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Abstract

The first contribution is a fast calculation method for tetrahedral finite element
matrices which is applicable to curvilinear geometries and inhomogeneous material
properties. The element matrices are obtained at a low computational cost via
scaled additions of universal matrices. The proposed technique is more efficient
than competing approaches and provides well-defined lower and upper bounds for
the required number of matrices.

In the case of tetrahedral H(div) elements, a new set of basis functions is proposed
for the mixed-order Nédélec space. The specialty of the functions is a high level
of orthogonality which applies to arbitrary straight-sided tetrahedra. The resulting
condition numbers, compared to competing bases, are significantly lower.

The remaining contributions concern hexahedral elements, where a new, mixed-
order serendipity element is proposed for H(curl)-conforming functions. It allows
the construction of a single set of hierarchical basis functions that can also be used
to span various other finite element spaces. Therefore, it is possible to use different
finite element spaces within the same mesh while maintaining conformity. In the
curvilinear case, a special yet versatile way of mesh refinement is proposed along
with serendipity basis functions for the interpolation of the geometry. The main
advantage of the proposed methods is the resulting algebraic rate of convergence in
H(curl)-norm with the least possible number of unknowns.
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Kurzfassung

Der erste Beitrag ist eine schnelle Berechnungsmethode von Finite-Elemente-Matri-
zen für Tetraeder, die auf krummlinige Geometrien und inhomogene Materialeigen-
schaften anwendbar ist. Die Elementmatrizen werden mit geringem Rechenaufwand
durch skalierte Addition vorgefertigter Matrizen erstellt. Die vorgeschlagene Metho-
de ist effizienter als vergleichbare Ansätze und liefert wohldefinierte obere und untere
Schranken für die Anzahl der benötigten Matrizen.

Für H(div)-konforme Elemente auf Tetraedern werden neue Ansatzfunktionen für
den Nédélec-Raum gemischter Ordnung vorgestellt. Die Besonderheit dieser Funk-
tionen ist ein hohes Maß an Orthogonalität für beliebige geradlinige Tetraeder. Im
Vergleich zu anderen Ansatzfunktionen sind die resultierenden Konditionszahlen
deutlich kleiner.

Die übrigen Beiträge betreffen Hexaeder, für die ein neues Serentipity-Element ge-
mischter Ordnung vorgestellt wird. Es ermöglicht die Konstruktion hierarchischer
Ansatzfunktionen, die auch zum Aufspannen anderer Finite-Elemente-Räume an-
gewandt werden kann. Daher ist es möglich, verschiedene Finite-Elemente-Räume
auf dem gleichen Netz zu verwenden und dabei Konformität zu bewahren. Für den
krummlinigen Fall wird eine spezielle aber vielseitige Methode zur Netzverfeine-
rung mit Serentipity-Ansatzfunktionen zur Interpolation der Geometrie vorgestellt.
Der Hauptvorteil der vorgestellten Methoden ist die algebraische Konvergenz in der
Norm des H(rot) mit der kleinstmöglichen Anzahl an Unbekannten.
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Chapter 1

Introduction

Commonly, a physical model of an engineering problem contains not only straight-
sided geometric shapes but often also complicated curvilinear domains. The finite
element method is a robust numerical analysis tool for investigating such compli-
cated structures. To harvest the method’s full potential, such as the algebraic rate
of convergence and adaptability, it must be implemented appropriately. The start-
ing point of my work was to implement different higher-order tetrahedral elements
that can handle curvilinear geometries. Generally, these topics were considered rel-
atively old, since most developments on curvilinear finite elements ended in the
last century. The main results are summarized in the isoparametric finite elements
[Cia02, Chapter 4.3], which require the same order of polynomial interpolation of
the curvilinear geometry as the order of finite element basis functions. Hence, the
same basis functions can be used to represent the geometry and the fields in the case
of H1-conforming functions [SF73, Chapter 3.3]. On the other hand, there is a new
emerging method, namely the isogeometric method. Similarly to the isoparametric
element, it uses spline-based basis functions for the representation of the geometry
and for the unknown fields [BSV10]. However, it requires the availability of an exact,
spline-based description of the geometry and the parametrization of the volumetric
domain [RS12]. The disadvantage is that this information might not be available
or may be hard to provide for most practical examples with complex geometry. For
these practical reasons, I favored the flexibility of finite element meshes and contin-
ued with traditional curvilinear finite elements. Here, the essential aspects are the
accurate, reliable, and efficient calculation of the different finite element matrices
for curvilinear domains and inhomogeneous material properties.

The most common way to deal with the calculation of finite element matrices is to
use numerical integration, where the computational cost scales highly with the order
of finite element basis functions. A solution for this issue can be the use of master
matrices or the so-called universal matrices [Sil78], that are a set of geometry- and
material-independent (precalculated) element matrices. For straight-sided elements
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with homogeneous materials, the element matrices are calculated by the scaled ma-
trix addition of universal matrices. However, in the case of curvilinear elements
or inhomogeneous materials, the geometry- and material-dependent terms not only
consist of scalar constants but also depend on the coordinates. Therefore, tradi-
tional universal matrices are not applicable, whereas there is no problem with using
numerical integration. This issue motivated the work of Chapter 4, constructing
hierarchical universal matrices applicable to curvilinear geometries and inhomoge-
neous materials. The proposed method proved to be more efficient and reliable than
competing approaches.

In previous works [Ing06], Ingelström proposed basis functions for the polynomial
H1-conforming space and for the H(curl)-conforming mixed-order Nédélec space
[Néd80], that are utilized in various finite element formulations and computer pro-
grams. Their common property is the orthogonality with respect to the interpolation
operator, which yields a high level of sparsity and linear independence. Moreover,
the H(curl)-conforming basis reuses the gradient of the higher-order basis functions
from the H1-conforming basis as the null space functions of the curl operator. These
properties can be highly useful for p adaptive methods [NW04] and multi-level pre-
conditioners [ZC02]. This work thus motivated the construction of the remaining
set, an H(div)-conforming basis in Chapter 5 with the corresponding interpolation
operator orthogonality. The previously developed H1 and H(curl) basis and the
newly developed H(div) bases fulfill the commutation properties of the continu-
ous and discrete de Rham complexes (short: de Rham commutation), not just on
the level of finite element spaces but also on the level of higher-order basis func-
tions. They also show similar orthogonality properties with respect to the relevant
interpolation operator. The finite element matrices resulting from the present basis
functions are highly sparse and produce significantly lower condition numbers than
competing bases.

In practical applications, the most common meshes are tetrahedral since this shape
is the most versatile for general geometries. However, structured domains, such as an
extruded surface or a curvilinear block, can be meshed by prismatic or hexahedral
elements very efficiently. For this reason, the best meshes are considered to be
composite meshes of different element types. As it turned out, the commonly used
finite element spaces for hexahedra, such as the tensor product polynomial space for
H1-conforming functions or the mixed-order Nédélec space, produce a significantly
larger number of unknowns than their tetrahedral counterpart. These observations
motivated me to rigorously investigate the known hexahedral elements and look for
better alternatives.

Most works on finite element error estimation, such as in [Cia02, Chapter 4.3],
[ABF02], [FGM11], [ABB15], [Ape98], and [SF73, Chapter 3.3], address the conver-
gence and its requirements in terms of the mesh parameter or element size h and
the order of finite element basis functions p. In the case of isoparametric tetrahedral
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elements, it is known that the interpolation of the geometry is required to be of
the same order as the finite element basis functions [Cia02, Chapter 4.3]. Based
on these analyses, several different finite elements have been developed for hexahe-
dra. A large group is the serendipity elements [AA11], [AA14], [GK19], [GKS19],
whose dimensions are smaller than the other tensor product spaces, although they
yield the same O(hp) rate of convergence for parallelepiped meshes with elements
of affine geometry mappings. However, for elements with non-affine geometry map-
ping (not parallelepiped meshes), these elements are considered insufficient due to
the degrading rate of convergence [ABB15], [DG19], [GK19].

Another large group is the tensor product elements, such as in [BF12, Chapter 2.],
[AP02], [Néd80], [Néd86], [ABB15], [FGM11], [BD13b] and [BD13a], that yield the
same O(hp) rate of convergence for both affine geometry mappings and arbitrary
straight-sided elements. Given our interest in electromagnetics, the recently de-
veloped lowest order (p = 1) space of Falk et al. [FGM11] has great importance
since their space provides the mentioned convergence in H(curl)-norm, whereas
the mixed-order space of Nédélec provides it only in L2-norm. The corresponding
higher-order finite element was reported by Bergot et al. [BD13b]. However, no
proof of the space minimality and no error estimation have been published. The
case of the curvilinear hexahedron appears even more problematic because it was
proven in [ABB15] that none of the elements above provide O(hp) convergence rate
in the H(curl)-norm for general curvilinear meshes. This suggests that even richer
spaces might be necessary. These discouraging results motivated my research for
alternatives that feature the least possible number of unknowns while providing
optimal rates of convergence [B2].

The new aspects, compared to other works, lie in an alternative definition of the
mesh parameter and refinement and their relation to the interpolated geometry map-
pings. In order to lay down the foundations, rigorous finite element error analyses
are given in Chapter 3. The resulting error estimations provide additional ideas for
maintaining the ideal convergence rates. As an outcome, general convergence re-
quirements are given in the proposed framework for curvilinear finite elements with
interpolated geometry mappings, considering different ways of mesh refinements.

In Chapter 6, definitions are provided for some of the best-known hexahedral el-
ements that fit into the framework of the present general error estimates. Fur-
thermore, a new finite element space, the “mixed-order serendipity element”, is
introduced for H(curl)-conforming functions. The main advantage is in attaining
the least possible number of unknowns while providing O(hp) rate of convergence
in H(curl)-norm for affinely refined meshes. Moreover, it allows the construction of
hierarchical basis functions that are compatible with the mixed-order Nédélec space
and the tensor product space of Falk et al. and Bergot et al. A single set of basis
functions is provided in the thesis that can span these spaces, that is orthogonal
with respect to the interpolation operator, and has a separate higher-order subset
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of gradient functions. The existence of such a basis allowed the development of
two new methods, the mixed-order mixed-space element for straight-sided meshes
and the iso-serendipity element for curvilinear meshes. To my knowledge, these
are the first methods for non-parallelepiped hexahedral meshes that apply serendip-
ity spaces with minimal dimensions while providing an O(hp) convergence rate in
H(curl)-norm.
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Chapter 2

Mathematical and Physical
Foundations

2.1 Maxwell’s Equations

Physics, as a field, describes the behavior of nature in terms of mathematical equa-
tions. Considering the restrictions of classical physics, electromagnetic fields are
described by Maxwell’s equations. The differential representation of the equations
in the time domain reads as follows:

∇× E(r, t) = − ∂

∂t
B(r, t), (2.1a)

∇×H(r, t) =
∂

∂t
D(r, t) +J (r, t), (2.1b)

∇ ·D(r, t) = ϱ(r, t), (2.1c)

∇ ·B(r, t) = 0. (2.1d)

Here, E is the electric field, H is the magnetic field, D is the electric displacement
field, B is the magnetic flux density, J is the electric current density, and ϱ is the
electric charge density. Each quantity may depend on the coordinate vector r and
time variable t. The connection to classical mechanics is given by the Lorentz force

F = q (E + v ×B) , (2.2)

where q is the point charge and v is the velocity. The remaining fields, H, D, and
J are related to E and B through the constitutive relations

D = εE , (2.3a)

B = µH, (2.3b)

J = σE . (2.3c)
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Here, ε is the electric permittivity, µ is the magnetic permeability, and σ is the
conductivity. In the general case, these quantities are operators that describe the
electrical properties of the materials. However, in many cases, it is sufficient to con-
sider these operators to be linear and time-invariant. In those cases, the constitutive
relations become

D = ε0εrE , (2.4a)

B = µ0µrH, (2.4b)

J = σE , (2.4c)

where ε0 is the permittivity of the vacuum, εr is the relative permittivity tensor,
µ0 is the permeability of the vacuum, µr is the relative permeability tensor, and
σ is the conductivity tensor. These tensorial quantities describe the effect of the
materials relative to the case of vacuum.

The excitation in electromagnetics is often a periodic field in terms of time. Thus,
any field Y can be written as

Y = ℜ
{
Y ejωt

}
, (2.5)

where Y is the complex amplitude, ω is the angular frequency, and j =
√
−1 is

the imaginary unit. The operator ℜ takes the real part of a complex quantity. The
advantage of the time-harmonic representation is that the time derivative becomes
a multiplication:

∂

∂t
7→ jω. (2.6)

Therefore, Maxwell’s equations in the frequency domain read

∇×E(r, ω) = −jωB(r, ω), (2.7a)

∇×H(r, ω) = jωD(r, ω) + J(r, ω), (2.7b)

∇ ·D(r, ω) = ρ(r, ω), (2.7c)

∇ ·B(r, ω) = 0. (2.7d)

Here, the quantities E, H , D, B, and ρ are the corresponding complex amplitudes
of the fields E , H, D, B, and ϱ in the frequency domain. The form of the constitu-
tive relations remains the same, since only time-invariant material properties were
considered:

D = ε0εrE, (2.8a)

B = µ0µrH , (2.8b)

J = σE. (2.8c)
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2.1.1 Interface Conditions

In electromagnetics, the interface conditions define the behavior of fields on the
interfaces of domains Ω1 and Ω2 with different material properties. The unit-normal
vector of the interface is denoted by n12 and the electric field of Ω1 and Ω2 is denoted
byE1 andE2 on the common interface. Then, the interface condition for the electric
field reads

n12 × (E2 −E1) = 0. (2.9)

This implies that the tangential component is continuous, whereas the normal com-
ponent may jump on the interface. A similar relationship holds for magnetic fields
H1 and H2, whose tangential discontinuity is determined by the surface current K
as

n12 × (H2 −H1) = K. (2.10)

Therefore, the normal component of the magnetic field may be discontinuous on
the interface, whereas both E and H are tangentially continuous in the absence of
surface currents.

The interface condition for the magnetic flux densities B1 and B2 reads

n12 · (B2 −B1) = 0, (2.11)

which means that these fields are required to have normal continuity, whereas the
tangential component may be discontinuous on the interface. At last, the electric
displacement fields D1 and D2 are considered. The discontinuity of the normal
component is determined by

n12 · (D2 −D1) = σq, (2.12)

where σq is the surface charge density. Similar to the previous case, the tangential
components may be discontinuous, whereas both B and D have continuous normal
components on the interface in the absence of surface charges.

2.2 Function Spaces

When numerical techniques such as the finite element method (FEM) are used to
solve Maxwell’s equations, the computational domain Ω = ∪eΩe is subdivided into
disjointed elements Ωe. In the present discussion, the domain is considered to be
Ω ⊂ R3 and the coordinate vector is denoted by r. On each element, basis functions
are used for the approximation of the ideal, exact solution. In most cases, however,
the finite element approximation converges to the exact solution but never reaches
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it. Hence, it is essential to choose basis functions and formalism in such a way that
they preserve some important properties of the exact solution, such as the continuity
requirements and interface conditions. The right choice of function spaces can help
to ensure that these requirements are met.

The spaces of scalar- and vector-valued p-integrable functions are denoted by Lp(Ω)
and Lp(Ω), respectively. Their formal definitions read

Lp(Ω) := {f ∈ C | ∥f∥pLp(Ω) < ∞ for p ∈ Z+}, (2.13a)

Lp(Ω) := {f ∈ Cn | ∥f∥pLp(Ω) < ∞ for n, p ∈ Z+}, (2.13b)

where the corresponding norms are

∥f∥Lp(Ω) :=

∫
Ω

|f |p dr

1/p

, (2.14a)

∥f∥Lp(Ω) :=

(
n∑

i=n

∥ [f ]i∥
p
Lp(Ω) dr

)1/p

. (2.14b)

In the limiting case of p = ∞, an alternative definition is provided, which applies
not only for scalar- or vector-valued functions but also to matrix-valued functions,

L∞(Ω) := {F (r) ∈ Cm × Cn | ∥F (r)∥L∞(Ω) < ∞ for m,n ∈ Z+}, (2.15)

as the corresponding norm is defined as the largest essential supremum of all com-
ponents, as follows:

∥F (r)∥L∞(Ω) := max
i,j

(
ess. sup

r∈Ω
| [F (r)]ij|

)
. (2.16)

Next, some additional definitions are provided for function spaces that impose some
requirements on the function derivatives. Let us denote the weak or distributional
derivative Dα (noted in other references as ∂αΦ [Cia02, Chapter 1], [M+03, Chapter
3]) as of order p = |α|. The α = (α1, α2, α3) denote a multi-index of non-negative
integers αi ∈ Z+ with the absolute value of |α| = α1 + α2 + α3. In the case of
an infinitely differentiable scalar-valued function Φ ∈ C∞(Ω) or a vector-valued
function Φ ∈ C∞(Ω), the following definitions [M+03, Chapter 3] are equivalents:

DαΦ = ∂αΦ =
∂|α|Φ

∂rα
=

∂|α|Φ

∂rα1
1 ∂rα2

2 ∂rα3
3

. (2.17)

However, if the function is integrable but not differentiable over the entire domain,
a general definition based on distributions is required [Tar07, Chapter 4]. For any
distribution Φ one defines the distribution DαΦ by the formula

(DαΦ,Θ)L2(Ω) = (−1)|α| (Φ, DαΘ)L2(Ω) . (2.18)
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Here, Θ is an |α| times differentiable smooth function (in Θ ∈ C |α|(Ω) or Θ ∈
C |α|(Ω)) with compact support over the domain Ω. Such a general definition of the
derivative is required for the definition of the finite element approximation spaces.
Based on the notations from [Cia02, Chapter 1], the scalar- and vector-valued Hilbert
spaces are denoted by Hm(Ω) and Hm(Ω), respectively. Their formal definitions
read

Hm(Ω) :=
{
f ∈ L2(Ω) | ∂αf ∈ L2(Ω) for |αi| ≤ m

}
, (2.19a)

Hm(Ω) :=
{
f ∈ L2(Ω) | ∂αf ∈ L2(Ω) for |αi| ≤ m

}
, (2.19b)

with corresponding norms

∥f∥Hm(Ω) :=

√∑
|α|≤m

∥∂αf∥2L2(Ω), (2.20a)

∥f∥Hm(Ω) :=

√∑
|α|≤m

∥∂αf∥2L2(Ω), (2.20b)

and semi-norms

|f |Hm(Ω) :=

√∑
|α|=m

∥∂αf∥2L2(Ω), (2.21a)

|f |Hm(Ω) :=

√∑
|α|=m

∥∂αf∥2L2(Ω). (2.21b)

For later usage in error estimation, the generalized space of Hm(Ω), the Sobolev
space [Cia02, Section 3.1] is denoted by Wm,p(Ω) for a domain Ω, any integer m ≥ 0,
and any number p satisfying 1 ≤ p ≤ ∞. The space Wm,p(Ω) consists of those
functions f ∈ Lp(Ω) for which all distributional derivatives of a multi-index α
belong to the space Lp(Ω) if |α| ≤ m. The corresponding norm is

∥f∥m,p,Ω :=

∑
|α|≤m

∥∂αf∥pLp(Ω)

1/p

if 1 ≤ p < ∞,

∥f∥m,∞,Ω := max
|α|≤m

∥∂αf∥L∞(Ω) if p = ∞. (2.22)

and the semi-norm is

|f |m,p,Ω :=

∑
|α|=m

∥∂αf∥pLp(Ω)

1/p

if 1 ≤ p < ∞,

|f |m,∞,Ω := max
|α|=m

∥∂αf∥L∞(Ω) if p = ∞. (2.23)
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Note that for the case p = 2, Wm,2(Ω) = Hm(Ω) and the corresponding norms are
equivalent.

Finally, the definitions of the less general Hilbert spaces, which are of great impor-
tance in electromagnetics, are given:

H(curl,Ω) :=
{
w ∈ L2(Ω) | ∇ ×w ∈ L2(Ω)

}
, (2.24a)

H(div,Ω) :=
{
d ∈ L2(Ω) | ∇ · d ∈ L2(Ω)

}
. (2.24b)

The corresponding norms are

∥w∥H(curl,Ω) :=
√

∥w∥2L2(Ω) + ∥∇ ×w∥2L2(Ω), (2.25a)

∥d∥H(div,Ω) :=
√

∥d∥2L2(Ω) + ∥∇ · d∥2L2(Ω). (2.25b)

For a simply connected domain Ω ⊂ R3, the de Rham complex [BBF13, Chapter
2.1.4] reads

H1(Ω)
∇−−−→ H(curl,Ω)

∇×−−−→ H(div,Ω)
∇·−−−→ L2(Ω). (2.26)

This sequence describes how the function spaces of H1(Ω), H(curl,Ω), H(div,Ω),
and L2(Ω) are connected by the differential operators∇,∇× and∇· [Bos98, Chapter
5.1]. The image of the scalar function v ∈ H1(Ω) becomes

∇v ∈ H(curl,Ω),

which is in the null space of the ∇× operator,

∇×∇v = 0.

Similarly, the image of a vector function w ∈ H(curl,Ω) becomes

∇×w ∈ H(div,Ω),

which is in the null space of the ∇· operator,

∇ · ∇ ×w = 0.

Moreover, the image of a function d ∈ H(div,Ω) belongs to the space of

∇ · d ∈ L2(Ω).

Applying these principles to Maxwell’s equations (2.1) revealed [Bos98, Chapter
5.1] that the natural way of approximating the electric field is to use functions
w ∈ H(curl,Ω) and for the magnetic flux density d ∈ H(div,Ω). Similar concepts
hold for the other vector fields and for the related potentials. Let us denote the
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φe

E

d
dt

A

B
D

[ε]

J

H
[µ]

[σ]

− d
dt

∇

∇×

∇·

H1(Ω)

H(curl,Ω)

H(div,Ω)

L2(Ω)

L2(Ω)

H(div,Ω)

H(curl,Ω)

H1(Ω)

ϱ

∇

∇×

∇·

φm

F

Figure 2.1: The structure of Maxwell’s equations [Bal18].

electric and magnetic scalar potentials by φe and φm and the electric and magnetic
vector potentials by F and A, respectively. Their formal definitions read

∇×A = B, (2.27a)

−∇φe = E +
∂

∂t
A, (2.27b)

∇×F = −D, (2.27c)

−∇φm = H+
∂

∂t
F . (2.27d)

The entire structure of Maxwell’s equations is illustrated in Figure 2.1 [Bal18], which
is the so-called “Maxwell’s house” [Bos98]. The de Rham complex of the function
spaces is shown along the vertical direction, and the structure is composed of two
distinct sequences. The left green side and the right red side represent the primal and
dual complexes that are connected by the material operators. This structure should
also be preserved in the discrete setting when the different fields are approximated
via the finite element method.
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2.3 Electric Field Formulation

In this section, the focus is on the frequency-domain solution of Maxwell’s equations
for the case ω > 0, where the time-harmonic electric and magnetic fields are coupled.
With these assumptions, Maxwell’s equations read

∇×E = −jωB, (2.28a)

∇×H = jωD + J , (2.28b)

∇ ·D = 0, (2.28c)

∇ ·B = 0. (2.28d)

The speed of light in vacuum is denoted by c0, and it is related to the permittivity
and permeability by

c0 =
1

√
µ0ε0

. (2.29)

The free-space wavenumber k0 for an angular frequency ω reads

k0 =
ω

c0
. (2.30)

Hence, the definition for the characteristic impedance of free space η0 is given as

η0 =

√
µ0

ε0
=

ωµ0

k0
. (2.31)

Using the constitutive relations and substituting (2.28a) into (2.28b), the curl-curl
wave equation of the electric field is obtained:

∇× µ−1
r ∇×E + jk0η0σE − k2

0εrE = 0. (2.32)

In the case of a computational domain Ω with a finite volume, boundary conditions
need to be imposed on ∂Ω. In the present setting, the boundary consists of perfect
electrical condors (PEC) on ΓE and multiple different port boundaries on Γi indexed
by the integer i:

∂Ω = ΓE ∪ Γ1 ∪ Γ2 · · · ∪ Γi · · · . (2.33)

All of the considered port boundaries and their neighborhoods are restricted to
have homogeneous isotropic material properties, and only the dominant TE mode
is assumed on each Γi. In this case, the associated modal impedance Zi [Har01,
Chapter 4] on Γi and the (imaginary) propagation constant jβi are related by

Zi =
ωµ0µr

βi

. (2.34)

The model is excited via the incident electric field Einc
k of the dominant mode on a

given port boundary Γk of index k.
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The corresponding boundary value problem [Ing06, ZC06] reads

∇× µ−1
r ∇×E + jk0η0σE − k2

0εrE = 0, in Ω, (2.35a)

n× (E × n) = 0, on ΓE, (2.35b)

(µ−1
r ∇×E)× n+

jk0η0
Zi

n×E × n = δik
2jk0η0
Zk

n×Einc
k × n on Γi. (2.35c)

Here, n is the outward oriented unit-length normal vector on the boundaries and
δik is the Kronecker delta function. Let the subspace HE(curl,Ω) be defined by

HE(curl,Ω) = {w ∈ H(curl,Ω) | n× (w × n) = 0 on ΓE} . (2.36)

Then, the corresponding weak formulation, obtained via the Petrov-Galerkin method,
[Ing06, ZC06] reads∫

Ω

∇×w · µ−1
r ∇×E dr + jk0η0

∫
Ω

w · σE dr − k2
0

∫
Ω

w · εrE dr+

∑
i

jk0η0
Zi

∫
Γi

(w × n) · (E × n) dr =
2jk0η0
Zk

∫
Γk

(w × n) ·
(
Einc

k × n
)
dr, (2.37)

where the test function w and electric field are in the subspace w,E ∈ HE(curl,Ω).
Using appropriate normalizations for the modal electric fields Einc

i on the different
ports,

1

Zi

∫
Γi

(
Einc

i × n
)
·
(
Einc

i × n
)
dr = 1, (2.38)

the scattering parameters are calculated [ZC06, Chapter 6.3.1] as

Sik =
1

Zi

∫
Γi

(E × n) ·
(
Einc

i × n
)
dr − δik. (2.39)

There are other formulations that can handle higher-order modes on the ports
[Bal18, Chapter 4] or yield more stability for low frequencies [Joc13]. However,
the main contributions of this thesis are related to the spaces of basis functions, and
this formulation is sufficient for this purpose without loss of generality.
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2.4 The Finite Element Method

So far, only functions that belong to an infinite-dimensional function space have been
considered. In order to obtain a numerical solution, discretization is required with a
finite-dimensional approximation space. The finite element method subdivides the
computational domain Ω into a finite number of elements Ωe with a given topology.
Each Ωe is a simply connected compact sub-domain of Ω with Lipschitz continuous
boundaries. Hence, each element consists of nodes N , edges E, faces F , and volume
V . The critical parameter that characterizes an element is the mesh parameter or
mesh size h = diam(Ωe) [Cia02, Chapter 3.1]. Each element is associated with an
approximation space, which is often a polynomial space. Further on, the polynomial
space of order p is denoted by Pp, which is spanned by all monomials of order i ≤ p.

