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Abstract. This paper presents a global constraint that enforces rules written in
a language based on arithmetic and first-order logic to hold among a set of ob-
jects. In a first step, the rules are rewritten to Quantifier-Free Presburger Arith-
metic (QFPA) formulas. Secondly, such formulas are compiled to generators of
k-dimensional forbidden sets. Such generators are a generalization of the index-
icals of cc(FD). Finally, the forbidden sets generated by such indexicals are ag-
gregated by a sweep-based algorithm and used for filtering.

The business rules allow to express a great variety of packing and place-
ment constraints, while admitting effective filtering of the domain variables of
the k-dimensional object, without the need to use spatial data structures.

1 Introduction

This paper extends a global constraint geost(k,O,S,R) for handling the location in
space of k-dimensional objects O (k ∈ N

+), each of which taking a shape among a
set of shapes S, subject to rules R in a language based on arithmetic and first-order
logic. This language can also be seen as a natural target constraint of the Rules2CP
modeling language [1].

In order to model directly a lot of side constraints, which always show up in the con-
text of real-life applications, many global constraints have traditionally been extended
with extra options or arguments. This is why, in a closely related area, the diffn con-
straint [2] of CHIP provides, beside non-overlapping, a variety of other geometrical
constraints (in fact more than 10 side constraints). Even if this makes sense when one
wants to efficiently solve specific real-life applications, this proliferation of arguments
and options has two major drawbacks:

– Having a lot of ad-hoc side constraints is too specific and can sometimes be quite
frustrating since it does not allow to express a variant of an existing side constraint.

– Designing a filtering algorithm for each side constraint independently is not enough
and managing the interaction of several side constraints becomes more and more
challenging as the number and variety of side constraints increase.
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The approach presented in this paper addresses these two issues in the following way:

– Firstly, having a rule language for expressing side constraints is obviously more
flexible than having a large set of predefined side constraints.

– Secondly, as we will see later on, our filtering algorithms allow to directly take into
account the interaction between all rules.

In geost(k,O,S,R), each shape from S is defined as a finite set of shifted boxes,
where each shifted box is described by a box in a k-dimensional space at the given
offset with the given sizes. More precisely a shifted box s ∈ S is an entity defined by
its shape id s.sid , shift offset s.t[d], 1 ≤ d ≤ k, and sizes s.l[d] (where s.l[d] > 0 and
1 ≤ d ≤ k). All attributes of a shifted box are integer values. A shape is a collection of
shifted boxes all sharing the same shape id.

Each object o ∈ O is an entity defined by its unique object id o.oid (an integer),
shape id o.sid (an integer if the object has a fixed shape, or a domain variable for
polymorphic objects, which have alternative shapes), and origin o.x[d], 1 ≤ d ≤ k (in-
tegers, or domain variables that do not occur anywhere else in the constraint).1 Objects
and shifted boxes may also have additional, integer (but see also Section 6) attributes,
such as weight, customer, or fragility, used by the rules.

Each rule in R is a first-order logical formula over the attributes of objects and shifted
boxes. From the point of view of domain filtering, the main contribution of this paper is
that multi-dimensional forbidden sets can be automatically derived from such formulas
and used by the sweep-based algorithm of geost [3].2 This contrasts with the previous
version of geost, where an ad-hoc algorithm computing the multi-dimensional forbid-
den sets had to be worked out for each side constraint. R may also contain macros,
providing abbreviations for expressions occurring in formulas or in other macros.

The rule language. The language that makes up the rules to be enforced by the geost
constraint is based on first-order logic with arithmetic, as well as several features includ-
ing macros, bounded quantifiers, folding and aggregation operators. We will show how
all but a core fragment of the language can be eliminated by equivalence-preserving
rewriting. The remaining fragment is a subset of Quantifier-Free Presburger Arithmetic
(QFPA), which has a very simple semantics and, as we also will show, is amenable to
efficient compilation.

Constraint satisfaction problems using quantified formulas (QCSP) have for instance
been studied by Benedetti et al. [4], mostly in the context of modeling games. QCSP
does not provide disjunction but actively uses quantifiers in the evaluation, whereas we
eliminate all quantifiers in the process of rewriting to QFPA.

Example 1. This running example will be used to illustrate the way we compile rules
to code used by the sweep-based algorithm [3] for filtering the nonground attributes of
each object. Suppose that we have five objects o1, o2, o3, o4 and o5 such that:

1 A domain variable v is a variable ranging over a finite set of integers denoted by dom(v); v
and v denote respectively the minimum and maximum possible values for v.

