29,886 research outputs found

    Using screening and classical strain improvement techniques to get the best performance of lactic acid bacteria

    Get PDF
    The Gram positive lactic acid bacteria (LAB) produce lactic acid as their main degradation product from sugar fermentation. LAB have been used in bio processed food for thousands of years. Chr Hansen is the largest starter culture producer and the lactic acid bacteria are used in dairy products like cheese, yoghurt, kefir but also in fermented meats like salami sausages, in wine production, and in silage production. The different uses of LABs requires constant search for improved functionalities and scouting for new areas of use. This requires development of better and faster screening technologies to define the next generation of strains and a continued development of classical strain improvement techniques to get even better strains. Examples will be given on how we use cutting edge technology to find Streptococcus thermophilus strains with better texturing capabilities to be used for e.g. yoghurt and how we can further improve these traits by natural non GMO techniques

    Ambient temperature fatigue tests of elements of an actively cooled honeycomb sandwich structural panel

    Get PDF
    Elements of an actively cooled structural panel for a hypersonic aircraft have been investigated for fatigue characteristics. The study involved a bonded honeycomb sandwich panel with d-shaped coolant tubes. The curved portion of these tubes was embedded in the honeycomb, and the flat portion was bonded or soldered to the inner surface of the outer skin. The elements examined were two plain skin specimens (aluminum alloy); two specimens with skins attached to manifolds and tubes (one specimen was bonded, the other soldered); and a specimen representative of a corner section of the complete cooled sandwich. Sinusoidal loads were applied to all specimens. The honeycomb sandwich specimen was loaded in both tension and compression; the other specimens were loaded in tension only. The cooling tubes were pressurized with oil throughout the fatigue tests. The most significant results of these tests follow: All specimens exceeded their design life of 20,000 cycles without damage. Crack growth rates obtained in the plain skin specimens were used to determine the crack growth characteristics of aluminum alloy. Cracks in skins either bonded or soldered to cooling tubes propagated past the tubes without penetration. The coolant tubes served as crack arresters and temporarily stopped crack growth when a crack reached a tube-skin interface. The honeycomb core demonstrated that it could contain leakage from a tube

    Developing geometrical reasoning in the secondary school: outcomes of trialling teaching activities in classrooms, a report to the QCA

