13 research outputs found

    A Novel Attack and Throughput-Aware Routing and Wavelength Assignment Algorithm in Transparent Optical Networks

    Get PDF
    The transparency feature of All Optical Wavelength Division Multiplexing (WDM) Networks makes it an interesting topic of study. Although characterized by the high throughput, low bit error rate and low noise, Transparent Optical Networks are still considered prone to attacks. The transparency of the network and the lack of opto-electronic conversion allow malicious signals to propagate without being detected. This unnoticeable propagation results in performance degradation and damages the throughput of the network. While several approaches have been focusing on hardware based detective measures, this paper proposes a preventive throughput and attack aware algorithm based on secure topology design. This approach gives enough flexibility to the customer to choose the level of security and throughput that they want to achieve in the network. Namely, the algorithm aims at routing lightpaths in such a way as to minimize the worst case possible damage that can result from different physical-layer attacks. At the same time, the routes have to be selected in such a way as to ensure the desired throughput level. Consequently, two objective criteria for the Routing and Wavelength Assignment (RWA) problem are defined. The first one is referred to as the Maximum Lightpath Attack Radius (maxLAR), while the second is referred to as minimizing the blocking probability. Based on this, the routing sub-problem is formulated as mixed integer liner program (MILP). Tests are performed on small networks at the time being. When simulating attacks, results indicate that the formulation achieves significantly better results for the Maximum Lightpath Attack Radius and Minimum Blocking Probability

    Joint optimization of topology, switching, routing and wavelength assignment

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 279-285).To provide end users with economic access to high bandwidth, the architecture of the next generation metropolitan area networks (MANs) needs to be judiciously designed from the cost perspective. In addition to a low initial capital investment, the ultimate goal is to design networks that exhibit excellent scalability - a decreasing cost-per-node-per-unit-traffic as user number and transaction size increase. As an effort to achieve this goal, in this thesis we search for the scalable network architectures over the solution space that embodies the key aspects of optical networks: fiber connection topology, switching architecture selection and resource dimensioning, routing and wavelength assignment (RWA). Due to the inter-related nature of these design elements, we intended to solve the design problem jointly in the optimization process in order to achieve over-all good performance. To evaluate how the cost drives architectural tradeoffs, an analytical approach is taken in most parts of the thesis by first focusing on networks with symmetric and well defined structures (i.e., regular networks) and symmetric traffic patterns (i.e., all-to-all uniform traffic), which are fair representations that give us suggestions of trends, etc.(cont.) We starts with a examination of various measures of regular topologies. The average minimum hop distance plays a crucial role in evaluating the efficiency of network architecture. From the perspective of designing optical networks, the amount of switching resources used at nodes is proportional to the average minimum hop distance. Thus a smaller average minimum hop distance translates into a lower fraction of pass-through traffic and less switching resources required. Next, a first-order cost model is set up and an optimization problem is formulated for the purpose of characterizing the tradeoffs between fiber and switching resources. Via convex optimization techniques, the joint optimization problem is solved analytically for (static) uniform traffic and symmetric networks. Two classes of regular graphs - Generalized Moore Graphs and A-nearest Neighbors Graphs - are identified to yield lower and upper cost bounds, respectively. The investigation of the cost scalability further demonstrates the advantage of the Generalized Moore Graphs as benchmark topologies: with linear switching cost structure, the minimal normalized cost per unit traffic decreases with increasing network size for the Generalized Moore Graphs and their relatives.(cont.) In comparison, for less efficient fiber topologies (e.g., A-nearest Neighbors) and switching cost structures (e.g., quadratic cost), the minimal normalized cost per unit traffic plateaus or even increases with increasing network size. The study also reveals other attractive properties of Generalized Moore Graphs in conjunction with minimum hop routing - the aggregate network load is evenly distributed over each fiber. Thus, Generalized Moore Graphs also require the minimum number of wavelengths to support a given uniform traffic demand. Further more, the theoretical works on the Generalized Moore Graphs and their close relatives are extended to study more realistic design scenarios in two aspects. One aspect addresses the irregular topologies and (static) non-uniform traffic, for which the results of Generalized Moore networks are used to provide useful estimates of network cost, and are thus offering good references for cost-efficient optical networks. The other aspect deals with network design under random demands. Two optimization formulations that incorporate the traffic variability are presented.(cont.) The results show that as physical architecture, Generalized Moore Graphs are most robust (in cost) to the demand uncertainties. Analytical results also provided design guidelines on how optimum dimensioning, network connectivity, and network costs vary as functions of risk aversion, service level requirements, and probability distributions of demands.by Kyle Chi Guan.Ph.D

