55,605 research outputs found

    Conjunctions of Among Constraints

    Full text link
    Many existing global constraints can be encoded as a conjunction of among constraints. An among constraint holds if the number of the variables in its scope whose value belongs to a prespecified set, which we call its range, is within some given bounds. It is known that domain filtering algorithms can benefit from reasoning about the interaction of among constraints so that values can be filtered out taking into consideration several among constraints simultaneously. The present pa- per embarks into a systematic investigation on the circumstances under which it is possible to obtain efficient and complete domain filtering algorithms for conjunctions of among constraints. We start by observing that restrictions on both the scope and the range of the among constraints are necessary to obtain meaningful results. Then, we derive a domain flow-based filtering algorithm and present several applications. In particular, it is shown that the algorithm unifies and generalizes several previous existing results.Comment: 15 pages plus appendi

    A geometric constraint over k-dimensional objects and shapes subject to business rules

    Get PDF
    This report presents a global constraint that enforces rules written in a language based on arithmetic and first-order logic to hold among a set of objects. In a first step, the rules are rewritten to Quantifier-Free Presburger Arithmetic (QFPA) formulas. Secondly, such formulas are compiled to generators of k-dimensional forbidden sets. Such generators are a generalization of the indexicals of cc(FD). Finally, the forbidden sets generated by such indexicals are aggregated by a sweep-based algorithm and used for filtering. The business rules allow to express a great variety of packing and placement constraints, while admitting efficient and effective filtering of the domain variables of the k-dimensional object, without the need to use spatial data structures. The constraint was used to directly encode the packing knowledge of a major car manufacturer and tested on a set of real packing problems under these rules, as well as on a packing-unpacking problem

    Chiron: A Robust Recommendation System with Graph Regularizer

    Full text link
    Recommendation systems have been widely used by commercial service providers for giving suggestions to users. Collaborative filtering (CF) systems, one of the most popular recommendation systems, utilize the history of behaviors of the aggregate user-base to provide individual recommendations and are effective when almost all users faithfully express their opinions. However, they are vulnerable to malicious users biasing their inputs in order to change the overall ratings of a specific group of items. CF systems largely fall into two categories - neighborhood-based and (matrix) factorization-based - and the presence of adversarial input can influence recommendations in both categories, leading to instabilities in estimation and prediction. Although the robustness of different collaborative filtering algorithms has been extensively studied, designing an efficient system that is immune to manipulation remains a significant challenge. In this work we propose a novel "hybrid" recommendation system with an adaptive graph-based user/item similarity-regularization - "Chiron". Chiron ties the performance benefits of dimensionality reduction (through factorization) with the advantage of neighborhood clustering (through regularization). We demonstrate, using extensive comparative experiments, that Chiron is resistant to manipulation by large and lethal attacks

    Geo-Social Group Queries with Minimum Acquaintance Constraint

    Full text link
    The prosperity of location-based social networking services enables geo-social group queries for group-based activity planning and marketing. This paper proposes a new family of geo-social group queries with minimum acquaintance constraint (GSGQs), which are more appealing than existing geo-social group queries in terms of producing a cohesive group that guarantees the worst-case acquaintance level. GSGQs, also specified with various spatial constraints, are more complex than conventional spatial queries; particularly, those with a strict kkNN spatial constraint are proved to be NP-hard. For efficient processing of general GSGQ queries on large location-based social networks, we devise two social-aware index structures, namely SaR-tree and SaR*-tree. The latter features a novel clustering technique that considers both spatial and social factors. Based on SaR-tree and SaR*-tree, efficient algorithms are developed to process various GSGQs. Extensive experiments on real-world Gowalla and Dianping datasets show that our proposed methods substantially outperform the baseline algorithms based on R-tree.Comment: This is the preprint version that is accepted by the Very Large Data Bases Journa
    corecore