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Sumário 

A arquitectura concorrencial é a mais popular em conversores analógico-digital (ADC 

analog-to-digital converter) que operam a elevada velocidade e média-alta resolução. 

Nesta arquitectura os circuitos de geração das tensões de referência são fundamentais. 

Estes são necessários para manter uma referência estável com uma baixa impedância 

para garantir que a carga dos condensadores em vários blocos do ADC evolua de forma 

rápida para o seu estado final. Normalmente, para se alcançar isto são necessárias 

soluções que consomem uma grande parte da energia e área. Na literatura as opções 

existentes para gerar uma referência estável dividem-se em ter buffers internamente e 

em ter condensadores externos ao chip com elevada capacidade. A utilização de buffers 

internos é a solução ideal para a integração do sistema mas requer um circuito com uma 

grande largura de banda e consequentemente uma elevada dissipação de potência. O uso 

de condensadores externos com elevada capacidade permite uma poupança energética 

significativa mas aumenta o número de componentes externos e o custo global do 

sistema. Para além disso, as oscilações causadas pelas ligações ao exterior do chip 

tornam esta solução pouco viável para conversores de alta velocidade. 

 

Esta dissertação apresenta um ADC que utiliza um conversor digital-analógico 

multiplicativo realizado em condensadores comutados e modo de funcionamento em 

corrente. O circuito efectua a soma ou subtracção das referências com corrente evitando 

desta forma o uso de buffers de tensão. As correntes necessárias ao funcionamento deste 

bloco são geradas internamente com um circuito de geração de correntes que apresenta 

um baixo consumo energético. 

 

O conversor proposto foi projectado numa tecnologia CMOS 65 nm e opera a 

frequências de amostragem entre 10 e 80 MS/s. Este funciona com uma tensão de 

alimentação de 1.2 V e dissipa um total de 10.8 mW a 40 MS/s.  

 

Termos Chave 

Conversor Analógico-Digital (ADC), Modo de conversão em corrente, condensadores 

comutados, corrente de referência, conversão A/D concorrencial. 
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Abstract 

Pipeline Analog-to-digital converters (ADCs) are the most popular architecture for 

high-speed medium-to-high resolution applications. A fundamental, but often 

unreferenced building block of pipeline ADCs are the reference voltage circuits. They 

are required to maintain a stable reference with low output impedance to drive large 

internal switched capacitor loads quickly. Achieving this usually leads to a scheme that 

consumes a large portion of the overall power and area. A review of the literature shows 

that the required stable reference can be achieved with either on-chip buffering or with 

large off-chip decoupling capacitors. On-chip buffering is ideal for system integration 

but requires a high speed buffer with high power dissipation. The use of a reference 

with off-chip decoupling results in significant power savings but increases the pads of 

chip, the count of external components and the overall system cost. Moreover the 

amount of ringing on the internal reference voltage caused by the series inductance of 

the package makes this solution not viable for high speed ADCs.  

 

To address this challenge, a pipeline ADC employing a multiplying digital-to-analog 

converter (MDAC) with current-mode reference shifting is presented. Consequently, no 

reference voltages and, therefore, no voltage buffers are necessary. The bias currents are 

generated on-chip by a reference current generator that dissipates low power. 

 

The proposed ADC is designed in a 65 nm CMOS technology and operates at sampling 

rates ranging from 10 to 80 MS/s. At 40 MS/s the ADC dissipates 10.8 mW from a 1.2 

V power supply and achieves an SNDR of 57.2 dB and a THD of -68 dB, corresponding 

to an ENOB of 9.2 bit. The corresponding figure of merit is 460 fJ/step. 

 

Keywords 

Analog-to-Digital Converter (ADC), current-mode reference shifting, switched-

capacitor, CMOS current reference, pipelined A/D conversion. 
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Chapter 1 

 

Introduction 

 

An increasing amount of analog and mixed signal circuits is found in mobile devices. 

They are an integral part of wireless communication systems, touchscreens, sensors, 

power management units and other analog/digital mixed signal applications needed to 

provide an enhanced user experience. As we are moving towards system-on-a-chip 

(SoC) solution, these circuits have to be integrated on a single chip with digital circuits 

in deep sub-micron CMOS technology. Low-voltage operation, low power dissipation 

and minimum silicon area are of great importance in the design of the system. Low 

power permits longer lasting battery operated devices, while small area directly relates 

to lower fabrication costs. The analog-to-digital converter (ADC) is of paramount 

importance in these analog/digital mixed signal applications. This block is used as an 

interface between analog circuits and digital sub-systems. The continuous scaling of 

CMOS technology allows smaller parasitic capacitance and consequently more power 

efficient and faster digital circuits. Typically, the performance and energy efficiency of 

the overall system are limited by the ADC.  

 

1.1 Motivation 

Among the different ADC architectures, pipeline ADCs are the most attractive solution 

for high-speed medium-to-high resolution applications. In a pipeline ADC the 

conversion is distributed through several stages. Each stage resolves n bits and produces 

a residual voltage to the next stage. By employing redundancy the accuracy 

requirements for the sub-ADCs are relaxed allowing low power comparators. The 

overall accuracy of the ADC is mainly limited by the errors of the multiplying digital-

to-analog converter (MDAC) (i.e., the DAC inaccuracy and finite DC gain and 

bandwidth of the residues amplifiers). Due to the high accuracy requirements for the 

residue amplifiers they tend to dominate the power consumption. To address the issue 
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of the power and complexity of residue amplifiers several techniques have been 

developed. Digital calibration techniques have been used to relax analog circuit 

requirements such as high gain, high bandwidth and linearity. This technique measures 

the errors introduced and compensates them in digital domain. The comparator-based 

design achieves low power by replacing the op-amps by a combination of a comparator 

and a current source. For low precision applications, parametric amplifiers are another 

alternative. These advances mean that designers must focus their attention to the 

reference voltage circuitry. This circuit is required to provide stable reference voltages 

for the ADC and comprises 20-30% of the overall power and area of the ADC.  

Actually the non-linearity and noise of these circuits appears as an error in the stages 

residues, degrading the overall ADC performance. A review of the literature shows that 

the required stable reference can be achieved with either on-chip buffers or with large 

off-chip decoupling capacitors. On-chip buffering requires power hungry buffers 

operating at high speed. The use of off-chip reference decoupling results in significant 

power savings but is not viable for high speed ADCs due to the ringing caused by the 

inductance of the package. 

To address these challenges, a pipeline ADC employing a multiplying digital-to-analog 

converter (MDAC) with current-mode reference shifting is presented. The currents are 

generated on-chip by a switched-capacitor current reference circuit that dissipates 

minimal power. Moreover, this solution does not require extra pins and external 

components. 

 

1.2 Thesis organization 

Chapter 2 provides a background on ADCs. Some A/D converter architectures are 

reviewed with a special emphasis on pipeline ADC. Chapter 3 introduces the 

multiplying digital-to-analog converter with current-mode reference shifting and their 

design issues. Chapter 4 presents the circuit design of the Pipeline ADC. Chapter 5 

presents the performance results of the proposed ADC. Finally, Chapter 6 summarizes 

the main conclusions. 
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1.3 Contributions 

The main objective of this work is to demonstrate the use of the current-mode reference 

shifting MDAC circuit as an alternative to the traditional MDAC circuit. For this 

purpose, a 10-bit pipeline ADC using the proposed MDAC circuit is designed. The 

designed ADC precludes reference voltage buffers that dissipate a considerable amount 

of power, and off-chip decoupling capacitors. 

The delay line with self-biased inverters described in this work has been used in the 

design of a ring oscillator with an accurate oscillation frequency. The circuit was 

published in an article submitted to the MIXDES, 18th International Conference, 2011, 

entitled  A Self-Biased Ring Oscillator with Quadrature Outputs Operating at 600 MHz 

in a 130 nm CMOS Technology  [1].  



4 
 

 

 

  



5 
 

Chapter 2 

 

Analog-to-Digital Converters 

Analog-to-digital converters are used as an interface between analog and digital sub-

systems, performing the transformation from continuous time and amplitude to discrete 

time and quantized amplitude. This chapter begins with an overview of some of the 

important performance parameters used for characterizing data converters. Next some 

A/D converters architectures are presented with a special emphasis in the pipeline 

architecture. 

 

2.1 Ideal A/D Converter 

An analog-to-digital converter (ADC) performs the quantization of analog signals into a 

number of discrete amplitude levels at discrete time points [2] . A basic block diagram 

of an A/D interface is shown in Figure 2.1.  