    Virtualisation and resource allocation in MECEnabled metro optical networks

    Get PDF
    The appearance of new network services and the ever-increasing network traffic and number of connected devices will push the evolution of current communication networks towards the Future Internet. In the area of optical networks, wavelength routed optical networks (WRONs) are evolving to elastic optical networks (EONs) in which, thanks to the use of OFDM or Nyquist WDM, it is possible to create super-channels with custom-size bandwidth. The basic element in these networks is the lightpath, i.e., all-optical circuits between two network nodes. The establishment of lightpaths requires the selection of the route that they will follow and the portion of the spectrum to be used in order to carry the requested traffic from the source to the destination node. That problem is known as the routing and spectrum assignment (RSA) problem, and new algorithms must be proposed to address this design problem. Some early studies on elastic optical networks studied gridless scenarios, in which a slice of spectrum of variable size is assigned to a request. However, the most common approach to the spectrum allocation is to divide the spectrum into slots of fixed width and allocate multiple, consecutive spectrum slots to each lightpath, depending on the requested bandwidth. Moreover, EONs also allow the proposal of more flexible routing and spectrum assignment techniques, like the split-spectrum approach in which the request is divided into multiple "sub-lightpaths". In this thesis, four RSA algorithms are proposed combining two different levels of flexibility with the well-known k-shortest paths and first fit heuristics. After comparing the performance of those methods, a novel spectrum assignment technique, Best Gap, is proposed to overcome the inefficiencies emerged when combining the first fit heuristic with highly flexible networks. A simulation study is presented to demonstrate that, thanks to the use of Best Gap, EONs can exploit the network flexibility and reduce the blocking ratio. On the other hand, operators must face profound architectural changes to increase the adaptability and flexibility of networks and ease their management. Thanks to the use of network function virtualisation (NFV), the necessary network functions that must be applied to offer a service can be deployed as virtual appliances hosted by commodity servers, which can be located in data centres, network nodes or even end-user premises. The appearance of new computation and networking paradigms, like multi-access edge computing (MEC), may facilitate the adaptation of communication networks to the new demands. Furthermore, the use of MEC technology will enable the possibility of installing those virtual network functions (VNFs) not only at data centres (DCs) and central offices (COs), traditional hosts of VFNs, but also at the edge nodes of the network. Since data processing is performed closer to the enduser, the latency associated to each service connection request can be reduced. MEC nodes will be usually connected between them and with the DCs and COs by optical networks. In such a scenario, deploying a network service requires completing two phases: the VNF-placement, i.e., deciding the number and location of VNFs, and the VNF-chaining, i.e., connecting the VNFs that the traffic associated to a service must transverse in order to establish the connection. In the chaining process, not only the existence of VNFs with available processing capacity, but the availability of network resources must be taken into account to avoid the rejection of the connection request. Taking into consideration that the backhaul of this scenario will be usually based on WRONs or EONs, it is necessary to design the virtual topology (i.e., the set of lightpaths established in the networks) in order to transport the tra c from one node to another. The process of designing the virtual topology includes deciding the number of connections or lightpaths, allocating them a route and spectral resources, and finally grooming the traffic into the created lightpaths. Lastly, a failure in the equipment of a node in an NFV environment can cause the disruption of the SCs traversing the node. This can cause the loss of huge amounts of data and affect thousands of end-users. In consequence, it is key to provide the network with faultmanagement techniques able to guarantee the resilience of the established connections when a node fails. For the mentioned reasons, it is necessary to design orchestration algorithms which solve the VNF-placement, chaining and network resource allocation problems in 5G networks with optical backhaul. Moreover, some versions of those algorithms must also implements protection techniques to guarantee the resilience system in case of failure. This thesis makes contribution in that line. Firstly, a genetic algorithm is proposed to solve the VNF-placement and VNF-chaining problems in a 5G network with optical backhaul based on star topology: GASM (genetic algorithm for effective service mapping). Then, we propose a modification of that algorithm in order to be applied to dynamic scenarios in which the reconfiguration of the planning is allowed. Furthermore, we enhanced the modified algorithm to include a learning step, with the objective of improving the performance of the algorithm. In this thesis, we also propose an algorithm to solve not only the VNF-placement and VNF-chaining problems but also the design of the virtual topology, considering that a WRON is deployed as the backhaul network connecting MEC nodes and CO. Moreover, a version including individual VNF protection against node failure has been also proposed and the effect of using shared/dedicated and end-to-end SC/individual VNF protection schemes are also analysed. Finally, a new algorithm that solves the VNF-placement and chaining problems and the virtual topology design implementing a new chaining technique is also proposed. Its corresponding versions implementing individual VNF protection are also presented. Furthermore, since the method works with any type of WDM mesh topologies, a technoeconomic study is presented to compare the effect of using different network topologies in both the network performance and cost.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    Traffic grooming and wavelength conversion in optical networks