Moreover, the space of homogeneous polynomials is denoted by P̃p, which is spanned
by the monomials of exact order i = p.

The best-known mathematical definition of a finite element is given by Ciarlet
[Cia02, Chapter 2.3]. In order to fit into the present framework, only some no-
tations were changed.

Definition 2.1 (Finite Element). The Finite Element is a triplet {Ωe, P,Σ}, where

1. Ωe is the domain of the finite element,

2. P is the space of real-valued functions defined over the set Ωe,

3. Σ is the finite set of linearly independent linear forms Ma, defined over the
space P .

The linear forms Ma are also called moments or degrees of freedoms of an element.
Here, a is an index for the different linearly independent moments. For an arbitrary
v ∈ P , there exists a unique real scalar αa which satisfies

Ma(v) = αa. (2.40)

Consequently, there exists a corresponding set of functions va ∈ P , which produces
a linearly independent matrix A as

[A]ab = Mb(va). (2.41)

This set can be used as a basis for the representation of an arbitrary v ∈ P . Partic-
ularly, if A is an identity matrix, then

v =
∑
a

αava. (2.42)
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Hence, one may review the bases {Ma} and {va} as dual bases in the algebraic
sense [Cia02, Chapter 2.3]. This also reflects that the number of moments must be
the same as the finite element basis functions. Moreover, the approximation space
is determined by span {va} = P . Thus, in Definition 2.1, the second point highly
depends on the third point. Therefore, a similar definition as Definition 2.1 with
the same structure will always require a unisolvent finite element and an invertible
matrix A.

In the case of Ω ⊂ R3, the important spaces for conforming finite elements are
H1(Ω), H(curl,Ω), H(div,Ω) and L2(Ω). The corresponding finite-dimensional
approximation spaces of order p are denoted by

Vp ⊂ H1(Ω), (2.43a)

Wp ⊂ H(curl,Ω), (2.43b)

Dp ⊂ H(div,Ω), (2.43c)

Pp ⊂ L2(Ω). (2.43d)

In the case of Vp, the index p indicates that the polynomial space of order Pp

is included in the approximation space. Generally, however, p indicates that the
asymptotic rate of convergence is O(hp) in the corresponding natural norm. In
order to preserve the structure of Maxwell’s equations, as shown in Figure 2.1, and
the conformity between the elements, the discrete approximation spaces must also
form a de Rham complex. This discrete complex of the pth-order approximation
spaces reads

Vp
∇−−−→ Wp

∇×−−−→ Dp
∇·−−−→ Pp. (2.44)

Historically, this concept was first utilized for first-order finite elements on simplicial
domains, where it is referred to as the Whitney complex [Bos98, Chapter 5.2.2].

The Finite Element Equation System

In the following, finite element discretization is applied to the weak formulation of
(2.37). Let us assume that the unknown electric field is E ∈ Wp ⊂ H(curl,Ω) on
each element. Then, the general expression of the electric field on a single element
can be written as the linear combination of wb ∈ Wp with some constant coefficients
xe
b:

E =
∑
b

xe
bwb, on Ωe. (2.45)

The coefficients xe
b can be interpreted as the moments or degrees of freedoms of the

finite element that are unknown. Furthermore, this expressed electric field must sat-
isfy the PEC boundary condition in (2.37) and E ∈ HE(curl,Ω). This requirement
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gives a constraint for the coefficients xe
b and basis functions wb. When satisfied, the

contribution of each element can be assembled globally. Then, the electric field can
be written in terms of all basis functions wb from all elements as

E =
∑
b

xbwb, on Ω, (2.46)

where xb are the corresponding global scaling coefficients. The next step is to choose
a sufficient, finite-dimensional set of testing functions. This is done by follow-
ing the Petrov-Galerkin method, which uses the same functions for approximat-
ing the solution as for the testing functions. Then, an arbitrary testing function
w ∈ HE(curl,Ω) is also expressible as the linear combination of wa ∈ Wp basis
functions with the appropriate constant coefficients ya as

w =
∑
a

yawa, on Ω. (2.47)

With the previously discussed discretization, the weak formulation results in a finite
element equation system(

Sµ + jk0η0T
σ − k2

0T
ε +
∑
i

jk0η0
Zi

Zi

)
x =

2jk0η0
Zk

bEk
, (2.48)

where the vectors and matrices are calculated as

[Sµ]ab =

∫
Ω

∇×wa · µ−1
r ∇×wb dr, (2.49a)

[T σ]ab =

∫
Ω

wa · σwb dr, (2.49b)

[T ε]ab =

∫
Ω

wa · εrwb dr, (2.49c)

[
Zi
]
ab
=

∫
Γi

(wa × n) · (wb × n) dr, (2.49d)

[x]b = xb, (2.49e)

[bEk
]b =

∫
Γk

(wb × n) ·
(
Einc

k × n
)
dr. (2.49f)

Here, Sµ is the stiffness matrix, T σ and T ε are mass matrices of different material
properties, Zi is the so-called impedance matrix, bEk

is the excitation vector, and
x is the unknown solution vector. In practice, these integrals are evaluated element
by element, resulting in element matrices. Then, the global matrices are obtained
by the assembly of the element-wise contributions. For the sake of completeness,
the scattering parameters are calculated as

Sik =
1

Zi

x · bEi
− δik. (2.50)
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In the following, two subcases of the previously described system are considered.
These formulations are used to test various basis functions.

The first is the lossless driven case, where the conductivity is zero σ = 0. Hence,
the corresponding matrix vanishes, Mσ = 0, and the finite element equation system
becomes(

Sµ − k2
0T

ε +
∑
i

jk0η0
Zi

Zi

)
x =

2jk0η0
Zk

bEk
. (2.51)

In the second case, apart from non-conductive materials, no excitations are consid-
ered. Hence, the corresponding matrices Mσ = Zi = 0 and the excitation vector
bEk

= 0 become zero. Thus, the finite element equation system becomes a general-
ized algebraic eigenvalue problem,(

Sµ − k2
0T

ε
)
x = 0, (2.52)

where k2
0 is the eigenvalue, and x is its associated eigenvector. This problem corre-

sponds to the resonant mode and frequency calculation of a cavity resonator.
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2.5 Geometry Mapping Invariance

In a general finite element mesh, different types of elements with different geometry
deformations may occur. A practical way of handling all elements is to work on a
so-called local or reference element and map it to each different global element. This
procedure is efficient from a computational point of view, as it allows the construc-
tion of precalculated matrices and the uniform application of finite element basis
functions on various elements. However, the conformity and de Rham complex of
the approximation spaces must also be preserved on the mapped elements. In or-
der to investigate this issue, formal and general definitions of the moments used for
finite elements are given. The interpolation operators are then induced by the mo-
ments, which are the theoretical tools of the finite element approximation process.
In a last step, the local definitions of the finite elements are given with the corre-
sponding mappings. It is proven in this section that when moments are used in a
given general form, neither the conformity nor the de Rham complex of the approx-
imation spaces is affected. Moreover, the moments are invariant of the geometry
mapping. In later chapters, several different finite element spaces are introduced as
particular cases of the general theory, inheriting all properties from the generic case.
Note that the overall consequences are already known [Cia02, Chapter 4.3] without
general proofs. Similar theories exist for the first-order elements [BBF13, Chap-
ter 2], [FGM11], as well as for higher-order elements with straight-sided geometries
[ABDG98], [M+03, Chapter 8.2].

2.5.1 The Interpolation Operator

The interpolation operator π is a useful theoretical tool that allows the finite ele-
ment analysis of fields v that do not belong to the approximation space v ̸∈ P (in
Definition 2.1). It is a projection operator to the approximation space, allowing the
projection (interpolant) to be expressed as the linear combination of basis functions
va ∈ P ,

πv =
∑
a

Ma(v)va =
∑
a

αava. (2.53)

In the case of v ∈ P , the interpolant is equivalent to the original function

πv = v. (2.54)

Historically, pointwise interpolation operators [Sch64], that match an original func-
tion and its interpolant in some interpolation locations, were first developed. Later,
different interpolation operators were introduced involving the function integrals
[M+03, Chapter 5].
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The unit tangential vector is denoted by t on an edge or on a face, and the unit
normal vector on a face is denoted by n. The interior domain of an edge, a face,
and volume is denoted by E, F , and V , respectively.

The moments of a function v ∈ H1(Ω) are denoted by M
(·)
p (v). These moments are

associated to the node M vn
p (v), edge M ve

p (v), face M vf
p (v), or to the volume M vv

p (v).
Their formal definitions read

M vn
p (v) = v

∣∣∣
N
, (2.55a)

M ve
p (v) =

∫
E

v (ω · t) dr, ∀ (ω · t) ∈ Qve
p ⊂ Cp(E), (2.55b)

M vf
p (v) =

∫
F

v (b · n) dr, ∀ (b · n) ∈ Qvf
p ⊂ Cp(F ), (2.55c)

M vv
p (v) =

∫
V

v q dr, ∀ q ∈ Qvv
p ⊂ Cp(V ), (2.55d)

where the spaces of edge-, face-, and volume-associated test functions are Qve
p ,

Qvf
p , and Qvv

p , respectively. Here, the first superscript indicates the space, and
the second denotes the geometric object. The test functions are constructed from
the appropriate coordinate vectors and functions from the approximation spaces
ω ∈ Wp ⊂ H(curl,Ωe), b ∈ Dp ⊂ H(div,Ωe), and q ∈ Pp ⊂ L2(Ω). The space of
test functions and the approximation space Vp are assumed to induce a unisolvent
H1(Ω)-conforming finite element. Then, the definition of the elementwise interpo-
lation operator of order p reads

M (·)
p

(
v − πv

pv
)
= 0, ∀ (·) ∈ {vn, ve, vf, vv}. (2.56)

The global interpolation operator πv
p,h of order p and mesh parameter h is defined

piecewise on each element (πv
p,hv)|Ωe = πv

p(v|Ωe). For all other function spaces, the
global interpolation operator can be obtained in the same way.

Next, moments are defined for approximating functions w ∈ H(curl,Ω) via the
approximation space Wp. The moments are assigned to the edge Mwe

p (w), face
Mwf

p (w), and volume Mwv
p (w) as

Mwe
p (w) =

∫
E

w · (u t) dr, ∀ (u t) ∈ Qwe
p ⊂ Cp, (2.57a)

Mwf
p (w) =

∫
F

w · (ω × n) dr, ∀ (ω × n) ∈ Qwf
p ⊂ Cp(F ), (2.57b)

Mwv
p (w) =

∫
V

w · b dr, ∀ b ∈ Qwv
p ⊂ Cp(V ). (2.57c)
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Here, the spaces of edge-, face-, and volume-associated test functions are Qwe
p , Qwf

p ,
and Qwv

p , respectively. The test functions are constructed from the coordinate vec-
tors and functions of the approximation spaces u ∈ Vp ⊂ H1(Ωe), ω ∈ Wp ⊂
H(curl,Ωe), and b ∈ Dp ⊂ H(div,Ωe). Again, it is assumed that the space of test
functions and the approximation space Wp induce a unisolvent finite element. Then,
the corresponding elementwise interpolation operator πw

p of order p is defined as

M (·)
p

(
w − πw

p w
)
= 0, ∀ (·) ∈ {we,wf, wv}. (2.58)

Finally, the moments of function d ∈ H(div,Ω) are considered. They are assigned
to the faces Mdf

p (d) and to the volume Mdv
p (d) as

Mdf
p (d) =

∫
F

d · (un) dr, ∀ (un) ∈ Qdf
p ⊂ Cp(F ), (2.59a)

Mdv
p (d) =

∫
V

d · ω dr, ∀ω ∈ Qdv
p ⊂ Cp(V ). (2.59b)

Here, the space of face- and volume-associated test functions are Qdf
p and Qdv

p ,
respectively. The test functions consist of coordinate vectors and functions of the
approximation spaces u ∈ Vf

p ⊂ H1(Ωe) and ω ∈ Wp ⊂ H(curl,Ωe). Assuming that
the moments and the approximation space Dp induce a unisolvent finite element,
the corresponding elementwise interpolation operator πd

p is defined as

M (·)
p

(
d− πd

pd
)
= 0, ∀ (·) ∈ {df, dv}. (2.60)

2.5.2 Function Mappings

In order to use the same basis functions on each element, it is necessary to define
a so-called reference or local element. Then, the functions of each global element
are obtained as the appropriate map of the functions of the reference element. Let
Ω̂e ⊂ R3 denote a reference tetrahedron, cube, or extruded triangle (prism) with a
coordinate vector r̂ = [r̂1, r̂2, r̂3]

T . The corresponding geometry mapping g : r̂ → r

is required to be continuously differentiable, invertible, and bijective over Ω̂e. Thus,
the inverse mapping g−1 : r → r̂ exists and is bijective, too. Further on, each

quantity that belongs to the reference element is denoted by (̂·). Consequently,

the operator ∇̂ = [ ∂
∂r̂1

, ∂
∂r̂2

, ∂
∂r̂3

]T denotes the gradient, ∇̂× the curl, and ∇̂· the
divergence operator on Ω̂e.
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As detailed in [RT77], [Néd80], [Hip99], [BBF13, Section 2.1.3], the natural way

of transforming functions v̂ ∈ H1(Ω̂e), ŵ ∈ H(curl, Ω̂e), d̂ ∈ H(div, Ω̂e), and

q̂ ∈ L2(Ω̂e) is via the Piola transformations

v = P0 {v̂} = v̂ ◦ g−1, (2.61a)

w = P1 {ŵ} =
(
J−1ŵ

)
◦ g−1, (2.61b)

d = P2

{
d̂
}
=
(
det(J)−1JT d̂

)
◦ g−1, (2.61c)

q = P3 {q̂} =
(
det(J)−1q̂

)
◦ g−1, (2.61d)

where the Jacobian of mapping g is

J : =
[
∇̂ rT

]
=
[
∇̂ g (r̂)T

]
. (2.62)

Since J−1, det(J)−1JT , and det(J)−1 are invertible on Ω̂e, the corresponding inverse
transformations are

v̂ = P−1
0 {v} = v ◦ g, (2.63a)

ŵ = P−1
1 {w} = J (w ◦ g) , (2.63b)

d̂ = P−1
2 {d} = det(J)J−T (d ◦ g) , (2.63c)

q̂ = P−1
3 {q} = det(J) (q ◦ g) . (2.63d)

Using Piola transformations, the de Rham complex is satisfied because they preserve
the corresponding differential operators,

∇v = P1

{
∇̂v̂
}
, (2.64a)

∇×w = P2

{
∇̂ × ŵ

}
, (2.64b)

∇ · d = P3

{
∇̂ · d̂

}
, (2.64c)

independently of the geometry mapping. Hence, the null spaces are also preserved:

∇×∇v = P2

{
∇̂ × ∇̂v̂

}
= P2 {0} = 0, (2.65a)

∇ · ∇ ×w = P3

{
∇̂ · ∇̂ × ŵ

}
= P3 {0} = 0. (2.65b)

Consequently, it is permissible to construct finite elements and perform differential
operations on the reference domain and map them to the global elements [M+03,
Chapter 3.9]. The functions of the global approximation spaces originate from the
reference element:

u = P0 {û} ∈ Vp, ∀û ∈ V̂p, (2.66a)

ω = P1 {ω̂} ∈ Wp, ∀ω̂ ∈ Ŵp, (2.66b)

d = P2

{
d̂
}
∈ Dp, ∀d̂ ∈ D̂p, (2.66c)

q = P3 {q̂} ∈ Pp, ∀q̂ ∈ P̂p. (2.66d)
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2.5.3 Invariance of the Moments

In this subsection, it will be shown that the previously presented moments remain
unchanged for all bijective and continuously differentiable geometry mappings, in-
cluding the curvilinear case.

An edge E and a face F of an element can always be parametrized by the local
coordinates. The orientation and the shape of a local element can be chosen such
that a given edge E is parametrized by the variable r̂1 over the interval of [0, 1].
Thus, integration over the edge in the reference element requires the edge element∣∣∣∣ ∂r∂r̂1

∣∣∣∣ = ∣∣∣JT t̂
∣∣∣ , (2.67)

where t̂ = [1, 0, 0]T is the unit tangential vector of the straight edge on the reference
element. Hence, the unit length tangential vector of a global edge, in general, can
be written as

t =

 JT t̂∣∣∣JT t̂
∣∣∣
 ◦ g−1. (2.68)

Furthermore, the local parametrization of the element can be chosen such that a
given face F is parametrized by the local coordinates r̂1 and r̂2 within the interval
of [0, 1]2. The related surface element of this parameterization reads∣∣∣∣ ∂r∂r̂1 × ∂r

∂r̂2

∣∣∣∣ . (2.69)

Using vector identities and the Piola transforms, the surface element can be rewritten
as ∣∣∣∣ ∂r∂r̂1 × ∂r

∂r̂2

∣∣∣∣ = ∣∣∣∣det(J)J−1

(
∂r̂

∂r̂1
× ∂r̂

∂r̂2

)∣∣∣∣ = |det(J)|
∣∣J−1n̂

∣∣ , (2.70)

where n̂ = [1, 0, 0]T is the unit normal vector on the planar face of the reference
element. Hence, the natural expression of a normal vector on a face F , in general,
is

n =

(
J−1n̂∣∣J−1n̂

∣∣
)

◦ g−1. (2.71)

As bijective geometry mappings have been assumed, the Jacobian is always invertible
over the reference element. Thus, choosing a right-handed orientation for the local
coordinates the volume element becomes

|det(J)| = det(J) > 0, on Ω̂e. (2.72)
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Next, the invariance of the discussed moments is shown. It is possible to evaluate
the integrals of (2.55) over the reference element by changing the variables to the

local coordinates. Hence, these moments are also associated with the nodes N̂ ,
edges Ê, faces F̂ , and volume V̂ of the reference element. The functions of the
reference element (2.61), thus the functions of the approximation spaces (2.66),
are transformed via the Piola transformations. One can show that these mapped
integrals result in local moments M̂ vn

p (v̂), M̂ ve
p (v̂), M̂ vf

p (v̂), and M̂ vv
p (v̂) that are

independent of the geometry mapping:

M vn
p (v) = v̂

∣∣∣
N̂
= M̂ vn

p (v̂), (2.73a)

M ve
p (v) =

∫
Ê

v̂

J−1ω̂ · JT t̂∣∣∣JT t̂
∣∣∣
 ∣∣∣JT t̂

∣∣∣ dr̂ =

∫
Ê

v̂ (ω̂ · t̂) dr̂ = M̂ ve
p (v̂), (2.73b)

M vf
p (v) =

∫
F̂

v̂

(
det(J)−1JT b̂ · J−1n̂∣∣J−1n̂

∣∣
)
|det(J)|

∣∣J−1n̂
∣∣ dr̂,

=

∫
F̂

v̂ (b̂ · n̂) dr̂ = M̂ vf
p (v̂), (2.73c)

M vv
p (v) =

∫
V̂

v̂ ( det(J)−1q̂ ) |det(J)| dr̂ =

∫
V̂

v̂ q̂ dr̂ = M̂ vv
p (v̂). (2.73d)

Here, t̂ is the unit length tangential vector of the straight edge Ê, and n̂ is the unit
length normal vector of a face F̂ . Similarly to the case of the global element, the
functions û, ω̂, b̂, and q̂ belong to the local approximation spaces of V̂p, Ŵp, D̂p,

and P̂p, respectively.

Using a similar approach as in the H1(Ω̂e) case, it can be shown that the H(curl, Ω̂e)

moments associated with the edge M̂we
p (ŵ), face M̂wf

p (ŵ), and volume M̂wv
p (ŵ) over

the reference domain are identical to the moments of the global element:

Mwe
p (w) =

∫
Ê

J−1ŵ ·

û
JT t̂∣∣∣JT t̂

∣∣∣
 ∣∣∣JT t̂

∣∣∣ dr̂ =

∫
Ê

ŵ · (û t̂) dr̂ = M̂we
p (ŵ),

(2.74a)

Mwf
p (w) =

∫
F̂

J−1ŵ ·

(
J−1ω̂ × J−1n̂∣∣J−1n̂

∣∣
)
|det(J)|

∣∣J−1n̂
∣∣ dr̂,

=

∫
F̂

ŵ · (ω̂ × n̂) dr̂ = M̂wf
p (ŵ), (2.74b)
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Mwv
p (w) =

∫
V̂

J−1ŵ · (det(J)−1JT b̂) |det(J)| dr̂ =

∫
V̂

ŵ · b̂ dr̂ = M̂wv
p (ŵ).