 

Anti-Aliasing Filter Sampling Quantizer

B
in

ar
y
 E

n
co

d
er

Analog Input 

x(t)

Digital Output 

DoutCS

 
Figure 2.1: Block diagram of an A/D interface. 

 

The analog input signal is band-limited to avoid ambiguity resulting from the sampling 

process. Signals sampled at a frequency outside one half of the sample rate are aliased 

so that they are indistinguishable from the signal itself. The sampler succeeding the 

anti-aliasing filter transforms a continuous time signal into its discrete time equivalent. 

The sampled signal is quantized in amplitude and encoded as a sequence of N bits. An 

ideal N-bit quantizer divides the full-scale (FS) into    uniform quantization levels. The 

ideal quantization step corresponding to the least significant bit (LSB) of a converter is 

1 LSB and is given by           ⁄ . The full-scale range defines the maximum 

analog input range that can be quantized.  
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2.2 A/D Converter Specifications 

An ADC is characterized through its static (DC) performance and its dynamic (AC) 

performance. High accuracy measurement ADC applications require very good static 

performance, whereas communications applications place much more emphasis on 

dynamic performance [3]. 

2.2.1 Static Specifications 

The most important measures of static or DC-linearity of A/D converters are offset, gain 

errors, integral nonlinearity errors (INL) and differential nonlinearity errors (DNL). 

These properties actually indicate the accuracy of a converter and include the errors of 

quantization, nonlinearities and noise.  

2.2.1.1 Offset and Gain Errors 

An offset error changes the transfer characteristic so that all the quantization steps are 

shifted by the ADC offset. It may be measured in LSBs or as a percentage of full-scale. 

The gain error defines the deviation of the slope of a data converter from the expected 

value.  

 
Figure 2.2: ADC gain and offset error characteristics [3]. 
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2.2.1.2 Differential Non-linearity (DNL) 

It is defined as the deviation of the step size of a non-ideal data converter from the ideal 

value of 1 LSB. 

 

      
       

 
                  (2.1) 

 

 
Figure 2.3: Transfer function for a 3-bit ADC. 

 

2.2.1.3 Integral Non-linearity (INL) 

The INL error refers to the maximum deviation of the actual ADC transfer function 

from a straight line drawn through the first and last code transitions after correction for 

offset and gain errors. 

     ∑     

   

 

 (2.2) 
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2.2.2 Dynamic Specifications 

2.2.2.1 Signal-to-Noise Ratio (SNR) 

Is the ratio between the power of the signal an the total noise produced by quantization 

and the noise of the circuit. 

             (
       

      
) (2.3) 

 

The SNR is dominated by quantization noise and circuit thermal noise but also includes 

other noise sources. 

 

2.2.2.2 Total Harmonic Distortion (THD) 

The total harmonic distortion (THD) is the ratio between the harmonics of the input 

signal (only the significant harmonics) and the signal power. 

 

            (∑
  

 

  
 

 

   

) (2.4) 

 

2.2.2.3 Spurious Free Dynamic Range (SFDR) 

Is the ratio of the root-mean square signal amplitude to the root-mean-square value of 

the highest spurious spectral component (ignoring the DC component). SFDR is an 

important specification in communications systems because it represents the smallest 

value of signal that can be distinguished from a large interfering signal (blocker). 

 

            (
  

  

     
  

) (2.5) 
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2.2.2.4 Signal-to-Noise and Distortion Ratio 

The definition is similar to that of the SNR, except that nonlinear distortion terms are 

also accounted for. The SNDR is the ratio between the root-mean-square of the signal 

and the root-sum-square of the harmonic components plus noise (excluding dc). 

              (
       

                  
) (2.6) 

As a function of SNR and THD, SNDR can be found by 

               (        ⁄          ⁄ ) (2.7) 

SNDR is dependent on both the amplitude and the frequency of the signal. At low input 

levels, SNDR is limited by noise, while distortion dominates for higher signal levels. 

2.2.2.5 Effective Number of Bits (ENOB) 

Is a measure for quantifying the ADC performance like SNR and SNDR, but gives a 

better indication of ADC accuracy. 

      
           

    
 (2.8) 

2.2.3 ADC Figures of Merit 

A figure of merit is a useful measure to compare the efficiency of different design 

solutions [4]. A commonly used          represents the used energy per conversion 

          
 

         {         }
         (2.9) 

Where    is the sampling rate, ERBW is the effective resolution bandwidth and P is the 

total power dissipation. 
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2.3 Data Converters for Communications Applications 

The ADC is a key component in digital communications systems. The resolution and 

sample rate of the A/D converter of a receiver depends on the target system and the 

topology and performance of the RF and baseband blocks. In applications like mobile 

TV and LTE the bandwidth is of the order of 4 MHz to 10 MHz and the ENOB required 

is in the range from 8-10 bits of resolution. In this case ADCs operating from 8 to 80 

MS/s with 10-bit of resolution are often employed [5]. Other applications require an 

ADC width lower sample rate but higher resolutions (11-12 ENOB). The receiver 

architecture is usually Direct Conversion or Low-IF, with significant support of digital 

functionality to reduce the effect of circuit imperfections in the Analog/RF domain. A 

typical receive path used in these applications is shown in Figure 2.4 [6]. The RF 

modulated signal is converted directly to baseband where it is applied to the ADC and 

converted into a digital signal. The digitized signal is processed in the digital signal 

processing (DSP) block. A variable gain amplifier (VGA) preceding the ADC adjusts 

the signal power to optimize the dynamic range of the receiver and the ADC. 

 

Analog BaseBand

RF Filter

Antenna

VGA Filter

ADC DSPLNA X

 
Figure 2.4: General block diagram for a wireless radio receiver. 

 

The quantization and sampling process are performed at baseband by the ADC. 

According to the sampling theorem, the sample rate must be at least twice the signal 

bandwidth. However in some applications only a small part of the RF-band is of interest 

and the sampling is done at a fraction of the input frequency (sub-sampling).  This can 

be done without corrupting the signal information because the Nyquist criterion has to 

be fulfilled only for the channel bandwidth rather than for the entire spectrum [7].  
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2.4 ADC architectures 

There are several ADC architectures which are suitable for at least one or more 

performance specifications. For very low resolution, flash architecture is the best 

choice. The pipeline ADC is most suitable for low-power high-speed medium-to-high 

resolution applications. 

2.4.1 Flash ADC architecture 

The Flash ADC achieves a high conversion rate due its simple architecture. In an N bit 

flash ADC there are      comparators, each one detecting a single transition voltage. 

The reference voltages for the comparators are generated using a resistor ladder as 

shown in Figure 2.5. 

E
n

co
d

er

Vin

VREF+

VREF-

Dout 

 
Figure 2.5: Flash ADC. 

One drawback of flash ADCs is the fact that the number of comparators grows 

exponentially with the number of bits, which increases power dissipation and die area. 

That is why this architecture is typically employed in low resolution systems.  



12 
 

2.4.2 Pipeline A/D architecture 

For medium-to-high resolution applications with input signal bandwidths larger than a 

few MHz, pipeline ADCs show speed and power advantages when compared to other 

architectures. 

 

2.4.2.1 Architecture description 

A general block diagram of a pipeline ADC is shown in Figure 2.6.  It consists of an 

input sample-and-hold (S/H) followed by k low-resolution stages, delay elements for 

output synchronization, and a digital correction logic. The quantization process is 

distributed over several stages so that each stage converts only a subset of the total 

number of bits. The resolution-per-stage is a designer choice and has been subject of 

research. In most of the implementations available in literature a multi-bit pipelined 

stage is used in front-end and the back-end is designed with minimum resolution stages 

to reduce power dissipation.  

 

S/H Stage 1 Stage 2 Stage N-1 Stage N

Delay elements (Synchronization logic)

B1 B2 Bk-1 Bk

Dout 

Vin

Digital Error Correction Logic

 
Figure 2.6: Block diagram of a generic pipeline A/D converter. 

 

The generalized stage of a pipeline ADC is depicted in Figure 2.7. The analog input 

voltage is quantized by an N-bit low-resolution sub-analog-to-digital converter (sub-

ADC) and converted back to analog by the sub-DAC. The analog voltage resulted from 

this operation is subtracted from the analog input signal and the resulting residue 

voltage is amplified by a gain stage with a gain nominally equal to   . The S/H 

operation, the D/A conversion and the amplification are all performed by a single stage 

called multiplying digital-to-analog converter (MDAC). 
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The front-end S/H is an optional block used to ensure that the first-stage multiplying 

DAC and the first-stage sub-ADC sample the same input signal voltage. This is 

particularly important for very high frequency signals because the aperture error defined 

as             (  ) is dependent of the input signal frequency. 

