96 research outputs found

    Jamming Cognitive Radios

    Get PDF
    The goal of this thesis is to identify and evaluate weaknesses in the rendezvous process for Cognitive Radio Networks (CRNs) in the presence of a Cognitive Jammer (CJ). Jamming strategies are suggested and tested for effectiveness. Methods for safe- guarding the Cognitive Radios (CRs) against a CJ are also explored. A simulation is constructed to set up a scenario of two CRs interacting with a CJ. Analysis of the simulation is conducted primarily at the waveform level. A hardware setup is constructed to analyze the system in the physical layer, verify the interactions from the simulation, and test in a low signal-to-interference and noise ratio (SINR) environment. The hardware used in this thesis is the Wireless Open-Access Research Platform. Performance metrics from open literature and independent testing are compared against those captured from the jamming tests. The goal of testing is to evaluate and quantify the ability to delay the rendezvous process of a CRN. There was some success in delaying rendezvous, even in a high SINR environment. Jamming strategies include a jammer that repeats an observed channel-hopping pattern, a jammer with random inputs using the same algorithm of the CRs, a jammer that estimates channel-hopping parameters based on observations, and a random channel-hopping jammer. Results were compared against control scenarios, consisting of no jamming and a jammer that is always jamming on the same channel as one of the CRs. The repeater, random inputs to the CR algorithm, observation-based estimation jammer, and the random channel hopping jammer were mildly successful in delaying rendezvous at about 0%, 9%, 0%, and 1%, respectively. The jammer that is always on the same channel as a CR had an overall rendezvous delay about 13% of the time

    Ultra-Wideband Spectrum Hole Identification Using Principal Components and Eigen Value Decomposition

    Get PDF
    Ultra-Wideband Spectrum Hole identification using Principal Components and Eigen Value Decomposition evolve a method of detecting spectrum hole from complex and corrupted wide band spectrum signal, due to the effect of noise spectrum hole detection is usually a challenge in wideband signal, as the presence of noise give rise to error alert, that is, noise can be misconstrued for signal. Dimensionality reduction was first used as the first level of denoising   technique, Principal component Analysis (PCA) was used in dimensioning Wide Band Spectrum Data; this was able to reduce the noise level in the signal which made it convenient for Fast Fourier Transform (FFT) to act on it.  FFT was used to decompose the signal to 64 sub band channels and on further reduction using principal Component Analysis (PCA), a 32 Level sub-band decomposition was carried out. Eigen Value generated shows that the magnitude of the signal to Noise ratio between Eigen Value 1 to 19 was high enough to show the that there exist a signal, while between 20 to 32 shows no signal by implication it indicates that these areas have high possibility of unoccupied spectrum holes

    Applications and Simulation of Femtocells in a Cognitive Radio Environment

    Get PDF
    Femtocells are small base stations that provide radio coverage for mobile devices in offices or homes.Throughout our project work we put forth a femtocell based cognitive radio architecture for enabling efficient multi-tiered access in next generation broadband wireless systems. The key requirements for femtocell deployment, its benefits, the usage model, design challenges and market issues will be investigated. This architecture combines the conventional femtocell concept with an infrastructure based overlay of a cognitive network. The merits of using a femtocell is enhanced coverage minimized interference and increased capacity. By incorporating a femtocell in a cognitive radio environment problems such as spectrum under-utilization can be solve. This is achieved by allowing secondary users to use the free and available spectrum. We provide experimental results to demonstrate the feasibility of such a model. The advantages and several bottlenecks in administering this concept are also illustrated. The purpose of this project is to explore the use of femtocells in present cellular systems to provide better coverage and deal with resource allocation by employing it in a cognitive radio environment