2 The sweep-based algorithm performs recursive traversals of the placement space for each co-
ordinate increasing as well as decreasing lexicographic order and skips unfeasible points that
are located in a multi-dimensional forbidden set.
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– o1, o2 and o4 are rectangles fixed at (1, 2), (3, 3) and (3, 7) of respective size 3×1,
1 × 1 and 3 × 1.

– The rectangle o3 is fixed at (2, 5) but not its shape variable s3, which can take
values corresponding to size 1 × 2 or 2 × 1. We will denote by �31 resp. �32 the
length resp. height of o3.

– The coordinates of the non-fixed square o5 of size 2 × 2 correspond to the two
variables x51 ∈ [1, 9] and x52 ∈ [1, 6].

– o2, o4 and o5 have the additional attribute type with value 1 whereas o1 and o3 have
type with value 2.

– Two rules must be obeyed; see Fig. 1:
• All objects should be mutually non-overlapping .
• If the type attribute of two objects both equal 1, the two

objects should not touch, not even their corners .
– The figure on the right shows one solution.

1 2 3 4 5 6

1

3

4

5

6

7

2

overlap(D, oi, si, oj , sj) →
∀d ∈ D : end(oi, si, d) > ori(oj , sj , d) ∧ end(oj , sj , d) > ori(oi, si, d)

meet(D, oi, si, oj , sj) →
(∀d ∈ D : end(oi, si, d) ≥ ori(oj , sj , d) ∧ end(oj , sj , d) ≥ ori(oi, si, d))∧
(∃d ∈ D : end(oi, si, d) = ori(oj , sj , d) ∨ end(oj , sj , d) = ori(oi, si, d))

all not overlap(D, OIDs) →
∀oi ∈ OIDs, ∀si ∈ oi.sid ,∀oj ∈ OIDs :

oi.oid < oj .oid ⇒ (∀sj ∈ oj .sid : ¬overlap(D, oi, si, oj , sj))
all type1 not meet(D,OIDs) →

∀oi ∈ OIDs, ∀si ∈ oi.sid ,∀oj ∈ OIDs :
oi.oid < oj .oid ∧ oi.type = 1 ∧ oj .type = 1 ⇒

∀sj ∈ oj .sid : ¬meet(D, oi, si, oj , sj)
all not overlap sboxes([1, 2], [1, 2, 3, 4, 5])
all type1 not meet sboxes([1, 2], [1, 2, 3, 4, 5])

Fig. 1. Macros and rules of the running example. ori(o, s, d) (resp. end(o, s, d)) stands for the
origin (resp. end) in dimension d object o with shape s.

Declarative semantics. As usual, the semantics is given in terms of ground objects. The
constraint geost(k,O,S,R) holds if and only if the conjunction of the logical formulas
in R is true.

Implementation overview. Fig. 2 provides the overall architecture of the implemen-
tation. When the geost constraint is posted, the given business rules are translated,
first into QFPA, then into generators of k-dimensional forbidden sets. Such genera-
tors, k-indexicals, are a generalization of the indexicals of cc(FD) [5]. Each time the
constraint wakes up, the sweep-based algorithm [3] generates forbidden sets for a spe-
cific object o by invoking the relevant k-indexicals, then looks for points that are not
contained in any forbidden set in order to prune the nonground attributes of o.
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Fig. 2. Overall architecture of the implementation

Paper outline. In Section 2, we present the rule language, its abstract syntax and its fea-
tures. In Section 3, we present the QFPA core fragment of the language, its declarative
semantics, and how the rule language is rewritten into QFPA. In Section 4, we de-
scribe (1) how a QFPA formula is compiled to generators of k-dimensional forbidden
sets, and (2) how the forbidden sets generated by such generators are aggregated by a
sweep-based algorithm and used for filtering. In Section 5, we provide experimental ev-
idence for search space reduction due to the global treatment of side constraints. Before
concluding, in Section 6, we mention a number of issues that we are currently working
on. An expanded version of this paper is available as a technical report [6]. In partic-
ular, see [6, Section 5] for an extension of the filtering to accommodate polymorphic
objects.