 

Sub-ADC Sub-DAC

+ 2N S/H
Vin Vout

MDAC

 
Figure 2.7: Block diagram of a generic stage in a pipeline ADC. 

The most important non-idealities that deteriorate the performance of a pipeline ADC 

are noise, offset error, gain errors and settling errors. Gain errors in the MDAC are 

caused by the finite amplifier gain and capacitor mismatches. Thermal noise is mainly 

due to sampling switches and the sample-and-hold-amplifier. The main error source in 

the sub-ADC is the offset voltage of the comparators. A digital error correction 

algorithm known as redundant sign digit (RSD) coding is commonly employed to relax 

the accuracy requirements for the comparators of the sub-ADCs. 

The pipeline ADC can achieve speed similar to that of the Flash ADC, but its latency is 

high. The number of components is approximately linear with the resolution. Table 2.1 

summarizes the key tradeoffs of the flash and pipeline ADC architectures. 

Notice that there are many other A/D architectures that rely on the MDAC building 

block. These are the two-step flash with residue amplification and multi-step 

algorithmic. Since they are out of the scope of this thesis, they will not be described 

here. 

Table 2.1 Comparison of ADC architectures. 

Architecture Latency Speed Accuracy Area 

Flash Low High Low High 

Pipeline High Medium-high Medium-high Medium 
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2.4.2.2 Time Alignment and Digital Error Correction 

The digital outputs from each stage, generated at different time, are aligned by the time 

alignment circuit, and then move on to the digital correction stage. Figure 2.8 shows the 

synchronization logic for an N-bit pipeline ADC of 2-bit per stage. The logic is mainly 

composed of memory and shift circuits, such as flip-flops (FF). The digital outputs of 

the synchronization logic are time-aligned and they are ready for digital correction. 
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Figure 2.8: Pipeline ADC, synchronization and time-alignment logic. 

Digital correction techniques are used to significantly reduce the accuracy specifications 

in the comparators used in sub-ADCs. For example, in 1.5-bit stage architecture the 

quantization errors can be large as       ⁄ .  Figure 2.9 shows the transfer function of 

a 1-bit stage. This architecture uses only a single comparator. The analog input has a 

maximum range defined from       to     . For an input that is less than zero the 

output bit is set to logic zero and for inputs greater than zero the output bit is set to logic 

one. The comparator offset results in the residue voltage exceeding the full-scale range. 

This means that the part of the transfer function that goes above     , is either code 

saturated or it is flattened by the output stage of the OTA. The maximum offset of the 

comparator that can be tolerated has to be within the magnitude of a LSB. 
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Figure 2.9: Transfer function of a 1-bit MDAC. 

The non-idealities in the comparators can be corrected by adding a redundant bit. For 

example, a 1.5-bit stage has a true resolution of 1-bit and 0.5-bit redundancy. The new 

transfer characteristic has three segments that have to be coded by two digital outputs. 

The comparator decision levels are set to       ⁄  and       ⁄  as shown in Figure 

2.10. The residue voltage stays in the input range of next stage provided the offset is 

within       ⁄ . Note that the correction logic only corrects indecisions in the 

comparators. The errors caused by sub-DAC and amplifier are not compensated, and 

require more complicated digital calibration techniques. 

 

Figure 2.10: Transfer function of a 1.5-bit MDAC. 
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2.5 Building blocks of Pipeline Analog-to-Digital Converters 

2.5.1 Opamp (OTA) circuits 

2.5.1.1 Brief Review of Opamp topologies 

Due to the complexity in the design, the OTA is the most important building block in 

the MDAC implementation. The finite DC gain and the bandwidth determine the 

settling accuracy of the closed–loop system. 

The telescopic OTA is one of the most popular and fastest architectures offering a large 

bandwidth and good phase margin. However, due to the high number of stacked 

transistors the maximum output voltage swing is limited, making this architecture not 

suitable for low voltage applications. The output swing and common-mode range of the 

amplifier can be extended using either folding or mirroring techniques. In the current 

mirror architecture shown in Figure 2.11, the signal current is mirrored to an output 

stage through a cascode current mirror. 
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Figure 2.11: Class A Current Mirror OTA. 

The DC gain, bandwidth and noise depend on the current-mirror ratio K, which is 

typically between one and four. A higher current-mirror ratio increases the efficiency 

but it also increases the parasitic capacitances, reducing the phase margin. 

       {(         )  (         )} (2.10) 

The input referred noise is given by 
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} (2.11) 

The maximum output current available to charge or discharge the output load is limited 

to KIB. Therefore the settling response is limited by slew rate, which is given by 

    
   
  

 (2.12) 

 

The large signal behavior of the class A current mirror OTA can be improved using an 

adaptive biasing technique. This can be achieved employing two flipped voltage 

followers (FVFs) connected at the source of M1a and M1b as depicted in Figure 2.12 [8].  
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Figure 2.12: Class AB Current Mirror OTA. 

 

The circuit provides low and well-controlled quiescent currents and boosts the current 

when a large voltage is applied. The small signal behavior is also improved being that 

the circuit presents a bandwidth twice higher of a class A stage. 
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2.5.1.2 DC Gain and Bandwidth requirements 

The finite opamp gain causes discontinuities in the residue transfer function resulting in 

missing codes. The DC gain required to meet the desired resolution is given by 

   
  

 
 (2.13) 

Bandwidth determines the settling accuracy of the MDAC for small-signal input 

signals.  If the opamp is modeled as a single pole system, its step response can be 

expressed as 

  ( )    (    
 
 ) (2.14) 

The bandwidth required can be determined using the following equation 

   
 
  

 

  
 (2.15) 

Substituting    
 

    
 and   

 

   
 yields 

     
    

  
   (2.16) 

 

The slope of the step response is proportional to the final value. Thus, for a large input 

step this means that the opamp should supply a larger current to the load [9] . However 

the opamp can supply only a finite current to the load capacitor. Consequently the 

output cannot change faster than the slew rate, which is given by 

 

 
     

  
 

   

  
 (2.17) 

 

Where    is the load capacitance and     is the total available slewing current. 

The minimum OTA slew rate to ensure no slewing occurs, is given by the initial slope 

of the linear settling response for the maximum expected step change. 

 

               (2.18) 
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2.5.2 Sampling switch 

A simple sampling circuit consists of a switch and a capacitor as shown in Figure 2.13. 

To implement the switch a MOS transistor is operated in the triode region. When the 

MOS switch is closed the value of the on-resistance is in a range from a few tens of 

Ohms to a few kilo-Ohms. When the switch is turned off, it exhibits a resistance so high 

that is considered an open switch. 

Vin

CS

Vout

CLK

 

Vin
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Vout

CLK
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Figure 2.13: Simple sampling circuit. Implementation of the switch by a MOS device. 

Neglecting second order effects the on-conductance is given by (approximation to the 

linear region: 

     
  
   

      (
 

 
) (       ) (2.19) 

where    is the mobility,   and   are width and length of the MOS transistor, 

respectively,     is the gate oxide capacitance, and     is the threshold voltage. 

Equation (2.19) shows that the MOS on-conductance is dependent on the input signal 

level which limits the allowable input signal swing. When the input voltage varies over 

a large range, a transmission gate consisting of a PMOS and NMOS transistor in 

parallel can be employed. However their on-resistance is still too high when track high 

speed signals. In these cases, switch bootstrapping techniques can be employed. In 

addition to the finite on-resistance, there are also parasitic capacitances associated with 

the MOS switch. This is illustrated in Figure 2.14. These non-linear junction 

capacitances can limit the sampling linearity, especially in high frequency applications. 
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Figure 2.14: Capacitances associated with a MOS transistor. 
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2.5.2.1 Charge injection and clock feed-through 

When a MOS device is on, a channel must exist and has a finite amount of mobile 

charge in its channel. When the transistor turns off, charge injection occurs and channel 

charge is dispersed into the source, drain and bulk terminals of device. The total charge 

in the inversion layer can be expressed by: 

          (      )    (      ) (2.20) 

where    is the total gate channel capacitance,     the gate-source voltage and    the 

threshold voltage of the device. The charge injected on the source side is absorbed by 

the input source, while the charge distributed by the drain is deposited on the sampling 

capacitor   , introducing an error in the charge stored on the sampling capacitor.  

