is licensed for exclusive use by specific services or radio technologies. While some spectrum bands are overcrowded, many other bands are heavily underutilized. As a result, there is a shortage of available spectrum to deploy emerging technologies that require high demands on data like 5G. Several global efforts address this problem by providing multi-tier spectrum sharing frameworks, for example, the Citizens Broadband Radio Service (CBRS) and Licensed Shared Access (LSA) models, to increase spectrum reuse. In these frameworks, the incumbent (i.e., the technology that used the spectrum exclusively in the past) has to be protected against service disruptions caused by the transmissions of the new technologies that start using the same spectrum. However, these approaches suffer from two main problems. First, spectrum re-allocation to new uses is a slow process that may take years. Second, they do not scale fast since it requires a centralized infrastructure to protect the incumbent and coordinate and grant access to the shared spectrum. As a solution, the Spectrum Collaboration Challenge (SC2) has shown that the collaborative intelligent radio networks (CIRNs) -- artificial intelligence (AI)-based autonomous wireless networks that collaborate -- can share and reuse spectrum efficiently without any coordination and with the guarantee of incumbent protection. In this article, we present the architectural design and the experimental validation of an incumbent protection system for the next generation of spectrum sharing frameworks. The proposed system is a two-step AI-based algorithm that recognizes, learns, and proactively predicts the incumbent's transmission pattern with an accuracy above 95 percent in near real time (less than 300 ms). The proposed algorithm was validated in Colosseum, the RF channel emulator built for the SC2 competition, using up to two incumbents simultaneously with different transmission patterns and sharing spectrum with up to five additional CIRNs
    corecore