2 The Rule Language: Syntax and Features

A sentence is either a macro or a fol. A macro is simply a shorthand device: during
a rewriting phase, whenever an expression matching the left-hand side of a macro is
encountered, it is replaced by the corresponding right-hand side. A fol is a first-order
logic formula that must hold for the constraint to be true, and is one of: a comparison be-
tween two arithmetic expressions, the constant true or false, a cardinality formula
#(var , collection , integer , integer , fol ), a quantified formula ∀(var , collection , fol)
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or ∃(var , collection , fol), or formulas combined with logical connectives: ¬fol , fol ∧
fol , fol ∨ fol , fol ⇒ fol , or fol ⇔ fol .

An expr (arithmetic expression) is an integer, an attref (a reference to an at-
tribute of an entity, where an entity is an object or a shifted box), a fold expres-
sion @(var , collection , ◦, expr , expr) where ◦ ∈ {+, min, max}, or an expression
expr ◦expr where ◦ ∈ {+,−,×, /, min, max}. Arithmetic expressions must be linear:
in a product, at most one factor can be nonground; in a quotient, the divisor must be
ground.

A collection is the shorthand objects(S), denoting the collection of objects with
object id in S, or the shorthand sboxes(S) denoting the collection of shifted boxes
with shape id in S, or a list of terms, where a term is a variable, an integer, an identifier,
or a compound term. A compound term consists of a functor (an identifier) and one or
more arguments (terms). A term is ground if it is free of variables.

Quantified formulas are meaningful if the quantified variable occurs in the quantified
fol. They are treated by expansion to a disjunction resp. a conjunction of instances of
that fol where each element of the collection is substituted for the quantified variable.
In the context of our application, quantified variables typically vary over a collection of
dimensions, objects, or shifted boxes.

A cardinality formula specifies a variable quantified over a list of terms, a lower and
an upper bound, and a fol template mentioning the quantified variable. The formula is
true if and only if the number of true instances of the fol template is within the given
bounds. Cardinality formulas [7] are treated by expansion to ¬, ∧ and∨ connectives [8].

Arithmetic expressions and comparisons are over the rational numbers. The rationale
for this is that business rules often involve fractions of measures like weight or volume.
However, such fractions are converted to integers during rewriting.

Fold expressions allow to express e.g. the sum of some attribute over a set of ob-
jects. The operator specifies a variable quantified over a list of terms, a binary operator,
an identity element, and a template mentioning the quantified variable. The identity
element is needed for the empty list case.

3 QFPA Core Fragment

In this section, we show how a formula p in the rule language is rewritten by a series
of equivalence-preserving transformations into a qfpa, i.e. a QFPA formula, which here
either is of the form

∑
i integer i ·attref i ≥ integer or is a conjunction or a disjunction

of qfpas.
QFPA is widely used in symbolic verification, and there has been much work on

deciding whether a given QFPA formula is satisfiable [9]. Many methods based on
integer programming techniques [10] rely on having the formula on disjunctive normal
form. However, for constraint programming purposes, we are interested in necessary
conditions that can be used for filtering domain variables, and we are not aware on any
such work on QFPA. In [11], filtering algorithms for logical combinations of adhoc
constraints3 are proposed, but it is not clear whether that approach can be extended to
QFPA. For that, we would need to provide supports of qfpas.

3 Also known as constraints given in extension.
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3.1 Rewriting into QFPA

We now show the details of rewriting the formula given as the geost parameter R in
the following eight steps into a qfpa R̂. We will later show how R̂ is translated to
generators of forbidden sets.

Macro expansion and constant folding. The implication and equivalenceconnectives,
bounded quantifiers, and cardinality and folding operators are eliminated. Ground in-
teger expressions are replaced by their values. Object and shifted box collections are
expanded.

Elimination of negation. Using DeMorgan’s laws and negating relevant relops.
Normalization of arithmetic. Arithmetic relations are normalized to one of the forms

expr ≥ 0 or expr > 0.
Elimination of ×, / and −. Any occurrence of these operators in arithmetic expres-

sions is eliminated. At the same time, all operands are associated with a rational
coefficient (c in the table). The elimination is made possible by the fact that in
multiplication, at least one factor must be ground and is simply multiplied into the
coefficient. Similarly, in division, the coefficient is simply divided by the divisor,
which must be ground.