(2.74c)

Moreover, the H(div, Ω̂e) moments on the reference element also become indepen-
dent of the geometry mapping. These local moments are associated with the face
M̂df

p (d̂) and the volume M̂dv
p (d̂) as

Mdf
p (d) =

∫
F̂

det(J)−1JT d̂ ·

(
û

J−1n̂∣∣J−1n̂
∣∣
)
|det(J)|

∣∣J−1n̂
∣∣ dr̂,

=

∫
F̂

d̂ · (û n̂) dr̂ = M̂df
p (d̂), (2.75a)

Mdv
p (d) =

∫
V̂

det(J)−1JT d̂ · (J−1ω̂) |det(J)| dr̂

=

∫
V̂

d̂ · ω̂ dr̂ = M̂dv
p (d̂). (2.75b)

The corresponding interpolation operators over the reference element are defined as

M̂ (·)
p

(
v̂ − π̂v

p v̂
)
= 0, ∀ (·) ∈ {vn, ve, vf, vv}, (2.76a)

M̂ (·)
p

(
ŵ − π̂w

p ŵ
)
= 0, ∀ (·) ∈ {we,wf, wv}, (2.76b)

M̂ (·)
p

(
d̂− π̂d

pd̂
)
= 0, ∀ (·) ∈ {df, dv}. (2.76c)

Since the moments are independent of the geometry mapping, the relations between
the local and global interpolants are given by the Piola transformations:

πv
pv = P0

{
π̂v
p v̂
}
, (2.77a)

πw
p w = P1

{
π̂w
p ŵ
}
, (2.77b)

πd
pd = P2

{
π̂d
pd̂
}
. (2.77c)
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2.5.4 Commutation Properties of the Approximation Spaces

Let the approximation spaces be defined via the interpolation operators as

Vp =
{
u = πv

pv | ∀v ∈ H1(Ωe)
}
, (2.78a)

Wp =
{
ω = πw

p w | ∀w ∈ H(curl,Ωe)
}
, (2.78b)

Dp =
{
b = πd

pd | ∀d ∈ H(div,Ωe)
}
. (2.78c)

In this section, it is shown that the following commutative diagram holds,

H1(Ωe) H(curl,Ωe) H(div,Ωe)

Vp Wp D̂p

∇

πv
p

∇×

πw
p πd

p

∇ ∇×

(2.79)

provided that Wp and Dp, respectively, includes the irrotational and divergence-free
subspaces

∇Vp ⊂ Wp, (2.80a)

∇×Wp ⊂ Dp. (2.80b)

These commutative relations are required by the approximation estimates in later
chapters. Sufficient conditions for the validity of the commutative diagram are

πw
p ∇v = ∇πv

pv, (2.81a)

πd
p∇×w = ∇× πw

p w. (2.81b)

These requirements are difficult to grant directly because the approximation spaces
of the different real elements may differ in the curvilinear case due to the varying
element shapes. However, the presented general moments are independent of the
geometry mapping, resulting in geometry-independent interpolation operators (2.76)
as well as approximation spaces over the reference element:

V̂p =
{
û = π̂v

p v̂ | ∀v̂ ∈ H1(Ω̂e)
}
, (2.82a)

Ŵp =
{
ω̂ = π̂w

p ŵ | ∀ŵ ∈ H(curl, Ω̂e)
}
, (2.82b)

D̂p =
{
b̂ = π̂d

pd̂ | ∀d̂ ∈ H(div, Ω̂e)
}
. (2.82c)
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With the introduction of the local approximation spaces, the commutative diagram
becomes

H1(Ωe) H(curl,Ωe) H(div,Ωe)

H1(Ω̂e) H(curl, Ω̂e) H(div, Ω̂e)

V̂p Ŵp D̂p

Vp Wp Dp

∇

P−1
0

∇×

P−1
1 P−1

2

∇̂

π̂v
p

∇̂×

π̂w
p π̂d

p

∇̂

P0

∇̂×

P1 P2

∇ ∇×

(2.83)

Therefore, the finite element approximation consists of three theoretical steps:

1. The global fields are mapped to the reference element.

2. The finite element approximation is a projection of the local fields to the local
approximation spaces.

3. The local approximations are transformed back to the global element.

Consequently, if the local approximation spaces over the reference element include
the appropriate subspaces

∇̂V̂p ⊂ Ŵp, (2.84a)

∇̂ × Ŵp ⊂ D̂p, (2.84b)

and the interpolants of the functions v̂ ∈ V̂p and ŵ ∈ Ŵp satisfy

π̂w
p ∇̂v̂ = ∇̂π̂v

p v̂, (2.85a)

π̂d
p∇̂ × ŵ = ∇̂ × π̂w

p ŵ, (2.85b)

then both local and global approximation spaces form a de Rham complex.

Note that the last approximation space Pp of the entire sequence was not considered.
This is the appropriate space for approximating functions in L2(Ω), which may be
discontinuous between the elements. Therefore, no additional functions are needed
to maintain continuity between the elements. The analogy between the continuous
(2.26) and discrete (2.44) de Rham complex implies that the image of the previ-
ous space must be included. Therefore, the approximation spaces on the reference
element must satisfy

∇̂ · D̂p ⊂ P̂p. (2.86)

As both D̂p and P̂p are polynomial spaces, the functions of ∇̂ · D̂p+1 are also suitable

for P̂p.
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The Gradient Subspace

This section provides proof for (2.85a), assuming that the gradient subspace is in-
cluded in the approximation space (2.84a). First, the interpolant π̂w

p of equation
(2.85a) is taken as

π̂w
p

(
π̂w
p ∇̂v̂

)
= π̂w

p

(
∇̂π̂v

p v̂
)
. (2.87)

Using the fact that the interpolant of an interpolant becomes π̂w
p π̂

w
p (·) = π̂w

p (·), it is
sufficient to show that

π̂w
p

(
∇̂
(
v̂ − π̂v

p v̂
))

= 0, ∀v̂. (2.88)

Thus, the H(curl)-conforming moments of an arbitrary H1 interpolation error func-
tion v̂err = v̂ − π̂v

p v̂ must vanish

M̂ (·)
p

(
∇̂v̂err

)
= 0, ∀(·) ∈ {we,wf, wv}. (2.89)

First, the edge-associated moments are considered:

M̂we
p (∇̂v̂err) =

∫
Ê

∇̂v̂err · (û t̂) dr̂. (2.90)

One can rewrite this integral with the use of the vector identity

∇̂v̂err ·
(
û t̂
)
= ∇̂ (v̂err û) t̂− v̂err ∇̂û · t̂, (2.91)

and applying the gradient theorem as

M̂we
p (∇̂v̂err) =

[
v̂err û

]N̂2

N̂1

−
∫
Ê

v̂err

(
∇̂û · t̂

)
dr̂. (2.92)

Here, the first term is equivalent to the node-associated moments (2.73a), that are
multiplied by a scalar û. Moreover, the second term is equivalent to a moment over
the edge (2.73b) since ω̂ = ∇̂û ∈ ∇̂V̂p ⊂ Ŵp. Therefore, both terms become zero
due to the definition of the corresponding interpolation operator (2.76a) for an error
function.

Next, let us continue with the face-associated moments:

M̂wf
p (∇̂v̂err) =

∫
F̂

∇̂v̂err · (ω̂ × n̂) dr̂. (2.93)
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One can apply the vector identity

∇̂v̂err · (ω̂ × n̂) = ∇̂ × (v̂err ω̂)− v̂err∇̂ × ω̂ · n̂, (2.94)

and Stokes’ theorem to rewrite the moment as a line integral over a closed curve of
the edges and a face integral:

M̂wf
p (∇̂v̂err) =

∮
Ê

v̂err

(
ω̂ · t̂

)
dr̂ −

∫
F̂

v̂err

(
∇̂ × ω̂ · n̂

)
dr̂. (2.95)

Here, each line integral is equivalent to the edge-associated moments (2.74a). Fur-
thermore, the surface integral is equivalent to the face-associated moments (2.73c)

since b̂ = ∇̂ × ω̂ ∈ ∇̂ × Ŵp ⊂ D̂p. Thus, by the definition of the interpolation
operator (2.76a), both terms become zero for the error function.

Finally, the case of the volume-associated moments is considered:

M̂wv
p (∇̂v̂err) =

∫
V̂

∇̂v̂err · b̂ dr̂. (2.96)

One can apply the vector identity

∇̂v̂err · b̂ = ∇̂ ·
(
v̂err b̂

)
− v̂err∇̂ · b̂, (2.97)

and the divergence theorem to rewrite the moment as surface integrals and a volume
integral:

M̂wv
p (∇̂v̂err) =

∮
F̂

v̂err

(
b̂ · n̂

)
dr̂ −

∫
V̂

v̂err

(
∇̂ · b̂

)
dr̂. (2.98)

In the first term, each face integral is equivalent to a face-associated moment (2.73c).
Moreover, the second term is equivalent to a volume-associated moment (2.73d) with

the test function q̂ = ∇̂ · b̂ ∈ ∇̂ · D̂p ⊂ P̂p. Hence, both terms become zero due to
the definition of the interpolation operator (2.76a) for the error function.

The Solenoidal Subspace

In this section, proof is given for (2.85b), assuming the inclusion of the appropriate
discrete subspace (2.84). First, the operator π̂d

p is applied to (2.85b) as

π̂d
p

(
π̂d
p∇̂ × ŵ

)
= π̂d

p

(
∇̂ × π̂w

p ŵ
)
, (2.99)
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where the term π̂d
p π̂

d
p(·) can be simplified to a single interpolation π̂d

p(·). Hence, it is
sufficient to show that the relation

π̂d
p

(
∇̂ ×

(
ŵ − π̂w

p ŵ
))

= 0 (2.100)

holds for all ŵ functions. Therefore, all H(div)-conforming finite element moments
must vanish for an error function ŵerr = ŵ − π̂w

p ŵ:

M̂ (·)
p

(
∇̂ × ŵerr

)
= 0, ∀(·) ∈ {df, dv}. (2.101)

First, the face-associated moments are considered:

M̂df
p (∇̂ × ŵerr) =

∫
F̂

∇̂ × ŵerr · (û n̂) dr̂. (2.102)

Applying the vector identity

∇̂ × ŵerr · (û n̂) = ∇̂ × (û ŵerr) · n̂+ ŵerr ·
(
∇̂û× n̂

)
, (2.103)

as well as Stokes’ theorem, the face-associated moments become

M̂df
p (∇̂ × ŵerr) =

∮
Ê

ŵerr ·
(
û t̂
)
dr̂ +

∫
F̂

ŵerr ·
(
∇̂û× n̂

)
dr̂. (2.104)

Here, the first term is a line integral over all the edges of a face. Each edge integral
is equivalent to the edge-associated moments (2.74a). The second term is a face

integral, which is identical to the face-associated moments (2.74b) with ω̂ = ∇̂û ∈
∇̂V̂p ⊂ Ŵp. Using the definition of the interpolation operator (2.76b), both integrals
become zero for an error function.

Finally, the volume-associated moments are investigated:

M̂dv
p (∇̂ × ŵerr) =

∫
V̂

∇̂ × ŵerr · ω̂ dr̂. (2.105)

One can apply the vector identity

∇̂ × ŵerr · ω̂ = ∇̂ · (ŵerr × ω̂) + ŵerr · ∇̂ × ω̂, (2.106)

as well as the divergence theorem to rewrite the moment as

M̂dv
p (∇̂ × ŵerr) =

∮
F̂

ŵerr · (ω̂ × n̂) dr̂ +

∫
V̂

ŵerr · ∇̂ × ω̂ dr̂. (2.107)

Here, the first boundary integral term is equivalent to the sums of face-associated
moments (2.74b). Furthermore, the second volume integral is equivalent to the

volume-associated moments (2.74c), with b̂ = ∇̂ × ω̂ ∈ ∇̂Ŵp ⊂ D̂p. Hence, both
terms become zero due to the definition of the interpolation operator (2.76b) for an
error function.
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2.6 Tetrahedral Elements

The most used meshes for practical applications consist of simplexes due to their ver-
satile usage and ease of generation for both structured and unstructured geometries.
In three dimensions, the best-known tetrahedral finite element is the polynomial
H1-conforming element [BBF13, Section 2.2] for scalar fields. For the approxima-
tion of H(curl)-conforming vector fields, the complete- [Néd86] and mixed-order
Nédélec elements [Néd80] are used. For the approximation of H(div)-conforming
vector fields, the Raviart-Thomas elements (identical to the mixed-order face el-
ements of Nédélec [Néd80]), the Brezzi-Douglas-Marini elements (identical to the
complete-order face elements of Nédélec [Néd86]), and the Brezzi-Douglas-Fortin-
Marini elements are used [BBF13, Section 2.3, 2.6]. These finite elements differ in
their continuity requirements and in their approximation properties. The present
work only considers the smallest spaces, the H1-conforming scalar polynomial space
and the mixed-order Nédélec space, that provide algebraic convergence rates in their
corresponding natural norms. In this section, general definitions are given for these
spaces, and explicit basis functions of Ingelström [Ing06] are provided for the H1-
and H(curl)-conforming cases.

Let us start with the definition of the reference tetrahedron. In terms of local
coordinates r̂, the four nodes of the element are r̂1 = [1, 0, 0]T , r̂2 = [0, 1, 0]T ,
r̂3 = [0, 0, 1]T , and r̂4 = [0, 0, 0]. Each of the six straight edges is bounded by
two nodes and each flat triangular face is bounded by three edges. The boundary
of the element consists of four flat triangular faces. Thus, each node is associated
to an index i. Similarly, all edges, faces, and volume can be associated with the
indices of the bounding nodes ij, ijk, and ijkl, respectively. The reference element
of the present configuration is shown in Figure 2.2, where the arrows indicate the
orientation of the edges. For all of the discussed tetrahedral elements, the local
and global ordering of the nodes and the orientation of the edges and faces are
determined by the node indices in ascending order.

In order to construct basis functions with compact support and symmetry, it is
common to introduce barycentric coordinates φ = [φ1, φ2, φ3, φ4]

T [Ska08], [Cox61,
Section 13.7] which are related to the reference element coordinates r̂ = [r̂1, r̂2, r̂3]

T

by
r̂1
r̂2
r̂3
1

 =


1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1



φ1

φ2

φ3

φ4

 . (2.108)

Each φi gives the value of one on the associated node r̂i and zero on all other nodes.

The next step is the definition of the finite element approximation spaces. The
most used space for approximating H1(Ω)-conforming functions is the polynomial
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φ1

φ2

φ3

r̂3

r̂4

r̂2

r̂1

φ4

Figure 2.2: The reference tetrahedron.

space Pp of order p [M+03, Chapter 5.6]. For the approximation of H(curl,Ω)- and
H(div,Ω)-conforming functions, Nédélec introduced the incomplete- or mixed-order
polynomial spaces [Néd80] of

Rp = (Pp−1)
3 ⊕ Sp, (2.109a)

Dp = (Pp−1)
3 ⊕ S⊥

p , (2.109b)

where the highest order subspaces Sp and S⊥
p are defined as

Sp =
{
u ∈ (P̃p)

3
∣∣∣u · r̂ = 0

}
, (2.110a)

S⊥
p =

{
u ∈ (P̃p)

3
∣∣∣u× r̂ = 0

}
. (2.110b)

These spaces are chosen as local approximation spaces:

V̂p = Pp, Ŵp = Rp, D̂p = Dp. (2.111)

The third step in the definition of a finite element is the determination of the mo-
ments. Let the H1(Ω̂e)-conforming moments be defined as

M̂ vn
p (v̂) = v̂

∣∣∣
N̂
, (2.112a)

M̂ ve
p (v̂) =

∫
Ê

v̂ q̂ dr̂, ∀ q̂ ∈ Pp−2(Ê), (2.112b)

M̂ vf
p (v̂) =

∫
F̂

v̂ q̂ dr̂, ∀ q̂ ∈ Pp−3(F̂ ), (2.112c)

M̂ vv
p (v̂) =

∫
V̂

v̂ q̂ dr̂, ∀ q̂ ∈ Pp−4(V̂ ). (2.112d)
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Let the H(curl, Ω̂e)-conforming moments be defined as

M̂we
p (ŵ) =

∫
Ê

ŵ · (q̂ t̂) dr̂, ∀ q̂ ∈ Pp−1(Ê), (2.113a)

M̂wf
p (ŵ) =

∫
F̂

ŵ · (q̂ × n̂) dr̂, ∀ q̂ ∈ (Pp−2(F̂ ))3, (2.113b)

M̂wv
p (ŵ) =

∫
V̂

ŵ · q̂ dr̂, ∀ q̂ ∈ (Pp−3(V̂ ))3. (2.113c)

Let the H(div, Ω̂e)-conforming moments be defined as

M̂df
p (d̂) =

∫
F̂

d̂ · (q̂ n̂) dr̂, ∀ q̂ ∈ Pp−1(F̂ ), (2.114a)

M̂dv
p (d̂) =

∫
V̂

d̂ · q̂ dr̂, ∀ q̂ ∈ (Pp−2(V̂ ))3. (2.114b)

In the case of straight-sided elements, these moments are equivalent to cases where
the same moments and approximation spaces are assumed on the global elements
[M+03, Chapter 5], [Néd80]. For such cases, the induced finite element is unisolvent
and conforming [M+03, Chapter 5], [Néd80]. However, Piola transformations would
involve rational functions for curvilinear geometry mappings. Hence, each element
with different curvilinear geometry mapping would produce a different approxima-
tion space on the same reference element. This would make the general theoretical
analysis impossible. Thus, only the locally defined moments are appropriate. It can
be seen that (2.112), (2.113), and (2.114) are equivalent to the general moments

(2.73), (2.74), and (2.75) with the approximation spaces V̂p, Ŵp, and D̂p. These de-
tails are usually not observed because the basis functions are defined on the reference
element and mapped to the curvilinear elements via Piola transformations. Hence,
even if the moments are defined incorrectly on the global element, the definitions of
the basis functions correspond to the locally defined interpolation operator and the
correct geometry-invariant moments. In the case of smooth fields, the asymptotic
convergence rates [M+03, Chapter 5], [Néd80] for straight-sided meshes are∥∥v − πv

pv
∥∥
L2(Ωe)

≤ Chp+1, (2.115a)∥∥v − πv
pv
∥∥
H1(Ωe)

≤ Chp, (2.115b)∥∥w − πw
p w
∥∥
L2(Ωe)

≤ Chp, (2.115c)∥∥w − πw
p w
∥∥
H(curl,Ωe)

≤ Chp, (2.115d)∥∥d− πd
pd
∥∥
L2(Ωe)

≤ Chp, (2.115e)∥∥d− πd
pd
∥∥
H(div,Ωe)

≤ Chp. (2.115f)
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Table 2.1: Basis functions for the approximation space Ṽp from [Ing06].

Ṽp Association Basis function

1 node i φi,

2 edge ij φiφj,

3 edge ij φiφj (φi − φj),

face ijk φiφjφk,

4 edge ij φiφj

(
φ2
i − 3φiφj + φ2

j

)
,

face ijk φiφjφk (φj − φk),

face ijk φiφjφk (φk − φi),

volume ijkl φiφjφkφl,

Now that the finite element approximation spaces are defined, the focus is on the
utilized basis functions. While they span the same space, specific bases differ in their
numerical properties, such as sparsity, orthogonality, or condition numbers. The
best-known basis functions are probably the interpolatory basis functions, where
each function is associated with a single interpolation location, and the coefficients
are associated with the field values. This is a great advantage because the unknowns
of the finite element equation system have a direct interpretation. However, one
disadvantage is that different orders of basis functions cannot be used for neighboring
elements in the same mesh. Moreover, if the order of the elements needs to be
increased, a new set of basis functions and interpolation locations are required.

These properties motivated the development of hierarchical basis functions. Gen-
erally, they are no longer associated with any interpolation location. On the other
hand, degree elevation is possible by adding a set of incremental-order functions
to the set of lower-order functions. This property can be utilized for hp-adaptive
techniques [BS93], [Ban96], and [AP02] and for multilevel preconditioners [Ing06].

Let the incremental subspaces for Vp be denoted by Ṽp, for Wp by W̃p, and for Dp

by D̃p. Then, the decompositions of the approximation spaces read

Vp = Ṽ1 ⊕ ...⊕ Ṽp, (2.116a)

Wp = W̃1 ⊕ ...⊕ W̃p, (2.116b)

Dp = D̃1 ⊕ ...⊕ D̃p. (2.116c)

In the following, the bases of Ingelström [Ing06] are preferred for the approximation
spaces of Vp (Table 2.1) and Wp (Table 2.2). An important property of these bases is

that each higher order (p > 1) hierarchical space W̃p is subdivided into the gradient

subspace ∇Ṽp and a rotational subspace Ãp with non-zero curl. This decomposition



34 Mathematical and Physical Foundations

reads

W̃p = Ãp ⊕∇Ṽp, p > 1. (2.117)

The advantage is that the functions of Ṽp can be reused as gradient subspace func-

tions in ∇Ṽp ⊂ W̃p, which is in the null space of the curl operator. Furthermore,
it is possible to define an even finer subspace structure based on the association
type of the moments. Those functions of Ṽp, which are associated with the nodes,

belong to the subspace Ṽn
p , the edge-associated functions to Ṽe

p , the face-associated

functions to Ṽf
p , and the volume functions to Ṽv

p . Hence, the incremental space Ṽp

is the sum of the different subspaces:

Ṽp = Ṽn
p ⊕ Ṽe

p ⊕ Ṽf
p ⊕ Ṽv

p . (2.118)

Similarly, the edge-, face-, and volume-associated functions of Ãp belong to the

subspaces of Ãe
p, Ãf

p , and Ãv
p, respectively. Hence, the incremental space Ãp is the

sum of these subspaces:

Ãp = Ãe
p ⊕ Ãf

p ⊕ Ãv
p. (2.119)

Another important property of Ingelström’s basis is the orthogonality with respect
to the interpolation operator:

πv
pvq = 0, ∀vq ∈ Vq and q > p, (2.120a)

πw
p wq = 0, ∀wq ∈ Wq and q > p. (2.120b)

This means that the lower-order interpolation of a higher-order interpolation is
equivalent to a single, lower-order interpolation:

πw
p (π

w
p+1w) =

p∑
q=1

∑
i

ciqw
i
q = πw

p w. (2.121)

Therefore, any higher-order interpolation can be obtained by the superposition of
the lower-order interpolation and the higher-order incremental term:

πw
p+1w =

p∑
q=1

∑
i

ciqw
i
q +

∑
i

cip+1w
i
p+1 = πw

p w +
∑
i

cip+1w
i
p+1. (2.122)

There is no need to compute all the coefficients because the lower-order terms remain
unchanged during degree elevation. This enables a hierarchical interpolation scheme
via the previously described interpolation operators πw

p , π
v
p with the corresponding

basis functions. Moreover, the bases not only provide a high level of sparsity but are
also useful [Ing06] for hierarchical preconditioners [ZC02] and solvers [PDEL99]. One
contribution of the thesis is a family of hierarchicalH(div) bases for the mixed-order
Nédélec space with the same properties as Ingelström’s H(curl) basis. Hence, with
the present work, basis functions that are orthogonal with respect to the relevant
interpolation operators are available for all spaces of the discrete de Rham complex.
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Table 2.2: Basis functions for the approximation space Ãp from [Ing06].

