90 research outputs found

    From Whitney Forms to Metamaterials: a Rigorous Homogenization Theory

    Full text link
    A rigorous homogenization theory of metamaterials -- artificial periodic structures judiciously designed to control the propagation of electromagnetic waves -- is developed. All coarse-grained fields are unambiguously defined and effective parameters are then derived without any heuristic assumptions. The theory is an amalgamation of two concepts: Smith & Pendry's physical insight into field averaging and the mathematical framework of Whitney-Nedelec-Bossavit-Kotiuga interpolation. All coarse-grained fields are defined via Whitney forms and satisfy Maxwell's equations exactly. The new approach is illustrated with several analytical and numerical examples and agrees well with the established results (e.g. the Maxwell-Garnett formula and the zero cell-size limit) within the range of applicability of the latter. The sources of approximation error and the respective suitable error indicators are clearly identified, along with systematic routes for improving the accuracy further. The proposed approach should be applicable in areas beyond metamaterials and electromagnetic waves -- e.g. in acoustics and elasticity.Comment: 23 pages, 10 figure

    Simulation of high temperature superconductors and experimental validation

    Get PDF
    In this work, we present a parallel, fully-distributed finite element numerical framework to simulate the low-frequency electromagnetic behaviour of superconducting devices, which efficiently exploits high performance computing platforms. We select the so-called H-formulation, which uses the magnetic field as a state variable. Nédélec elements (of arbitrary order) are required for an accurate approximation of the H-formulation for modelling electromagnetic fields along interfaces between regions with high contrast medium properties. An h-adaptive mesh refinement technique customized for Nédélec elements leads to a structured fine mesh in areas of interest whereas a smart coarsening is obtained in other regions. The composition of a tailored, robust, parallel nonlinear solver completes the exposition of the developed tools to tackle the problem. First, a comparison against experimental data is performed to show the availability of the finite element approximation to model the physical phenomena. Then, a selected state-of-the-art 3D benchmark is reproduced, focusing on the parallel performance of the algorithms.Peer ReviewedPostprint (author's final draft

    Calculation of array probe response to sub-surface corrosion using edge element

    Get PDF
    The area of non-destructive evaluation using eddy current methods is continuously evolving with the better understanding of the technique. In the past decade or so, new designs have emerged for excitation coils which has led to a need for new modeling schemes. There has been a trend towards the use of magnetic field sensors for the measurement of the scattered field from the conductor body as an alternative to induction coils. Along with the changes in the driver-pickup arrangement, there are changes in the area of computation methods of finding solutions to the forward and inverse problems. We need to have a good forward model for finding solutions to an inverse problem. Use of newer discretization schemes has led to better and faster models. In this thesis, I have examined two aspects of the problem of eddy current detection. The first part is devoted to the development of a new analysis of a racetrack coil used with an array of magnetic field sensors. The later part is dedicated to finding a numerical solution to the problem of the interaction of the excitation coil with a flaw. The solution uses edge element basis functions for the expansion of the unknown field in the flaw

    Serendipity Face and Edge VEM Spaces

    Full text link
    We extend the basic idea of Serendipity Virtual Elements from the previous case (by the same authors) of nodal (H1H^1-conforming) elements, to a more general framework. Then we apply the general strategy to the case of H(div)H(div) and H(curl)H(curl) conforming Virtual Element Methods, in two and three dimensions

