8 research outputs found

    Maintenance optimization of high voltage substation model

    Get PDF
    The real system from practice is selected for optimization purpose in this paper. We describe the real scheme of a high voltage (HV) substation in different work states. Model scheme of the HV substation 22 kV is demonstrated within the paper. The scheme serves as input model scheme for the maintenance optimization. The input reliability and cost parameters of all components are given: the preventive and corrective maintenance costs, the actual maintenance period (being optimized), the failure rate and mean time to repair - MTTR

    Optimization Model for Maintenance Planning of Loading Equipment in Open Pit Mines

    Get PDF
    Maintenance plays a significant role in operating costs in the mining industry. Improving this matter controls maintenance costs and enhances productivity and production effectively. Shovels are one of the most widely used loading machines in non-continuous activities. Thus, evaluating and optimizing their availability is one of the essential solutions to achieving high productivity and cost reduction. This paper presents a mathematical programming model to maximize availability and minimize the total expected costs. We programmed the proposed nonlinear planning model using the Symbiotic Organisms Search (SOS) meta-heuristic algorithm in Matlab software. It determines the optimal maintenance intervals for different parts of the shovel. The maintenance benefit analysis approach selects various maintenance activities in optimal maintenance intervals. The model is implemented in a practical case study, Chadormalu Iron Mine, to evaluate its performance. The failure distribution matches the Weibull distribution function. The computational results show the efficiency of the presented approach

    New method to minimize the preventive maintenance cost of series–parallel systems

    No full text
    General preventive maintenance model for input components of a system, which improves the reliability to ‘as good as new,’ was used to optimize the maintenance cost. The cost function of a maintenance policy was minimized under given availability constraint. An algorithm for first inspection vector of times was described and used on selected system example. A special ratio-criterion, based on the time dependent Birnbaum importance factor, was used to generate the ordered sequence of first inspection times. Basic system availability calculations of the paper were done by using simulation approach with parallel simulation algorithm for availability analysis. These calculations, based on direct Monte Carlo technique, were applied within the programming tool Matlab. A genetic algorithm optimization technique was used and briefly described to create the Matlab's algorithm to solve the problem of finding the best maintenance policy with a given restriction. Adjacent problem, which we called ‘reliability assurance,’ was also theoretically solved, concerning the increase of the cost when asymptotic availability value conforms to a given availability constraint

    Preventive maintenance and replacement scheduling : models and algorithms.

    Get PDF
    Preventive maintenance is a broad term that encompasses a set of activities aimed at improving the overall reliability and availability of a system. Preventive maintenance involves a basic trade-off between the costs of conducting maintenance/replacement activities and the cost savings achieved by reducing the overall rate of occurrence of system failures. Designers of preventive maintenance schedules must weigh these individual costs in an attempt to minimize the overall cost of system operation. They may also be interested in maximizing the system reliability, subject to some sort of budget constraint. In this dissertation, we present a complete discussion about the problem definition and review the literature. We develop new nonlinear mixed-integer optimization models, solve them by standard nonlinear optimization algorithms, and analyze their computational results. In addition, we extend the optimization models by considering engineering economy features and reformulate them as a multi-objective optimization model. We optimize this model by generational and steady state genetic algorithms as well as by a simulated annealing algorithm and demonstrate the computational results obtained by implementation of these algorithms. We perform a sensitivity analysis on the parameters of the optimization models and present a comparison between exact and metaheuristic algorithms in terms of computational efficiency and accuracy. Finally, we present a new mathematical function to model age reduction and improvement factor parameter used in optimization models. In addition, we develop a practical procedure to estimate the effect of maintenance activity on failure rate and effective age of multi component systems

    Implementation of lean within the cement industry.