Ãp Association Basis function

1 edge ij φi∇φj − φj∇φi,

2 face ijk 3φjφk∇φi −∇ (φiφjφk),

face ijk 3φkφi∇φj −∇ (φiφjφk),

3 face ijk 4φjφk (φj − φk)∇φi −∇ (φiφjφk (φj − φk)),

face ijk 4φkφi (φk − φi)∇φj −∇ (φiφjφk (φk − φi)),

face ijk 4φiφj (φi − φj)∇φk −∇ (φiφjφk (φi − φj)),

volume ijkl 4φjφkφl∇φi −∇ (φiφjφkφl),

volume ijkl 4φkφlφi∇φj −∇ (φiφjφkφl),

volume ijkl 4φlφiφj∇φk −∇ (φiφjφkφl),

4 face ijk 5φjφk

(
φ2
j − 3φjφk + φ2

k

)
∇φi−

∇
(
φiφjφk

(
φ2
j − 3φjφk + φ2

k

))
,

face ijk 5φkφi (φ
2
k − 3φkφi + φ2

i )∇φj−
∇ (φiφjφk (φ

2
k − 3φkφi + φ2

i )),

face ijk 5φiφj

(
φ2
i − 3φiφj + φ2

j

)
∇φk−

∇
(
φiφjφk

(
φ2
i − 3φiφj + φ2

j

))
,

face ijk (6φi − φj − φk) (φj − φk)φjφk∇φi+

(6φj − φk − φi) (φk − φi)φkφi∇φj+

(6φk − φi − φj) (φi − φj)φiφj∇φk,

volume ijkl 5φjφkφl (φj − φk)∇φi −∇ (φiφjφkφl (φj − φk)),

volume ijkl 5φjφkφl (φk − φl)∇φi −∇ (φiφjφkφl (φk − φl)),

volume ijkl 5φkφlφi (φk − φl)∇φj −∇ (φiφjφkφl (φk − φl)),

volume ijkl 5φkφlφi (φl − φi)∇φj −∇ (φiφjφkφl (φl − φi)),

volume ijkl 5φlφiφj (φl − φi)∇φk −∇ (φiφjφkφl (φl − φi)),

volume ijkl 5φlφiφj (φi − φj)∇φk −∇ (φiφjφkφl (φi − φj)),

volume ijkl 5φiφjφk (φi − φj)∇φl −∇ (φiφjφkφl (φi − φj)),

volume ijkl 5φiφjφk (φj − φk)∇φl −∇ (φiφjφkφl (φj − φk)),
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Chapter 3

Requirements for Algebraic
Asymptotic Convergence Rates

A significant part of this thesis concerns new finite element spaces and basis functions
that provide algebraic asymptotic convergence rates in terms of the finite element
order and in the base of the mesh parameter. In order to lay the foundations for
specific error estimations and convergence requirements, this chapter provides the
general theoretical foundations and framework. The main, original contributions
are the alternative definition of the mesh parameter, the interpretation of the mesh
refinement, and the associated finite element error estimations. The results are
given in a general way and apply to all elements whose finite element moments are
subcases of the defined general moments (2.55), (2.57), and (2.59), and for which the
approximation space of the reference element is polynomial. Therefore, the results
apply to typical hexahedral, tetrahedral, and triangular-based prism elements.
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3.1 Errors Related to Geometry Representation

The previously defined general moments (2.55), (2.57), and (2.59) require the geom-

etry mapping g(r̂) ∈ Cp(Ω̂) to be p-times differentiable. Hence, its Taylor expansion

of order p exists in every point r̂i ∈ Ω̂e of the reference element. Therefore, it is
possible to approximate or interpolate the geometry mappings by polynomials. In
general, geometry mappings can take up various forms and may significantly differ
element by element. In some cases, the geometry mappings might not be available
as functions in closed forms but rather as sets of points on the boundaries. Hence,
it is practical to interpolate the geometry mappings by polynomials gk(r̂) of order k
and use the same basis functions on each element to describe their shape. Then, an
exact geometry mapping g(r̂) can be rewritten as

g (r̂) = gk (r̂) +Rk (r̂) , (3.1)

where the remainder term Rk (r̂) is the interpolation error. In the case of polyno-
mial geometry mappings g ∈ (Pk)

3, the interpolation is exact (i.e., g (r̂) = gk (r̂)
and Rk = 0). Now that each element is equipped with an interpolated geometry
mapping, the neighboring elements are required to map their adjacent boundaries
to the same interface to preserve the elementary continuity of the mesh. Thus,
the mappings of the neighboring elements are required to be in the same space on
their common nodes N̂i, edges Êi, and faces F̂i. Here, subscript i is an index for
the different subdomains. Therefore, the error is not just required to be zero for
the interpolation of kth-order polynomials on the reference element, but also for all
nodes, edges, and faces simultaneously for a given g:

Rk(N̂i) = 0, ∀i, (3.2a)

g(Êi) ∈ (Pk(Êi))
3 =⇒Rk(Êi) = 0, ∀i, (3.2b)

g(F̂i) ∈ (Pk(F̂i))
3 =⇒Rk(F̂i) = 0, ∀i, (3.2c)

g ∈ (Pk)
3 =⇒Rk = 0. (3.2d)

This induces a set of interpolation locations {r̂i} for the reference element which
belong to the nodes, edges, faces, and volume, as well as a corresponding set of
global coordinates {ri}, where the error of the interpolated mapping is required to
be zero:

gk (r̂i) = g (r̂i) = ri. (3.3)

In practice, an H1-conforming finite element basis is used for the geometry interpo-
lation because it satisfies (3.2), providing C0 continuity.
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3.1.1 The Geometry Interpolation Error

The investigation begins with the interpolation of a function along an edge Êi, which
requires k + 1 interpolation locations for kth-order polynomials. It is assumed that
the interpolation locations are uniformly distributed. If an edge Êi of the reference
element is parametrized by the variable φi ∈ [0, 1], then the pointwise interpolation
error of g(φi) ∈ Ck+1 over the edge [Run03] reads

|Rk(r̂)| ≤
1

4(k + 1)

(
1

k

)k+1

sup
φi∈[0,1]

∣∣∣∣∂k+1g(φi)

∂φk+1
i

∣∣∣∣ , ∀r̂ ∈ Êi. (3.4)

As the parametrization interval is independent of the actual geometry, the term

Ck =
1

4(k + 1)

(
1

k

)k+1

(3.5)

is also independent of the geometry mapping g. Indeed, (3.5) depends only on
the order of interpolation k and tends to zero when k → ∞. By choosing the
interpolation locations in a certain non-uniform pattern, it is possible to decrease
the constant Ck for a given order k [BS07, Section 10.4]. However, the distribution
of the interpolation locations does not change the fact that Ck is a positive constant
with a finite upper bound C and

|g(r̂)− gk(r̂)| = |Rk(r̂)| ≤ C sup
φi∈[0,1]

∣∣∣∣∂k+1g(φi)

∂φk+1
i

∣∣∣∣ , ∀r̂ ∈ Êi. (3.6)

As the geometry interpolation space is also a polynomial space that is complete up to
order k over the faces and the volume, similar error estimations can be obtained in a
more general form for the other geometry partitions. Choosing the reference element
to be Ω̂e ⊆ [0, 1]3, the application of the Bramble-Hilbert lemma [BS07,Section 4.3]
yields the following estimate:

|g − gk|s,q,(·) = |Rk|s,q,(·) ≤ Cdk+1−s |g|k+1,q,(·) , ∀(·) ∈ (Êi, F̂i, Ω̂e), (3.7)

where C = C((·), k) is a positive g-independent constant and d ≤ 1 is the diameter
of the domain (·). Note that the term of dk+1−s ≤ 1 tends to zero when k → ∞.

In the following, two subcases of (3.7) are given that are used to establish finite
element error estimates in later sections. Using a given polynomial order k, the
L∞-norm estimate of the interpolation error ((3.7) with s = 0 and q = ∞) reads

∥Rk∥L∞(·) ≤ C |g|k+1,∞,(·) , ∀(·) ∈ (Êi, F̂i, Ω̂e), (3.8)

where C is a positive g independent constant. The second subcase is the L∞-norm
estimate of the derivative of the interpolation error with respect to a multi-index
|α| ≤ k + 1 ((3.7) with s ≤ k + 1 and q = ∞):∥∥∥D̂αRk

∥∥∥
L∞(·)

≤ C |g|k+1,∞,(·) , ∀(·) ∈ (Êi, F̂i, Ω̂e). (3.9)
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3.1.2 Mesh Parameter and Mesh Refinement

The common way to uniformly refine a straight-sided mesh of a straight-sided geom-
etry is to equally subdivide the edges and also take the midpoints of the faces and
the volume if necessary. However, generating a completely new mesh with a halved
element size could provide a similar result. In both cases, the mesh parameters are
identical, but only the first approach maintains a connection between the initial and
refined meshes. In the case of curvilinear elements and interpolated geometry map-
pings, these processes are less straightforward. In most cases, the mesh parameter
is considered to be associated with the size of the underlying straight-sided mesh
[Cia02, ABB15]. The elements with higher-order interpolation nodes are consid-
ered [Cia02] to be perturbations of the straight-sided elements, leaving the mesh
parameter unchanged. Therefore, two different refinement methods are being used,
similarly to the straight-sided case. First, either the underlying straight-sided mesh
is refined homogeneously or an entirely new straight-sided mesh is generated with
half the size of the previous mesh. Then, the higher-order interpolation nodes are
inserted for the elements next to the curvilinear boundaries and are displaced to the
exact curvilinear boundaries.

The present framework takes a different approach. First, the existence of an initial
macro mesh, which represents the geometry without any error, is assumed. Hence,
each macro element of this initial mesh has a perfect geometry mapping r = g̃0(r̂0)

that maps the reference domain of the macro element Ω̂e to the global domain of
the macro element ΩM :

g̃0(r̂0) : r̂0 ∈ Ω̂e −→ r ∈ ΩM . (3.10)

Then, the mesh refinement is considered to be an arbitrary reparametrization pro-
cedure of each initial reference element. After refining the initial mesh n-times, the
mapping,

g(r̂) : r̂ ∈ Ω̂e −→ r ∈ Ωe, (3.11)

of an arbitrary element is obtained as

g(r̂) = g̃0(r̂0) ◦ g̃1(r̂1) ◦ g̃2(r̂2) · · · ◦ g̃n(r̂n) = g̃0(r̂0) ◦ f(r̂n = r̂), (3.12)

where a single function composition with a mapping

g̃n(r̂n) : r̂n ∈ Ω̂e −→ r̂n−1 ∈ Ω̂n−1 ⊂ Ω̂e, for n > 0, (3.13)

corresponds to one refinement. Here, Ω̂n−1 is a domain of an element that is obtained
by the refinement of Ω̂e in the (n− 1)th step. The function

f(r̂n = r̂) : r̂n = r̂ ∈ Ω̂e −→ r̂0 ∈ Ω̂0 ⊂ Ω̂e, for n > 0, (3.14)
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is the function composition of all refinements. The previously described mappings,
g̃0, g̃i, and f , are required to be sufficiently smooth: to be C1 diffeomorphisms
(bijective with C1 inverse functions) and

∥g̃0∥1,∞,Ω̂e
≤ C, ∥g̃i∥1,∞,Ω̂e

≤ C, ∥f∥1,∞,Ω̂e
≤ C, (3.15)

where C is a positive constant. Therefore, any geometry mapping g of a regular
element inherits these properties and the corresponding inverse-mapping g−1 also
satisfy

∥g∥1,∞,Ω̂e
≤ C,

∥∥g−1
∥∥
1,∞,Ωe

≤ C. (3.16)

The proposed interpretation is illustrated in Figure 3.1. A consequence is that the
geometry boundaries and the element boundaries of the initial mesh are undisturbed
by the refinement, and the geometry error of the geometry interpolation is only in-
troduced after the refinements. Note that not all meshes and geometry mappings

1

11

r0 = f(r̂2 = r̂)

Ω̂e

Ωe

1

1

Ω̂e

r = g(r̂) = g̃0 ◦ g̃1 ◦ g̃2 = g̃0 ◦ f(r̂)

ΩM

r = g̃0(r̂0)
1

1

a non-affine
reparametrization

Ω̂0

r0 = g̃1(r̂1)

(1st refinement) (2nd refinement)

1

an affine
reparametrization

Ω̂1

r1 = g̃2(r̂2)

Figure 3.1: Illustration of an element’s geometry mapping in the proposed alterna-
tive interpretation.

of the elements are obtained in the previously described way. However, it is always
possible to artificially construct a mesh refinement history in this interpretation by
providing an initial mesh with initial geometry mappings g̃0 and creating appro-
priate reparametrization functions f that map and refine the initial mesh into the
available refined mesh. The artificially constructed mesh refinement histories are
not unique and hard to obtain. However, the following theories require only some
characterizations of the overall refinement functions f and not the initial mesh or
geometry description.
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Now that the refinement is clarified, the mesh parameter h can be defined. Instead
of defining it via the usual approach as giving a geometrical interpretation, it is
introduced as a certain quantity, in which base, the algebraic convergence might
occur. Then, a geometrical interpretation will be provided for some special cases.
Provided that the largest extent of the reference element in the direction of the
local coordinates is normalized to one (i.e., Ω̂e ⊆ [0, 1]3), the definition of the mesh
parameter reads

h := max
|α|≥1

{∥∥∥D̂αf
∥∥∥
L∞(Ω̂e)

}
. (3.17)

Then, the global mesh parameter is given as the largest h of all the elements. Note
that the usual definition of the mesh parameter

h := max
|α|=1

{∥∥∥D̂αf
∥∥∥
L∞(Ω̂e)

}
, (3.18)

only involves the first-order derivative of the mapping f , and the higher-order deriva-
tives are irrelevant. However, the two definitions, (3.17) and (3.18), become equiv-
alent in the asymptotic case for h → 0 if f is asymptotically affine.

Next, estimations are given for the derivatives of geometry mappings in order to
determine the effect of mesh refinement on the geometry interpolation error (3.8).

Only the L∞(Ω̂e)-norm is considered because this result is required later to establish
finite element approximation estimates. However, similar estimates can be obtained
for the L∞(Ê) and L∞(F̂ ) norms.
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Estimation of the Geometry Mapping Error for Affine Refinement

Using the rule for the derivative of function composition [Leo17], the derivative of
the geometry mapping with respect to the local coordinates reads

D̂αg = D̂α (g̃0 ◦ f) =
∑
β,γ,l

Cβ,γ,l

(
(D̂βg̃0) ◦ f

) |β|∏
i=1

D̂γif li
. (3.19)

This is a combinatorial form, where the sums and multiplications of the functions
are required for all combinations of β, γ, and l. Here, α and β are multi-indices
with the properties of

α = (α1, α2, α3) ∈ (Z+)3 and 1 ≤ |α| ≤ k + 1, (3.20a)

β = (β1, β2, β3) ∈ (Z+)3 and 1 ≤ |β| ≤ |α| . (3.20b)

Moreover, γ is a set of multi-indices for all values of β satisfying

γ = (γ1, · · · , γ|β|), γi ∈ (Z+)3 and

|β|∑
i=1

γi = α, (3.21)

and l is a set of corresponding indices for vector components of f with the values of

l = (l1, · · · , l|β|) and li ∈ {1, 2, 3}. (3.22)

The scaling term Cβ,γ,l is a geometry-independent constant for all combinations of
the indices.

This section considers the case of affine refinement, where each element is obtained
by a series of affine refinement steps. The function of a single reparametrization in
the nth refinement step reads

g̃n(r̂n) = Anr̂n + bn ∈ (P1)
3 , (3.23)

where An is a constant matrix and bn is a constant vector. For a uniform affine
refinement step, the size of each domain is uniformly halved, and ∥An∥∞ = 1/2.
Since the function composition of n affine and uniform refinement step is also an
affine mapping, the bound for an arbitrary derivative of f is∥∥∥D̂γif li

∥∥∥
L∞(Ω̂e)

=

∥∥∥∥A1A2 · · ·An
∂|γi|r̂li

∂r̂γi

∥∥∥∥
L∞(Ω̂e)

≤

{
2−n = h for |γi| = 1

0 for |γi| > 1
. (3.24)

Hence, the mesh parameter (3.17) after n refinement steps becomes h = 1/2n. The

L∞(Ω̂e)-norm estimate can be obtained for (3.19) by applying the generalized Hölder
and triangle inequalities:∥∥∥D̂αg

∥∥∥
L∞(Ω̂e)

=
∑
β,γ,l

Cβ,γ,l

∥∥∥(D̂βg̃0) ◦ f
∥∥∥
L∞(Ω̂e)

|β|∏
i=1

∥∥∥D̂γif li

∥∥∥
L∞(Ω̂e)

. (3.25)
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As all the higher-order derivatives of f vanish in (3.24), only the terms with |β| = |α|
remain in (3.25) due to (3.20) and (3.21). Thus the substitution of |α| = k + 1 and
(3.24) for (3.25) yields

∥∥∥D̂αg
∥∥∥
L∞(Ω̂e)

≤
∑

|β|=k+1

Cβ

∥∥∥(D̂βg̃0) ◦ f
∥∥∥
L∞(Ω̂e)

|β|∏
i=1

h ≤ Chk+1 |g̃0|k+1,∞,Ω̂e
, (3.26)

where Cβ and C are constants independent of the geometry. This result can be
applied to estimate the geometry interpolation error of the affinely refined initial
mesh where the geometry mappings g are asymptotically affine. The application of
(3.26) for the error term (3.8) leads to

∥Rk∥L∞(Ω̂e)
≤ Chk+1 |g̃0|k+1,∞,Ω̂e

, (3.27)

where C is a geometry-independent constant. Thus, the geometry error depends
exponentially on the order of interpolation k in the base of mesh parameter h, which
becomes half of its previous size in each refinement step for uniform refinements. The
last factor |g̃0|k+1,∞,Ω̂e

depends on the smoothness of the initial geometry mapping.
Note that if the geometry and the initial mapping are described by polynomials of
order smaller than k+1, the interpolation error becomes zero since |g̃0|k+1,∞,Ω̂e

= 0.

Estimation of the Geometry Mapping Error for Polynomial Refinement

The second type of refinement that we will consider is a higher-order polynomial
refinement with an overall refinement mapping f ∈ (Pr)

3. Applying the definition
of the mesh parameter (3.17), the bound for the derivative of f with a multi-index
γi becomes∥∥∥D̂γif li

∥∥∥
L∞(Ω̂e)

≤

{
h for |γi| ≤ r

0 for |γi| > r
. (3.28)

Hence, the worst-case scenario in the estimation of the multiplicative term of (3.19)
happens when |γi| = r for all indices i. For any higher-order derivative, at least a
single term must become zero, which leads to a zero multiplicative term, i.e.,

|β|∑
i=1

|γi| = |α| = k + 1 > (|β| r) , =⇒

∥∥∥∥∥∥
|β|∏
i=1

D̂γif li

∥∥∥∥∥∥
L∞(Ω̂e)

= 0. (3.29)

Thus, the value of the multi-index β is bounded from below by |β| ≥ ⌈(k + 1)/r⌉,
and the estimation of the multiplicative term becomes∥∥∥∥∥∥

|β|∏
i=1

D̂γif li

∥∥∥∥∥∥
L∞(Ω̂e)

≤ Ch|β| ≤ Ch⌈(k+1)/r⌉, (3.30)
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where C is a geometry-independent constant and ⌈·⌉ denotes the rounding up oper-
ator for the closest integer (ceil function). Hence, estimate can be obtained for the
geometry error (3.8) with the substitution of (3.25) and (3.30) with |α| = k + 1:

∥Rk∥L∞(Ω̂e)
≤

∑
k+1≥|β|≥⌈(k+1)/r⌉

Cβ

∥∥∥(D̂βg̃0) ◦ f
∥∥∥
L∞(Ω̂e)

h⌈(k+1)/r⌉

≤ Ch⌈(k+1)/r⌉ ∥g̃0∥k+1,∞,Ω̂e
. (3.31)

Here, Cβ and C are geometry-independent constants, and the factor of ∥g̃0∥k+1,∞,Ω̂e

is determined by the smoothness of the initial geometry mapping g̃0. It is easy to
conclude that for higher order (r > 1) refinements, the convergence of the interpo-
lation error becomes worse compared to the case of the affine refinement (r = 1).

Estimation of the Geometry Mapping Error for General Refinement

The last considered refinement case is when the overall refinement mapping f is a
general, infinitely differentiable function over Ω̂e. The resulting estimate is equiv-
alent to the previous case of the rth-order polynomial refinements, for the limit of
r → ∞. Therefore, the interpolation error of the geometry only linearly depends on
the mesh parameter:

∥Rk∥L∞(Ω̂e)
≤ Ch ∥g̃0∥k+1,∞,Ω̂e

. (3.32)

Summary of the Geometry Mapping Error Estimates

To summarize the results, the mesh refinement is considered to be a reparametriza-
tion of an initial mesh, one which exactly represents the geometry. The interpolated
geometry mappings are determined by the interpolation locations on these refined
elements. In general, the mesh parameter h is only related to the overall refinement
function (3.17) and not to the actual geometry. However, for affine refinements
(r = 1), the multi-index in the definition of the mesh parameter (3.17) is |α| = 1,
and the geometrical interpretation of h becomes the largest side-length (in the di-
rection of the reference element axis) of the element in the initial normalized domain

Ω̂0. This geometrical interpretation can be lost for non-affine refinements (r > 1)
when the higher-order derivatives (|α| > 1) are also present in the definition (3.17).

The obtained asymptotic convergence rates of the geometry error for interpolated
geometry mappings (assuming smooth initial geometry mappings ∥g̃0∥k+1,∞,Ω̂e

with
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a finite upper bound) are

∥Rk∥L∞(Ω̂e)
, |g|k+1,∞,Ω̂e

≤


Chk+1 for affine refinement,

Ch⌈(k+1)/r⌉ for polynomial refinement of order r,

Ch for general non-affine refinement,

(3.33)

where C is a constant, independent of h. Hence, the affine refinement is the most
advantageous among the investigated methods. Note that the constant C in the
front depends on the smoothness of the initial geometry mapping. Therefore, it
is reasonable to choose or construct this initial mapping as smoothly as possible
to reduce errors. Moreover, the smoothness also influences where the asymptotic
region of convergence begins for the geometry interpolation error.

Error Estimation of the Geometry Mapping Derivatives

Here, an estimate is given for the derivative of the geometry interpolation error,
which is required by the finite element error estimations. As the form of the geometry
error estimate (3.8) is the same as for its derivative (3.9), the same estimation applies
as for (3.33), i.e.,∥∥∥D̂αRk

∥∥∥
L∞(Ω̂e)

≤ Ch⌈(k+1)/r⌉, (3.34)

where C is a constant, independent of h.

Since the determinant of the Jacobian is the sum of triple products of the geometry
mapping derivatives, the piecewise application of

|g|k,∞,Ω̂e
≤ Ch⌈k/r⌉ (3.35)

leads to the estimate

|detJ |k,∞,Ω̂e
≤ Ch3+⌈k/r⌉. (3.36)

Error Estimation of the Inverse Geometry Mapping

The estimates for inverse geometry mappings are less straightforward in the general
case. However, considering only first-order derivatives, the connection between the
derivative geometry mapping and the derivative of the inverse geometry mapping is
given by the invertible Jacobians (inverse function theorem):

∇̂ gT = J = Ĵ
−1

◦ g =
[
∇
(
g−1
)T]−1

◦ g. (3.37)
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Moreover, it can be easily shown for a β derivative of a function v ∈ W |β|,∞(Ωe) that

the infinite-norm is equivalent in any domain because Ωe and Ω̂e are interchangeable
due to the vanishing effect of the volume element:∣∣(Dβv

)
◦ g
∣∣
0,∞,Ω̂e

=
∣∣Dβv

∣∣
0,∞,Ωe

≤ |v||β|,∞,Ωe
. (3.38)

Therefore, an estimate for the derivative of g−1 ∈ W 1,∞(Ωe) can be obtained by
inverting the right-hand side in (3.35), due to (3.37) and (3.38), as∣∣[g−1

]
i

∣∣
1,∞,Ωe

≤ Ch−1, (3.39)

where C is another bounded positive constant, independent of h. For the same
reason, the estimate for the inverse Jacobian determinant becomes∣∣∣det Ĵ ∣∣∣

0,∞,Ωe

=
∣∣det(J−1)

∣∣
0,∞,Ω̂e

≤ Ch−3. (3.40)

The next step of this investigation shows that the higher-order derivatives of the
inverse geometry mapping converge at the same rate as for the first derivative (3.39),
assuming affine refinements only (r = 1). First, the derivative rule of function
compositions (3.19) is applied for the derivative of the identity mapping

0 = D̂αr̂ = D̂α
(
g−1 ◦ g

)
, for |α| > 1,

0
(3.19)
=
∑
β,γ,l

Cα,β,γ,l

((
Dβg−1

)
◦ g
) |β|∏

i=1

D̂γi [g]li . (3.41)

Then, it is always possible to take such a linear combination of (3.41) with constant

coefficients C̃αn for the different multi-indices |αn| = |α|, which satisfies

0 =

|αn|=|α|∑
n

C̃αnD̂
αn
(
g−1 ◦ g

)
=
(
Dαg−1

)
◦ g
∑
γ,l

C̃α,γ,l

|α|∏
i=1

D̂γi [g]li

+

|β|≤|α|−1∑
β,γ,l

C̃α,β,γ,l

(
Dβg−1

)
◦ g

|β|∏
i=1

D̂γi [g]li , for |α| > 1, (3.42)

where C̃α,γ,l and C̃α,β,γ,l are some constant coefficients. Thus, an α-derivative of the
inverse geometry mapping can be expressed by rearranging (3.42):

(
Dαg−1

)
◦ g =

|β|≤|α|−1∑
β,γ,l

C̃α,β,γ,l

(
Dβg−1

)
◦ g

|β|∏
i=1

D̂γi [g]li

−
∑
γ,l

C̃α,γ,l

|α|∏
i=1

D̂γi [g]li

. (3.43)



48 Requirements for Algebraic Asymptotic Convergence Rates

At this point, an estimate can be obtained for the norm of each term in (3.43) using
(3.33) and (3.38):

∣∣(Dβg−1
)
◦ g
∣∣
0,∞,Ω̂e

(3.38)

≤
∣∣Dβg−1

∣∣
0,∞,Ωe

, (3.44)∣∣∣∣∣∣
 |α|∏

i=1

D̂γi [g]li

−1∣∣∣∣∣∣
0,∞,Ω̂e

≤
|α|∏
i=1

∣∣∣∣(D̂γi [g]li

)−1
∣∣∣∣
0,∞,Ω̂e

, for |γi| = 1,

(3.33)

≤ C

|α|∏
i=1

h−1≤Ch−|α|. (3.45)

Moreover,∣∣∣∣∣∣
|β|∏
i=1

D̂γi [g]li

∣∣∣∣∣∣
0,∞,Ω̂e

≤
|β|∏
i=1

∣∣∣D̂γi [g]li

∣∣∣
0,∞,Ω̂e

, for

|β|∑
i=1

|γi| = |α| ,

(3.33)

≤ C

|β|∏
i=1

h⌈|γi|/r⌉≤Ch⌈|α|/r⌉. (3.46)

Thus, using the separate estimates of each term (3.44), (3.45), and (3.46), the es-
timate of the derivative inverse geometry mapping for affine refinements (r = 1)
becomes

∣∣Dαg−1
∣∣
0,∞,Ωe

≤ C

|β|≤|α|−1∑
β

∣∣Dβg−1
∣∣
0,∞,Ωe

h|α|h−|α| = C

|β|≤|α|−1∑
β

∣∣Dβg−1
∣∣
0,∞,Ωe

. (3.47)

Using mathematical induction form the order |α| = 2, increasing |α| one-by-one, the
general estimate of the inverse geometry mapping remains the same as for first-order
derivatives (3.39):∣∣g−1

∣∣
k,∞,Ωe

≤ Ch−1, for k ≥ 1. (3.48)

For the same reason, the estimate for the inverse Jacobian determinant is∣∣∣det Ĵ ∣∣∣
k,∞,Ωe

=
∣∣det(J−1)

∣∣
k,∞,Ω̂e

≤ Ch−3. (3.49)
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3.1.3 Function Mappings of Interpolated Geometries

This section shows how the interpolated geometry mappings affect the mapping of
functions in different function spaces. According to diagram (2.83), the finite ele-
ment interpolation is always applied on the reference element introducing the local
field error. Then, these local fields are mapped to the global element where the
geometry error is introduced when using interpolated geometry mappings. There-
fore, the starting point should always be the reference element where the fields are
assumed to be free of geometry errors.