In addition to channel charge injection, clock feed-through also occurs. When the gate 

swings from high to low, the MOS switch couples the clock transition to the sampling 

capacitor through its gate-drain overlap capacitance. This error can be expressed as 

       

    

       
 (2.21) 

2.5.2.2 The bottom-plate sampling technique 

A simple way to reduce signal dependent charge injection is the use of the bottom-plate 

sampling [10], illustrated in Figure 2.15. In sampling mode both MOS switches are 

conducting. At the sampling instant the    goes down and switch    turn off, which 

leaves node       floating. When    turns off, the charge injection due to    only 

distort the voltage on node     . Since this node floats after    turns off, the total 

charge stored on    is not changed. 
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Figure 2.15: Bottom plate sampling.  
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2.5.2.3 Bootstrapped Switches 

In high-speed low-voltage designs, the non-ideal behavior of the switches is a 

significant limitation. The non-linear voltage dependence of the switches on-resistance 

produces distortion [10]. One solution offered by some technologies to extend the signal 

range and reduce distortion is the low-threshold devices. However these devices suffer 

from leakage, which results in loss of the stored charge. Another way to reduce switch 

on-resistance and to extend the linear range is to employ a voltage higher than the 

supply to control the switches. This solution results in high stress voltages causing 

reliability problems. Switch boosting can still realized by making the gate voltage track 

the source vol ag   i h an       . Wi h  hi  a    ach,  h  ci c i ’  l ng-term reliability 

is improved since the terminal-to-terminal voltages of the switch transistor never 

exceeds     [11]. The method is conceptually illustrated in Figure 2.16.  
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Figure 2.16: Conceptual scheme of switch bootstapping. 

During the nonuse phase the gate of the switch is grounded and the capacitor    is pre-

charged to    .  In the ON state, this capacitor will act as a floating voltage source in 

series with the input signal making the gate voltage of the switch equal to 

    (      in). Actually the voltage at the gate of    is lower than this ideal value 

due to charge sharing and is given by 

     
  

     

(       ) (2.22) 

 

Figure 2.17 shows the conceptual output waveforms of the bootstrap circuit. A practical 

implementation of the bootstrapped switch is shown in Figure 2.18 [12]. 
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Figure 2.17: Conceptual bootstrap circuit output. 
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Figure 2.18: Schematic of the clock boosting circuit [9]. 
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2.5.3 Reference buffers 

Reference buffers are essential building blocks in data converter systems. In a pipeline 

ADC these circuits generates the DAC reference voltages       and define the input 

and output full-scale ranges. As with respect to other blocks like S/H and MDAC, this 

block determines the resolution achievable. Therefore, it is necessary to guarantee that 

these buffers settle to the same value every cycle to avoid distortion and inter-stage gain 

errors. There are in general two options to generate an accurate reference voltage. The 

first option is to have a high speed on-chip buffer. A second one is to have an on-chip 

weak reference buffer with external decoupling [13] . Table 2.2 describes and analyses 

the advantages and drawbacks of both approaches. 

Table 2.2: Description of the advantages and drawbacks of commonly reference voltage circuits. 

On-chip buffer with wide bandwidth  
On-chip buffer with external 

decoupling 

High speed buffer with high power 

consumption. On-chip low pass filter 

added at the output reference node to 

get low-noise reference  [14]. The 

buffer requires dedicated supply pins. 

Low bandwidth buffer with low power 

consumption. The external capacitor 

appears in series with the package 

inductance which causes ringing on the 

internal reference voltage. 

VREF

CB

(Small)

ϕ

On-chip Off-chip

Free Pin

CL

 

VREF

CExt

(Big)

ϕ

On-chip Off-chip

LB

CL

 

Generally, commercial available ADCs use high speed buffers on-chip, since an internal 

reference with external decoupling capacitors increases the pad/pin count of the chip, 

the required number of external components and, consequently, the overall system cost. 
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2.6 Time-Interleaving ADCs 

Time-interleaving ADCs provides an effective solution to increase the sampling rate of 

A/D interfaces [15]. By using parallel A/D converters, operating at a fraction of the full 

sample rate of the ADC, the overall sampling rate is increased to a value proportional to 

the number of ADC channels. Figure 2.19 shows the block diagram of an architecture in 

which four ADCs are used in parallel. The ADC in each time-interleaved path operates 

at a sample frequency of    ⁄  as illustrated in the timing diagram shown in Figure 

2.20. 

ADC1

ADC2

ADC3

ADC4

MUX DSPDEMUX
Vin

 
Figure 2.19: Four-channel time-interleaving ADC.  

The performance of time-interleaving ADCs is seriously degraded by mismatch 

between ADC channels [16]. Offset, gain, timing and bandwidth mismatches of the 

ADC channels effectively modulate the input signal and introduce unwanted spectral 

tones. Those mismatch effects has been subject of intensive research and they have been 

fully characterized [17]. 

 

Figure 2.20: Timing diagram for a time-interleaved 4-Channel ADC system. 
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2.7 Summary 

In this chapter some important metrics used for characterizing an ADC were presented. 

A brief review of the flash and pipeline ADC architectures were given. The architecture 

that achieves the largest conversion rate is the flash ADC. The pipeline ADC is most 

suitable for low-power high-speed medium-to-high resolution applications. Design 

techniques to generate reference voltages needed in any data converter system have 

been addressed. 
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Chapter 3 

 

Multiplying Digital-to-Analog Converter with current mode 

reference shifting 

 

The multiplying D/A converter (MDAC) is the main building block within a pipelined 

stage. It performs the D/A conversion, subtraction and amplification of the residue [17]. 

The non-linearity errors in the MDACs can produce a large number of missing codes in 

the overall conversion characteristic of the ADC [4]. Usually, these errors are 

minimized employing high gain and high unity gain bandwidth operational 

transconductance amplifiers (OTA) resulting in high power dissipation. As the OTA is 

one of the most critical parts in the design of a pipelined stage, several architectural 

advances have been done to relax their requirements and reduce power dissipation. 

These advances are leading the designers to focus their attention to the ADCs auxiliary 

circuitry such as the reference circuitry. These circuits are required to provide stable 

reference voltages that need to settle to the linearity of the ADC, in order to avoid 

distortion and inter-stage gain errors. In a traditional implementation of a pipeline ADC 

the reference circuitry comprises 20-30% of the overall power and area of the ADC as 

illustrated in Figure 3.1 [18] . 

OTA
45%

Clock 
Bootstrapping

15%

Reference 
Buffers

25%

Others
15%

 

Figure 3.1: Power distribution in a typical pipeline ADC.  
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To reduce the power associated with reference circuitry, a mismatch insensitive MDAC 

(MI-MDAC) with current mode level shifting is proposed in [19]. The circuit does not 

require either positive or negative reference voltages, as the required level shifting 

(DAC function) is performed in current mode.  

This chapter starts with a review of the conventional 1.5-bit pipelined stage. Next the 

MI-MDAC is introduced and an analysis of the circuit is presented. 

3.1 Review of the Conventional 1.5 Bit MDAC 

The simplest pipeline stage is a 1-bit stage with one redundant quantization level, often 

referred as a 1.5-bit stage. The ideal transfer function is depicted in Figure 3.2, which 

may be described by 

 

      

{
 
 

 
                      

    

 

      
    

 
      

    

 

           
    

 
          

 (3.1) 

The comparator decision levels are set to       ⁄  and       ⁄  and the MDAC 

characteristic is divided in three segments. Each segment is obtained either by adding or 

subtracting a reference. The slope of each one of the 3 segments corresponds to the gain 

stage of two. 

 

Figure 3.2: Residue plot of a single 1.5bit stage Pipeline ADC.  
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A commonly used 1.5-bit per stage MDAC is shown in Figure 3.3 [20]. The operation is 

as follows: during phase    the input signal is sampled in two capacitors    and   . At 

the beginning of   , the output code of the sub-ADC (local flash quantizer) is available, 

and appropriate reference levels are connected to the bottom plate of   . Capacitor    is 

connected in a feedback loop around the amplifier and the charge stored on    is 

transferred to   . The resulting output voltage is given by: 

 

      
     

  
    

  

  
        (3.2) 
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Figure 3.3: Switched capacitor MDAC for a 1.5-bit pipeline stage. Single-ended version shown for 
simplicity. 

 

For equally sized capacitors, the resulting output voltage, at the end of   , will be two 

times the sampled input voltage. The accuracy of the residue generated by the 

conventional switched capacitor MDAC is determined by the gain and bandwidth of the 

amplifier, capacitor matching and the settling accuracy of the reference buffers. 

The feedback factor   is expressed as 

   
  

        
 (3.3) 

Neglecting parasitics, the feedback factor approaches the ideal value of 0.5. 
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A modified version of the conventional 1.5-bit MDAC is shown in Figure 3.4, where 

the reference voltage is sampled in a separate capacitor during the sampling phase [21]. 