    New higher-order basis functions for Curvilinear finite elements

    Get PDF
    The first contribution is a fast calculation method for tetrahedral finite element matrices which is applicable to curvilinear geometries and inhomogeneous material properties. The element matrices are obtained at a low computational cost via scaled additions of universal matrices. The proposed technique is more efficient than competing approaches and provides well-defined lower and upper bounds for the required number of matrices. In the case of tetrahedral H(div) elements, a new set of basis functions is proposed for the mixed-order Nédélec space. The specialty of the functions is a high level of orthogonality which applies to arbitrary straight-sided tetrahedra. The resulting condition numbers, compared to competing bases, are significantly lower. The remaining contributions concern hexahedral elements, where a new, mixed-order serendipity element is proposed for H(curl)-conforming functions. It allows the construction of a single set of hierarchical basis functions that can also be used to span various other finite element spaces. Therefore, it is possible to use different finite element spaces within the same mesh while maintaining conformity. In the curvilinear case, a special yet versatile way of mesh refinement is proposed along with serendipity basis functions for the interpolation of the geometry. The main advantage of the proposed methods is the resulting algebraic rate of convergence in H(curl)-norm with the least possible number of unknowns.Der erste Beitrag ist eine schnelle Berechnungsmethode von Finite-Elemente-Matrizen für Tetraeder, die auf krummlinige Geometrien und inhomogene Materialeigenschaften anwendbar ist. Die Elementmatrizen werden mit geringem Rechenaufwand durch skalierte Addition vorgefertigter Matrizen erstellt. Die vorgeschlagene Methode ist effizienter als vergleichbare Ansätze und liefert wohldefinierte obere und untere Schranken für die Anzahl der benötigten Matrizen. Für H(div)-konforme Elemente auf Tetraedern werden neue Ansatzfunktionen für den N´ed´elec-Raum gemischter Ordnung vorgestellt. Die Besonderheit dieser Funktionen ist ein hohes Maß an Orthogonalität für beliebige geradlinige Tetraeder. Im Vergleich zu anderen Ansatzfunktionen sind die resultierenden Konditionszahlen deutlich kleiner. Die übrigen Beiträge betreffen Hexaeder, für die ein neues Serentipity-Element gemischter Ordnung vorgestellt wird. Es ermöglicht die Konstruktion hierarchischer Ansatzfunktionen, die auch zum Aufspannen anderer Finite-Elemente-Räume angewandt werden kann. Daher ist es möglich, verschiedene Finite-Elemente-Räume auf dem gleichen Netz zu verwenden und dabei Konformität zu bewahren. Für den krummlinigen Fall wird eine spezielle aber vielseitige Methode zur Netzverfeinerung mit Serentipity-Ansatzfunktionen zur Interpolation der Geometrie vorgestellt. Der Hauptvorteil der vorgestellten Methoden ist die algebraische Konvergenz in der Norm des H(rot) mit der kleinstmöglichen Anzahl an Unbekannten

    Pseudo-conforming Hdiv polynomial finite elements on quadrilaterals and hexahedra

    Get PDF
    The aim of this paper is to present a new class of mixed finite elements on quadrilaterals and hexahedra where the approximation is polynomial on each element K. The degrees of freedom are the same as those of classical mixed finite elements. However, in general, with this kind of finite elements, the resolution of second order elliptic problems leads to non conforming approximations. In the particular case when the finite elements are parallelograms or parallelepipeds, we can notice that our method is conform and coincides with the classical mixed finite elements on structured meshes. First, a motivation for the study of the Pseudo-conforming polynomial mixed finite elements method is given, and the convergence of the method established. Then, numerical results that confirm the error estimates, predicted by the theory, are presented.Le but de ce travail est de présenter une nouvelle classe d'éléments finis mixtes pour des maillages en quadrilatères et en hexaèdres pour lesquels l'approximation est polynômiale sur chaque élément K. Les degrés de liberté sont les même que ceux des éléments finis mixtes classiques. Cependant, avec ce nouveau type d'élément fini, la résolution de problèmes elliptiques du second ordre ne fournit pas, en général,une approximation conforme. Mais dans le cas particulier où les éléments sont des parallélogrammes ou des parallélépipèdes, on peut remarquer que notre méthode est conforme est coincide avec les éléments finis mixtes classiques sur des maillages structurés. Dans une première section on présente les motivations de cette étude. Dans la section suivante, on présente et étudie des 'eléments finis mixtes pseudo-conforme. Et dans la derni`re section on présente quelques tests numériques confirmant les résultats théoriques annoncés
    corecore