Let the domain of the interpolated element be denoted by Ωk
e that is described by the

interpolated geometry mapping gk of order k. Thus, the exact geometry mapping

g and its interpolant gk are mappings from Ω̂e to Ωe and Ωk
e , respectively:

g : Ω̂e → Ωe, (3.50a)

gk : Ω̂e → Ωk
e . (3.50b)

Note that if g ̸= gk, then Ωe ̸= Ωk
e but Ωe ∩ Ωk

e is sufficiently large. The largest
extent of the deviation of Ωk

e from Ωe is given by (3.33), i.e.,

∥g − gk∥L∞(Ω̂e)
≤ Ch⌈(k+1)/r⌉, (3.51)

for polynomial refinements of order r. Therefore, the volume of the difference do-
mains Ωe \ Ωk

e and Ωk
e \ Ωe must converge with at least the same rate as (3.51):

vol.(Ωk
e \ Ωe) ≤ Ch⌈(k+1)/r⌉, (3.52a)

vol.(Ωe \ Ωk
e) ≤ Ch⌈(k+1)/r⌉. (3.52b)

Hence, in the context of asymptotic convergence rates in a given norm over an ele-
ment, the contribution of any sufficiently smooth field with a finite norm is negligible
in the difference regions Ωe \Ωk

e and Ωk
e \Ωe since they show at least the same con-

vergence rates as the geometry interpolation error. As an outcome, it is sufficient
to investigate the effects of the functions mappings in the intersection region

Ω̃k
e = Ωe ∩ Ωk

e . (3.53)

Let us denote the functions of the reference element by v̂ ∈ H1(Ω̂e), ŵ ∈ H(curl, Ω̂e),

d̂ ∈ H(div, Ω̂e), and q̂ ∈ L2(Ω̂e), that are assumed to be free of geometry errors.
Moreover, let us denote the corresponding functions of the interpolated global ele-
ment by v ∈ H1(Ω

k
e), w ∈ H(curl,Ωk

e), d ∈ H(div,Ωk
e), and q ∈ L2(Ωk

e), that are
determined by Piola transformations of the local functions. For interpolated geom-
etry mappings, the exact transformations (2.61) need to be replaced by kth-order
Piola transformations, which utilize the interpolated geometry mapping gk of order
k and its Jacobian Jk =

[
∇gT

k

]
:
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v = P0,k {v̂} = v̂ ◦ g−1
k , (3.54a)

w = P1,k {ŵ} =
(
J−1

k ŵ
)
◦ g−1

k , (3.54b)

d = P2,k

{
d̂
}
=
(
det(Jk)

−1JT
k d̂
)
◦ g−1

k , (3.54c)

q = P3,k {q̂} =
(
det(Jk)

−1q̂
)
◦ g−1

k . (3.54d)

Assuming that the interpolated geometry mappings are bijective over the elements,
the inverse Piola transformations of order k are obtained as:

v̂ = P−1
0,k {v} = v ◦ gk, (3.55a)

ŵ = P−1
1,k {w} = Jk(w ◦ gk), (3.55b)

d̂ = P−1
2,k {d} = det(Jk)J

−T
k (d ◦ gk), (3.55c)

q̂ = P−1
3,k {q} = det(Jk)(q ◦ gk). (3.55d)

Therefore, the finite element approximation of the solution may be exact on the
reference element, but the transformed fields on the global element are affected by
the geometry interpolation error. The main issue with this error is the possibility of
dominating the finite element approximation error or even degrading the convergence
rate. In the following sections, the sufficient order of geometry interpolation is
investigated that leaves the finite element convergence unaffected.
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3.1.4 Effect of the Interpolated Geometry on the
H1 Interpolation Operator

In order to show the effect of the interpolated geometry mapping, we introduce the
geometric distortion operator Πv

k of order k, which acts on an arbitrary function
v ∈ H1(Ωe) as

Πv
kv = P0,k {v̂} = P0,k

{
P−1
0 {v}

}
= v ◦ g ◦ g−1

k . (3.56)

This geometric distortion is equivalent to the map of the corresponding exact local
function v̂ from the reference element to the global element by the interpolation
based mapping P0,k. Hence, this geometric distortion operator fits into the presented
finite element process, where the approximated fields of the reference element are
mapped to the real element via an interpolated geometry mapping

Πv
kπ

v
pv = Πv

kvp = P0,k

{
π̂v
p v̂
}
. (3.57)

In practice, Πv
kπ

v
p is the only available interpolation operator because the exact

geometry mapping is usually not available, and thus πv
p is unknown.

Next, an estimate for the geometric distortion error in L2(Ω̃k
e)-norm is derived for

functions vp = πv
pv over the intersection (3.53) of domains Ωe and Ωk

e . First, the
geometry mapping is separated into the sum of the interpolated mapping and the
error term as g = gk+Rk. Second, vp is assumed to be max{p, k} times differentiable
over the element, which allows the representation

vp(r) = a+ b · r + ṽ2p(r), for r ∈ Ω̃k
e , (3.58)

with a constant scalar a, constant vector b, and a second order remainder term ṽ2p.
Then, the geometric distortion of vp can be written as

Πv
kvp = vp ◦ (gk +Rk) ◦ g−1

k = vp ◦ (r +Rk ◦ g−1
k ),

= (a+ b · r + ṽ2p) ◦ (r +Rk ◦ g−1
k ),

= a+ b · r + b ·Rk ◦ g−1
k + ṽ2p ◦ (r +Rk ◦ g−1

k ). (3.59)

Thus, using (3.59), the initial estimation of the distortion error reads

∥vp − Πv
kvp∥L2(Ω̃k

e )
=
∥∥b ·Rk ◦ g−1

k + ṽ2p − ṽ2p ◦ (r +Rk ◦ g−1
k )
∥∥
L2(Ω̃k

e )
,

∥vp − Πv
kvp∥L2(Ω̃k

e )
≤
∥∥b ·Rk ◦ g−1

k

∥∥
L2(Ω̃k

e )
+
∥∥ṽ2p − ṽ2p ◦ (r +Rk ◦ g−1

k )
∥∥
L2(Ω̃k

e )
,

∥vp − Πv
kvp∥L2(Ω̃k

e )
≤ C ∥vp∥Hp(Ω̃k

e )

∥∥Rk ◦ g−1
k

∥∥
L∞(Ω̃k

e )

+
∥∥ṽ2p − ṽ2p ◦ (r +Rk ◦ g−1

k )
∥∥
L2(Ω̃k

e )
, (3.60)

where C is a positive constant independent of k. Here, it can be shown that the
remainder term converges exponentially to zero:∥∥Rk ◦ g−1

k

∥∥
L∞(Ω̃k

e )
≤
∥∥Rk ◦ g−1

k

∥∥
L∞(Ωk

e )

(3.38)
= ∥Rk∥L∞(Ω̂e)

(3.33)

≤ Ch⌈(k+1)/r⌉. (3.61)
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Moreover, the higher-order term with ṽ2p in (3.60) should converge with at least the
same rate as the first-order term∥∥ṽ2p − ṽ2p ◦ (r +Rk ◦ g−1

k )
∥∥
L2(Ω̃k

e )
≤ C ∥vp∥Hp(Ω̃k

e )

∥∥Rk ◦ g−1
k

∥∥
L∞(Ω̃k

e )
, (3.62)

due to the higher or equal order power of the error term (3.61). Thus, the geometric
distortion error of an H1-conforming function is

∥vp − Πv
kvp∥L2(Ω̃k

e )
≤ Ch⌈(k+1)/r⌉ ∥vp∥Hp(Ω̃k

e )
, (3.63)

where C is some constant, independent of h. Hence, if the interpolation order of the
geometry is determined as k = r(p− 1), (3.63) leads to an O(hp) rate of asymptotic
convergence, i.e.,

∥vp − Πv
kvp∥L2(Ω̃k

e )
≤ Chp ∥vp∥Hp(Ω̃k

e )
. (3.64)

For the case of affine refinements (r = 1), the required interpolation order k = p−1 is
minimal. However, for non-affine refinements, a higher interpolation order is needed
to achieve the same algebraic rate of convergence. In conclusion, for k = r(p − 1)
order of geometry interpolations, it is permissible to replace the ideal finite element
interpolation operator πv

p by the practically available interpolation operator Πv
kπ

v
p

because the rate of convergence,∥∥πv
pv − Πv

kπ
v
pv
∥∥
L2(Ω̃k

e )
≤ Chp

∥∥πv
pv
∥∥
Hp(Ω̃k

e )
≤ Chp ∥v∥Hp(Ω̃k

e )
, (3.65)

is identical to the expected finite element convergence.
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3.1.5 Effect of the Interpolated Geometry on the
H(curl) Interpolation Operator

This section proceeds by considering a geometric distortion operator Πw
k for w ∈

H(curl,Ωe) functions, similarly to the previous case. The geometrical distortion of
a function w is required to be equivalent to the corresponding function ŵ on the
reference element, which is mapped to the real element via the Piola transformation
of order k:

Πw
kw = P1,k {ŵ} = P1,k

{
P−1
1 {w}

}
,

=
(
J−1

k J
)
◦ g−1

k

(
w ◦ g ◦ g−1

k

)
,

=

([
∇̂gT

k

]−1 [
∇̂gT

])
◦ g−1

k

(
w ◦ g ◦ g−1

k

)
. (3.66)

Therefore, this operator is suitable to express the practically available interpolation
operator Πw

k π
w
p , which is an interpolation over the reference element and a mapping

to the real element via an interpolation-based function mapping:

Πw
k π

w
p w = Πw

kwp = P1,k

{
π̂w
p ŵ
}
. (3.67)

The first step of the distortion error estimation for functions wp = πw
p w is to rewrite

the geometry mapping as the sum of the interpolated geometry and an error term,

which results in a separable Jacobian J =
[
∇̂gT

]
=
[
∇̂gT

k

]
+
[
∇̂RT

k

]
. Hence, the

geometric distortion (3.66) can be rewritten as

Πw
kwp =

(
I +

([
∇̂gT

k

]−1

◦ g−1
k

)([
∇̂RT

k

]
◦ g−1

k

))(
wp ◦ g ◦ g−1

k

)
, (3.68)

where I is the identity matrix. The initial L2(Ω̃k
e)-norm error estimation can be

obtained by utilizing the triangle inequality, as

∥wp − Πw
kwp∥L2(Ω̃k

e )
≤
∥∥wp −wp ◦ g ◦ g−1

k

∥∥
L2(Ω̃k

e )
+∥∥∥∥([∇̂gT

k

]−1

◦ g−1
k

)([
∇̂RT

k

]
◦ g−1

k

) (
wp ◦ g ◦ g−1

k

)∥∥∥∥
L2(Ω̃k

e )

.

(3.69)

The first term of (3.69) can be further simplified using the estimate∥∥wp −wp ◦ g ◦ g−1
k

∥∥
L2(Ω̃k

e )
≤ Ch⌈(k+1)/r⌉ ∥wp∥Hp(Ω̃k

e )
, (3.70)

which is obtained the same way as (3.63) for (3.60).

The simplification of the second term in (3.69) requires further attention since it
consists of three multiplicative factors.
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Using the generalized Hölder’s inequality, it is possible to obtain an estimate with
the multiplicative factor of estimates for each term:∥∥wp ◦ g ◦ g−1

k

∥∥
L2(Ω̃k

e )
≤ C ∥wp∥L2(Ω̃k

e )
, (3.71a)∥∥∥∥[∇̂gT

k

]−1

◦ g−1
k

∥∥∥∥
L∞(Ω̃k

e )

(3.37)
=
∥∥∇(g−1

k )T
∥∥
L∞(Ω̃k

e )

(3.48)

≤ Ch−1, (3.71b)∥∥∥[∇̂RT
k

]
◦ g−1

k

∥∥∥
L∞(Ω̃k

e )

(3.38)

≤
∥∥∥∇̂RT

k

∥∥∥
L∞(Ω̂e)

(3.34)

≤ Ch⌈(k+1)/r⌉. (3.71c)

Hence, the estimate of the second term in (3.69) becomes∥∥∥∥[∇̂gT
k

]−1

◦ g−1
k

[
∇̂RT

k

]
◦ g−1

k wp ◦ g ◦ g−1
k

∥∥∥∥
L2(Ω̃k

e )

≤ Ch⌈(k+1)/r⌉−1 ∥wp∥L2(Ω̃k
e )
.

(3.72)

The final error estimate of the geometric distortion error is obtained by the substi-
tution of (3.70) and (3.72) into (3.69),

∥wp − Πw
kwp∥L2(Ω̃k

e )
≤ Ch⌈(k+1)/r⌉−1 ∥wp∥Hp(Ω̃k

e )
, (3.73)

where C is some constant, independent of h. Choosing the order of geometry in-
terpolation k = rp, the asymptotic convergence rate of the distortion error is O(hp)
due to the estimate of

∥wp − Πw
kwp∥L2(Ω̃k

e )
≤ Chp ∥wp∥Hp(Ω̃k

e )
. (3.74)

For affine refinements (r = 1), the classical isoparametric result is achieved, which
requires the same order of geometry and field representation k = p. The conse-
quence is the permissible replacement of the ideal interpolation operator πw

p by the
practically available interpolation operator Πw

k π
w
p without affecting the expected

convergence rate:∥∥πw
p w − Πw

k π
w
p w
∥∥
L2(Ω̃k

e )
≤ Chp

∥∥πw
p w
∥∥
Hp(Ω̃k

e )
≤ Chp ∥w∥Hp(Ω̃k

e )
. (3.75)
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3.1.6 Effect of the Interpolated Geometry on the
H(div) Interpolation Operator

The definition of the geometric distortion operator Πd
k for functions d ∈ H(div,Ωe)

is analogous to that of previous cases. The distortion of a function is required to be
the same as the corresponding exact local function d̂, which is mapped to the global
element by a Piola transformation of order k, as

Πd
kd = P2,k

{
d̂
}
= P2,k

{
P−1
2 {d}

}
,

=
([
det (Jk)

−1 JT
k det (J)J−T

]
d ◦ g

)
◦ g−1

k ,

=
[
adj
(
J−1

k J
)T ◦ g−1

k

]
d ◦ g ◦ g−1

k ,

=

[
adj

(
I +

[
∇̂gT

k

]−1 [
∇̂RT

k

])T

◦ g−1
k

]
d ◦ g ◦ g−1

k ,

= d ◦ g ◦ g−1
k −

[
I − adj

(
I +

[
∇̂gT

k

]−1

◦ g−1
k

[
∇̂RT

k

]
◦ g−1

k

)T
]
d ◦ g ◦ g−1

k .

(3.76)

Therefore, it is suitable to express the practically available interpolation operator
Πd

kπ
d
p , which is an interpolation operator over the reference domain and a corre-

sponding interpolation-based Piola transformation:

Πd
kπ

d
pd = Πd

kdp = P2,k

{
π̂d
pd̂
}
. (3.77)

Further simplification of (3.76) is not possible in a closed form. The initial estimate
for the geometric distortion error for functions dp = πd

pd is obtained by the applica-
tion of the triangle and the generalized Hölder’s inequality, by taking the norm of
each term:∥∥dp − Πd

kdp

∥∥
L2(Ω̃k

e )
≤
∥∥dp − dp ◦ g ◦ g−1

k

∥∥
L2(Ω̃k

e )
+∥∥∥∥∥I − adj

(
I +

[
∇̂gT

k

]−1

◦ g−1
k

[
∇̂RT

k

]
◦ g−1

k

)T
∥∥∥∥∥
L∞(Ω̃k

e )

∥∥dp ◦ g ◦ g−1
k

∥∥
L2(Ω̃k

e )
.

(3.78)

Next, it is possible to use that the term
[
∇̂gT

k

]−1

◦ g−1
k

[
∇̂RT

k

]
◦ g−1

k is a matrix

function over R3 ⊕ R3 and all components are expected to converge to zero, at
least, with the order of O(h); see (3.71). Otherwise, there is no convergence for
k + 1 ≤ r due to the estimate (3.72) with wp = dp. For such a matrix, with
arbitrary coefficients of a, b, c, d, e, f, g, h, and i, the following identity applies:

I − adj
(
I +

[
a b c
d e f
g h i

])
=
[ −e−i b c

d −a−i f
g h −a−e

]
+

[
fh−ei bi−ch ce−bf
di−fg cg−ai af−cd
eg−dh ah−bg bd−ae

]
, (3.79)
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where the convergence rate of the second term is always higher than or equal to
the first term. Thus, the second term can be neglected in the following estimations.
Moreover, using the fact that∥∥∥[ −e−i b c

d −a−i f
g h −a−e

]∥∥∥
L∞

< C
∥∥∥[ a b c

d e f
g h i

]∥∥∥
L∞

, (3.80)

for a positive constant C, it is permissible to get an estimate in the form of∥∥∥I − adj
(
I +

[
a b c
d e f
g h i

])∥∥∥
L∞

≤ C

∥∥∥∥[ a b c
d e f
g h i

]T∥∥∥∥
L∞

. (3.81)

Therefore, the equivalent estimation for the second term of (3.78) reads

∥∥∥∥∥I − adj

(
I +

[
∇̂gT

k

]−1

◦ g−1
k

[
∇̂RT

k

]
◦ g−1

k

)T
∥∥∥∥∥
L∞(Ω̃k

e )

≤ C

∥∥∥∥[∇̂gT
k

]−1

◦ g−1
k

[
∇̂RT

k

]
◦ g−1

k

∥∥∥∥
L∞(Ω̃k

e )

.

(3.82)

The application of (3.82) for (3.78) results in∥∥dp − Πd
kdp

∥∥
L2(Ω̃k

e )
≤
∥∥dp − dp ◦ g ◦ g−1

k

∥∥
L2(Ω̃k

e )
+

C

∥∥∥∥[∇̂gT
k

]−1

◦ g−1
k

[
∇̂RT

k

]
◦ g−1

k

∥∥∥∥
L∞(Ω̃k

e )

∥∥dp ◦ g ◦ g−1
k

∥∥
L2(Ω̃k

e )
.

(3.83)

Notice that this form is equivalent to that of (3.69), with the replacement of wp by
dp. Thus, the same estimate applies as (3.73),∥∥dp − Πd

kdp

∥∥
L2(Ω̃k

e )
≤ Ch⌈(k+1)/r⌉−1 ∥dp∥Hp(Ω̃k

e )
, (3.84)

where C is some constant, independent of h. Choosing the interpolation order of the
geometry k = pr, the asymptotic convergence rate of the distortion error becomes
O(hp) due to the estimate∥∥dp − Πd

kdp

∥∥
L2(Ω̃k

e )
≤ Chp ∥dp∥Hp(Ω̃k

e )
. (3.85)

Similar to the previous cases, by setting r = 1, the theoretical result of the isopara-
metric elements is obtained. If the convergence rate of the distortion error is O(hp),
it is permissible to replace the ideal interpolation operator by the practically avail-
able interpolation operator as it does not affect the expected convergence rate:∥∥πd

pd− Πd
kπ

d
pd
∥∥
L2(Ω̃k

e )
≤ Chp

∥∥πd
pd
∥∥
Hp(Ω̃k

e )
≤ Chp ∥d∥Hp(Ω̃k

e )
. (3.86)
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3.1.7 Asymptotic Limit of the Finite Element Metrics

The effects of the function mappings on the interpolation operators have been ana-
lyzed in the previous sections. However, their effect on finite element formulations
is also an important issue. These formulations are typically based on matrices
and vectors, which are obtained via some inner product integrals. These integrals
are evaluated over the reference element, where the effect of the geometry map-
ping and the material properties, or generally speaking some metric tensors of the
global element, are contained by a single metric tensor. As the geometry mappings
of the curvilinear elements are not affine transformations, whether they are exact
or interpolated mappings, the corresponding function mappings result in position-
dependent metrics whose components are typically rational functions. Therefore,
exact integration is not possible in general, and some numerical integration schemes
are necessary. Most of these methods are based on the interpolation or approxima-
tion of the integrand via some known functions, commonly polynomials, that have
a known exact integral. Therefore, it is crucial to know the required order of poly-
nomials or the required number of sampling points. In the following, the necessary
representation of the local metric terms is investigated which leaves the expected
asymptotic rate of convergence unaffected.

Let us consider the first Strang lemma [Cia02], which states that the finite element
error is bounded, up to a constant factor, by the sum of the approximation error
and the consistency errors. Let I(a, b) denote an elliptic bilinear form with a metric
tensor χ for functions a, b ∈ Ip ∈ {Vp,Wp,Dp,Pp}. Furthermore, let IK(a, b)
denote the corresponding approximated bilinear form, which is obtained element by
element via the approximation of the metric tensor over the reference element by
polynomials of order K. Then, the consistency error of the bilinear form over a
single element is defined [Cia02] as

sup
a∈Ip

|I(a, b)− IK(a, b)|
∥a∥0,1,Ω

. (3.87)

Since the initial bilinear form is defined over the global domain and the considered
metric approximation is performed element by element over the reference element,
the functions and the integration domain need to be mapped to the reference ele-
ment. The mapping of a and b between the reference and the real element is given
as

a = (M â) ◦ g−1, and b = (M b̂) ◦ g−1, (3.88)

where

M ∈
{
1,J−1, (detJ)−1JT , (detJ)−1

}
(3.89)

is an invertible matrix over Ω̂e, whose components [M ]ij ∈ WK+1,∞(Ω̂e) are only
dependent of the Jacobian. Thus, the corresponding inverse transformations are

â = M−1 a ◦ g, and b̂ = M−1 b ◦ g. (3.90)
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Using the previously introduced notations, the change of the integration domain
reads∫

Ωe

a · χb dr =

∫
Ω̂e

(Mâ) · χ ◦ g(Mb̂) det(J) dr̂ =

∫
Ω̂e

â ·Λb̂ dr̂, (3.91)

where the local metric tensor is expressed as

Λ = MT (χ ◦ g)M det(J). (3.92)

For the simplification of the notations, only a single, arbitrary component of the
metric Λ = [Λ]ij and the corresponding field components â(r̂) = [â]i and b̂(r̂) = [b̂]j
are considered because the derivation is independent of i and j. Therefore, the
general integral over the reference element yields

I =

∫
Ω̂e

â(r̂)Λ(r̂)̂b(r̂) dr̂. (3.93)

Next, an approximated metric term ΛK(r̂) of order K is considered, as well as the
corresponding integral scheme

IK =

∫
Ω̂e

â(r̂)ΛK(r̂)̂b(r̂) dr̂, with ΛK ∈ PK . (3.94)

The induced truncation error ϵK of the approximated metric can be written as

ϵK = |I − IK | =

∣∣∣∣∣∣∣
∫
Ω̂e

â b̂ (Λ− ΛK) dr̂

∣∣∣∣∣∣∣ . (3.95)

The first estimate is obtained by interchanging the integral and the absolute value
operator and then applying the Cauchy-Schwarz inequality:

ϵK ≤
∣∣∣(â b̂) (Λ− ΛK)

∣∣∣
0,1,Ω̂e

, (3.96a)

ϵK ≤
∣∣∣â b̂∣∣∣

0,2,Ω̂e

|Λ− ΛK |0,2,Ω̂e
. (3.96b)

Notice that the first term depends only on the local fields, whereas the second term
is the metric error in L2(Ω̂e)-norm. In the following, the result of (3.96b) is not used
and an alternative estimate is obtained from (3.96a) via Hölder’s inequality,

ϵK ≤
∣∣∣â b̂∣∣∣

0,1,Ω̂e

|Λ− ΛK |0,∞,Ω̂e
, (3.97)

which eases the derivations and helps to obtain the final result in a simpler form
while providing the same theoretical conclusion.
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The General Metric Truncation Error

The next step of the derivation is the application of the Bramble-Hilbert lemma
[BS07, Section 4.3] to the metric truncation error, and applying a function compo-
sition with the identity mapping r̂ = g−1 ◦ g:

|Λ− ΛK |0,∞,Ω̂e
≤ C

∑
|α|=K+1

∣∣∣D̂αΛ
∣∣∣
0,∞,Ω̂e

, (3.98)

≤ C
∑

|α|=K+1

∣∣∣D̂α
[
(Λ ◦ g−1) ◦ g

]∣∣∣
0,∞,Ω̂e

.