This prevents signal-dependent loading and ensures that the load seen by the reference 

buffer is the same every cycle. In this case a weak reference buffer only causes a fixed 

settling error and a high speed buffer is avoided. 
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Figure 3.4: Modified MDAC in which a separate capacitor is used to sample reference voltages. 

To further lower the power consumption of the reference circuitry, the reference buffers 

can be replaced by a current source and a comparator as shown in Figure 3.5. The idea 

is to integrate a current on a capacitor and detecting the reference crossing via a 

comparator [22]. 
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Figure 3.5: A fixed current is integrated on a capacitor and a comparator detects the reference crossing. 

The drawback of this solution is the reduced feedback factor and the corresponding 

increase of noise. 
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3.2 Mismatch insensitive MDAC with current mode level shifting 

The mismatch insensitive MDAC (MI-MDAC) with current mode level shifting was 

proposed in [19] as a low power alternative for the conventional MDAC. The reference 

buffer used to generate the DAC reference levels is replaced with two current sources 

connected to the OTA input terminals. Moreover, the circuit has an enhanced feedback 

factor allowing a faster settling speed. 

3.2.1 Circuit description 

The schematic of the MI-MDAC is shown in Figure 3.6. The gain of two is obtained by 

voltage sum, instead of charge distribution, as occur in the conventional 

implementation. The level shifting occurs when current sources IP and IN are turned on. 

These current sources sink/source current through the feedback capacitors changing the 

output voltage by an amount proportional to the respective current, feedback 

capacitance and duration of the integration phase. 
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Figure 3.6: Fully differential schematic of the 1.5-bit MI-MDAC with current-mode reference shifting. 
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3.2.2 Circuit analysis 

The single-ended version of the MI-MDAC shown in Figure 3.7 is used to derive the 

MDAC transfer function. 

Vin
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VCM
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(b) 

Figure 3.7: Single-ended 1.5 bit MI-MDAC configuration during (a) sampling and (b) amplification 
phase. 

During the sampling phase, the input voltage     is sampled on two capacitors    and 

  . The charge on the two capacitors is given by 

         ,           

In the amplification phase the charge is given by 

      (       ),         

The MDAC transfer function can be found by deriving the charge conservation 

equations at node    and at the inverting input of the opamp. 

            (3.4) 

 (      )      (       )       (3.5) 

By solving these two equations for the output voltage     , results in 

      
   

  
         (3.6) 

The complete expression for the MDAC transfer function can be found in [23]. This 

expression includes the influence of parasitic capacitors associated with the bottom 

plate of the main capacitors and the nonlinear intrinsic capacitors of the switches. In 

[23] it is also demonstrated that the MDAC is insensitive to mismatch of the main 

capacitors, but is sensitive to parasitic capacitors, so one additional short-capacitor is 

used to compensate for this effect. Compared with the conventional MDAC, this circuit 

shows a 2-bit accuracy improvement in respect to the gain accuracy. 
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The circuit configuration during X operation mode of the MDAC is shown in Figure 

3.8. The current source IN is connected to the non-inverting input of the opamp, while IP 

is connected to the inverting input. 
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Figure 3.8: MDAC configuration during amplifying phase (Current level shifting active X=1). 

Defining             ,           ,          (       )⁄ ,    

      (       )⁄ , the opamp (OTA) input voltage can be defined as, 
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Considering a step function     ( )       ⁄ ,    ( ) is obtained applying the inverse 

Laplace transform: 
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(3.10) 

Assuming GBW<<1/(RiCi), the output voltage is given by 
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) (3.11) 

The final expression can be found by considering a rectangular pulse as the input signal. 

This signal can be decomposed in a sum of a positive step function starting at t = 0 and 

a negative step function starting at t =  i. The output response can be expressed as 
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Summing the two expression equation simplifies to 
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The output voltage of the fully-differential MDAC is given by 
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(3.15) 

In order to graphically analyze the transient output response of the circuit, a behavioral 

MATLAB simulation was carried out using the derived equations. The opamp is 

represented by a single pole model with 80 dB DC gain and 320 MHz GBW. A 

feedback factor       .  and an integration time         n  were considered. The step 

response and the response to the level shifting performed by the current sources are 

shown in Figure 3.9. 
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Figure 3.9: Transient waveforms at the output of the MDAC. 

The output starts to settle exponentially to the value corresponding to the term   i . The 

level shifting starts at t = 1ns and the response have a ramped characteristic until the end 

of the integration phase. After that the output voltage settles to the final value. 

3.2.3 Dynamic limitation of the operational amplifier 

The dynamic limitation of the amplifier introduces an error in the desired output level 

shifting. Assuming all capacitors equal and a fixed  i, the error magnitude is given by 

      
             

         
 

 
      

      

     

     
 (3.16) 

Where           is given by (3.14) with   W  . The error is dependent on the closed 

loop bandwidth, the integration time, and the time of the amplification phase. Assuming 

that the output response of the amplifier used in the MDAC is not limited by slew rate, 

this error is not signal dependent. 

3.2.4 Integration Time Variations 

Assuming       , all capacitors equal, and an integration time given by   (  

   ), where    , represents the deviation from the ideal integration time, the error in the 

output level shifting is given by 
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     (3.17) 

This means that this error is dependent on the jitter noise of the system. The average 

power in the reference error amplitude spectrum is given by [24] 

            (
    

  
)
 

 (3.18) 

where   is the rms value of the jitter. 

3.2.5 Current Sources 

One typical implementation of the current sources is shown in Figure 3.10. Current 

sources are implemented with single cascode devices and a differential pair used as 

current switch. This circuit routes the tail reference current      to the output or towards 

a dummy connection.  
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Figure 3.10: Schematic view of NMOS and PMOS single Cascode current sources. 
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Cascode transistors are used to increase the output resistance. Hence the effects of 

channel length modulation are significantly reduced. The value of parasitic capacitances 

associated with current sources is also reduced since the cascode source is designed 

with a lower area than the bias transistor. 

3.2.5.1 Causes of nonlinearity 

Since the operation performed by the current sources is done at the input, any error or 

nonlinearity in this operation is undistinguishable from the input signal and hence it will 

appear at the output without suppression and degrade the MDAC conversion accuracy. 

The nonlinearity is mainly caused due to the following effects: 

 Finite Output resistance. Since the output of current switches is connected to the 

opamp input and the voltage    is signal dependent the current is modulated by 

voltage at node n.  

 Charge and discharge of parasitic capacitances associated with current sources; 

 Imperfect synchronization of the control signals of currents switches; 

Output resistance is improved by using cascode current sources with large channel 

length. It is also important to design the Output switch            and their gate voltage 

so as to keep the output switch in saturation. This minimizes the excursion of the 

voltage at common source node  . The linearized model shown in Figure 3.11 can be 

used to analyze the non-ideal behavior of the current sources.  

 

Figure 3.11: Linearized model of the unit current source. 
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The reference voltage mismatches between stages is another source of noise and 

distortion. In a traditional pipeline ADC, the reference voltage provided to each stage is 

generated by the same analog buffer. Thus, any deviation from the nominal value will 

be seen as an absolute gain error. In the proposed scheme, the reference voltage is 

generated when a current flows through the feedback capacitors converting this way a 

current into a voltage in each stage. So, due to mismatches (transistor, capacitor, and 

integration time mismatch), charge injection and the presence of parasitic capacitors, the 

reference voltages may differ from each other.  

      
    (       )  (     )      

 (    )    

 (3.19) 

 

3.2.5.2 Switching noise 

The reference current can also be disturbed by switching noise. During the switching 

voltage at node A drops. This voltage change is coupled to node    through the gate-

drain overlap capacitance of   , disturbing      and hence     .  

 

Figure 3.12:  Differential pair operating as a current switch 

To minimize any disturbance on    , a decoupling capacitor should be connected from 

node    to ground as shown in Figure 3.12. This capacitor also filters out the noise 

injected on the current sources from other blocks. To save area this capacitor could be 

implemented using a MOSCAP device in the accumulation region.  
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3.3 Current Shifting Period Controller 

To operate the proposed MDAC circuit as intended, three different clock phases are 

needed: two non-overlapping clock phases, used in most of the switched-capacitor 

circuits, and a clock phase used to control the integration time. The timing diagram of 

the clock signals is shown in Figure 3.13. An example of a non-overlapping clock 

generator, widely found in the literature, is shown in Figure 3.14. 

 
Figure 3.13: Clock phases timing diagram. 

 

 
Figure 3.14: Standard non-overlapping Clock Generator. 