Moving + inside min and max. Any expression with min or max occurring inside +
are rewritten by using the commutative and distributive laws (1) so that the + is
moved inside the other operator.

a + b = b + a
a + min(b, c) = min(a + b, a + c)
a + max(b, c) = max(a + b, a + c)

(1)

Elimination of min and max. Any min or max operators occurring in arithmetic re-
lations are eliminated, replacing such relations by new relations combined by ∧ or
∨. After this step, an arithmetic expression is a linear combination of attrefs with
rational coefficients, plus an optional constant.

Elimination of rational numbers. Any arithmetic relation r, which can now only be
of the form e > 0 or e ≥ 0, is normalized into the form e′′ ≥ c′′ where e′ and c′

are intermediate expressions in:

– Let e′ be the linear combination obtained by multiplying e by the least com-
mon multiplier of the denominators of the coefficients of e. Recall that those
coefficients are rational numbers. Thus, the coefficients of e′ are integers.

– Let c′ be 1 if r is of the form e > 0, or 0 if r is of the form e ≥ 0.
– If e′ contains a constant term c, then e′′ = e′ − c and c′′ = c′ − c. Otherwise,

e′′ = e′ and c′′ = c′.

Simplification. Any entailed or disentailed arithmetic comparison is replaced by the
appropriate logical constant (true or false). Any ∧ or ∨ expression containing
one of these constants is simplified using partial evaluation.
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Example 2. Returning to our running
example the resulting qfpa R̂ shown on
the right is a conjunction of six subfor-
mulas corresponding respectively to:

– From the business rule
all not overlap sboxes,
conditions to prevent o5 from
overlapping o1, o2, o3 and o4.

– From the business rule
all type1 not meet sboxes,
conditions to prevent o5 from
meeting o2 and o4. ∧

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∨ (
x51 ≥ 4
x52 ≥ 3

)

∨
⎛
⎜⎜⎝

x51 ≥ 4
−1 · x51 ≥ −1

x52 ≥ 4
−1 · x52 ≥ −1

⎞
⎟⎟⎠

∨
⎛
⎝−1 · �31 + x51 ≥ 2

−1 · �32 + x52 ≥ 5
−1 · x52 ≥ −3

⎞
⎠

∨
⎛
⎝ x51 ≥ 6

−1 · x51 ≥ −1
−1 · x52 ≥ −5

⎞
⎠

∨

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x51 ≥ 5
x52 ≥ 5

∧

⎛
⎜⎜⎜⎜⎜⎜⎝

∨ (−1 · x51 ≥ −3
x51 ≥ 5

)

x51 ≥ 2∨ (−1 · x52 ≥ −3
x52 ≥ 5

)

x52 ≥ 2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∨

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x51 ≥ 7
−1 · x52 ≥ −4

∧
⎛
⎜⎜⎜⎜⎝

∨ (−1 · x51 ≥ −5
x51 ≥ 7

)

x51 ≥ 2∨ (
x52 ≥ 6

−1 · x52 ≥ −4

)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4 Compiling to an Efficient Run-Time Representation

It is straightforward to obtain necessary conditions for qfpas as well as pruning rules
operating on one variable at a time. Based on such conditions and pruning rules, we
will show how to construct generators of k-dimensional forbidden sets. We call such
generators k-indexicals, for they are generalization of the indexicals of cc(FD) [5]. Fi-
nally, we show how the forbidden sets generated by such indexicals are aggregated by
the sweep-based algorithm [3] and used for filtering.

Indexicals were first introduced for the language cc(FD) [5] and later used in the
context of CLP(FD) [12,13], AKL [14], finite set constraints [15] and adhoc con-
straints [16]. They have proven a powerful and efficient way of implementing constraint
propagation. A key feature of an indexical is that it is a function of the current domains
of the variables on which it depends. Thus, indexicals also capture the propagation from
variables to variables that occurs as variables are pruned. In the cited implementations,
an indexical is a procedure that computes the feasible set of values for a variable. We
generalize this notion to generating a forbidden set of k-dimensional points, for an
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object, and so k-indexicals captures the propagation from objects to objects that occurs
as object attributes are pruned.

4.1 Necessary Conditions

For a formula R denoting a linear combination of variables, let MAX (R) denote the
expression that replaces every attref x in R by x if x occurs with a positive coefficient,
and by x otherwise. Thus, MAX (R) is a formula that computes an upper bound of R
wrt. the current domains.

We will ignore the degenerate cases where R̂ is true resp. false, in which case
geost merely succeeds resp. fails. For the normal qfpa cases, we obtain the necessary
conditions shown in Table 1.