    Get PDF
    Implementation of lean helps many organizations to improve their productivity and efficiency; on the other hand numerous organizations have failed to benefit from lean philosophy. The lean thinking was originated in the automobile manufacturing sector and it widely spreads within the discrete industries; however the today’s challenge is to implement the lean philosophy within continuous manufacturing industries and different organizations regardless to the type, size, or mission of the applicant organization. This has motivated the undertaken research to propose a standard generic transition steps which can be adopted by different organizations in order to become lean. The cement industry is ideal example of the continuous industry sector and it will be used to demonstrate that the lean philosophy is applicable to all deferent organisation types. There are numerous challenges facing the cement industry in today’s competitive environments; one of the major challenges is the capability of the cement industry to adopt and introduce the improvement approaches and techniques by which the overall enhancement can be achieved. The need for improving the efficiency of the cement production line is widely acknowledged in order to reduce the downtime rates, and satisfy high levels of market demand where the demand for cement is mostly second substance behind water. In response to this respect this thesis has investigated and addressed the implementation of the lean philosophy within the cement industry. The main contribution of this study is to convey the message to the decision makers that the lean philosophy is the proposed solution by which the continuous industry and different organisation types can be improved through eliminating or minimising wastes and non-value added activities within the production line

    A decision support model to improve rolling stock maintenance scheduling based on reliability and cost

    Get PDF
    Thesis (MEng)--Stellenbosch University, 2014.ENGLISH ABSTRACT: The demand for rail travel has increased over the years. As a result, it is becoming mandatory for railway industries to maintain very high availability of their assets to ensure that service levels are high. Railway industries require both their infrastructure and rolling stock assets maintained efficiently to sustain reliability. There has been on-going research on how maintenance can be carried out in a cost effective manner. However, the majority of this research has been done for infrastructure and the rolling stock maintenance has not been properly covered. The purpose of this research is to contribute to the maintenance sector of rolling stock for railway industries by developing a decision support model for rolling stock based on reliability and cost. The model is developed as an optimization problem of a system containing several components dependent on each other with different reliability characteristics. In this model, a mixed integer nonlinear problem is developed and solved using an exact method and metaheuristics methods. The Metrorail facility in Cape Town was chosen as a case study. Failure history and cost data were gathered from the facility and the information was applied to the model developed. The case study was investigated and different results were achieved using both exact and metaheuristics methods. The final result from the study is an optimal maintenance schedule based on reliability and cost. The developed model serves as a practical tool railway companies can adopt to schedule rolling stock maintenance to achieve a high level of reliability and at the same time maintaining minimum cost expenditure.AFRIKAANSE OPSOMMING: Die vraag na spoorvervoer het oor die jare toegeneem. Dus het dit belangrik geword dat die spoorweg se bates hoogs toeganklik moet wees om te verseker dat die vlak van dienslewering hoog bly. Die spoorweg industrie besef dat hulle infrastruktuur, lokomotiewe, waens ens. effektief in stand gehou moet word sodat dit betroubaar kan wees. Navorsing word nog steeds gedoen oor hoe instandhouding op ’n koste-effektiewe wyse gedoen kan word. Die meeste van hierdie navorsing gaan egter oor infrastruktuur en instandhouding word nie ordentlik gedek nie. Die doel met hierdie navorsing is om by te dra tot die instandhoudingsektor van die spoorweg deur om ’n besluit-ondersteunende model vir lokomotiewe, waens, ens wat op betroubaarheid en koste gegrond is, te ontwikkel. Die model is ontwikkel as ’n optimasie probleem van ’n sisteem wat verskillende komponente wat van mekaar afhanklik is maar oor verskillende betroubaarheidskenmerke beskik, inluit. In hierdie model word ’n gemengde, heeltal nie-lineêre probleem ontwikkel en met ’n eksakte metode en metaheuristiese metodes opgelos. Die Metrorail fasiliteit in Kaapstad is vir die gevalle studie gekies. Die geskiedenis van mislukkings en koste data is by die fasiliteit versamel en die inligting is op die model wat ontwikkel is, toegepas. Die gevalle studie is ondersoek, en verskillende resultate is met eksakte en metaheuristiese metodes bereik. Die finale uitkomste van die studie is ’n optimale instandhoudingskedule wat op betroubaarheid en koste gegrond is. Die model wat ontwikkel is dien as ’n praktiese instrument wat spoormaatskappye kan gebruik om die instandhouding van lokomotiewe, waens ens. te reël sodat ’n hoë vlak van betroubaarheid bereik kan word en kostes terselfdertyd tot ’n minimum beperk kan word

    Heuristiques efficaces pour l'optimisation de la performance des systèmes séries-parallèles

    Full text link
    Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201
    corecore