 

The integration time of the MDAC is controlled by the clock phases    and   . This 

phases can be obtained with a SC replica and a comparator [22] as shown in Figure 

3.15. 
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Figure 3.15: Current shifting period controller. 

The required phase can also be obtained with a delay locked loop (DLL). Figure 3.16 

depicts a block diagram of a DLL. The circuit employs negative feedback to produce 

clock phases with a precision spacing. The delay elements can be realized using a 

current-starved inverter or a self-biased inverter as proposed in [1]. Self-biasing circuits 

have various performance advantages, such as: a) less sensitivity against PVT 

variations; b) capability of supplying switching currents greater than the quiescent bias 

current; c) external biasing voltages (and the corresponding biasing circuitry) become 

unnecessary. 
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Figure 3.16: Delay locked loop (DLL). 
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Figure 3.17: Current-starved delay element. 
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Figure 3.18: Self-biased inverter. 
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3.4 Noise analyses 

Thermal noise is an important limiting factor in medium/high resolution ADCs. In a 

pipeline ADC, noise sources are mainly contributed by the MDAC, of the front-end 

stage, from the references and from the sampling clock jitter. In the particular case of 

the MDAC block thermal noise is dominated by the switches noise, and by opamp 

thermal noise. The noise contribution from the current sources should be considered if 

the proposed new MDAC circuit is employed. 

3.4.1 Switches noise 

During the sampling phase thermal noise generated by switches is sampled on the 

sampling capacitor. This noise is referred as    ⁄ noise. The output referred noise due 

to switches noise is given by [25] 

    
    

  

 
 (

 

  
) (3.20) 

where K i    l zmann’  c n  an , T is the absolute temperature,   is the feedback factor 

and    is the value of the equivalent feedback capacitor. Regarding the noise produced 

by feedback switches, their contribution is made small and can be neglected if their time 

constant is made larger than the opamp bandwidth [26]. 

3.4.2 Opamp Noise contribution 

During the amplification phase the amplifier contributes with additional noise [25]. The 

noise power at the output of the MDAC can be found from 

       
    

  

 
 (

 

 
 
 

  
) (3.21) 

where   is the feedback factor,    is the compensation capacitor (assuming that a two-

stage OTA topology is used) and   represents the excess noise factor of the opamp. 

3.4.3 Current Source Noise contribution 

The contribution to the output noise from the current source is given by: 

     
  

        

  
 (3.22) 
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where   is the transistor excess noise factor and  i is the integration time. Considering 

   
   

   
 and     

      

  
 the noise contribution from the charging current can be 

rewritten as 

      
  

        

    
 (3.23) 

where     is the overdrive voltage of the bias transistor and   represents the total 

equivalent feedback capacitor. 

The output voltage noise at the output of MDAC is the sum of the all contributions. 

   
     

        
      

  

Thermal noise of ADC can be found by summing the squares of the input referred 

voltages 

 

       
      

  (
 

  
    )

 

   (
 

         
    )

 

 (3.24) 

where      is the noise power at stage input, and     the interstage gain of the     stage.  

3.4.4 Quantization noise 

An ideal quantizer produces an error    that ranges from -    ⁄   to      ⁄ . This 

error is known as quantization error. Assuming that quantization error is random, this 

can be treated as white noise. The quantization noise power is given by 

    
  

    

√  
 (3.25) 

The RMS noise voltage is the sum of quantization noise, thermal noise and jitter noise. 

   
     

        
          

  (3.26) 

The resulting SNR for the ADC is given by 

          
  √ ⁄

  
 (3.27) 

The signal-to-noise plus distortion ratio is given by 

           
  √ ⁄

     
 (3.28) 
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3.5 Switched-Capacitor Current Reference Generator 

The reference currents for the MDAC should be generated on-chip and present a low 

temperature dependence and good supply rejection. Furthermore, these currents should 

scale with the conversion rate. Precise crystal based clocks and temperature independent 

voltages references are commonly available on-chip. Therefore, using an external clock 

derived from a crystal-controlled oscillator, an on-chip precise voltage reference and a 

simple SC structure, is possible to implement a current reference with low temperature 

dependence. 
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Figure 3.19: Basic scheme of the SC current reference. 

A possible implementation of such SC structure is shown in Figure 3.19 [27]. The 

circuit operates in two non-overlapping clocks. During   ,    is charged with current   . 

The voltage across    ramps with a slope given by 

 
   

  
 

  
     

 (3.29) 

At the end of this phase the voltage across    reaches its maximum. This voltage   ma  

is sampled on    and the difference between   ma  and      is integrated by an SC 

integrator. In the steady state the value of current    is given by 

    
      

   
 (3.30) 

The value of    depends on a constant voltage reference, a time interval derived from a 

crystal-controlled oscillator and an on-chip capacitor. The reference current tracks this 

process dependent capacitance, which shows typical dispersion in the range of 

   -   , and it is possible to achieve a more predictable behavior of any SC structure. 
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3.6 Summary 

 

In this chapter, the conventional 1.5-bit MDAC was briefly reviewed and a new 

architecture for realizing the 1.5 stage was presented. Several design issues of this new 

architecture were discussed and an analysis of the thermal noise of the MDAC was 

conducted. The design challenges of the switches in a low voltage technology have been 

addressed. The chapter concludes with a description of a switched-capacitor current 

reference with low temperature dependence. 
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Chapter 4 

 

Design of the 10-bit Pipeline ADC 

This chapter describes the design of the major building blocks of the proposed ADC. 

The techniques described in previous chapter are used to design a 10-bit pipeline ADC 

without the need of a power hungry buffer to define the reference voltages for the 

MDAC. The ADC is designed in a 65 nm one-poly-eight-metal (1P8M) CMOS 

technology and is operated from a 1.2 V power supply. 

4.1 ADC architecture 

The architecture of the proposed pipeline ADC, shown in Figure 4.1, is composed of a 

front end S/H circuit, followed by eight 1.5-bit pipelined stages, and a final 2-bit flash 

quantizer stage. The ADC also has on-chip current generation, a clock generator and a 

digital error correction circuit. To reduce the power consumption of the pipeline ADC 

the capacitors and the bias currents of each stage are scaled down along the pipeline 

chain. For further power and area reduction, the opamps are shared between successive 

stages. 

 

S/H
(Cs=1.4pF)

Stage 1 & 2
1.5 Bit Stage

(Cs=1pF)

Stage 3 & 4
1.5 Bit Stage

(Cs=400fF)

Digital Error Correction Logic

4

Clock

&

SCIREF

4 2

10

Vin
Stage 5 & 6
1.5 Bit Stage

(Cs=250fF)

4

Stage 7 & 8
1.5 Bit Stage

(Cs=250fF)

4

2 Bit Flash

 
Figure 4.1: Top level architecture of the 10-bit pipeline ADC. 

 

The estimated input referred noise due to thermal noise is 220 µVrms. Additional noise 

components, such as quantization noise, rms jitter noise and reference circuits noise 

increases the total input referred noise of the ADC to 356 µVrms. Considering a full-

scale range input signal the expected SNR is about 57.4 dB. The target specifications 

for this work are to achieve 9.2 bits of ENOB with a power dissipation of 8 mW at 40 

MS/s corresponding to a FOM of 340 fJ/Conversion. The power dissipation should 
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scale according to sampling rate. Table 4.1 shows the target specifications and Table 4.2 

presents the estimate of the different noise sources. 

 

Table 4.1: Target specifications for the designed ADC. 

  
Technology 65nm TSMC Logic LP Process 

Supply Voltage 1.2 V ±8% 

Sampling rate 20-80 MS/s 

Reference 0.5 V (differential) 

Resolution 10-bit 

Power Dissipation 8 mW @40MS/s 

SNDR 57.2 dB 

ENOB 9.2 bits 

FOM 340 fJ/step 

 

 

Table 4.2: Noise components of the pipeline ADC. 

  Vrms dBV dB 

Quant. Noise 2,8E-04 -71,0 61,5 

DNL Noise 1,4E-04 -77,0 67,5 

Thermal Noise 2,2E-04 -73,3 63,8 

References noise 1,1E-04 -78,9 69,4 

Jitter Noise 2,1E-04 -73,4 63,9 

SNR 4,5E-04 -66,9 57,4 
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4.2 Analog Building blocks 

4.2.1 Front-end S/H circuit 

A front-end S/H is required to ensure the sub-ADC and MDAC of the first stage sample 

the same input for high input frequencies. The performance of the ADC at high signal 

frequencies is predominantly set by the front-end S/H circuit. Since it is in front of the 

signal chain, its thermal noise and distortion are not attenuated by any preceding gain 

stages and thus it has to fulfill the full resolution requirement [17]. The conventional 

flip-around front-end sample-and-hold [20] shown in Figure 4.2 was used in front-end 

of the pipeline. This topology has the advantage of a feedback factor near unity.  

