60 research outputs found

    New low-power 1.5-bit time-interleaved MDAC based on MOS capacitor amplification

    Get PDF
    15th IEEE International Conference on Electronics, Circuits and Systems, MaltaIn this paper a new time-interleaved 1.5-bit MDAC circuit is proposed. This circuit is well suited to be used in ultra low-power high-speed 4-to-8 bits pipeline ADCs. The required gain of two is implemented by switching a MOS capacitor from inversion into depletion within a clock-cycle. Low-power is achieved since no operational amplifiers are required but, instead, simple source-followers are used. Simulation results of a complete front-end stage of a 6-bit 2-channel pipeline ADC demonstrate the efficiency of the proposed technique

    Parametric analog signal amplification applied to nanoscale cmos wireless digital transceivers

    Get PDF
    Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e TecnologiaSignal amplification is required in almost every analog electronic system. However noise is also present, thus imposing limits to the overall circuit performance, e.g., on the sensitivity of the radio transceiver. This drawback has triggered a major research on the field, which has been producing several solutions to achieve amplification with minimum added noise. During the Fifties, an interesting out of mainstream path was followed which was based on variable reactance instead of resistance based amplifiers. The principle of these parametric circuits permits to achieve low noise amplifiers since the controlled variations of pure reactance elements is intrinsically noiseless. The amplification is based on a mixing effect which enables energy transfer from an AC pump source to other related signal frequencies. While the first implementations of these type of amplifiers were already available at that time, the discrete-time version only became visible more recently. This discrete-time version is a promising technique since it is well adapted to the mainstream nanoscale CMOS technology. The technique itself is based on the principle of changing the surface potential of the MOS device while maintaining the transistor gate in a floating state. In order words, the voltage amplification is achieved by changing the capacitance value while maintaining the total charge unchanged during an amplification phase. Since a parametric amplifier is not intrinsically dependent on the transconductance of the MOS transistor, it does not directly suffer from the intrinsic transconductance MOS gain issues verified in nanoscale MOS technologies. As a consequence, open-loop and opamp free structures can further emerge with this additional contribution. This thesis is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. The use of the latter is supported on the presentation of several circuits where the MOS Parametric Amplifier cell is well suited: small gain amplifier, comparator, discrete-time mixer and filter, and ADC. Relatively to the latter, a high speed time-interleaved pipeline ADC prototype is implemented in a,standard 130 nm CMOS digital technology from United Microelectronics Corporation (UMC). The ADC is fully based on parametric MOS amplification which means that one could achieve a compact and MOS-only implementation. Furthermore, any high speed opamp has not been used in the signal path, being all the amplification steps implemented with open-loop parametric MOS amplifiers. To the author’s knowledge, this is first reported pipeline ADC that extensively used the parametric amplification concept.Fundação para a Ciência e Tecnologia through the projects SPEED, LEADER and IMPAC

    Pipelined analog-to-digital conversion using current-mode reference shifting

    Get PDF
    Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresPipeline Analog-to-digital converters (ADCs) are the most popular architecture for high-speed medium-to-high resolution applications. A fundamental, but often unreferenced building block of pipeline ADCs are the reference voltage circuits. They are required to maintain a stable reference with low output impedance to drive large internal switched capacitor loads quickly. Achieving this usually leads to a scheme that consumes a large portion of the overall power and area. A review of the literature shows that the required stable reference can be achieved with either on-chip buffering or with large off-chip decoupling capacitors. On-chip buffering is ideal for system integration but requires a high speed buffer with high power dissipation. The use of a reference with off-chip decoupling results in significant power savings but increases the pads of chip, the count of external components and the overall system cost. Moreover the amount of ringing on the internal reference voltage caused by the series inductance of the package makes this solution not viable for high speed ADCs. To address this challenge, a pipeline ADC employing a multiplying digital-to-analog converter (MDAC) with current-mode reference shifting is presented. Consequently, no reference voltages and, therefore, no voltage buffers are necessary. The bias currents are generated on-chip by a reference current generator that dissipates low power. The proposed ADC is designed in a 65 nm CMOS technology and operates at sampling rates ranging from 10 to 80 MS/s. At 40 MS/s the ADC dissipates 10.8 mW from a 1.2 V power supply and achieves an SNDR of 57.2 dB and a THD of -68 dB, corresponding to an ENOB of 9.2 bit. The corresponding figure of merit is 460 fJ/step