Table 1. Necessary condition N(t) for qfpa t

qfpa t necessary condition N(t)
P

i ci · xi ≥ r MAX (
P

i ci · xi) ≥ r

p ∨ q N(p) ∨ N(q)

p ∧ q N(p) ∧ N(q)

4.2 Pruning Rules

For the base case
∑

i ci · xi ≥ r, we have the well-known pruning rules (2), which
provide sharp bounds; see e.g. [17] for details.

∀j

⎧⎨
⎩

xj ≥ � r−MAX(
P

i�=j ci·xi)

cj
�, if cj > 0

xj ≤ 
−r+MAX(
P

i�=j ci·xi)

−cj
�, otherwise

(2)

Consider now a disjunction p ∨ q of two base cases and a variable xj occurring in at
least one disjunct.

– If xj occurs in p but not in q, rule (2) is only valid for p if the necessary condition
for q does not hold.

– Similarly if xj occurs in q but not in p.
– If xj occurs in both p and q, we can use rule (2) for both p and q and conclude that

xj must be in the union of the two feasible intervals.

Finally, consider a conjunction p ∧ q, i.e. both p and q must hold. If xj occurs in
both p and q, we can use rule (2) for both p and q and conclude that xj must be in the
intersection of the two feasible intervals.

Example 3. Returning to our running example, consider the fragment x51 ≥ 4∨ x52 ≥
3 of the qfpa, which comes from a rule preventing o5 from overlapping o1. Suppose that
we want to prune x52. Then we can combine the necessary condition for x51 ≥ 4 with
rule (2) for x52 ≥ 3 into the conditional pruning rule:

max(x51) < 4 ⇒ x52 ≥ 3
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However, as we will show in the next section, instead of using such conditional prun-
ing rules, we unify necessary conditions and pruning rules into multi-dimensional for-
bidden sets and aggregate them per object. For the above fragment, the two-dimensional
forbidden set for o5 is ([1, 3], [1, 2]), denoting the fact that (x51, x52) should be distinct
from all the pairs (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2).

4.3 k-Indexicals

Recall that the set of rules given in R has been rewritten into a qfpa R̂. Consider this
formula, or some subformula R̂i of it if R̂ is a conjunction (see Section 4.4). The idea
is to compile this subformula, for each object o mentioned by it, into a k-indexical for
R̂i and o. The forbidden sets that it generates can then be aggregated and used by the
sweep-point kernel [3] to prune the nonground attributes of o. Let us introduce some
notation to make this idea clear.

Definition 1. A forbidden set for a qfpa r and object o is a set4 of k-dimensional points
such that, if o is placed at any of these points, r is disentailed.

Such a forbidden set can also be seen as the multi-dimensional generalization of a set
of inconsistent assignments [18].

Definition 2. A k-indexical for a qfpa r and an object o is a procedure that functions
as a generator of forbidden sets for r and o. It is of the form o.x �∈ ibody where ibody
is defined in Fig. 3. The k-indexical depends on object o′ if ibody mentions o′.

-

denoting a dimension

Fig. 3. k-indexicals

4 A forbidden set is not explicitly represented as a set of points, but rather by a set of boxes, as
is the case in the earlier implementation [3].
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k-indexicals are described by the inductive definition shown in Fig. 3. They are built
up from generators of k-dimensional half-planes, combined by union and intersection
operations.

4.4 Compilation

The qfpa R̂, normally5 a conjunction r̂1 ∧ · · · ∧ r̂n, is compiled to k-indexicals by the
following steps:

1. Partition the conjuncts of R̂ into equivalence classes R̂1, . . . , R̂m such that for all
1 ≤ i < j ≤ n, r̂i and r̂j are in the same equivalence class if and only if they
mention6 the same set of objects of O.

2. For each equivalence class R̂i and object o ∈ O mentioned by R̂i, map R̂i (as
a conjunction) into a k-indexical for o, of the form o.x �∈ Fo(R̂i), according to
Table 2.

The mapping closely follows the pruning rules (2), except now we want to obtain a
forbidden set instead of a feasible interval. Rows 1-2 of Table 2 are analogous to the
recursive computation of inconsistent assignments in [18, Table 1]. Row 5 corresponds
to the case where r does not mention o, in which case all points are forbidden for o if r
is disentailed, and no points are forbidden for o otherwise.