    Get PDF
    Wavelength Division Multiplexing (WDM) using wavelength routing has emerged as the dominant technology for use in wide area and metropolitan area networks. Traffic demands in networks today are characterized by dynamic, heterogeneous flows. While each wavelength has transmission capacity at gigabit per second rates, users require connections at rates that are lower than the full wavelength capacity. In this thesis, we explore network design and operation methodologies to improve the network utilization and blocking performance of wavelength routing networks which employ a layered architecture with electronic and optical switching. First we provide an introduction to first generation SONET/SDH networks and wavelength routing networks, which employ optical crossconnects. We explain the need and role of wavelength conversion in optical networks and present an algorithm to optimally place wavelength conversion devices at the network nodes so as to optimize blocking performance. Our algorithm offers significant savings in computation time when compared to the exhaustive method.;To make the network viable and cost-effective, it must be able to offer sub-wavelength services and be able to pack these services efficiently onto wavelengths. The act of multiplexing, demultiplexing and switching of sub-wavelength services onto wavelengths is defined as traffic grooming. Constrained grooming networks perform grooming only at the network edge. Sparse grooming networks perform grooming at the network edge and the core. We study and compare the effect of traffic grooming on blocking performance in such networks through simulations and analyses. We also study the issue of capacity fairness in such networks and develop a connection admission control (CAC) algorithm to improve the fairness among connections with different capacities. We finally address the issues involved in dynamic routing and wavelength assignment in survivable WDM grooming networks. We develop two schemes for grooming primary and backup traffic streams onto wavelengths: Mixed Primary-Backup Grooming Policy (MGP) and Segregated Primary-Backup Grooming Policy (SGP). MGP is useful in topologies such as ring, characterized by low connectivity and high load correlation and SGP is useful in topologies, such as mesh-torus, with good connectivity and a significant amount of traffic switching and mixing at the nodes

