11 research outputs found

    New results for the Shannon channel capacity in generalized fading channels

    Full text link

    Multi-user Scheduling Schemes for Simultaneous Wireless Information and Power Transfer

    Full text link
    In this paper, we study the downlink multi-user scheduling problem for a time-slotted system with simultaneous wireless information and power transfer. In particular, in each time slot, a single user is scheduled to receive information, while the remaining users opportunistically harvest the ambient radio frequency (RF) energy. We devise novel scheduling schemes in which the tradeoff between the users' ergodic capacities and their average amount of harvested energy can be controlled. To this end, we modify two fair scheduling schemes used in information-only transfer systems. First, proportionally fair maximum normalized signal-to-noise ratio (N-SNR) scheduling is modified by scheduling the user having the jth ascendingly ordered (rather than the maximum) N-SNR. We refer to this scheme as order-based N-SNR scheduling. Second, conventional equal-throughput (ET) fair scheduling is modified by scheduling the user having the minimum moving average throughput among the set of users whose N-SNR orders fall into a certain set of allowed orders Sa (rather than the set of all users). We refer to this scheme as order-based ET scheduling. The feasibility conditions required for the users to achieve ET with this scheme are also derived. We show that the smaller the selection order j for the order-based N-SNR scheme, and the lower the orders in Sa for the order-based ET scheme, the higher the average amount of energy harvested by the users at the expense of a reduction in their ergodic capacities. We analyze the performance of the considered scheduling schemes for independent and non-identically distributed (i.n.d.) Ricean fading channels, and provide closed-form results for the special case of i.n.d. Rayleigh fading.Comment: 6 pages, 3 figures. Submitted for possible conference publicatio

    Extended Generalized-K (EGK): A New Simple and General Model for Composite Fading Channels

    Full text link
    In this paper, we introduce a generalized composite fading distribution (termed extended generalized-K (EGK)) to model the envelope and the power of the received signal in millimeter wave (60 GHz or above) and free-space optical channels. We obtain the first and the second-order statistics of the received signal envelope characterized by the EGK composite fading distribution. In particular, expressions for probability density function, cumulative distribution function, level crossing rate and average fade duration, and fractional moments are derived. In addition performance measures such as amount of fading, average bit error probability, outage probability, average capacity, and outage capacity are offered in closed-form. Selected numerical and computer simulation examples validate the accuracy of the presented mathematical analysis.Comment: Composite fading distribution, generalized-K distribution, probability density function, cumulative distribution function, fractional moments, level crossing rate, amount of fade duration, moments, amount of fading, average bit error probability, average capacit

    Severely Fading MIMO Channels

    Get PDF
    In most wireless communications research, the channel models considered experience less severe fading than the classic Rayleigh fading case. In this thesis, however, we investigate MIMO channels where the fading is more severe. In these environments, we show that the coefficient of variation of the channel amplitudes is a good predictor of the link mutual information, for a variety of models. We propose a novel channel model for severely fading channels based on the complex multivariate t distribution. For this model, we are able to compute exact results for the ergodic mutual information and approximations to the outage probabilities for the mutual information. Applications of this work include wireless sensors, RF tagging, land-mobile, indoor-mobile, ground-penetrating radar, and ionospheric radio links. Finally, we point out that the methodology can also be extended to evaluate the mutual information of a cellular MIMO link and the performance of various MIMO receivers in a cellular scenario. In these cellular applications, the channel itself is not severely fading but the multivariate t distribution can be applied to model the effects of intercellular interference

    New results for the Shannon channel capacity in generalized fading channels

    No full text
    Novel, closed-form expressions for the average Shannon capacity of single-branch receivers, operating over generalized fading channels (Nakagami-m, Rice and Weibull), are derived. As an application, the optimum switching threshold for maximizing the data transmission rate of switched and stay combining receivers is obtained and several numerical results are presented. © 2005 IEEE

    Theoretical contributions for generalized scenarios of wireless channels

    Get PDF
    Orientador: Michel Daoud YacoubTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Recentemente, três novos modelos probabilísticos de canal, modelos a-u, ?-u e ?-u, foram propostos com o intuito de prover uma análise mais realística do sinal propagante. Por apresentarem um grau de liberdade a mais que os demais já existentes na literatura, um melhor ajuste a medidas de campo verificou-se com a utilização dos mesmos. Esta tese provê uma caracterização estatística para estes modelos de desvanecimento generalizados. Tal caracterização engloba tanto estatísticas de primeira como de segunda ordem. Aproximações simples e precisas para a soma de variáveis e processos aleatórios são propostas. Inúmeras métricas de desempenho em ambientes com e sem diversidade na recepção são investigadas de forma exata e aproximada. Dentre estas, podemos citar: probabilidade de outage, taxa de erro de bit, capacidade de canal, taxa de cruzamento de nível, duração média de desvanecimento, dentre outras. Além disso, mostra-se também qual das distribuições generalizadas melhor aproxima a soma de variáveis e processos Nakagami-m, uma vez que todas incluem Nakagami-m como caso especial. Finalmente, expressões exatas e aproximadas para a taxa de cruzamento de nível de canaisWeibull correlacionados e não idênticos em receptores multirramos são apresentadasAbstract: Recently, three new channel models, a-u, ?-u and ?-u, were proposed with the aim to provide a more realistic analysis of the propagate signal. Due to they have one degree of freedom more than those already existing in the literature, a better adjust to field measurement data was attested with their use. This thesis deals with the statistical characterization of these generalized fading models. Such a characterization includes both first and second order statistics. Simple and precise approximations to the sum of random variables and processes are proposed. Several performance metrics in scenarios with and without diversity are investigated in an exact and approximate manner. Among them, we may cite: outage probability, bit error probability, channel capacity, level crossing rate, average fade duration, such others. Furthermore, it is shown what is the generalized distribution that better approximate the sum of Nakagami-m variates and processes, once that all of them include Nakagami-m as special case. Finally, exact and approximate expressions for the crossing rates of non-identical correlated Weibull channels in multibranch receivers are presented.DoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétric
    corecore