10,042 research outputs found

    Mapping the Curricular Structure and Contents of Network Science Courses

    Full text link
    As network science has matured as an established field of research, there are already a number of courses on this topic developed and offered at various higher education institutions, often at postgraduate levels. In those courses, instructors adopted different approaches with different focus areas and curricular designs. We collected information about 30 existing network science courses from various online sources, and analyzed the contents of their syllabi or course schedules. The topics and their curricular sequences were extracted from the course syllabi/schedules and represented as a directed weighted graph, which we call the topic network. Community detection in the topic network revealed seven topic clusters, which matched reasonably with the concept list previously generated by students and educators through the Network Literacy initiative. The minimum spanning tree of the topic network revealed typical flows of curricular contents, starting with examples of networks, moving onto random networks and small-world networks, then branching off to various subtopics from there. These results illustrate the current state of consensus formation (including variations and disagreements) among the network science community on what should be taught about networks and how, which may also be informative for K--12 education and informal education.Comment: 17 pages, 11 figures, 2 tables; to appear in Cramer, C. et al. (eds.), Network Science in Education -- Tools and Techniques for Transforming Teaching and Learning (Springer, 2017, in press

    Methodology to use multimedia applications and mobile devices when teaching structural analysis

    Get PDF
    This work has as proposal the introduction of new technologies when teaching engineering, namely to use interactive multimedia resources and mobile devices as assistance to fight the failure in school performance and to motive students to learn Structural Analysis I of the 3rd year of the Civil Engineering course in the Faculty of Engineering of the University of Porto (FEUP). We introduce the problem, the results of approvals/failures and discontinuance of the subject. We also present the advantages of using information and communication technologies in higher education

    A study of the role of CBT [computer based training] and [the] use of CBT in enhancing marine engineering education and training standards

    Get PDF

    Development and implementation of a virtual laboratory for training process improvement in the mechanics of continuous media

    Get PDF
    The project arises from the need to develop improved teaching methodologies in field of the mechanics of continuous media. The objective is to offer the student a learning process to acquire the necessary theoretical knowledge, cognitive skills and the responsibility and autonomy to professional development in this area. Traditionally the teaching of the concepts of these subjects was performed through lectures and laboratory practice. During these lessons the students attitude was usually passive, and therefore their effectiveness was poor. The proposed methodology has already been successfully employed in universities like University Bochum, Germany, University the South Australia and aims to improve the effectiveness of knowledge acquisition through use by the student of a virtual laboratory. This laboratory allows to adapt the curricula and learning techniques to the European Higher Education and improve current learning processes in the University School of Public Works Engineers -EUITOP- of the Technical University of Madrid -UPM-, due there are not laboratories in this specialization. The virtual space is created using a software platform built on OpenSim, manages 3D virtual worlds, and, language LSL -Linden Scripting Language-, which imprints specific powers to objects. The student or user can access this virtual world through their avatar -your character in the virtual world- and can perform practices within the space created for the purpose, at any time, just with computer with internet access and viewfinder. The virtual laboratory has three partitions. The virtual meeting rooms, where the avatar can interact with peers, solve problems and exchange existing documentation in the virtual library. The interactive game room, where the avatar is has to resolve a number of issues in time. And the video room where students can watch instructional videos and receive group lessons. Each audiovisual interactive element is accompanied by explanations framing it within the area of knowledge and enables students to begin to acquire a vocabulary and practice of the profession for which they are being formed. Plane elasticity concepts are introduced from the tension and compression testing of test pieces of steel and concrete. The behavior of reticulated and articulated structures is reinforced by some interactive games and concepts of tension, compression, local and global buckling will by tests to break articulated structures. Pure bending concepts, simple and composite torsion will be studied by observing a flexible specimen. Earthquake resistant design of buildings will be checked by a laboratory test video

    Advanced Technology for Engineering Education

    Get PDF
    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results

    South Dakota State University Graduate Catalog 2004-2006

    Get PDF
    • …
    corecore