Then, the general formula [Leo17, Theorem 11.54] is considered for the derivative
function compositions of Λ ◦ g−1 with g, |α| = K + 1 times differentiable functions:

D̂α
(
(Λ ◦ g−1) ◦ g

)
=
∑
β,γ,l

Cα,β,γ,l

(
Dβ(Λ ◦ g−1)

)
◦ g

|β|∏
i=1

D̂γi [g]li . (3.99)

Here, the multi-index β and γi are required to be 1 ≤ |β| ≤ |α|, |γi| > 0, and∑|β|
i=1 γi = α. Moreover, l is a set of indices l = (l1, · · · , l|β|) for the vector compo-

nents of g with the values of li ∈ {1, 2, 3}. The constants Cα,β,γ,l correspond to each
multi-index and are independent of (Λ ◦ g−1) and g.

Estimates for the norm of each multiplicative term are developed separately because
this process is equivalent to the application of Hölder’s inequality for infinity norms.
Considering that

∑|β|
i=1 |γi| = |α|, the multiplicative term can be bounded by

|β|∏
i=1

∣∣∣D̂γi [g]li

∣∣∣
0,∞,Ω̂e

(3.35)

≤ C

|β|∏
i=1

h⌈|γi|/r⌉ ≤ Ch⌈|α|/r⌉. (3.100)

Applying the domain independence of the infinite norm (3.38) and (3.100) to the
piecewise norm of each term in (3.99), the estimate of a derivative function compo-
sition becomes∣∣∣D̂α

(
(Λ ◦ g−1) ◦ g

)∣∣∣
0,∞,Ω̂e

≤ C
∑
β

∣∣(Λ ◦ g−1)
∣∣
|β|,∞,Ωe

h⌈|α|/r⌉, (3.101a)

≤ Ch⌈|α|/r⌉ ∥∥(Λ ◦ g−1)
∥∥
|α|,∞,Ωe

. (3.101b)

Then, the general metric-independent result is obtained via the substitution of
(3.101b) into (3.98) and then into (3.97):

ϵK ≤ Ch⌈(K+1)/r⌉
∣∣∣â b̂∣∣∣

0,1,Ω̂e

∥∥Λ ◦ g−1
∥∥
K+1,∞,Ωe

. (3.102)
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This estimation can be further detailed by considering the underlying structure of
the metric and the function mappings. One can obtain an estimation for the first
term of (3.102) by using Hölder’s inequality and (3.90) as∣∣∣â b̂∣∣∣

0,1,Ω̂e

≤ C |â|0,2,Ω̂e

∣∣∣̂b∣∣∣
0,2,Ω̂e

,

≤ C |â|0,2,Ω̂e

∣∣∣b̂∣∣∣
0,2,Ω̂e

,

≤ C
∣∣M−1a ◦ g

∣∣
0,2,Ω̂e

∣∣M−1b ◦ g
∣∣
0,2,Ω̂e

,

≤ C
∣∣M−1

∣∣2
0,∞,Ω̂e

|a ◦ g|0,2,Ω̂e
|b ◦ g|0,2,Ω̂e

,

≤ C
∣∣M−1

∣∣2
0,∞,Ω̂e

∣∣(detJ)−1
∣∣1/2
0,∞,Ω̂e

|a|0,2,Ωe

∣∣(detJ)−1
∣∣1/2
0,∞,Ω̂e

|b|0,2,Ωe
.

(3.103)

Similarly, an estimate can be obtained for the second term of (3.102) using Hölder’s
inequality and (3.92) as∥∥Λ ◦ g−1

∥∥
K+1,∞,Ωe

≤ C
∥∥Λ ◦ g−1

∥∥
K+1,∞,Ωe

,

≤ C ∥M∥2K+1,∞,Ω̂e
∥detJ∥K+1,∞,Ω̂e

∥χ∥K+1,∞,Ωe
. (3.104)

At this point, it is known that the norm of M and detJ is dependent on the first
derivative of only g and g−1. Moreover, the norm of any higher-order derivative of
g converges with a higher rate (3.35), whereas the norm of g−1 remains unchanged
(3.48) for any higher-order derivative when affine refinement is used. Therefore,

∥M∥K+1,∞,Ω̂e
≤ C |M |0,∞,Ω̂e

, (3.105a)

∥detJ∥K+1,∞,Ω̂e
≤ C |detJ |0,∞,Ω̂e

, (3.105b)

and (3.104) yields∥∥Λ ◦ g−1
∥∥
K+1,∞,Ωe

≤ C |M |20,∞,Ω̂e
|detJ |0,∞,Ω̂e

∥χ∥K+1,∞,Ωe
. (3.106)

The general result can be assembled by substituting in the estimates (3.103) and
(3.106) into (3.102) with r = 1, yielding

ϵK ≤ ChK+1 ∥χ∥K+1,∞,Ωe
|a|0,2,Ωe

|b|0,2,Ωe
. (3.107)
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The General Asymptotic Limit

The main result is that algebraic convergence can be achieved independently of the
actual choice of the function mapping M (3.89) for affinely refined meshes. Using a
testing function a that is independent of K and h, with a finite norm |a|0,2,Ωe

≤ C,
the general result (3.107) simplifies to

ϵK ≤ ChK+1 ∥χ∥K+1,∞,Ωe
|b|0,2,Ωe

. (3.108)

It can be seen that the error depends on the smoothness of the global metric tensor
with ∥χ∥K+1,∞,Ωe

and also on the L2-norm of the unknown field with |b|0,2,Ωe
. Note

that the geometry mapping dependent terms in (3.103) and (3.106) cancel out in
an asymptotic sense but contribute to the constant factor C in (3.107) and (3.108).
Therefore, the smoothness of the geometry mappings contributes to the metric error
and affects the region where the asymptotic rate of convergence starts.

Consequently, if the asymptotic convergence rate of the finite element is O(hp)
and the mesh is affinely refined, then the sufficient asymptotic limit for the metric
expansion order is

K = p− 1 (3.109)

since the convergence rate of the metric truncation error is the same:

ϵK ≤ Ch(p−1)+1 ∥χ∥K+1,∞,Ωe
|b|0,2,Ωe

= Chp ∥χ∥K+1,∞,Ωe
|b|0,2,Ωe

. (3.110)
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3.2 Errors Related to the Field Representation

In this section, general error estimates are provided for finite elements. The main
focus is on the determination of appropriate requirements, that result in the conver-
gence rate of O(hp) for the fields v ∈ H1(Ωe), w ∈ H(curl,Ωe), and d ∈ H(div,Ωe)
in L2-norm. Therefore, the finite element order and mesh parameter independent
quantities, such as the quality of the initial mesh or the optimization of the inter-
polation locations, are not considered for minimizing the error.

3.2.1 H1 Approximation Estimates

This section deals with the error estimation for a scalar function v ∈ H1(Ωe). In the
proposed interpretation, the approximation is performed over the reference element
and then mapped to the global element; see (2.83). Thus, the resulting local error
can be mapped to the global domain by the appropriate Piola transformation∥∥v − πv

pv
∥∥
L2(Ωe)

=
∥∥P0

{
v̂ − π̂v

p v̂
}∥∥

L2(Ωe)
. (3.111)

The first estimate is obtained by changing the global L2-norm error to an error over
the reference element∥∥v − πv

pv
∥∥
L2(Ωe)

≤ C h3/2
∥∥v̂ − π̂v

p v̂
∥∥
L2(Ω̂e)

, (3.112)

where C is a positive constant and h3/2 arises from the effect of the L2-norm (square
root) on the volume element√√√√∫

Ω̂e

det (J) dr̂ ≤ C
√
h3. (3.113)

The Bramble-Hilbert lemma can be applied to the local error if the approximation
space contains a polynomial space

Pp−1 ⊆ V̂p. (3.114)

Then, the obtained local function is transformed to the global element via the inverse
Piola transformation∥∥v − πv

pv
∥∥
L2(Ωe)

≤ C h3/2
∥∥∥D̂αv̂

∥∥∥
L2(Ω̂e)

,

≤ C h3/2
∥∥∥D̂α

[
P−1
0 {v}

]∥∥∥
L2(Ω̂e)

, with |α| = p. (3.115)
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Next, the general formula for the derivative function compositions (3.19) is applied
to calculate the pth order derivative

D̂α[P−1
0 {v}] = D̂α(v ◦ g) =

∑
β,γ,l

Cβ,γ,l

(
(Dβv) ◦ g

) |β|∏
i=1

D̂γigli
. (3.116)

Here, the multi-indices β and γi are required to be 1 ≤ |β| ≤ p, |γi| > 0 and∑|β|
i=1 γi = α. Moreover, l is a set of indices l = (l1, · · · , l|β|) for the vector compo-

nents of g with the values of li ∈ {1, 2, 3}. The constants Cβ,γ,l correspond to each
multi-index and are independent of the field and the mesh parameter. Thus, using
the triangle and generalized Hölder inequalities, the upper bound of the function
composition reads

∥∥∥D̂α(v ◦ g)
∥∥∥
L2(Ω̂e)

≤
∑
β,γ,l

Cβ,γ,l

∥∥(Dβv) ◦ g
∥∥
L2(Ω̂e)

|β|∏
i=1

∥∥∥D̂γigli

∥∥∥
L∞(Ω̂e)

,

(3.113)

≤ h−3/2
∑
β,γ,l

Cβ,γ,l

∥∥Dβv
∥∥
L2(Ωe)

|β|∏
i=1

∥∥∥D̂γigli

∥∥∥
L∞(Ω̂e)

. (3.117)

Next, the estimate of (3.33) is applied to the derivative of the geometry mapping∥∥∥D̂γigli

∥∥∥
L∞(Ω̂e)

≤ |g||γi|,∞,Ω̂e
≤ Ch⌈|γi|/r⌉. (3.118)

Considering that
∑|β|

i=1 |γi| = |α| = p, the multiplicative term can be bounded by

|β|∏
i=1

∥∥∥D̂γigli

∥∥∥
L∞(Ω̂e)

≤ Cβ

|β|∏
i=1

h⌈|γi|/r⌉ ≤ Cβh
⌈p/r⌉, (3.119)

where Cβ is a constant. Applying (3.119) to (3.117), the estimation of a derivative
function composition becomes∥∥∥D̂α(v ◦ g)

∥∥∥
L2(Ω̂e)

≤
∑
β

Cβ

∥∥Dβv
∥∥
L2(Ωe)

h−3/2+⌈p/r⌉,

≤ Ch−3/2+⌈p/r⌉ ∥v∥H|α|(Ωe)
. (3.120)

Then, the finite element error estimation is obtained via the substitution of (3.120)
into (3.115), as∥∥v − πv

pv
∥∥
L2(Ωe)

≤ Ch⌈p/r⌉ ∥v∥Hp(Ωe)
, (3.121)

where C is a constant, independent of h and v. It can be seen that the desired rate
is met only for affine refinements (r = 1) with the requirement of (3.114). However,
there is a way to compensate for the effect of the higher-order refinements. The usual
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procedure [FGM11] is to apply the Bramble-Hilbert lemma on the global element
for (3.111). However, the difficulty with this approach is that the interpolant πv

pv is
not a polynomial for a general curvilinear element, and the Bramble-Hilbert lemma
is not directly applicable.

Up to this point, only the πv
p interpolation operator has been considered, which

produces no geometry error because the local interpolant is mapped to the global
element via exact geometry mapping. However, in Section 3.1.4, it was shown that it
is permissible to replace πv

p by the practically available interpolation operator Πv
kπ

v
p ,

which maps the local interpolant to the global domain via an interpolated geometry
mapping of order k = r(p− 1). Now that the geometry mapping is a polynomial, it
is possible to apply the Bramble-Hilbert lemma on the global element by requiring
that the global approximation space Πv

kπ
v
pv ∈ Vp contains a polynomial space

Pp−1 ⊆ Vp (3.122)

for arbitrary P0,k mappings. Thus, the estimate over the global element becomes∥∥v − Πv
kπ

v
pv
∥∥
L2(Ω̃k

e )
≤ Chp ∥v∥Hp(Ω̃k

e )
, (3.123)

where C is a constant, independent of h and v.
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3.2.2 H(curl) Approximation Estimates

The L2(Ωe)-norm error estimation for a w ∈ H(curl,Ωe) function is carried out
similarly as for a v ∈ H1(Ωe) function in the previous subsection. The process
starts with the error over the global element and maps it to the local element via
the Piola transformation∥∥w − πw

p w
∥∥
L2(Ωe)

=
∥∥P1

{
ŵ − π̂w

p ŵ
}∥∥

L2(Ωe)
. (3.124)

Then, the first estimate is obtained by changing the domain to the reference element,
as∥∥w − πw

p w
∥∥
L2(Ωe)

≤ C h1/2
∥∥ŵ − π̂w

p ŵ
∥∥
L2(Ω̂e)

, (3.125)

where h1/2 arises from the effect of the norm on the volume element (3.113) and the
Jacobian of the Piola transformation∥∥J−1

∥∥
L∞(Ω̂e)

≤ Ch−1. (3.126)

Requiring the approximation space to contain a polynomial space

(Pp−1)
3 ⊆ Ŵp, (3.127)

the Bramble-Hilbert lemma can be used on the local element∥∥w − πw
p w
∥∥
L2(Ωe)

≤ C h1/2
∥∥∥D̂α̃ŵ

∥∥∥
L2(Ω̂e)

, with |α̃| = p. (3.128)

Then, using the inverse Piola transformation, the estimate is rewritten in terms of
the initial global function∥∥w − πw

p w
∥∥
L2(Ωe)

≤ C h1/2
∥∥∥D̂α̃

[
P−1
1 {w}

]∥∥∥
L2(Ω̂e)

,

≤ C h1/2
∥∥∥D̂α̃ [J(w ◦ g)]

∥∥∥
L2(Ω̂e)

. (3.129)

Next, the general Leibniz rule is applied and the piecewise norm of each term (tri-
angle and generalized Hölder inequalities) is taken to obtain the estimate∥∥w − πw

p w
∥∥
L2(Ωe)

≤ h1/2
∑

0≤|α|≤p

Cα

∥∥∥D̂α̃−αJ
∥∥∥
L∞(Ω̂e)

∥∥∥D̂α(w ◦ g)
∥∥∥
L2(Ω̂e)

, (3.130)

where Cα is a constant for all multi-index α. The first term with the derivative
of the Jacobian can be estimated by the upper bound of the derivative geometry
mapping (3.33) as∥∥∥D̂α̃−αJ

∥∥∥
L∞(Ω̂e)

≤ C
∥∥∥D̂α̃−α+1g

∥∥∥
L∞(Ω̂e)

≤ Ch⌈(p−|α|+1)/r⌉. (3.131)
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The second term can be estimated the same way as (3.120), i.e.,∥∥∥D̂α(w ◦ g)
∥∥∥
L2(Ω̂e)

≤ Ch−3/2+⌈|α|/r⌉ ∥w∥H|α|(Ωe)
. (3.132)

Therefore, the finite element error estimation becomes∥∥w − πw
p w
∥∥
L2(Ωe)

≤
∑

0≤|α|≤p

Cαh
⌈(p−|α|+1)/r⌉+⌈|α|/r⌉−1 ∥w∥H|α|(Ωe)

. (3.133)

It can be seen that the achieved convergence rate for r = 1 (affine refinements) is∥∥w − πw
p w
∥∥
L2(Ωe)

≤
∑

0≤|α|≤p

Cαh
p ∥w∥H|α|(Ωe)

≤ Chp ∥w∥Hp(Ωe)
, (3.134)

where C is a constant, independent of h and w. However, the rate of convergence
does not reach O(hp) for non-affine refinements.

Similar to the case of H1-conforming estimates, it is possible to recover the con-
vergence for non-affine refinements by some additional requirements on the global
element. In Section 3.1.5, it was shown that it is permissible to replace πw

p by
the practically available interpolation operator Πw

k π
w
p , which maps the local inter-

polant to the global domain via an interpolated geometry mapping of order k = rp.
Moreover, requiring the global approximation space Πw

k π
w
p w ∈ Wp to contain a

polynomial space

(Pp−1)
3 ⊆ Wp (3.135)

for arbitrary P1,k mappings, the Bramble-Hilbert lemma can be applied directly on
the global element. Thus, the obtained finite element error estimate reads∥∥w − Πw

k π
w
p w
∥∥
L2(Ω̃k

e )
≤ Chp ∥w∥Hp(Ω̃k

e )
, (3.136)

where C is a constant, independent of h and w.
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3.2.3 H(div) Approximation Estimates

The interpolation error of a function d ∈ H(div,Ωe) reads∥∥d− πd
pd
∥∥
L2(Ωe)

=
∥∥∥P2

{
d̂− π̂d

pd̂
}∥∥∥

L2(Ωe)
, (3.137)

where P2 is the appropriate Piola transformation. The first estimate is obtained by
changing the norm’s domain:∥∥d− πd

pd
∥∥
L2(Ωe)

≤ C h−1/2
∥∥∥d̂− π̂d

pd̂
∥∥∥
L2(Ω̂e)

, (3.138)

where h−1/2 arises from the norm’s effect on the volume element (3.113) and the
multiplicative term of the Piola transformation∥∥det(J)−1JT

∥∥
L∞(Ω̂e)

≤ Ch−2. (3.139)

If the local approximation space contains a polynomial space

(Pp−1)
3 ⊆ D̂p, (3.140)

then the Bramble-Hilbert lemma can be applied to obtain the estimate∥∥d− πd
pd
∥∥
L2(Ωe)

≤ C h−1/2
∥∥∥D̂α̃d̂

∥∥∥
L2(Ω̂e)

, with |α̃| = p. (3.141)

Then, using the inverse Piola transformation, the estimate is rewritten in terms of
the global function∥∥d− πd

pd
∥∥
L2(Ωe)

≤ C h−1/2
∥∥∥D̂α̃

[
P−1
2 {d}

]∥∥∥
L2(Ω̂e)

,

≤ C h−1/2
∥∥∥D̂α̃

[
det(J)J−T (d ◦ g)

]∥∥∥
L2(Ω̂e)

. (3.142)

This form is further expanded by utilizing the Leibniz rule and applying triangle
and Hölder inequalities:∥∥d− πd

pd
∥∥
L2(Ωe)

≤ h−1/2
∑

0≤|α|≤p

Cα

∥∥∥D̂α̃−α
[
det(J)J−T

]∥∥∥
L∞(Ω̂e)

∥∥∥D̂α [d ◦ g]
∥∥∥
L2(Ω̂e)

,

(3.143)

where Cα is a constant for all multi-index α. The estimate of the first matrix term,∥∥∥D̂α̃−α
[
det(J)J−T

]∥∥∥
L∞(Ω̂e)

=
∥∥∥D̂α̃−α [adj(J)]

∥∥∥
L∞(Ω̂e)

≤ Ch1+⌈(p−|α|+1)/r⌉, (3.144)

is based on the application of (3.33) for the derivative adjugate matrix components,
which contains only pairwise multiplications of the Jacobian components. Thus,
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applying the estimate of function compositions (3.132) with w = d and (3.144) for
(3.143), the detailed finite element error estimate becomes∥∥d− πd

pd
∥∥
L2(Ωe)

≤
∑

0≤|α|≤p

Cαh
⌈(p−|α|+1)/r⌉+⌈|α|/r⌉−1 ∥d∥H|α|(Ωe)

. (3.145)

It can be seen that the achieved convergence rate for r = 1 (affine refinements) is∥∥d− πd
pd
∥∥
L2(Ωe)

≤
∑

0≤|α|≤p

Cαh
p ∥d∥H|α|(Ωe)

≤ Chp ∥d∥Hp(Ωe)
, (3.146)

where C is a constant, independent of h and d. Furthermore, the rate of convergence
does not reach O(hp) for non-affine refinements. This result is identical to the case of
the H(curl)-conforming estimate (3.134). Hence, the same (3.136) procedure can be
used to improve the convergence rate for non-affine refinements (r > 1). In Section
3.1.6, it was shown that it is permissible to replace πd

p by the practically available
interpolation operator Πd

kπ
d
p , which maps the local interpolant to the global domain

via an interpolated geometry mapping of order k = rp. Then, requiring the global
approximation space Πd

kπ
d
pd ∈ Dp to contain a complete order polynomial space

(Pp−1)
3 ⊆ Dp (3.147)

for arbitrary geometry mappings P2,k, the Bramble-Hilbert lemma can be applied
directly on the global element∥∥d− Πd

kπ
d
pd
∥∥
L2(Ω̃k

e )
≤ Chp ∥d∥Hp(Ω̃k

e )
. (3.148)

Here, C is a constant, independent of h and d.
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3.3 Summary of Convergence Requirements

This section provides a summary for the approximation spaces and the geometry
mappings, which produce the O(hp) rate of convergence. To do so, it is necessary
to impose some conditions.

� In the geometry representation:

– The exact mapping and its interpolant are bijective on each element.

– The mesh parameter h is defined as (3.17).

– The polynomial order r of the refinement is defined as (3.12).

– The order of geometry interpolation k is defined as (3.1).

� In the field representation:

– The finite element moments are chosen according to (2.55), (2.57), and
(2.59), being associated with nodes, edges, faces, and volume.

– The local approximation spaces on the reference element Ω̂e include the
subspaces of ∇̂V̂p ⊂ Ŵp and ∇̂ × Ŵp ⊂ D̂p.

– The approximation spaces Vp, Wp, and Dp of each global element Ωe are
such that the approximated fields of the computational domain Ω are
H1(Ω)-, H(curl,Ω)-, and H(div,Ω)-conforming, respectively.

As a general consideration, the usage of the exact geometry and affine refinement
(r = 1) is preferable. Thus, there is no geometry error, and the necessary approx-
imation space is much smaller. However, such geometry mappings are unavailable
for some applications. In those cases, interpolated geometry mappings can be used.
The convergence rate of the geometry error and the convergence rate of the field er-
ror are matched by choosing an appropriate interpolation order. Hence, the overall
convergence rate is not affected. Moreover, if the exact geometry is a polynomial of
order k̃, then the interpolation order can be limited by k ≤ k̃. Due to the generality
of the proofs, the obtained necessary conditions apply for hexahedral, tetrahedral,
and triangular-based prism elements and are identical to well-known results of the
conforming tetrahedral isoparametric elements [Cia02, M+03, SF73]. However, the
application and the interpretation differ due to the different interpretations of the
mesh parameter and mesh refinement.

The disadvantage of the non-affine refinement (r > 1) is that the local finite ele-
ment approximation spaces need to be dependent on the geometry mappings. Hence,
much larger spaces are required than for affine refinements. However, it can be ad-
vantageous for the hp-adaptive techniques that the refined mesh is not restricted
by the previous, coarser mesh. Another advantage is the capability to improve the
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geometry representation and mesh quality in each refinement step without any pre-
cautions. This is not possible for affine refinements when a mesh with interpolated
geometry mappings is refined because the geometry error of the initial mesh carries
over to the refined elements, too. The issue of the affine and non-affine refinements is
not relevant for tetrahedral meshes. The reason is that the straight-sided geometries
are described by affine mappings for tetrahedral elements, and the midpoints of the
edges determine all the refined elements. The consequence is that the higher-order
terms of a polynomial geometry mapping have a higher rate of convergence, and the
natural way of refinement is affine refinement. However, an affine geometry mapping
does not necessarily describe a straight-sided hexahedron or prismatic element. In
those cases, the refinement involves not just the midpoints of the edges but also
the midpoint of the faces. Hence, the elements of a refined mesh do not necessarily
converge to elements with affine geometry mappings. This can be described as a
non-affine refinement.

Note that the requirements obtained for the approximation spaces are determined
for the elementwise error. However, for the same global error, the conformity of the
elements is also required. Therefore, depending on the element type, the geometry
mapping, and the refinement, a larger space might be necessary. The incremental
monomials of this larger space can be used to maintain the conformity between the
elements but do not contribute to the elementwise convergence rate.