    Sampled charge reuse for power reduction in switched capacitor data converters

    Get PDF
    Advances in semiconductor fabrication have enabled the shrinking of digital systems dramatically over the years. Although digital circuitry benefits tremendously from the constant shrinking of the device sizes, the benefits for analog circuits are not quite so dramatic. Low power is of critical importance in all mobile devices. Any reduction in power in the embedded analog-to-digital converters (ADCs) in such devices can help prolong the battery life. A technique is proposed that can be used to reduce power dissipation in ADCs that use switched-capacitor gain stages. It is shown for a pipeline ADC that the signal charge stored across the feedback capacitor from the first stage can be reused in the second stage at the end of the first stage\u27s amplify phase. The extra overhead of an extra capacitor is justified by the power savings of the proposed scheme;A well known approach for reducing the power dissipation in pipelined ADCs is the scaling down of capacitors progressively down the pipeline stream. The proposed technique combines the scaling of the capacitors with charge reuse. This combination inherits the power saving benefits of capacitor scaling and adds to the power saving by sharing the capacitor in two consecutive stages. Due to the highest power budget allocated to the first two stages, the sharing 2 is limited to the first two stages. Additionally, it is shown that the charge reuse results in reducing the total capacitive load driven by a stage\u27s opamp, potentially reducing the current requirements of the opamp;The proposed technique has been adapted for use in cyclic ADCs. The proposed technique reuses the charge from the first cycle in the next. This approach helps to reduce the die area of the capacitors in the switched capacitor network by up to 50%. Consequently, the power consumption requirement of the operational amplifier can be reduced. This is achieved while maintaining the thermal noise performance and conversion rate of the conventional structure. A 10-bit, 2.3MHz cyclic ADC using the new structure is implemented in 0.5mum CMOS. Spectre simulation results show a THD of -76dB and SFDR of -74.95dB

    Novel techniques for the design and practical realization of switched-capacitor circuits in deep-submicron CMOS technologies

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaSwitches presenting high linearity are more and more required in switched-capacitor circuits,namely in 12 to 16 bits resolution analog-to-digital converters. The CMOS technology evolves continuously towards lower supply voltages and, simultaneously, new design techniques are necessary to fulfill the realization of switches exhibiting a high dynamic range and a distortion compatible with referred resolutions. Moreover, with the continuously downing of the sizes, the physic constraints of the technology must be considered to avoid the excessive stress of the devices when relatively high voltages are applied to the gates. New switch-linearization techniques, with high reliability, must be necessarily developed and demonstrated in CMOS integrated circuits. Also, the research of new structures of circuits with switched-capacitor is permanent. Simplified and efficient structures are mandatory, adequate to the new demands emerging from the proliferation of portable equipments, necessarily with low energy consumption while assuring high performance and multiple functions. The work reported in this Thesis comprises these two areas. The behavior of the switches under these new constraints is analyzed, being a new and original solution proposed, in order to maintain the performance. Also, proposals for the application of simpler clock and control schemes are presented, and for the use of open-loop structures and amplifiers with localfeedback. The results, obtained in laboratory or by simulation, assess the feasibility of the presented proposals

    Design of a low power switched-capacitor pipeline analog-to-digital converter

    Get PDF
    An Analog to Digital Converter (ADC) is a circuit which converts an analog signal into digital signal. Real world is analog, and the data processed by the computer or by other signal processing systems is digital. Therefore, the need for ADCs is obvious. In this thesis, several novel designs used to improve ADCs operation speed and reduce ADC power consumption are proposed. First, a high speed switched source follower (SSF) sample and hold amplifier without feedthrough penalty is implemented and simulated. The SSF sample and hold amplifier can achieve 6 Bit resolution with sampling rate at 10Gs/s. Second, a novel rail-to-rail time domain comparator used in successive approximation register ADC (SAR ADC) is implemented and simulated. The simulation results show that the proposed SAR ADC can only consume 1.3 muW with a 0.7 V power supply. Finally, a prototype pipeline ADC is implemented and fabricated in an IBM 90nm CMOS process. The proposed design is validated using measurement on a fabricated silicon IC, and the proposed 10-bit ADC achieves a peak signal-to-noise- and-distortion-ratio (SNDR) of 47 dB. This SNDR translates to a figure of merit (FOM) of 2.6N/conversion-step with a 1.2 V power supply