Table 2. Mapping a qfpa r to a generator of forbidden sets, Fo(r), for the object o. We assume
here that o is not polymorphic.

r Fo(r) condition
p ∨ q Fo(p) ∩ Fo(q)

p ∧ q Fo(p) ∪ Fo(q)
P

i ci · xi ≥ r {p ∈ Z
k | p[d] < � r−MAX(

P
i�=j ci·xi)

cj
�} xj = o.x[d], cj > 0

P
i ci · xi ≥ r {p ∈ Z

k | p[d] > 
−r+MAX(
P

i�=j ci·xi)

−cj
�} xj = o.x[d], cj < 0

P
i ci · xi ≥ r if MAX (

P
i ci · xi) < r then Z

k else ∅ o.x[d] �∈ {xi}

The rationale for aggregating the conjuncts into equivalence classes, as opposed to
mapping one conjunct at a time, is the opportunity to increase the granularity of the
indexicals and to merge subformulas coming from different business rules. This opens
the scope for future work on global simplification of formulas, and increases the amount
of subexpressions that can be shared within a k-indexical.

It is well known that indexicals can be efficiently compiled and executed by a virtual
machine [12,13]. In our context, we predict that there will be a large amount of com-
mon subterms in the k-indexicals, and so common subexpression elimination will be
quite important. Therefore, a register-based virtual machine would seem an appropriate
choice.

5 Since it comes from the conjunction of business rules stated in the last argument of geost.
6 A formula mentions an object o if it refers to a nonground attribute of o.
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Example 4. Returning to our running example, we obtained a qfpa which was a con-
junction of six subformulas . They are partitioned into two equivalence classes: one for
the single conjunct that mentions both o3 and o5, mapped to k-indexicals (3) and (4)
below; and one for the five conjuncts that only mention o5 (because o1, o2 and o4 are
ground), mapped to k-indexical (5) below. The three k-indexicals reflect the following
business rules:

1. o3 must not take a shape that will cause it to overlap o5. Note that this k-indexical
propagates from o5 to the shape id of o3. Pruning of shape ids of polymorphic
objects is discussed in [6, Section 5]. Initially, no forbidden boxes are generated.

s3 �∈
⋂ ⎛

⎝{i ∈ dom(s3) | s3 = i ⇒ �31 > x51 − 2}
{i ∈ dom(s3) | s3 = i ⇒ �32 > x52 − 5}

if x52 > 3 then Z else ∅

⎞
⎠ (3)

2. o5 must not overlap o3. Note that this k-indexical propagates from o3 to o5.

o5.x �∈ ([1, (�31 + 1)], [4, (�32 + 4)]) (4)

3. o5 must not overlap o1, o2 nor o4, nor meet o2 nor o4.

o5.x �∈
⋃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

([1, 3], [1, 2])
([2, 3], [2, 3])
([2, 5], [6, 6])

⋂
⎛
⎜⎜⎜⎜⎝

([1, 4], [1, 4])

⋃
⎛
⎜⎜⎝

([4, 4], [1, 6])
([1, 1], [1, 6])
([1, 9], [4, 4])
([1, 9], [1, 1])

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

⋂
⎛
⎜⎜⎝

([1, 6], [5, 6])

⋃
⎛
⎝ ([1, 9], [5, 5])

([6, 6], [1, 6])
([1, 1], [1, 6])

⎞
⎠

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

4.5 Filtering Algorithm

We now give a sketch of a filtering algorithm for geost(k,O,S,R). Let I(o) denote
the set of k-indexicals for object o ∈ O wrt. the given rules R, let eval(i) denote
the evaluation of k-indexical i wrt. the current domains, let sweep(o, F ) denote the
application of the sweep-based algorithm to the object o wrt. the forbidden set F , which
prunes the minimum and maximum values of the origin coordinates of o. Our proposed
Algorithm 1 is a straightforward propagation loop.
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PROCEDURE
1:
2: while do
3: some element from
4:
5:
6: if then
7: return
8: else if a coordinate of was pruned then
9: depends on

10: end if
11: end while
12: if all objects in are ground then
13: return
14: else
15: return
16: end if

Algorithm 1. Sketch of a filtering algorithm for geost(k,O,S ,R)

1 2 3 4 5 6

1

2

3

4

5

6

Example 5. Returning to our running exam-
ple, suppose now that the sweep-point kernel
wants to adjust the lower bound of x51. The
figure on the right traces the steps performed
by the algorithm when it walks from a lexico-
graphically smallest position to the first feasi-
ble position of o5. The result is that the lower
bound of x51 is adjusted to 5.