3.3.1 H1 Convergence Requirements

Let us start with the necessary requirements for approximating a function v ∈
H1(Ωe) with the asymptotic convergence rate∥∥v − πv

pv
∥∥
L2(Ωe)

= O(hp). (3.149)

Here, the required order of geometry interpolation is k = r(p−1) due to (3.64). For
affine refinements (r = 1), the required geometry order becomes significantly less,
and the appropriate approximation space (3.114) of the reference element is

Pp−1 ⊆ V̂p. (3.150)

However, for non-affine refinements (r > 1), the situation is more complicated. In
such cases, the global approximation space Πv

kπ
v
pv ∈ Vp is required to contain the

same polynomial space (3.122), i.e.,

Pp−1 ⊆ Vp. (3.151)

Because the global approximation of the fields is equivalent to the local approxima-
tion with the corresponding Piola transformation

Πv
kπ

v
pv = P0,k

{
π̂v
p v̂
}
= (π̂v

p v̂) ◦ g−1
k ∈ Vp, (3.152)
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the necessary condition in terms of the reference element reads

Pp−1 ◦ gk ⊆ V̂p, ∀gk. (3.153)

Next, the necessary requirements are summarized for the H1(Ωe)-norm convergence∥∥v − πv
pv
∥∥
H1(Ωe)

= O(hp). (3.154)

Hence, in addition to the previous case, the convergence∥∥∇v −∇πv
pv
∥∥
L2(Ωe)

= O(hp) (3.155)

of the gradient functions ∇v ∈ H(curl,Ω) is also required. Using the commutation
of the interpolation operators∥∥∇v −∇πv

pv
∥∥
L2(Ωe)

=
∥∥∇v − πw

p ∇v
∥∥
L2(Ωe)

= O(hp), (3.156)

the requirement of the ∇v ∈ H(curl,Ωe) functions can be used. Thus, the re-
quired order of geometry interpolation is k = rp due to (3.74). In the case of
affine refinements (r = 1), the local approximation space of the gradient func-

tions π̂w
p ∇̂v̂ = ∇̂π̂v

p v̂ ∈ ∇̂V̂p is required to contain the polynomial space (3.127)

of ∇Pp ⊆ ∇̂V̂p. Hence, the approximation space must contain the complete order
polynomial space

Pp ⊆ V̂p. (3.157)

For higher-order refinements (r > 1), the same condition (3.135) applies for the
approximation space of the global element

Πw
k π

w
p ∇v = P1,k

{
∇̂π̂v

p v̂
}
= ∇

((
π̂v
p v̂
)
◦ g−1

k

)
∈ ∇Vp, (3.158a)

∇Pp ⊆ ∇Vp. (3.158b)

On the reference element, this requirement reads

Pp ◦ gk ⊆ V̂p, ∀gk, (3.159)

which is dependent on the interpolated geometry mapping. Table 3.1 contains these
results in a structured way. Similar results have also been presented in the literature
[ABF02, ABB15].
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Table 3.1: Necessary conditions for the elementwise O(hp) convergence rates of H1-
conforming functions.

∥∥v − πv
pv
∥∥
L2(Ωe)

= O(hp)
∥∥∇ (v − πv

pv
)∥∥

L2(Ωe)
= O(hp)

r = 1 Pp−1 ⊆ V̂p Pp ⊆ V̂p

r > 1 Pp−1 ◦ gk ⊆ V̂p Pp ◦ gk ⊆ V̂p

k = r(p− 1) k = rp

3.3.2 H(curl) Convergence Requirements

First, the necessary conditions are summarized for the convergence rate of∥∥w − πw
p w
∥∥
L2(Ωe)

= O(hp). (3.160)

It is permissible to use interpolated geometry mappings of order k = rp without
affecting the convergence of the w ∈ H(curl,Ωe) functions (see (3.74)). Moreover,
the approximation space on the reference element (3.127) is required to be

(Pp−1)
3 ⊆ Ŵp. (3.161)

For non-affine refinements (r > 1), however, the inclusion of the same polynomial
space is required (3.135) on the global element, i.e.,

(Pp−1)
3 ⊆ Wp. (3.162)

Applying the relationship between the global and local interpolation

Πw
k π

w
p w = P1,k

{
π̂w
p ŵ
}
=
(
J−1

k π̂w
p ŵ
)
◦ g−1

k ∈ Wp, (3.163)

the necessary approximation space of the reference element is determined as

Jk(Pp−1)
3 ◦ gk ⊆ Ŵp, ∀gk. (3.164)

Next, the necessary conditions are summarized for the convergence rate∥∥w − πw
p w
∥∥
H(curl,Ωe)

= O(hp). (3.165)

Hence, in addition to the previous case, it is also required that∥∥∇×w −∇× πw
p w
∥∥
L2(Ωe)

= O(hp). (3.166)
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Here, the commutation of the interpolation operators is used to express the curl of
an interpolant as an interpolant of a function ∇×w ∈ H(div,Ωe), i.e.,

π̂d
p∇̂ × ŵ = ∇̂ × π̂w

p ŵ ∈ ∇̂ × Ŵp ⊂ D̂p. (3.167)

Hence, for affine refinements, the necessary condition of the convergence

∇̂ × (Pp)
3 ⊆ ∇̂ × Ŵp (3.168)

is inherited from the criteria of H(div,Ωe)-conforming functions (3.140). In the
case of higher-order refinements (r > 1), the same condition applies over the global
element

∇× (Pp)
3 ⊆ ∇×Wp, (3.169)

which is also inherited from the criteria of H(div,Ωe)-conforming functions (3.147).
Using the appropriate Piola transformation

Πw
k π

d
p∇×w = P2,k

{
∇̂ × π̂w

p ŵ
}
,

=
[
det(Jk)

−1JT
k ∇̂ × π̂w

p ŵ
]
◦ g−1 ∈ ∇×Wp, (3.170)

the necessary condition for the reference element is obtained as

det(Jk)J
−T
k

[
∇× (Pp)

3
]
◦ gk ⊆ ∇̂ × Ŵp, ∀gk. (3.171)

All of these results are summarized in Table 3.2.

Table 3.2: Necessary conditions for the elementwise O(hp) convergence rates of
H(curl)-conforming functions.

∥∥w − πw
p w
∥∥
L2(Ωe)

= O(hp)
∥∥∇×

(
w − πw

p w
)∥∥

L2(Ωe)
= O(hp)

r = 1 (Pp−1)
3 ⊆ Ŵp ∇̂ × (Pp)

3 ⊆ ∇̂ × Ŵp

r > 1 Jk(Pp−1)
3 ◦ gk ⊆ Ŵp det(Jk)J

−T
k [∇× (Pp)

3] ◦ gk ⊆ ∇̂ × Ŵp

k = rp k = rp
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3.3.3 H(div) Convergence Requirements

In case of the H(div,Ωe)-conforming functions, only the conditions of the∥∥d− πd
pd
∥∥
L2(Ωe)

= O(hp), (3.172)

convergence are considered. Here, it is allowed to use interpolated geometry map-
pings of order k = rp without affecting the rate of convergence (3.84). For affine
refinements, it is necessary to include a polynomial space (3.140) in the approxima-
tion space of the reference element

(Pp−1)
3 ⊆ D̂p. (3.173)

For higher-order refinements (r > 1), the same polynomial space is required for the
global approximation space (3.147). Thus, using the appropriate mapping

Πd
kπ

d
pd = P2,k

{
π̂d
pd̂
}
∈ (Pp−1)

3 ⊆ Dp, (3.174)

the necessary condition for the approximation space of the reference element is
expressed as

det(Jk)J
−T
k (Pp−1)

3 ◦ gk ⊆ D̂p, ∀gk. (3.175)

Table 3.3 presents all of these results.

Table 3.3: Necessary conditions for the elementwise O(hp) convergence rate of
H(div)-conforming functions.

∥∥d− πd
pd
∥∥
L2(Ωe)

= O(hp)

r = 1 (Pp−1)
3 ⊆ D̂p

r > 1 det(Jk)J
−T
k (Pp−1)

3 ◦ gk ⊆ D̂p

k = rp
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Chapter 4

Hierarchical Universal Matrices

The most used elements for three-dimensional finite element codes are tetrahe-
dra, hexahedra, triangular prisms, and pyramids. Other polyhedral shapes [RW14,
LKI17, CXX+22] are less important because they can be easily decomposed to the
previously listed elements. In each case, the approximation error is controllable by
changing the overall mesh parameter h by applying mesh refinement and/or increas-
ing the polynomial degree of the basis functions p. When basis functions of higher
order are applied to curvilinear geometries, the geometries of the elements must also
be made curvilinear. Otherwise, the error of the geometry representation would
dominate the local finite element approximation error, and the convergence rate
would decrease to the case of p = 1. [SF73, Chapter 3.3] and [Cia02, Chapter 4.3]
indicate that isoparametric modeling suffices to prevent this pitfall from happening
in the H1-conforming case. The finite element representation of the boundary and
the element geometry mapping must be made curvilinear, and the same order inter-
polation of the geometry mapping is sufficient for the asymptotic rate of convergence
as the order of finite element basis functions. Similar results were obtained from
the analysis in Chapter 3 for H1, H(curl), and H(div) elements, where I provide
an alternative definition for the mesh parameter and focus on the effect of mesh
refinement instead of the quality of the geometry mapping.

To demonstrate the issue with the geometry representation, let us consider the
boundary value problem

∇× µ−1
r ∇×E − k2

0εrE = 0, in Ω, (4.1a)

n× (E × n) = 0, in Γ. (4.1b)

These material properties are position-dependent tensors in the general, inhomo-
geneous, and anisotropic case. Following Section 2.4, the weak formulation of the
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problem with a test functions w becomes∫
Ω

∇×w · µ−1
r ∇×E dr − k2

0

∫
Ω

w · εrE dr = 0, (4.2)

and the corresponding finite element model is a generalized eigenvalue problem(
S − k2

0T
)
x = 0 (4.3)

with the eigenvalue k2
0 and the associated eigenvector x. The so-called stiffness

matrix S and the mass matrix T are calculated as

[S]ab =

∫
Ω

∇×wa · µ−1
r ∇×wbdr, (4.4a)

[T ]ab =

∫
Ω

wa · εrwbdr. (4.4b)

Figure 4.1: Straight-sided tetrahedral meshes for a cube and a sphere.
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Figure 4.2: Relative error of the smallest nonzero eigenvalues.
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In the following example, an empty cubic and a spherical cavity resonator are con-
sidered with perfect electrical conducting boundaries. Uniform, straight-sided tetra-
hedral discretization is applied with the basis functions of order p from Table 2.2
and Table 2.1. The smallest nonzero eigenvalue is calculated for both cavities with
different numbers of elements and different orders (p = 1, 2, 3) of basis functions.
The relative error is shown in Figure 4.2 in terms of basis order p for the meshes of
Figure 4.1. In the case of the cube, the affine geometry mapping perfectly represents
the flat boundary of the computational domain. With the coarser mesh, one can
see a deviation from the algebraic rate due to the element-wise highly changing field
in the pre-asymptotic region. Nevertheless, the asymptotic convergence rate is al-
gebraic on the finer mesh because no geometrical error is committed, and the fields
are sufficiently smooth on each element. In the case of spheres, however, the geom-
etry representation is of only first order since straight-sided elements describe the
curvilinear boundaries. Therefore, the higher-order finite element basis functions do
not improve the convergence.

4.1 Universal Matrices

Numerical integration techniques are widely used for the calculation of finite element
matrices. These methods can be applied to various shapes, basis functions, and
material properties. However, higher-order elements yield significantly increased
calculation costs. To remedy this, universal matrices (UMs) can be constructed
for the case of straight-sided elements [Sil78]. The advantage is that the element
matrices are obtained at a low computational cost as weighted sums of universal
matrices [Sil78]. Since the number of universal matrices is independent of the basis
order, this approach is more efficient than numerical integration.

Let us denote a component of an element stiffness and mass matrix by [Se]ab and
[T e]ab, respectively. The indices a and b correspond to the basis functions wa and
wb, which have support over the element Ωe. Using the invariance of the finite
element moments, it is permissible to perform the differential operations on the
reference domain and map each function to the global domain by the appropriate
mapping. Hence, the integrals of arbitrary elements can be mapped to the reference
element as

[T e]ab =

∫
Ωe

wa · εrwbdr =

∫
Ω̂e

(
J−1ŵa

)
· (εr ◦ g)

(
J−1ŵb

)
det(J)dr̂,

=

∫
Ω̂e

ŵa · Λ̂
1
ŵbdr̂, (4.5a)

[Se]ab =

∫
Ωe

∇×wa · µ−1
r ∇×wbdr,
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[Se]ab =

∫
Ω̂e

(
det(J)−1JT ∇̂ × ŵa

)
·
(
µ−1

r ◦ g
) (

det(J)−1JT ∇̂ × ŵb

)
det(J)dr̂,

=

∫
Ω̂e

∇̂ × ŵa · Λ̂
2
∇̂ × ŵbdr̂, (4.5b)

where the transformed local metric functions Λ̂
(·)

consist of the material properties
and the Jacobian

Λ̂
1
= det (J)J−T (εr ◦ g)J−1, (4.6a)

Λ̂
2
= det (J)−1 J

(
µ−1

r ◦ g
)
JT . (4.6b)

In the case of straight-sided elements and elementwise constant material properties,
the local metric terms simplify to constant matrices. Therefore, the integrals of
(4.5a) and (4.5b) can be calculated exactly using polynomial basis functions on the
reference domain. Taking advantage of the linearity of the integration, all constant

coefficients
[
Λ̂

(·)]
ij
with the indices i, j ∈ {1, 2, 3} can be pulled out of the integral

[T e]ab =

∫
Ω̂e

∑
ij

[ŵa]i

[
Λ̂

1
]
ij
[ŵb]j dr̂

Λ̂
1
=const.
=

∑
ij

[
Λ̂

1
]
ij

[
T 0

ij

]
ab
,

(4.7)

[Se]ab =

∫
Ω̂e

∑
ij

[
∇̂ × ŵa

]
i

[
Λ̂

2
]
ij

[
∇̂ × ŵb

]
j
dr̂

Λ̂
2
=const.
=

∑
ij

[
Λ̂

2
]
ij

[
S0

ij

]
ab
,

(4.8)

obtaining universal matrices

[
T 0

ij

]
ab
=

∫
Ω̂e

[ŵa]i [ŵb]j dr̂, (4.9)

[
S0

ij

]
ab
=

∫
Ω̂e

[
∇̂ × ŵa

]
i

[
∇̂ × ŵb

]
j
dr̂. (4.10)

Since these matrices are independent of the geometry and material, they can be
used for all elements in the mesh. Thus, the universal matrices T 0

ij and S0
ij are only

calculated once. The technique, in this form, does not apply to curvilinear elements
since the metric term would become a rational tensor function, and analytical inte-
gration would not be possible. In such cases, one may apply numerical integration
over the reference domain. However, these methods [IIN09, MMIN12] tend to be
computationally expensive because the element matrices need to be instantiated at
each quadrature point [Coo02], and both matrix size and the number of quadrature
points increase rapidly with the finite element order [Bor13].
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A different approach is to employ polynomial interpolation for the metric parts
[VW99, BWPL12]. This enables analytic integration in terms of some interpola-
tion basis functions, and the calculation of element matrices can be obtained by
UMs as in the straight-sided case. An efficient scheme for H1-conforming elements
is presented in [VW99]. It uses hierarchical Newton-Lagrange interpolation with
nonsymmetric locations of the interpolation points. The advantage is the reusable
lower-order interpolation of the metric term, which remains unchanged when the
order is increased. The corresponding UMs also inherit this hierarchical property.
On the other hand, universal matrices for H(curl)-conforming basis functions are
presented in [BWPL12]. This approach is based on Lagrange interpolation, which is
not hierarchical but features symmetric locations of the interpolation points. Here,
the interpolation process is faster and better conditioned than using hierarchical
interpolation. However, a different set of universal matrices is required for the dif-
ferent order of metric interpolations because it is not hierarchical. The results from
the lower-order interpolations cannot be reused.

In the following sections, a different method for obtaining H(curl) UMs is presented
which is applicable to curvilinear elements with inhomogeneous material properties.
The approximation of the metric terms is proposed using hierarchical polynomials.
Hence, the resulting UMs inherit the hierarchical property. The approximation
process involves numerical integration rules with symmetric quadrature locations.
If the order of the approximation polynomial is higher than a limit specified by the
order of basis functions, the corresponding UMs become zero due to the hierarchical
and orthogonality property of the metric. It will be shown that the calculation of FE
matrices is exact using a finite number of UMs. Moreover, it was shown in Section
3.1.7 that the metric expansion may be terminated at a much earlier point when the
finite element convergence is in the asymptotic region. In most cases, there is no
need to obtain a metric approximation up to the representation limit because the
much lower asymptotic limit can be used.

4.2 Hierarchical Metric Expansion

Let PK denote the space of polynomials up to degree K on Ω̂, and {blk} be a basis,
where k indicates the degree and l a specific polynomial of degree k. Furthermore,
L(k) stands for the number of homogeneous polynomials of degree k. Provided that

Λ(·) are square-integrable on Ω̂e, there exists a unique best polynomial approxima-
tion Λ

(·)
K in the L2-norm [Dav75, Section 7.5],

Λ̂
(·)
K (r̂) =

K∑
k=0

L(k)∑
l=1

Λ̂
(·)
kl b

l
k(r̂), r̂ ∈ Ω̂e, (4.11)
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with matrix-valued coefficients Λ̂
(·)
kl . The proposed choice of basis functions blk(r̂)

are hierarchical scalar polynomials of order k in the space of incremental order poly-
nomials P̃k. The space of polynomials up to order K is the sum of the incremental
spaces

PK = P̃1 ⊕ ...⊕ P̃k ⊕ ...⊕ P̃K . (4.12)

The main property of these functions is the pairwise orthonormality on the reference
domain:∫

Ω̂e

blk b
l′

k′dr̂ =

{
1 for (k, l) = (k′, l′),

0 else.
(4.13)

Such an orthonormal basis can be obtained by a Gram-Schmidt process or simply
normalizing the classical orthogonal polynomials for the simplex [DX14, Proposi-
tion 2.3.8]. In addition, I have developed a special tetrahedron symmetric set of
hierarchical orthonormal polynomials in [A4] that are aesthetically appealing and
expected to be more robust regarding the round-off errors. The method of construc-
tion and the first few order functions are given in Appendix A. The constant matrix

coefficients Λ̂
(·)
kl are determined such that the L2-norm error is minimized, i.e.,∫

Ω̂

∣∣∣∣[Λ̂(·)
− Λ̂

(·)
K

]
ij

∣∣∣∣2 dr̂ !
= min, ∀(i, j). (4.14)

Since P(Ω̂) is dense in L2(Ω̂), the approximation is guaranteed to converge for K →
∞ [Sch69, CQ82]. By the projection theorem [Dav75, Section 12.5], the coefficients

Λ̂
(·)
kl are obtained from the orthogonality condition∫
Ω̂

(
Λ̂

(·)
− Λ̂

(·)
K

)
bl

′

k′dr̂ = 0, ∀bl′k′ ∈ PK . (4.15)

Substituting (4.11) for Λ̂
(·)
K (r̂) yields

∫
Ω̂e

Λ̂
(·)
(r̂)bl

′

k′dr̂ =
K∑
k=0

L(k)∑
l=1

Λ̂
(·)
kl

∫
Ω̂e

blk b
l′

k′dr̂ = Λ̂
(·)
k′l′

∫
Ω̂e

bl
′

k′ b
l′

k′dr̂ = Λ̂
(·)
k′l′ . (4.16)

Hence, the matrix coefficients are determined by evaluating a scalar product. In
practice, this is achieved via numerical integration, which is the sole source of error
in this method. Nevertheless, efficient symmetric quadrature schemes can be used,
which are at least capable of integrating polynomials of order 2K because (bl

′

k′ b
l′

k′) ∈
P2K .
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4.2.1 Physical Interpretation of Metric Expansion

One can also investigate how these techniques effect the material properties. Re-
arranging (4.6a), the electric permittivity can be expressed in terms of the metric
expansion

εr ◦ g = det (J)−1
K∑
k=0

L(k)∑
l=1

JT Λ̂
1

klJb
l
k. (4.17)

Here, the first scaling term det (J)−1 is the inverse of the volume element. Therefore,
the remaining term has a volume distributional interpretation. The second, tensorial
terms

JT Λ̂
1

klJ =
3∑

i=1

3∑
j=1

[
Λ̂

1

kl

]
ij

∂r

∂r̂i
⊗ ∂r

∂r̂j
, (4.18)

are equivalent to the sum of scaled contravariant dyadics. Hence, the proposed
metric expansion is equivalent to the contravariant approximation of the electric
permittivity in the form

εr ◦ g = det
(
∇̂rT

)−1
3∑

i=1

3∑
j=1

∂r

∂r̂i
⊗ ∂r

∂r̂j

K∑
k=0

L(k)∑
l=1

[
Λ̂

1

kl

]
ij
blk. (4.19)

For the magnetic susceptibility µ−1
r , the metric expansion results in

µ−1
r = det (J) ◦ g−1

K∑
k=0

L(k)∑
l=1

(
J−1Λ̂

2

klJ
−T
)
◦ g−1

(
blk ◦ g−1

)
. (4.20)

Here, the first scaling term is the mapped volume element, which is equal to det (J)◦
g−1 = det(∇r̂T )−1 due to the inverse function theorem [HH15]. Moreover, the
application of the inverse function theorem on the tensorial term leads to

(
J−1Λ̂

2

klJ
−T
)
◦ g−1 =

3∑
i=1

3∑
j=1

[
Λ̂

2

kl

]
ij
∇r̂i ⊗∇r̂j, (4.21)

which is the sum of covariant dyadics scaled by the metric coefficients. Thus, the
metric expansion is equivalent to the covariant approximation of the magnetic sus-
ceptibility in the form of

µ−1
r = det

(
∇r̂T

)−1
3∑

i=1

3∑
j=1

∇r̂i ⊗∇r̂j

K∑
k=0

L(k)∑
l=1

[
Λ̂

2

kl

]
ij
blk ◦ g−1. (4.22)
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4.3 Hierarchical Universal Matrices

By applying the metric expansion to the stiffness matrix, one can obtain a sum of
integrals with polynomial basis functions

[Se]ab =
K∑
k=0

L(k)∑
l=1

∫
Ω̂e

∇̂ × ŵa · Λ̂
2

klb
l
k∇̂ × ŵbdr̂. (4.23)

From this point on, analytic integration can be used because the integrand is a
polynomial. Moreover, the geometry and material information is only present in the
constant matrix coefficients, which allows the construction of universal matrices

[Sk
ijl]ab =

∫
Ω̂e

[
∇̂ × ŵa

]
i
blk

[
∇̂ × ŵb

]
j
dr̂. (4.24)

If the polynomial order of the tetrahedral FE basis is denoted by p, the product of
the curl of basis functions satisfies[

∇̂ × ŵa

]
i

[
∇̂ × ŵb

]
j
∈ P2p−2. (4.25)

Hence, (4.25) can be expressed in terms of a hierarchical basis
{
bl

′

k′

}
and constant

scalar coefficients αabij
k′l′ :[

∇̂ × ŵa

]
i

[
∇̂ × ŵb

]
j
=

2p−2∑
k′=0

L(k′)∑
l′=1

αabij
k′l′ b

l′

k′ . (4.26)

The calculation of the universal matrices then reads

[Sk
ijl]ab =

2p−2∑
k′=0

L(k′)∑
l′=1

αabij
k′l′

∫
Ω̂e

blk b
l′

k′dr̂, (4.27)

which implies that the higher k > 2p− 2 order matrices Sk
ijl become zero due to the

orthogonal property. This leads to the following metric representation limit for the
stiffness matrix:

k ≤ K = 2p− 2. (4.28)

Therefore, a finite order metric expansion and a corresponding finite number of
universal matrices are required for the calculation of the stiffness matrix, namely

Se =

2p−2∑
k=0

L(k)∑
l=1

∑
ij

[
Λ̂

2

kl

]
ij
Sk

ijl, (4.29)
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since the contribution of the higher-order terms is zero. To calculate the element
matrices, scaled matrix additions of Sk

ijl are required. Another advantage of the
method is that the calculation of a metric coefficient is independent of the higher-
or lower-order terms due to the orthogonal property (4.13). Hence, the lower-order
coefficients remain the same when the expansion order is increased. Moreover, the
universal matrices inherit this hierarchical property, and the higher-order matrices
can be added as a correction during degree elevation because the lower-order matrix
terms remain the same.

One can apply the same approach for the mass matrix where also metric expansion
of order K and finite element basis functions of order p are used

[T e]ab =
K∑
k=0

L(k)∑
l=1

∫
Ω̂e

ŵa · Λ̂
1

klb
l
kŵbdr̂. (4.30)

Here, the definition of the material and geometry-independent universal matrices
reads

[T k
ijl]ab =

∫
Ω̂e

[ŵa]i b
l
k [ŵb]j dr̂. (4.31)

Since the product of two arbitrary tetrahedral basis functions is

[ŵa]i [ŵb]j ∈ P2p, (4.32)

it can be expanded in terms of a hierarchical basis
{
bl

′

k′

}
and constant scalar coeffi-

cients βabij
k′l′ :

[ŵa]i [ŵb]j =

2p∑
k′=0

L(k′)∑
l′=1

βabij
k′l′ b

l′

k′ . (4.33)

Hence, the universal matrices read

[T k
ijl]ab =

2p∑
k′=0

L(k′)∑
l′=1

βabij
k′l′

∫
Ω̂e

blk b
l′

k′dr̂. (4.34)

This representation implies that the terms of k > 2p order are zero due to orthogo-
nality. Thus, the resulting metric representation limit is

k ≤ K = 2p, (4.35)

which also limits the number of required universal matrices for the calculation of
the mass matrix

T e =

2p∑
k=0

L(k)∑
l=1

∑
ij

[
Λ̂

1

kl

]
ij
T k

ijl. (4.36)
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Therefore, the mass matrix is calculated by metric coefficient scaled matrix additions
of T k

ijl universal mass matrices. These matrices are also hierarchical in the order of
the metric expansion k, which can be increased without recalculating the lower-order
terms.