 
Figure 4.2: Front-end S/H circuit. 

As the feedback factor of the S/H stage is ideally the same as the first stage of the 

pipeline, the amplifier used in first stage is reused in S/H. Input switches are realized 

using bootstrapped switches and input common mode sampling transistors are 

implemented with simple NMOS switches. A Capacitor with a nominal capacitance 

value of 1.4 pF is used. Output referred noise of S/H was estimated to be below 120 

µVrms for a full-scale input signal of 1Vpp. 
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4.2.2 MDAC for the 1.5-bit pipelined stage 

The MI-MDAC architecture presented in the last chapter was used to implement the 

1.5-bit stage of the pipeline. The circuit schematic of the MDAC is shown in Figure 4.3.  
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Figure 4.3: Fully differential circuit implementation of the MDAC. Parasitic compensation circuit and 

current source reference shifting circuit implementation not shown (for simplicity). 

Input switches are realized using bootstrapped switches, which help to reduce the time 

constant and improve linearity. Bootstrapping is also employed in the feedback 

switches. Bottom-plate sampling switches are implemented with simple NMOS 

transistors and are controlled by an earlier phase which helps reduce the signal-

dependent charge injection. Capacitors are implemented with MOM capacitors and have 

a nominal unit capacitance value of 1 pF. 
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4.2.2.1 Implementation of the current sources 

 

Current sources are implemented with single cascode and a differential pair is used as a 

current switch as shown in Figure 4.4. This circuit routes the tail current      to the 

output or towards a dummy connection.  
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Figure 4.4: Schematic view of PMOS single Cascode current sources. 

 

Transistor    was designed with a large channel length and consequently a large area to 

improve matching and enhance output impedance. The size of     is large enough to 

enhance output impedance, but not too high to maintain the parasitic capacitance    at 

its drain at a reasonable value. Current switches are implemented with simple PMOS 

transistors and are biased in saturation region. This increases the output impedance of 

the current source and minimizes the variations at the common source node of the 

switches. To minimize any disturbance on     and       a decoupling capacitor is 

connected from these nodes to analog supply voltage    . These capacitors are 

implemented with MOSCAPs. 
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4.2.3 Opamp 

The architecture of the amplifier utilized in the MDAC is shown in Figure 4.5. It uses a 

current mirror configuration with a PMOS input pair, which permits the use of a low 

input common mode voltage and simple NMOS switches can be used to sample this 

voltage. The non-dominant pole is larger than in a NMOS input pair because the current 

mirror is implemented with NMOS devices. 
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Figure 4.5: Schematic of the Current mirror amplifier. 

The common mode of amplifier is controlled by two passive switched capacitor 

commom-mode feedback (CMFB) circuits that are operated in opposite clock phases in 

parallel. The circuit is shown in Figure 4.6. 
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Figure 4.6: Passive switched capacitor CMFB circuit.  
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The open loop DC-gain of the amplifier is enhanced to 75 dB by introducing the 

regulation amplifiers shown in Figure 4.7 and Figure 4.8. These circuits are biased with 

very low bias currents and use the same bias circuit of the core amplifier.  
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Figure 4.7: High-swing low-voltage regulation 
PMOS amplifier. 
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Figure 4.8: High-swing low-voltage regulation 
NMOS amplifier. 

 

The amplifier was simulated over PVT corners using the BSIM4 model in CADENCE 

Spectre simulation. The simulated frequency response at typical conditions shows a 320 

MHz GBW and 72° phase margin at the frequency of closed loop gain in the target 

feedback configuration. The DC gain simulated is 75 dB and the typical settling time to 

10-bit accuracy is 7.2 ns. Table 4.3 summarizes the results. 

Table 4.3: Opamp simulation results. 

 Typical Minimum Maximum 

               ( )             

            (  )            

       (  )          

    (   )             

   ( )          

       (  ) (    )                          

                  (  )           

  (  )   
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4.2.4 Sub-Analog-to-Digital Converter (sub-ADC) 

As stated before, the quantization in each pipeline stage is performed with a local low-

resolution flash quantizer (sub-ADCs). To maximize the available settling time of the 

MDAC output, the sub-ADCs should provide their output to the MDAC as soon as 

possible. Therefore the sub-ADC of pipeline A/D converters are of flash type. Each 

flash sub-ADC comprises a comparator bank, a thermometer to binary encoder and a 

small decoding logic to generate the control signals of the MDAC. 

As previously mentioned, each stage comprises a 1.5-bit sub-ADC with exception of 

last stage that quantizes two bits. The 1.5-bit flash quantizer circuit shown in Figure 4.9 

employs two comparators, two gated SR latches, an X, Y, Z encoder and a 

thermometer-to-binary digital encoder. 
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Figure 4.9: Block diagram of a 1.5-bit flash quantizer. 

 

The 2-bit FQ used at the end of the pipeline has an identical structure as that the 1.5-bit 

version but has one more comparator and the threshold comparator levels are       ⁄ , 

0 and       ⁄ . 
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4.2.4.1 Sub-ADC Comparator 

 

Since redundancy is applied to relax the comparator offset requirements, dynamic 

comparators are often used in sub-ADC, because of their potential for low power and 

small area. A fully differential comparator can be realized employing a charge 

distribution comparator. The charge sharing dynamic comparator [28] used in this work 

is shown in Figure 4.10. The offset of this comparator depends mainly on the mismatch 

between the capacitors and the offset of the differential pair amplifier. 
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Figure 4.10: Charge distribution comparator. 

The threshold of the comparator can be found applying charge conservation and is given 

by 

          
    

   

(           ) 

This means that the threshold voltage of the comparator can be adjusted linearly with 

the capacitance ratio. 
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4.2.5 Clock Generation 

The timing diagram of the clock signals is shown in Figure 4.11. The clock signals    

and    are generated using the standard circuit shown in Figure 4.12. The delay of the 

NAND gate and the delay element controls the non-overlapping time. The delay 

element is realized with an even-numbered chain of inverters. The clock signals are re-

buffered locally, in each pipelined stage. 

 
Figure 4.11: Clock phases timing diagram. 

 
Figure 4.12: Standard Non-overlapping Clock Generator. 

Phases    and    that define the integration time of MDAC are generated by the circuit 

shown in Figure 4.13. The circuit consists of a current source that charges a capacitor 

during a specified amount of time. At the beginning of     the output goes high and 

capacitor    begins to charge up. When the capacitor has been charged to approximately 

    ⁄  an inverter triggers and    goes low. The time interval is defined by 

   
        

  
. This means that the integration time can be adjusted by changing the size 

of the capacitor and the value of current   . A large grounding transistor     discharges 
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the capacitor during   . The current source is connected to ground during     to 

discharge the parasitic capacitor and prevent long turn-on times. 
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Figure 4.13: Schematic of the timing control circuit. 

 

The noise from the charging current    will translate into jitter noise when the voltage 

across the capacitor    crosses the threshold voltage     of the inverter. The rms jitter 

can be expressed as 

   
    

 |
  

  
|
  

 (4.1) 

The expression for the noise voltage   
  was found in chapter 3 and is given by 

      

    
.  

The final expression for timing jitter is 

   
  

      
 

       
 (4.2) 

Considering a capacitor size of 1 pF, an integration time of 3 ns and a threshold voltage 

          leads to an rms jitter of 1.6 ps. 
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4.2.6 Current generation and distribution 

Figure 4.14 shows the circuit schematic of a complete current reference generator. 

Capacitors   ,    and    were set to 1 pF, 0.4 pF and 1 pF, respectively. The bottom 

plate of    and    was connected to ground to reduce parasitic effects. Simulations 

showed that the reference current generated varies less than ±5% considering PVT 

variations and ±3% variation in voltage reference     . This voltage is generated by a 

band-gap circuit which is available in most ADCs. 
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Figure 4.14: Circuit diagram of the implemented current reference. 

The reference current is mirrored and a current is generated for each stage as shown in 

Figure 4.15. The mirrored currents are routed to each stage and then a local biasing 

circuit generates biasing voltages    and     . Routing a current is preferred to routing 

a voltage to each stage because the matching depends only on local transistor matching 

rather than matching across the chip. 
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Figure 4.15: Current distribution for the stages.  
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4.3 Summary 

The adopted architecture and the circuits used in the implementation of the 10-bit 

pipeline ADC were described. The MDAC has been implemented with a new structure 

that does not require a reference buffer to define the reference levels for the MDAC. 