    SPECTRUM SENSING AND COOPERATION IN COGNITIVE-OFDM BASED WIRELESS COMMUNICATIONS NETWORKS

    Get PDF
    The world has witnessed the development of many wireless systems and applications. In addition to the large number of existing devices, such development of new and advanced wireless systems increases rapidly the demand for more radio spectrum. The radio spectrum is a limited natural resource; however, it has been observed that it is not efficiently utilized. Consequently, different dynamic spectrum access techniques have been proposed as solutions for such an inefficient use of the spectrum. Cognitive Radio (CR) is a promising intelligent technology that can identify the unoccupied portions of spectrum and opportunistically uses those portions with satisfyingly high capacity and low interference to the primary users (i.e., licensed users). The CR can be distinguished from the classical radio systems mainly by its awareness about its surrounding radio frequency environment. The spectrum sensing task is the main key for such awareness. Due to many advantages, Orthogonal Frequency Division Multiplexing system (OFDM) has been proposed as a potential candidate for the CR‟s physical layer. Additionally, the Fast Fourier Transform (FFT) in an OFDM receiver supports the performance of a wide band spectrum analysis. Multitaper spectrum estimation method (MTM) is a non-coherent promising spectrum sensing technique. It tolerates problems related to bad biasing and large variance of power estimates. This thesis focuses, generally, on the local, multi antenna based, and global cooperative spectrum sensing techniques at physical layer in OFDM-based CR systems. It starts with an investigation on the performance of using MTM and MTM with singular value decomposition in CR networks using simulation. The Optimal MTM parameters are then found. The optimal MTM based detector theoretical formulae are derived. Different optimal and suboptimal multi antenna based spectrum sensing techniques are proposed to improve the local spectrum sensing performance. Finally, a new concept of cooperative spectrum sensing is introduced, and new strategies are proposed to optimize the hard cooperative spectrum sensing in CR networks. The MTM performance is controlled by the half time bandwidth product and number of tapers. In this thesis, such parameters have been optimized using Monte Carlo simulation. The binary hypothesis test, here, is developed to ensure that the effect of choosing optimum MTM parameters is based upon performance evaluation. The results show how these optimal parameters give the highest performance with minimum complexity when MTM is used locally at CR. The optimal MTM based detector has been derived using Neyman-Pearson criterion. That includes probabilities of detection, false alarm and misses detection approximate derivations in different wireless environments. The threshold and number of sensed samples controlling is based on this theoretical work. In order to improve the local spectrum sensing performance at each CR, in the CR network, multi antenna spectrum sensing techniques are proposed using MTM and MTM with singular value decomposition in this thesis. The statistical theoretical formulae of the proposed techniques are derived including the different probabilities. ii The proposed techniques include optimal, that requires prior information about the primary user signal, and two suboptimal multi antenna spectrum sensing techniques having similar performances with different computation complexity; these do not need prior information about the primary user signalling. The work here includes derivations for the periodogram multi antenna case. Finally, in hard cooperative spectrum sensing, the cooperation optimization is necessary to improve the overall performance, and/or minimize the number of data to be sent to the main CR-base station. In this thesis, a new optimization method based on optimizing the number of locally sensed samples at each CR is proposed with two different strategies. Furthermore, the different factors that affect the hard cooperative spectrum sensing optimization are investigated and analysed and a new cooperation scheme in spectrum sensing, the master node, is proposed.Ministry of Interior-Kingdom of Saudi Arabi

    Performance Analysis of Secondary Users in Heterogeneous Cognitive Radio Network

    Get PDF
    Continuous increase in wireless subscriptions and static allocation of wireless frequency bands to the primary users (PUs) are fueling the radio frequency (RF) shortage problem. Cognitive radio network (CRN) is regarded as a solution to this problem as it utilizes the scarce RF in an opportunisticmanner to increase the spectrumefficiency. InCRN, secondary users (SUs) are allowed to access idle frequency bands opportunistically without causing harmful interference to the PUs. In CRN, the SUs determine the presence of PUs through spectrum sensing and access idle bands by means of dynamic spectrum access. Spectrum sensing techniques available in the literature do not consider mobility. One of the main objectives of this thesis is to include mobility of SUs in spectrum sensing. Furthermore, due to the physical characteristics of CRN where licensed RF bands can be dynamically accessed by various unknown wireless devices, security is a growing concern. This thesis also addresses the physical layer security issues in CRN. Performance of spectrum sensing is evaluated based on probability of misdetection and false alarm, and expected overlapping time, and performance of SUs in the presence of attackers is evaluated based on secrecy rates

    Spectrum Sensing Algorithms for Cognitive Radio Applications

    Get PDF
    Future wireless communications systems are expected to be extremely dynamic, smart and capable to interact with the surrounding radio environment. To implement such advanced devices, cognitive radio (CR) is a promising paradigm, focusing on strategies for acquiring information and learning. The first task of a cognitive systems is spectrum sensing, that has been mainly studied in the context of opportunistic spectrum access, in which cognitive nodes must implement signal detection techniques to identify unused bands for transmission. In the present work, we study different spectrum sensing algorithms, focusing on their statistical description and evaluation of the detection performance. Moving from traditional sensing approaches we consider the presence of practical impairments, and analyze algorithm design. Far from the ambition of cover the broad spectrum of spectrum sensing, we aim at providing contributions to the main classes of sensing techniques. In particular, in the context of energy detection we studied the practical design of the test, considering the case in which the noise power is estimated at the receiver. This analysis allows to deepen the phenomenon of the SNR wall, providing the conditions for its existence and showing that presence of the SNR wall is determined by the accuracy of the noise power estimation process. In the context of the eigenvalue based detectors, that can be adopted by multiple sensors systems, we studied the practical situation in presence of unbalances in the noise power at the receivers. Then, we shift the focus from single band detectors to wideband sensing, proposing a new approach based on information theoretic criteria. This technique is blind and, requiring no threshold setting, can be adopted even if the statistical distribution of the observed data in not known exactly. In the last part of the thesis we analyze some simple cooperative localization techniques based on weighted centroid strategies

    Research on Cognitive Radio within the Freeband-AAF project

    Get PDF
    corecore