    Evaluation of data centre networks and future directions

    Get PDF
    Traffic forecasts predict a more than threefold increase in the global datacentre workload in coming years, caused by the increasing adoption of cloud and data-intensive applications. Consequently, there has been an unprecedented need for ultra-high throughput and minimal latency. Currently deployed hierarchical architectures using electronic packet switching technologies are costly and energy-inefficient. Very high capacity switches are required to satisfy the enormous bandwidth requirements of cloud datacentres and this limits the overall network scalability. With the maturity of photonic components, turning to optical switching in data centres is a viable option to accommodate greater bandwidth and network flexibility while potentially minimising the latency, cost and power consumption. Various DCN architectures have been proposed to date and this thesis includes a comparative analysis of such electronic and optical topologies to judge their suitability based on network performance parameters and cost/energy effectiveness, while identifying the challenges faced by recent DCN infrastructures. An analytical Layer 2 switching model is introduced that can alleviate the simulation scalability problem and evaluate the performance of the underlying DCN architecture. This model is also used to judge the variation in traffic arrival/offloading at the intermediate queueing stages and the findings are used to derive closed form expressions for traffic arrival rates and delay. The results from the simulated network demonstrate the impact of buffering and versubscription and reveal the potential bottlenecks and network design tradeoffs. TCP traffic forms the bulk of current DCN workload and so the designed network is further modified to include TCP flows generated from a realistic traffic generator for assessing the impact of Layer 4 congestion control on the DCN performance with standard TCP and datacentre specific TCP protocols (DCTCP). Optical DCN architectures mostly concentrate on core-tier switching. However, substantial energy saving is possible by introducing optics in the edge tiers. Hence, a new approach to optical switching is introduced using Optical ToR switches which can offer better delay performance than commodity switches of similiar size, while having far less power dissipation. An all-optical topology has been further outlined for the efficient implementation of the optical switch meeting the future scalability demands

    Small-world interconnection networks for large parallel computer systems

    Get PDF
    The use of small-world graphs as interconnection networks of multicomputers is proposed and analysed in this work. Small-world interconnection networks are constructed by adding (or modifying) edges to an underlying local graph. Graphs with a rich local structure but with a large diameter are shown to be the most suitable candidates for the underlying graph. Generation models based on random and deterministic wiring processes are proposed and analysed. For the random case basic properties such as degree, diameter, average length and bisection width are analysed, and the results show that a fast transition from a large diameter to a small diameter is experienced when the number of new edges introduced is increased. Random traffic analysis on these networks is undertaken, and it is shown that although the average latency experiences a similar reduction, networks with a small number of shortcuts have a tendency to saturate as most of the traffic flows through a small number of links. An analysis of the congestion of the networks corroborates this result and provides away of estimating the minimum number of shortcuts required to avoid saturation. To overcome these problems deterministic wiring is proposed and analysed. A Linear Feedback Shift Register is used to introduce shortcuts in the LFSR graphs. A simple routing algorithm has been constructed for the LFSR and extended with a greedy local optimisation technique. It has been shown that a small search depth gives good results and is less costly to implement than a full shortest path algorithm. The Hilbert graph on the other hand provides some additional characteristics, such as support for incremental expansion, efficient layout in two dimensional space (using two layers), and a small fixed degree of four. Small-world hypergraphs have also been studied. In particular incomplete hypermeshes have been introduced and analysed and it has been shown that they outperform the complete traditional implementations under a constant pinout argument. Since it has been shown that complete hypermeshes outperform the mesh, the torus, low dimensional m-ary d-cubes (with and without bypass channels), and multi-stage interconnection networks (when realistic decision times are accounted for and with a constant pinout), it follows that incomplete hypermeshes outperform them as well