5 Experimental Results

The geost constraint, including the rewriting, compilation, and sweep-based algorithms,
has been implemented in SICStus Prolog 4 [19] using its global constraint programming
API. A direct performance comparison of this proof-of-concept implementation with
the earlier implementation [3], coded in C, is not meaningful. Therefore, we focus on
showing the potential for search space reduction and stronger filtering due to the global
treatment of side constraints.

We studied the placement problem given in [6, Appendix C], provided by Peugeot
Citroën, which involves a 1203×235×239 container and 9 objects with an extra weight
attribute, subject to the rules:

(a) Each object is placed inside the container.
(b) Each object is either on the floor or resting on some other object.
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(c) The objects do not pairwise overlap.
(d) A heavier object cannot be piled on top of a lighter one.
(e) For any two objects in a pile, the overhang can be at most 10 units.

In [6] we provide encodings of these rules as well as other rules encoding a pack-
ing-unpacking problem with visibility constraints7 and the time dimension.

We generated 600 problem instances by randomly permuting the objects. The search
was performed by labeling the coordinates, grouped by object, in the permuted order,
under a time limit of one CPU minute. For each instance, we posted the constraint, and
measured the number of search space nodes visited during search for the first solution.
Each instance was run twice:

1. with the new geost constraint, and
2. without it, but expressing constraint (c) with the earlier implementation [3] and

constraints (a, b, d, e) with logical combinations of arithmetic constraints.

 1
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 1  10  100  1000  10000

ne
w

 g
eo

st

old geost + reified constraints

Search tree nodes for placing 9 objects under rulesThe scatter plot shown on the
right summarizes the results.
Each dot represents an instance,
its X (resp. Y) coordinate corre-
sponding to the old (resp. new)
implementation. The search ef-
fort was decreased by 100 times
or more in 26% of the cases and
by 10 times or more in another
33% of the cases.

6 Discussion

Generality. Our restriction that object attributes (except shape id and origin) must be
ground is somewhat artificial, and we plan to lift it. The rewritten QFPA formulas would
simply have more variables per object, and the sweep-based algorithm would deal not
with a k- or k + 1-dimensional placement space, but with an m-dimensional solution
space, where m is the number of possibly nonground attributes per object. In particular,
in order to deal with objects whose length in some dimension is a domain variable that
occurs in some other constraint, the length and possibly the end-point would have to
be expressed as nonground object attributes. Similarly, to treat the time dimension, we
would add three nonground object attributes start , duration , and completion , as in [3],
to be included in the solution space.

Theoreticalproperties. Ithasbeenshown[1,Proposition1-2] that thePKML/Rules2CP
rewriting system is confluent and Noetherian (i.e., terminating). Since our rule language
is essentially a subset of Rules2CP, the results apply to geost rules as well. A size

7 See the visible constraint in http://www.emn.fr/x-info/sdemasse/gccat/.
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bound on programs generated from Rules2CP is also known [1, Proposition 3] and
applies to geost provided that min, max and cardinality is not used in the rules, since
these operators can cause an exponential (for min and max) resp. quadratic (for cardi-
nality) [8] blow-up. Consequently, one can certainly construct pathological cases where
the rewrite phases and/or runtime representation require huge amounts of memory. Even
if, at this time, this has not really been a problem for the instances and rules we have
experimented with 8, one way to manage the complexity of the rewrite phases is to
apply simplifying rewrites, e.g. Phase 8, as eagerly as possibly. Another way could be
to memoize patterns that have already been rewritten. Finally, common subexpression
elimination will mitigate this problem.

7 Conclusion

We have presented a global constraint that enforces rules written in a language based
on arithmetic and first-order logic to hold among a set of objects. By rewriting the rules
to QFPA formulas, we have shown how to compile them to k-indexicals and how the
forbidden sets generated by such indexicals can be aggregated by a sweep-based algo-
rithm and used for filtering. Initial experiments support the feasibility of the approach.
The approach combines an expressive logic-based rule modeling language for stating
business rules with a generic geometrical algorithm for effective filtering.

Finally, QFPA is a language in which also many other problems, unrelated to packing
and placement, can be stated. In this paper, we have begun to explore a way to compile
and run it efficiently.
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