    An high-speed parametric ADC and a co-designed mixer for CMOS RF receivers

    Get PDF
    Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresThe rapid growth of wireless communications and the massive use of wireless end-user equipments have created a demand for low-cost, low-power and low-area devices with tight specifications imposed by standards. The advances in CMOS technology allows, nowadays, designers to implement circuits that work at high-frequencies, thus, allowing the complete implementation of RF front ends in a single chip. In this work, a co-design strategy for the implementation of a fully integrated CMOS receiver for use in the ISM band is presented. The main focus is given to the Mixer and the ADC blocks of the presented architecture. The traditional approach used in RF design requires 50 matching buffers and networks and AC coupling capacitors between Mixer inputs and LNA and LO outputs. The codesign strategy avoids the use of DC choke inductors for Mixer biasing, because it is possible to use the DC level from the output of the LNA and the LO to provide bias to the Mixer. Moreover, since the entire circuit is in the same chip and the Mixer inputs are transistors gates, we should consider voltage instead of power and avoid the 50 matching networks. The proposed ADC architecture relies on a 4-bit flash converter. The main goals are to achieve low-power and high sampling frequency. To meet these goals, parametric amplification based on MOS varactors is applied to reduce the offset voltage of the comparators, avoiding the traditional and power-consuming approach of active pre-amplification gain stages

    Design of Low Power and Power Scalable Pipelined ADC Using Current Modulated Power Scale

    Get PDF
    This work represents a power scalable pipelined ADC, which achieves low power variation depends upon the sampling rate and enables variation in throughput. The keys to power scalability at high sampling rates were current modulation-based architecture and the development of novel rapid power-on Op-amp, which can completely and quickly power on/off by the feedback approach. The result achieved in this design is as high as 50 Msps and as low as 1 ksps, keeping some important parameters of ADC as ENOB and SNDR are almost constant. Power variation in ADC has a flexible range from 7.5 µW to 17 mW, which is lower power consumption than previous works

    Energy Efficient Pipeline ADCs Using Ring Amplifiers

    Full text link
    Pipeline ADCs require accurate amplification. Traditionally, an operational transconductance amplifier (OTA) configured as a switched-capacitor (SC) amplifier performs such amplification. However, traditional OTAs limit the power efficiency of ADCs since they require high quiescent current for slewing and bandwidth. In addition, it is difficult to design low-voltage OTAs in modern, scaled CMOS. The ring amplifier is an energy efficient and high output swing alternative to an OTA for SC circuits which is basically a three-stage inverter amplifier stabilized in a feedback configuration. However, the conventional ring amplifier requires external biases, which makes the ring amplifier less practical when we consider process, supply voltage, and temperature (PVT) variation. In this dissertation, three types of innovative ring amplifiers are presented and verified with state-of-the-art energy efficient pipeline ADCs. These new ring amplifiers overcome the limitations of the conventional ring amplifier and further improve energy efficiency. The first topic of this dissertation is a self-biased ring amplifier that makes the ring amplifier more practical and power efficient, while maintaining the benefits of efficient slew-based charging and an almost rail-to-rail output swing. In addition, the ring amplifiers are also used as comparators in the 1.5b sub-ADCs by utilizing the unique characteristics of the ring amplifier. This removes the need for dedicated comparators in sub-ADCs, thus further reducing the power consumption of the ADC. The prototype 10.5b 100 MS/s comparator-less pipeline ADC with the self-biased ring amplifiers has measured SNDR, SNR and SFDR of 56.6 dB (9.11b), 57.5 dB and 64.7 dB, respectively, and consumes 2.46 mW, which results in Walden Figure-of-Merit (FoM) of 46.1 fJ/ conversion∙step. The second topic is a fully-differential ring amplifier, which solves the problems of single-ended ring amplifiers while maintaining the benefits of the single-ended ring amplifiers. This differential ring-amplifier is applied in a 13b 50 MS/s SAR-assisted pipeline ADC. Furthermore, an improved capacitive DAC switching method for the first stage SAR reduces the DAC linearity errors and switching energy. The prototype ADC achieves measured SNDR, SNR and SFDR of 70.9 dB (11.5b), 71.3 dB and 84.6 dB, respectively, and consumes 1 mW. This measured performance is equivalent to Walden and Schreier FoMs of 6.9 fJ/conversion∙step and 174.9 dB, respectively. Finally, a four-stage fully-differential ring amplifier improves the small-signal gain to over 90 dB without compromising speed. In addition, a new auto-zero noise filtering method reduces noise without consuming additional power. This is more area efficient than the conventional auto-zero noise folding reduction technique. A systematic mismatch free SAR CDAC layout method is also presented. The prototype 15b 100 MS/s calibration-free SAR-assisted pipeline ADC using the four-stage ring amplifier achieves 73.2 dB SNDR (11.9b) and 90.4 dB SFDR with a 1.1 V supply. It consumes 2.3 mW resulting in Schreier FoM of 176.6 dB.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138759/1/yonglim_1.pd
    • …
    corecore