    Optical processing devices and techniques for next generation optical networks

    Get PDF
    Doutoramento em FísicaEste trabalho surge do interesse em substituir os nós de rede óptica baseados maioritariamente em electrónica por nós de rede baseados em tecnologia óptica. Espera-se que a tecnologia óptica permita maiores débitos binários na rede, maior transparência e maior eficiência através de novos paradigmas de comutação. Segundo esta visão, utilizou-se o MZI-SOA, um dispositivo semicondutor integrado hibridamente, para realizar funcionalidades de processamento óptico de sinal necessárias em nós de redes ópticas de nova geração. Nas novas redes ópticas são utilizados formatos de modulação avançados, com gestão da fase, pelo que foi estudado experimentalmente e por simulação o impacto da utilização destes formatos no desempenho do MZI-SOA na conversão de comprimento de onda e formato, em várias condições de operação. Foram derivadas regras de utilização para funcionamento óptimo. Foi também estudado o impacto da forma dos pulsos do sinal no desempenho do dispositivo. De seguida, o MZI-SOA foi utilizado para realizar funcionalidades temporais ao nível do bit e do pacote. Foi investigada a operação de um conversor de multiplexagem por divisão no comprimento de onda para multiplexagem por divisão temporal óptica, experimentalmente e por simulação, e de um compressor e descompressor de pacotes, por simulação. Para este último, foi investigada a operação com o MZI-SOA baseado em amplificadores ópticos de semicondutor com geometria de poço quântico e ponto quântico. Foi também realizado experimentalmente um ermutador de intervalos temporais que explora o MZI-SOA como conversor de comprimento de onda e usa um banco de linhas de atraso ópticas para introduzir no sinal um atraso seleccionável. Por fim, foi estudado analiticamente, experimentalmente e por simulação o impacto de diafonia em redes ópticas em diversas situações. Extendeu-se um modelo analítico de cálculo de desempenho para contemplar sinais distorcidos e afectados por diafonia. Estudou-se o caso de sinais muito filtrados e afectados por diafonia e mostrou-se que, para determinar correctamente as penalidades que ocorrem, ambos os efeitos devem ser considerados simultaneamente e não em separado. Foi estudada a escalabilidade limitada por diafonia de um comutador de intervalos temporais baseado em MZI-SOA a operar como comutador espacial. Mostrou-se também que sinais afectados fortemente por não-linearidades podem causar penalidades de diafonia mais elevadas do que sinais não afectados por não-linearidades. Neste trabalho foi demonstrado que o MZI-SOA permite construir vários e pertinentes circuitos ópticos, funcionando como bloco fundamental de construção, tendo sido o seu desempenho analisado, desde o nível de componente até ao nível de sistema. Tendo em conta as vantagens e desvantagens do MZI-SOA e os desenvolvimentos recentes de outras tecnologias, foram sugeridos tópicos de investigação com o intuito de evoluir para as redes ópticas de nova geração.The main motivation for this work is the desire to upgrade today’s opaque network nodes, which are plagued by inherent limitations of its constitutive electronics, by all-optical transparent network nodes. The all-optical promise consists in delivering ever higher bit rates, more transparency, and unsurpassed efficiency associated to sophisticated all-optical switching paradigms. In this light, the integrated MZI-SOA has been selected as the fundamental building block for this investigation of all-optical processing techniques and functions necessary for developing the next generation alloptical networks. Next generation optical networks will use advanced phase-managed modulation formats. Accordingly, the first simulation and experimental investigation assesses the performance of MZI-SOA based wavelength and format converter circuits for advanced modulation formats. Rules are derived for ensuring optimal MZI-SOA operation. The impact of the pulse shape on both the wavelength and format conversion processes is also addressed. More complex MZI-SOA based implementations of bit-level, and packet-level, time domain processing functions are analysed. A MZI-SOA based wavelength division multiplexing to time division multiplexing converter is experimentally investigated and compared to similar simulation results. The performance of packet compressor and decompressor circuit schemes, based on quantum well and quantum dots SOA devices, is analysed through simulation techniques. A MZI-SOA wavelength converter based selectable packet delay time slot interchanger, which uses an optical delay line bank, is experimentally demonstrated. Finally, the impact of crosstalk on all-optical networks is studied analytically, experimentally, and through simulations. An extant analytical model for assessing the performance of crosstalk impaired signals is improved for dealing also with distorted signals. Using the extended model, it is shown that heavily filtered signals are more seriously affected by crosstalk than unfiltered signals. Hence, accurate calculation of penalties stemming from both filtering and crosstalk, must model these effects jointly. The crosstalk limited scalability of a MZI-SOA space switched time slot interchanger is also assessed employing this method. An additional study points to the conclusion that crosstalk caused by signals impaired by non-linear effects can have a more significant detrimental impact on optical systems performance than that of the crosstalk caused by a signal unimpaired by non-linearities. On the whole, it has been demonstrated that the MZI-SOA is a suitable building block for a variety of optical processing circuits required for the next generation optical networks. Its performance capabilities have been established in several optical circuits, from the component up to the system level. Next steps towards the implementation of next generation optical networks have been suggested according to the recent developments and the MZI-SOA’s strengths and drawbacks, in order to pursue the goal of higher bit rate, more transparent, and efficient optical networks

    High-multiplicity space-division multiplexed transmission systems

    Get PDF

    High-multiplicity space-division multiplexed transmission systems

    Get PDF
    corecore