Instead, this block has been replaced by a current source and the biasing reference 

currents were generated by a switched capacitor current reference. The current mirror 

architecture was chosen to implement the amplifier of the pipelined stages. Details of 

the implementation and simulations results for the opamp used in the first stage were 

presented. The design details for comparators used in sub-ADC and the back-end flash 

were also presented. 
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Chapter 5 

 

Simulation Results 

 

In this chapter the dynamic performance of the proposed ADC is validated through 

electrical simulation and exhaustive FFT analysis over process, supply and temperature 

(PVT) corners. 

 

The block diagram of the proposed ADC is depicted in Figure 5.1. As already 

mentioned in Chapter 4 the ADC consists of a front-end S/H followed by 8 pipelined 

stages, and a final 2-bit flash quantizer. The bias voltages and currents are generated on-

chip by a reference buffer and a switched-capacitor current reference generator. The 

reference buffers are only used to define the reference levels for the sub-ADCs. The 

power supply is divided in two domains (analog and digital). The analog supply 

(AVDD) powers the opamps, the bias circuitry and the comparators. The digital supply 

(DVDD) powers the clock circuitry and the digital logic. The external clock signal 

controls the sampling rate and the bias currents.  
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Figure 5.1: Block diagram of the implemented ADC. 
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Figure 5.2 shows the frequency response to a near 10MS/s input signal frequency (Fin) 

and 40MS/s sampling frequency. The ADC achieves a SNDR of 59.8 dB and a THD of 

-68 dB. 

 

 

Figure 5.2: 256-point FFT for Fs = 40MS/s and Ain = -0.5 dBFS. 

 

 

The dynamic performance of the ADC was evaluated by sweeping the sampling 

frequency (Fs) at Fin = 10MHz. The ENOB is plotted as function of sampling frequency 

in Figure 5.3. The SNDR and SNR are shown in Figure 5.4. Figure 5.5 depicts the 

SFDR and THD. 
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Figure 5.3: Simulated ENOB versus Fs (-0.5 dBFS and Fin = 10 MHz). 
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Figure 5.4: Simulated SNR and SNDR versus Fs (-0.5 dBFS and Fin = 10 MHz). 
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Figure 5.5: Simulated SFDR and THD versus Fs (-0.5 dBFS and Fin = 10 MHz). 
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Figure 5.6: Power consumption vs. Sampling Frequency. 

The power consumption is plotted as a function of sampling frequency in Figure 5.6. At 

40 MS/s the ADC dissipates 10.8 mW (7.2 mW/3.6 mW analog/digital) from a 1.2 V 

power supply. The Power consumption scales almost linearly with sampling rate. The 

total power of Pipeline (ADC excluding the auxiliary circuitry) is distributed through 

the amplifiers (66%), the clock bootstrapping circuitry (23%) and the sub-ADCs (11%). 

The power of auxiliary circuitry corresponds to 20% of total power of ADC. This power 

is distributed through the reference buffer (6%), current reference generator (9%), 

biasing circuit (2%) and clocking phase buffers (2%). Compared to a conventional 

design the power of reference circuitry (reference buffer + current reference generator) 

is reduced from 25% to 15% of the total power consumption. 

 

Figure 5.7: ADC Power distribution 
(excluding auxiliary circuitry). 

 

Figure 5.8: ADC Power distribution. 
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The dynamic performance was also evaluated over PVT corners. It was considered an 

8% variation on power supply, a minimum temperature of -40 º C and a maximum of 

+125 º C. Table 5.1 summarizes the results. 

Table 5.1: Performance results. 

Sampling Frequency 10MS/s 

Input signal frequency 2 MHz 

  MIN TYP MAX UNIT Power (mW) 

SNR 58 60.6 60.6 dB 

4 

SFDR 61 71 71 dBc 

THD 60 69 69 dB 

SNDR 56 60 60 dB 

ENOB 9 9.6 9.6 bit 

 

 

Sampling Frequency 20MS/s 

Input signal frequency 4 MHz 

  MIN TYP MAX UNIT Power (mW) 

SNR 58 60.2 60.8 dB 

6.4 

SFDR 61 71 72 dBc 

THD 60 68 71.2 dB 

SNDR 56 59.6 60.4 dB 

ENOB 9 9.6 9.74 bit 

 

Sampling Frequency 40MS/s 

Input signal frequency 8 MHz 

  MIN TYP MAX UNIT Power (mW) 

SNR 58.4 60.48 60.48 dB 

10.8 

SFDR 61 70 70 dBc 

THD 60 68.4 68.4 dB 

SNDR 56 59.8 59.8 dB 

ENOB 9 9.6 9.6 bit 
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Sampling Frequency 80MS/s 

Input signal frequency 10 MHz 

  MIN TYP MAX UNIT Power (mW) 

SNR 58.2 59.4 59.6 dB 

22 

SFDR 56 65 68 dBc 

THD 56 64.2 67.6 dB 

SNDR 54 58.4 59 dB 

ENOB 8.6 9.4 9.5 bit 

 

The results presented above only include quantization noise. In order to analyze the 

circuit performance in the presence of the different noise components, the 10-bit ADC is 

simulated using a transient noise analysis. The performance results simulated at 40 

MS/s with 10 MHz input signal are summarized in Table 5.2. At this sampling 

frequency the ADC achieves a FOM of 460 fJ/step. 

 

Table 5.2: Summary of the simulated ADC key performance parameters. 

Parameter Simulation results 

Technology 65nm TSMC Logic LP Process 

Supply Voltage 1.2 V ±8% 

Sampling rate 20-80 MS/s 

Input Range 1.0Vpp Diff. 

Resolution 10-bit 

Power Dissipation 10.8 mW @40MS/s 

SNDR 57.2 dB 

ENOB 9.2 bits 

FOM 460 fJ/step 
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Summary 

In this chapter, the full ADC was characterized by way of its dynamic performance. The 

simulations results show that the ADC can achieve an ENOB of 9.2 bits and a THD of -

68 dB when operates at Fs = 40 MS/s. The key simulated results were summarized in 

Table 5.2. The power simulations for each building block of the ADC were presented in 

Figure 5.8. 
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Chapter 6 

 

Conclusions 

 

This chapter summarizes the main conclusions and discusses the areas for future work. 

 

6.1 Conclusions 

Pipeline ADCs are the most attractive solution in high-speed medium-to-high resolution 

applications. Within this architecture, the residue amplifiers, the front-end S/H and the 

reference circuitry dominate the power dissipation. However, most of the reported 

pipeline ADCs in the literature only addresses the power of the amplifiers and the S/H 

ignoring the reference circuitry. The solutions to reduce power of the S/H are to remove 

the S/H or embed the S/H within the first stage. Digitally assisted analog design and 

comparator-based switched-capacitor circuit are published as alternatives to high gain 

amplifiers. 

 

This work presents the design of a pipeline ADC that does not require big reference 

buffers to generate stable reference levels for the MDAC. This is achieved replacing the 

conventional MDAC by a closed-loop MDAC circuit that realizes the DAC function in 

current mode. The technique has been demonstrated in the design of a 10 bit, 40 MS/s 

pipeline ADC in a 65 nm CMOS technology. The reference currents were generated on-

chip by a switched-capacitor current reference generator that shows low power 

dissipation and does not require extra pins. The performance of the overall A/D 

conversion system was verified by electrical simulations and FFT analysis. The 

simulations results show that the ADC dissipates 10.8 mW and achieves an ENOB of 

9.2 bit and a THD of -68 dB when operates at a sampling frequency of 40MS/s. This 

translates in a FOM of 460 fJ/step. 

The ADC shows power savings of 40% in the reference circuitry and 30% in the residue 

amplifiers. The proposed architecture enables a 25% reduction on the power dissipation 
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when comparing to a traditional pipeline ADC where power hungry voltage buffers are 

employed to generate the DAC reference levels for the MDAC. 

 

6.2 Future Work 

Some suggestions for future work: 

 

 Implement the physical layout of the ADC and execute post-layout simulations 

to examine the performance degradation in the presence of parasitic capacitance. 

 

 Extend the architecture used in this work to higher resolution and/or speed. Due 

to the simple structure of the pipeline ADC this can be done easily. To reach 

higher resolutions, only the front-end stages such as the S/H and the first-stage 

need to be designed. The rest of the stages can be re-used from this work. 

 

 Characterize the non-linearity errors from the current sources and develop 

methods to minimize these errors.  

 

 Implement the residues amplifiers with a class AB two-stage amplifier. A two-

stage amplifier reduces the input capacitance and maximizes the feedback factor, 

while a class AB operation reduces the static power dissipation. 
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