    No full text
    This report presents the findings of the Southampton/Hampshire Group of mathematicians and mathematics educators sponsored by the Qualifications and Curriculum Authority (QCA) to develop and trial some teaching/learning materials for use in schools that focus on the development of geometrical reasoning at the secondary school level. The project ran from October 2002 to November 2003. An interim report was presented to the QCA in March 2003. 1. The Southampton/Hampshire Group consisted of five University mathematicians and mathematics educators, a local authority inspector, and five secondary school teachers of mathematics. The remit of the group was to develop and report on teaching ideas that focus on the development of geometrical reasoning at the secondary school level. 2. In reviewing the existing geometry curriculum, the group endorsed the RS/ JMC working group conclusion (RS/ JMC geometry report, 2001) that the current mathematics curriculum for England contains sufficient scope for the development of geometrical reasoning, but that it would benefit from some clarification in respect of this aspect of geometry education. Such clarification would be especially helpful in resolving the very odd separation, in the programme of study for mathematics, of ‘geometrical reasoning’ from ‘transformations and co-ordinates’, as if transformations, for example, cannot be used in geometrical reasoning. 3. The group formulated a rationale for designing and developing suitable teaching materials that support the teaching and learning of geometrical reasoning. The group suggests the following as guiding principles: • Geometrical situations selected for use in the classroom should, as far as possible, be chosen to be useful, interesting and/or surprising to pupils; • Activities should expect pupils to explain, justify or reason and provide opportunities for pupils to be critical of their own, and their peers’, explanations; • Activities should provide opportunities for pupils to develop problem solving skills and to engage in problem posing; • The forms of reasoning expected should be examples of local deduction, where pupils can utilise any geometrical properties that they know to deduce or explain other facts or results. • To build on pupils’ prior experience, activities should involve the properties of 2D and 3D shapes, aspects of position and direction, and the use of transformation-based arguments that are about the geometrical situation being studied (rather than being about transformations per se); • The generating of data or the use of measurements, while playing important parts in mathematics, and sometimes assisting with the building of conjectures, should not be an end point to pupils’ mathematical activity. Indeed, where sensible, in order to build geometric reasoning and discourage over-reliance on empirical verification, many classroom activities might use contexts where measurements or other forms of data are not generated. 4. In designing and trialling suitable classroom material, the group found that the issue of how much structure to provide in a task is an important factor in maximising the opportunity for geometrical reasoning to take place. The group also found that the role of the teacher is vital in helping pupils to progress beyond straightforward descriptions of geometrical observations to encompass the reasoning that justifies those observations. Teacher knowledge in the area of geometry is therefore important. 5. The group found that pupils benefit from working collaboratively in groups with the kind of discussion and argumentation that has to be used to articulate their geometrical reasoning. This form of organisation creates both the need and the forum for argumentation that can lead to mathematical explanation. Such development to mathematical explanation, and the forms for collaborative working that support it, do not, however, necessarily occur spontaneously. Such things need careful planning and teaching. 6. Whilst pupils can demonstrate their reasoning ability orally, either as part of group discussion or through presentation of group work to a class, the transition to individual recording of reasoned argument causes significant problems. Several methods have been used successfully in this project to support this transition, including 'fact cards' and 'writing frames', but more research is needed into ways of helping written communication of geometrical reasoning to develop. 7. It was found possible in this study to enable pupils from all ages and attainments within the lower secondary (Key Stage 3) curriculum to participate in mathematical reasoning, given appropriate tasks, teaching and classroom culture. Given the finding of the project that many pupils know more about geometrical reasoning than they can demonstrate in writing, the emphasis in assessment on individual written response does not capture the reasoning skills which pupils are able to develop and exercise. Sufficient time is needed for pupils to engage in reasoning through a variety of activities; skills of reasoning and communication are unlikely to be absorbed quickly by many students. 8. The study suggests that it is appropriate for all teachers to aim to develop the geometrical reasoning of all pupils, but equally that this is a non-trivial task. Obstacles that need to be overcome are likely to include uncertainty about the nature of mathematical reasoning and about what is expected to be taught in this area among many teachers, lack of exemplars of good practice (although we have tried to address this by lesson descriptions in this report), especially in using transformational arguments, lack of time and freedom in the curriculum to properly develop work in this area, an assessment system which does not recognise students’ oral powers of reasoning, and a lack of appreciation of the value of geometry as a vehicle for broadening the curriculum for high attainers, as well as developing reasoning and communication skills for all students. 9. Areas for further work include future work in the area of geometrical reasoning, include the need for longitudinal studies of how geometrical reasoning develops through time given a sustained programme of activities (in this project we were conscious that the timescale on which we were working only enabled us to present 'snapshots'), studies and evaluation of published materials on geometrical reasoning, a study of 'critical experiences' which influence the development of geometrical reasoning, an analysis of the characteristics of successful and unsuccessful tasks for geometrical reasoning, a study of the transition from verbal reasoning to written reasoning, how overall perceptions of geometrical figures ('gestalt') develops as a component of geometrical reasoning (including how to create the links which facilitate this), and the use of dynamic geometry software in any (or all) of the above.10. As this group was one of six which could form a model for part of the work of regional centres set up like the IREMs in France, it seems worth recording that the constitution of the group worked very well, especially after members had got to know each other by working in smaller groups on specific topics. The balance of differing expertise was right, and we all felt that we learned a great deal from other group members during the experience. Overall, being involved in this type of research and development project was a powerful form of professional development for all those concerned. In retrospect, the group could have benefited from some longer full-day meetings to jointly develop ideas and analyse the resulting classroom material and experience rather than the pattern of after-school meetings that did not always allow sufficient time to do full justice to the complexity of many of the issues the group was tackling

    329200 - Turfs and Grasses

    Get PDF

    Youth identity formation and contemporary alcohol marketing

    Get PDF
    This paper considers linkages between contemporary marketing theory and practice, and emerging conceptualizations of identity, to discuss implications for public health concerns over alcohol use among young people. Particular attention is paid to the theorizing of consumption as a component of youth identities and the ways in which developments of marketing praxis orients to such schemata. The authors’ analyses of exemplars of marketing materials in use in Aotearoa New Zealand, drawn from their research archive, emphasize the sophistication and power of such forms of marketing.They argue that public health policy and practice must respond to the interweaving of marketing and the self-making practices of young people to counter this complex threat to the health and well-being of young people
    • …
    corecore