350 research outputs found

    SFSSClass: an integrated approach for miRNA based tumor classification

    Get PDF
    Background: MicroRNA (miRNA) expression profiling data has recently been found to be particularly important in cancer research and can be used as a diagnostic and prognostic tool. Current approaches of tumor classification using miRNA expression data do not integrate the experimental knowledge available in the literature. A judicious integration of such knowledge with effective miRNA and sample selection through a biclustering approach could be an important step in improving the accuracy of tumor classification. Results: In this article, a novel classification technique called SFSSClass is developed that judiciously integrates a biclustering technique SAMBA for simultaneous feature (miRNA) and sample (tissue) selection (SFSS), a cancer-miRNA network that we have developed by mining the literature of experimentally verified cancer-miRNA relationships and a classifier uncorrelated shrunken centroid (USC). SFSSClass is used for classifying multiple classes of tumors and cancer cell lines. In a part of the investigation, poorly differentiated tumors (PDT) having non diagnostic histological appearance are classified while training on more differentiated tumor (MDT) samples. The proposed method is found to outperform the best known accuracy in the literature on the experimental data sets. For example, while the best accuracy reported in the literature for classifying PDT samples is similar to 76.5%, the accuracy of SFSSClass is found to be similar to 82.3%. The advantage of incorporating biclustering integrated with the cancer-miRNA network is evident from the consistently better performance of SFSSClass (integration of SAMBA, cancer-miRNA network and USC) over USC (eg., similar to 70.5% for SFSSClass versus similar to 58.8% in classifying a set of 17 MDT samples from 9 tumor types, similar to 91.7% for SFSSClass versus similar to 75% in classifying 12 cell lines from 6 tumor types and similar to 382.3% for SFSSClass versus similar to 41.2% in classifying 17 PDT samples from 11 tumor types). Conclusion: In this article, we develop the SFSSClass algorithm which judiciously integrates a biclustering technique for simultaneous feature (miRNA) and sample (tissue) selection, the cancer-miRNA network and a classifier. The novel integration of experimental knowledge with computational tools efficiently selects relevant features that have high intra-class and low interclass similarity. The performance of the SFSSClass is found to be significantly improved with respect to the other existing approaches

    Multiclass classification of microarray data with repeated measurements: application to cancer

    Get PDF
    Prediction of the diagnostic category of a tissue sample from its gene-expression profile and selection of relevant genes for class prediction have important applications in cancer research. We have developed the uncorrelated shrunken centroid (USC) and error-weighted, uncorrelated shrunken centroid (EWUSC) algorithms that are applicable to microarray data with any number of classes. We show that removing highly correlated genes typically improves classification results using a small set of genes

    A comparative study of discriminating human heart failure etiology using gene expression profiles

    Get PDF
    BACKGROUND: Human heart failure is a complex disease that manifests from multiple genetic and environmental factors. Although ischemic and non-ischemic heart disease present clinically with many similar decreases in ventricular function, emerging work suggests that they are distinct diseases with different responses to therapy. The ability to distinguish between ischemic and non-ischemic heart failure may be essential to guide appropriate therapy and determine prognosis for successful treatment. In this paper we consider discriminating the etiologies of heart failure using gene expression libraries from two separate institutions. RESULTS: We apply five new statistical methods, including partial least squares, penalized partial least squares, LASSO, nearest shrunken centroids and random forest, to two real datasets and compare their performance for multiclass classification. It is found that the five statistical methods perform similarly on each of the two datasets: it is difficult to correctly distinguish the etiologies of heart failure in one dataset whereas it is easy for the other one. In a simulation study, it is confirmed that the five methods tend to have close performance, though the random forest seems to have a slight edge. CONCLUSIONS: For some gene expression data, several recently developed discriminant methods may perform similarly. More importantly, one must remain cautious when assessing the discriminating performance using gene expression profiles based on a small dataset; our analysis suggests the importance of utilizing multiple or larger datasets

    Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More studies based on gene expression data have been reported in great detail, however, one major challenge for the methodologists is the choice of classification methods. The main purpose of this research was to compare the performance of linear discriminant analysis (LDA) and its modification methods for the classification of cancer based on gene expression data.</p> <p>Methods</p> <p>The classification performance of linear discriminant analysis (LDA) and its modification methods was evaluated by applying these methods to six public cancer gene expression datasets. These methods included linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), shrinkage centroid regularized discriminant analysis (SCRDA), shrinkage linear discriminant analysis (SLDA) and shrinkage diagonal discriminant analysis (SDDA). The procedures were performed by software R 2.80.</p> <p>Results</p> <p>PAM picked out fewer feature genes than other methods from most datasets except from Brain dataset. For the two methods of shrinkage discriminant analysis, SLDA selected more genes than SDDA from most datasets except from 2-class lung cancer dataset. When comparing SLDA with SCRDA, SLDA selected more genes than SCRDA from 2-class lung cancer, SRBCT and Brain dataset, the result was opposite for the rest datasets. The average test error of LDA modification methods was lower than LDA method.</p> <p>Conclusions</p> <p>The classification performance of LDA modification methods was superior to that of traditional LDA with respect to the average error and there was no significant difference between theses modification methods.</p

    Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems

    Get PDF
    Background: Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform variable selection in large data sets. Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell biology, biological pathways or complex traits.Results: A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a multiclass classification framework.Conclusions: sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets

    Genetic algorithm-neural network: feature extraction for bioinformatics data.

    Get PDF
    With the advance of gene expression data in the bioinformatics field, the questions which frequently arise, for both computer and medical scientists, are which genes are significantly involved in discriminating cancer classes and which genes are significant with respect to a specific cancer pathology. Numerous computational analysis models have been developed to identify informative genes from the microarray data, however, the integrity of the reported genes is still uncertain. This is mainly due to the misconception of the objectives of microarray study. Furthermore, the application of various preprocessing techniques in the microarray data has jeopardised the quality of the microarray data. As a result, the integrity of the findings has been compromised by the improper use of techniques and the ill-conceived objectives of the study. This research proposes an innovative hybridised model based on genetic algorithms (GAs) and artificial neural networks (ANNs), to extract the highly differentially expressed genes for a specific cancer pathology. The proposed method can efficiently extract the informative genes from the original data set and this has reduced the gene variability errors incurred by the preprocessing techniques. The novelty of the research comes from two perspectives. Firstly, the research emphasises on extracting informative features from a high dimensional and highly complex data set, rather than to improve classification results. Secondly, the use of ANN to compute the fitness function of GA which is rare in the context of feature extraction. Two benchmark microarray data have been taken to research the prominent genes expressed in the tumour development and the results show that the genes respond to different stages of tumourigenesis (i.e. different fitness precision levels) which may be useful for early malignancy detection. The extraction ability of the proposed model is validated based on the expected results in the synthetic data sets. In addition, two bioassay data have been used to examine the efficiency of the proposed model to extract significant features from the large, imbalanced and multiple data representation bioassay data
    • 

    corecore