4.3.1 Appropriate Order of Metric Expansion

Now it is known that the polynomial expansions of the metric terms and the corre-
sponding universal matrices may be terminated at the metric representation limits

K =

{
2p for T e,

2p− 2 for Se.
(4.37)

These limits are independent of the geometry representation and the quality of the
field representation. Up to this point, the method can be considered as a numerical
integration scheme.

Now, it is natural to ask whether it is possible to use a lower-order metric expansion
than the representation limit. In order to discuss this issue, it is necessary to con-
sider the effect of mesh refinement and geometry error. Using affine refinements or
some equivalently smooth geometry mappings g that show an algebraic (asymptotic)
convergence rate

|g|k,∞,Ω̂e
≤ Chk (4.38)

with a constant C independent of k and h, the results of Section 3.1.7 can be
directly applied. Since the initial weak formulation of the eigenvalue problem (4.2)
is a specific case of the considered general product (3.91), the corresponding general
estimate (3.108) can be applied for the metric truncation error

ϵK ≤ ChK+1

(
∥E∥L2(Ωe)

∥εr∥K+1,∞,Ωe
+ ∥∇ ×E∥L2(Ωe)

∥∥µ−1
r

∥∥
K+1,∞,Ωe

)
, (4.39)

ϵK ≤ ChK+1 ∥E∥H(curl,Ωe)

(
∥εr∥K+1,∞,Ωe

+
∥∥µ−1

r

∥∥
K+1,∞,Ωe

)
, (4.40)

where C is a positive constant independent of K and h while E is the field ap-
proximated by the finite element. Thus, if the asymptotic convergence rate of the
field error in H(curl)-norm is O(hp), the sufficient asymptotic limit for the metric
expansion order is

K = p− 1 (4.41)

because the overall convergence rate is not affected. However, if the geometry map-
ping does not satisfy the requirement (4.38) or the finite element convergence is not
in the asymptotic region, then the metric expansion order may need to be increased
until the metric representation limits (4.37).
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4.3.2 Application to Hierarchical Basis Functions

The previously introduced metric expansion and universal matrix schemes are ap-
plicable to various element types and polynomial approximation spaces. So far,
polynomial finite element basis functions that could be either hierarchical or in-
terpolatory have been considered. However, one can further increase the efficiency
of the method by using hierarchical finite element basis functions and hierarchical
approximation spaces, such as W̃i, whose direct sum gives the entire approximation
space Wp:

Wp = W̃1 ⊕ ...⊕ W̃i ⊕ ...⊕ ...W̃p, 1 < i < p. (4.42)

Hierarchical FE bases such as [Web99], [SLC01], and [Ing06] are very attractive for
applications like p adaptive methods [NW04] or multilevel preconditioners [ZC02].
The present method ought to work with various hierarchical bases that, at most, be-
long to (Pp)

3. My implementation employs the basis functions of Ingelström [Ing06],
which span the Nédélec space of incomplete order [Néd80] (see Section 2.6). Let us

denote the corresponding hierarchical basis functions by wa
m ∈ W̃m ⊂ (Pm)

3 and

wb
n ∈ W̃n ∈ (Pn)

3, where a and b are indices for the basis functions within the same
incremental space and n,m ≤ p. The application of hierarchical basis functions
leads to a fine structure for the stiffness and mass element matrices

Se =

S11 S12 . . .

S21 S22 . . .
...

...
. . .

 , T e =

T 11 T 12 . . .

T 21 T 22 . . .
...

...
. . .

 , (4.43)

consisting of submatrices representing the couplings between the hierarchical basis
functions wa

m of order m and wb
n of order n. The calculations of these submatrices

over the local domain read

[Smn]ab =

∫
Ω̂e

∇̂ × ŵa
m · Λ̂

2
∇̂ × ŵb

ndr̂, (4.44a)

[Tmn]ab =

∫
Ω̂e

ŵa
m · Λ̂

1
ŵb

ndr̂. (4.44b)

The corresponding universal matrices

[Smnk
ijl ]ab =

∫
Ω̂e

[
∇̂ × ŵa

m

]
i
blk

[
∇̂ × ŵb

n

]
j
dr̂, (4.45a)

[Tmnk
ijl ]ab =

∫
Ω̂e

[ŵa
m]i b

l
k

[
ŵb

n

]
j
dr̂, (4.45b)
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are not only hierarchical in the order of metric expansion but also in the finite
element basis functions order m and n. The main advantage of hierarchical FE
basis functions is a hierarchical representation limit that separately applies to each
submatrix:

k ≤ K = m+ n− 2 for Smn, (4.46a)

k ≤ K = m+ n for Tmn. (4.46b)

The higher-order universal matrices are zero and do not contribute to the FE solu-
tion. Hence, the maximum number of scaled matrix additions is much lower for the
lower-order block matrices;

Smn =
m+n−2∑
k=0

L(k)∑
l=1

∑
ij

[
Λ̂

2

kl

]
ij
Smnk

ijl , (4.47a)

Tmn =
m+n∑
k=0

L(k)∑
l=1

∑
ij

[
Λ̂

1

kl

]
ij
Tmnk

ijl . (4.47b)

Another advantage of the proposed method is the higher efficiency in the case of
increasing either the order of finite element basis functions p or the metric expansion
K. In those cases, only the contributions of the higher, incremental order universal
matrices are required. The lower-order matrices and metric coefficients remain the
same. Note that the asymptotic limit remains the same as (4.41) for all submatrices.
Therefore, the required number of universal matrices for the lower-order submatrices
might be dominated by the representation limit (4.46), and the asymptotic limit
becomes irrelevant.

4.3.3 Complexity

The following analysis is for integrating the element matrices (4.5) for a hierarchical
FE basis of order p, assuming that the metric terms are polynomials of order K.
Unlike in [VW99] and [BWPL12], symmetries in the basis functions and matrices
are not exploited because they would lower the costs of all methods equally.

Let N(p) denote the number of polynomials up to order p in three dimensions,

N(p) = (1 + p)(2 + p)(3 + p)/6, (4.48)

and let G(p) be the number of quadrature points for integrating polynomials up to
order p over the reference element. Table 4.1 presents data for G(p) based on the
quadrature scheme of [ZCL09].
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Table 4.1: Number of quadrature points for integrating polynomials of order p over
a tetrahedral domain [ZCL09].

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14

G(p) 1 4 8 14 14 24 36 46 61 81 109 140 171 236

Proposed Method

The calculation consists of two steps. The first one involves the calculation of a
few metric expansion coefficients. The second step is the calculation of the element
matrices by scaled matrix additions of universal matrices Skmn

ijl and T kmn
ijl . First,

the focus is on the second step. The number of scaled additions aApp.
S for the stiff-

ness matrix and aApp.
T for the mass matrix are determined as the number of metric

expansion coefficients times the number of entries in the universal matrices (4.47).
Provided that the material property tensors are symmetric, the metric tensors are
3× 3 matrices with only six independent entries. Hence, the number of scaled ma-
trix additions is 6N(K), where the order of metric expansion K is bounded by the
representation limit (4.46). Moreover, the number of FE basis functions in each

incremental subspace is dim W̃p = (p + 2)(3p + 1)/2 [Ing06], which determines the

number of entries in each hierarchical UM Skmn
ijl and T kmn

ijl as (dim W̃m)(dim W̃n).
Thus, the numbers of scaled additions are obtained as

aApp.
S =

p∑
m=1

p∑
n=1

(dim W̃m)(dim W̃n)6N(min {K,m+ n− 2}), (4.49a)

aApp.
T =

p∑
m=1

p∑
n=1

(dim W̃m)(dim W̃n)6N(min {K,m+ n}). (4.49b)

Next, the computational cost of obtaining 6N(K) different metric expansion coef-
ficients is considered. The expansion is obtained via the application of a numerical
integration scheme for a scalar product (4.16), which is capable of integrating poly-
nomials of order 2K. Hence, the evaluation of the quadrature scheme [ZCL09]
requires G(2K) number of scaled additions, where K is bounded by the representa-

tion limit (4.46). Thus, the numbers of scaled additions a
Λ̂

1 for Λ̂
1
and a

Λ̂
2 for Λ̂

2

are given as

a
Λ̂

1 =

{
6N(K)G(2K) if K ≤ 2p,

6N(2p)G(4p) else,
(4.50a)

a
Λ̂

2 =

{
6N(K)G(2K) if K ≤ 2p− 2,

6N(2p− 2)G(4p− 4) else.
(4.50b)
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The obtained relevant values are shown in Table 4.2, Table 4.3, and Table 4.4. It
can be seen that aApp.

T and aApp.
S become dominant when the FE basis order p is

increased and the cost of the metric expansion is negligible. This is because the
number of entries in an element matrix is (dimWp)

2 ∼ p6 [Néd80], whereas the
number of required quadrature points is G(4p) ∼ p3 [SH12].

Complexity of Interpolation Based UM Approaches

Next, let us consider another UM based approach [BWPL12] as a comparison. It is
based on the interpolation of the geometry and material property dependent terms
on uniformly distributed locations over the reference element. This results in a
straightforward interpolation scheme; however, unlike with the proposed method, no
approximation or hierarchical property is involved. Moreover, the sufficient order of
the interpolation is unknown. In any case, a polynomial representation of the metric
term allows the construction of UMs in the form of (4.31), and (4.24), and provides
the same evaluation scheme as (4.29) and (4.36) with some interpolation values

of the metric Λ̂
(·)
kl . Hence, the number of scaled additions is given as the number

of interpolation coefficients 6N(K) times the number of entries in the universal
matrices. Since the number of FE basis functions is dimWp = p(p + 2)(p + 3)/2
[Néd80], the number of entries in each UM is (dimWp)

2. Hence, the numbers of
scaled additions for the stiffness aInt.S and mass matrix aInt.T are given as

aInt.S = (dimWp)
2 6N(K), (4.51a)

aInt.T = (dimWp)
2 6N(K). (4.51b)

Based on this analysis, the proposed method seems more efficient for higher-order
metric terms due to the effect of the metric representation limit.

Complexity of Numerical Integration Based Approaches

Finally, let us consider the case where numerical integration is applied for curvilinear
elements [Bor13]. Here, the computation cost is the evaluation of a quadrature
scheme capable of integrating polynomials of order 2(p − 1) + K and 2p + K for
the stiffness and mass matrices, respectively [BWPL12]. Since the matrices have
(dimWp)

2 entries, the required numbers of scaled additions aNum.
S and aNum.

T are

aNum.
S = (dimWp)

2 6G(2p+K − 2), (4.52a)

aNum.
T = (dimWp)

2 6G(2p+K). (4.52b)

Some numerical values for these relevant computation costs are shown in Table 4.2
and Table 4.3. The advantage of the proposed method is clear, especially considering
that only this method provides clear directions for the necessary and sufficient order
for K.
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Table 4.2: Number of scaled additions for the stiffness matrix.

Order of metric expansion K

p 0 1 2 3 4 5 6

aNum.
S

1 216 216 864 1728 3024 3024 5184

2 9600 19200 33600 33600 57600 86400 110400

3 170100 170100 291600 437400 558900 741150 984150

4 1016064 1524096 1947456 2582496 3429216 4614624 5927040

aInt.S

1 216 864 2160 4320 7560 12096 18144

2 2400 9600 24000 48000 84000 134400 201600

3 12150 48600 121500 243000 425250 680400 1020600

4 42336 169344 423360 846720 1481760 2370816 3556224

aApp.
S

1 216 216 216 216 216 216 216

2 2400 8952 16008 16008 16008 16008 16008

3 12150 47952 113508 193008 249258 249258 249258

4 42336 168696 415368 796728 1263648 1700994 1956522

Table 4.3: Number of scaled additions for the mass matrix.

Order of metric expansion K

p 0 1 2 3 4 5 6

aNum.
T

1 864 1728 3024 3024 5184 7776 9936

2 33600 33600 57600 86400 110400 146400 194400

3 291600 437400 558900 741150 984150 1324350 1701000

4 1947456 2582496 3429216 4614624 5927040 7239456 9991296

aInt.T

1 216 864 2160 4320 7560 12096 18144

2 2400 9600 24000 48000 84000 134400 201600

3 12150 48600 121500 243000 425250 680400 1020600

4 42336 169344 423360 846720 1481760 2370816 3556224

aApp.
T

1 216 864 2160 2160 2160 2160 2160

2 2400 9600 24000 45840 63480 63480 63480

3 12150 48600 121500 240840 404730 571680 676680

4 42336 169344 423360 844560 1461240 2262096 3133680
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Table 4.4: Number of scaled additions for the metric expansion.

FE order Order of metric expansion K

p 0 1 2 3 4 5 6

a
Λ̂

1

1 6 96 840 840 840 840 840

2 6 96 840 2880 9660 9660 9660

3 6 96 840 2880 9660 27216 70560

4 6 96 840 2880 9660 27216 70560

a
Λ̂

2

1 6 6 6 6 6 6 6

2 6 96 840 840 840 840 840

3 6 96 840 2880 9660 9660 9660

4 6 96 840 2880 9660 27216 70560

4.3.4 Numerical Examples

Curvilinear Tetrahedron with Inhomogeneous Material Properties

In the first numerical example, the representation limit of the metric expansion is
demonstrated using a single element. Moreover, it is verified that the metric ex-
pansion does not affect the null space and range space of the ∇× operator even for
curvilinear geometries and inhomogeneous material properties. The initial shape of
the element is taken as a straight-sided tetrahedron with unit length edges that is
deformed by a second-order polynomial mapping on a face while leaving the remain-
ing faces planar (see Figure 4.3). The deformation is obtained as the displacement
of the edge midpoints on the face to the surface of a unit sphere whose center r0 is
located at the opposite node of the face. The material properties are

-0.5 0 0.5

-0.2

0

0.2

0.4

0.6

0.8

Figure 4.3: Tetrahedron with a second-order curvilinear face.
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µr = I, (4.53a)

εr = (11 + 8 tanh (|r − r0| − 0.2)) I, (4.53b)

where I denotes an identity matrix. These properties correspond to a certain ceramic
paste [VW99]. From the physical perspective, the boundary is considered to be a
perfect magnetic conductor. From the algebraic perspective, this means that the
generalized eigenvalue problem

(Se − λT e)x = 0, (4.54)

arises from the element matrices of a single element. The list of calculated eigenval-
ues is provided in Table 4.5, Table 4.6, and Table 4.7 for FE basis function orders
p = 1, p = 2, and p = 3, respectively. The zero eigenvalues are at the level of
numerical noise, and the dimension of the null space is not affected by the metric
expansion order.
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Figure 4.4: Relative error of the smallest nonzero eigenvalue in terms of the metric
expansion order K. The solutions with the highest expansion order K = 6 are
chosen as the reference values.

Figure 4.4 shows the relative error of the smallest nonzero eigenvalue in terms of
the metric expansion order K, relative to the case K = 6, for the different p-order
finite elements. The effect of the metric representation limit (K = 2p for the mass
matrix) is clearly visible since the error decreases to the level of numerical noise.
Note that the asymptotic limit (K = p− 1) is out of question at this point because
the true solution error is far from the asymptotic region of convergence.
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Table 4.5: Tetrahedron eigenvalues using FE basis functions of order p = 1.

Order of metric expansion K
0 1 2 3 4 5 6

-9.1e-16 -5.0e-16 -2.5e-16 -2.5e-16 -2.5e-16 -2.5e-16 -2.5e-16
-3.2e-16 -4.4e-17 8.6e-17 8.6e-17 8.6e-17 8.6e-17 8.6e-17
5.1e-16 1.3e-16 2.6e-15 2.6e-15 2.6e-15 2.6e-15 2.6e-15
3.54669 4.07217 4.04512 4.04512 4.04512 4.04512 4.04512
3.54669 4.07217 4.05563 4.05563 4.05563 4.05563 4.05563
4.57506 4.87751 4.86753 4.86753 4.86753 4.86753 4.86753

Table 4.6: Tetrahedron eigenvalues using FE basis functions of order p = 2.

Order of metric expansion K
0 1 2 3 4 5 6

-9.2e-16 -1.7e-15 -2.2e-15 -2.8e-15 -8.5e-16 -8.5e-16 -8.5e-16
-6.8e-16 -8.2e-16 -1.5e-15 -9.3e-16 -5.7e-16 -5.7e-16 -5.7e-16
-1.4e-16 -3.4e-16 -6.0e-16 -3.8e-16 -2.5e-16 -2.5e-16 -2.5e-16
2.2e-17 -7.0e-17 -5.1e-16 -3.1e-16 -1.2e-16 -1.2e-16 -1.2e-16
2.7e-16 1.1e-16 -3.4e-16 8.6e-17 4.9e-17 4.9e-17 4.9e-17
6.2e-16 5.4e-16 -1.3e-16 2.3e-16 3.8e-16 3.8e-16 3.8e-16
7.8e-16 9.0e-16 2.2e-16 2.5e-16 8.3e-16 8.3e-16 8.3e-16
1.5e-15 1.3e-15 3.6e-16 7.2e-16 1.2e-15 1.2e-15 1.2e-15
2.0e-15 5.4e-15 6.4e-16 1.7e-15 2.4e-15 2.4e-15 2.4e-15
3.20914 3.92166 3.89031 3.88838 3.88834 3.88834 3.88834
3.20914 3.92166 3.92328 3.92086 3.92082 3.92082 3.92082
3.77856 4.26043 4.25261 4.25511 4.25501 4.25501 4.25501
7.70363 10.0889 9.94368 9.92834 9.92529 9.92529 9.92529
7.70363 10.1512 10.0227 9.99505 9.99258 9.99258 9.99258
9.06713 10.1512 10.3550 10.3244 10.3224 10.3224 10.3224
10.1377 11.2556 11.1198 11.1294 11.1278 11.1278 11.1278
10.1377 11.2556 11.1959 11.2148 11.2118 11.2118 11.2118
13.0817 11.3184 11.2961 11.3127 11.3093 11.3093 11.3093
13.0817 11.3184 11.5029 11.5306 11.5260 11.5260 11.5260
13.7726 15.8516 15.8954 15.8920 15.8856 15.8856 15.8856
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Table 4.7: Tetrahedron eigenvalues using FE basis functions of order p = 3.

Order of metric expansion k
0 1 2 3 4 5 6

-1.1e-14 -5.4e-15 -5.1e-15 -4.1e-15 -4.2e-15 -4.5e-15 -2.8e-15
-4.4e-15 -4.5e-15 -3.8e-15 -3.4e-15 -2.8e-15 -3.4e-15 -2.6e-15
-3.6e-15 -4.1e-15 -2.9e-15 -2.2e-15 -2.4e-15 -2.8e-15 -1.4e-15
-2.0e-15 -3.0e-15 -2.5e-15 -1.4e-15 -2.2e-15 -1.8e-15 -1.1e-15
-1.6e-15 -2.5e-15 -1.3e-15 -1.2e-15 -1.4e-15 -1.1e-15 -7.4e-16
-1.5e-15 -1.6e-15 -8.7e-16 -3.9e-16 -8.2e-16 -6.8e-16 -3.7e-16
-7.7e-16 -1.2e-15 -5.4e-16 -3.2e-16 -2.8e-16 -2.8e-16 -1.4e-16
-3.7e-16 -7.2e-16 -2.2e-16 3.3e-17 -2.5e-16 -4.2e-17 -3.7e-17
-2.2e-16 -5.5e-16 -3.0e-17 6.1e-17 -2.3e-16 4.4e-17 5.7e-18
2.6e-18 -3.4e-16 4.2e-17 1.1e-16 -8.5e-17 1.0e-16 5.9e-17
6.9e-17 -6.2e-17 1.6e-16 3.1e-16 8.1e-17 2.3e-16 6.8e-17
4.8e-16 8.9e-17 4.0e-16 7.0e-16 1.8e-16 5.6e-16 1.52e-16
8.7e-16 3.8e-16 4.7e-16 7.5e-16 5.0e-16 6.3e-16 3.16e-16
1.2e-15 4.8e-16 6.6e-16 1.0e-15 6.7e-16 9.5e-16 8.19e-16
1.7e-15 1.5e-15 1.2e-15 1.3e-15 1.5e-15 1.2e-15 1.61e-15
2.1e-15 1.9e-15 1.7e-15 1.9e-15 1.9e-15 2.0e-15 2.31e-15
2.8e-15 2.9e-15 2.0e-15 3.4e-15 2.8e-15 3.0e-15 3.76e-15
3.4e-15 5.0e-15 3.4e-15 3.6e-15 4.2e-15 3.7e-15 5.09e-15
5.2e-15 1.0e-14 3.8e-15 4.3e-15 6.9e-15 4.6e-15 6.87e-15
3.85914 4.00591 4.02690 4.02457 4.02491 4.02507 4.02507
3.85914 4.00591 4.03875 4.03927 4.03924 4.03940 4.03939
4.63812 4.41168 4.43079 4.42736 4.42748 4.42751 4.42751
7.69534 9.37035 9.30923 9.29498 9.28879 9.28847 9.28846
7.69534 10.1040 10.0715 10.0759 10.0753 10.0751 10.0751
7.99637 10.1040 10.1402 10.1490 10.1474 10.1474 10.1474
9.74354 10.2679 10.2203 10.2319 10.2307 10.2308 10.2308
9.74354 10.2679 10.3403 10.3345 10.3332 10.3327 10.3326
9.92180 11.0233 10.8660 10.8725 10.8648 10.8651 10.8651
10.0845 11.0233 11.0747 11.0845 11.0773 11.0775 11.0775
10.0845 11.7428 11.8666 11.8715 11.8693 11.8699 11.8698
15.1656 18.8665 18.5171 18.4602 18.4568 18.4575 18.4593
15.1656 18.8665 18.9623 18.9079 18.9000 18.9007 18.9023
15.2941 19.4149 19.4308 19.4237 19.4100 19.4110 19.4093
17.5062 19.9842 19.8279 19.8369 19.8351 19.8348 19.8349
17.5062 19.9842 20.0182 20.0396 20.0369 20.0371 20.0373
20.9928 21.2803 21.2784 21.2788 21.2689 21.2682 21.2664
20.9928 21.2803 21.5936 21.6249 21.6184 21.6171 21.6152
22.8766 23.3017 23.1930 23.2567 23.2497 23.2490 23.2495
25.1567 23.4416 23.9201 23.9452 23.9406 23.9412 23.9410
25.1567 25.0627 24.7550 24.7641 24.7562 24.7574 24.7577
26.2930 25.1496 25.0506 25.0263 25.0130 25.0150 25.0153
27.0736 25.1496 25.4559 25.3960 25.3818 25.3850 25.3855
27.0736 28.2898 28.0542 28.0351 28.0290 28.0308 28.0305
29.1468 28.2898 28.5514 28.5315 28.5248 28.5267 28.5264
36.0214 40.1133 39.9746 39.9499 39.9218 39.9121 39.9077
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Spherical Resonator

The main goal of the second example is to demonstrate the method on a curvilinear
domain, which has a smooth but nonpolynomial solution. Hence, the exact solu-
tion cannot be reached using a finite number of basis functions, and the expected
asymptotic convergence rate for the dominant eigenvalue is O(h2p). This is there-
fore ideal for the demonstration of convergence in terms of the metric expansion
order K and finite element basis order p. For these reasons, the eigenvalue problem
of a spherical cavity resonator has been chosen with perfect electrical conducting
boundaries and material properties of the vacuum. The model is represented by a
mesh of 2048 elements and elementwise third-order interpolated geometry mappings
(see Figure 4.5). In Figure 4.6, the relative error of the smallest nonzero eigenvalue

Figure 4.5: Boundary mesh of the unit sphere with third-order elements.

is shown with respect to the analytic solution. One can observe the convergence of
the eigenvalues by increasing the metric expansion order K for the different finite
element basis order p. In Figure 4.7, also the relative error of the first nonzero
eigenvalue is shown with respect to the analytic solution, but now versus the order
p of the finite element basis functions. The upper line corresponds to the solution
obtained by a straight-sided interpolation of the curvilinear geometry. As expected,
this solution does not converge when increasing the finite element basis order. All
the other curves correspond to the cases where third-order polynomial interpolation
is used for the curvilinear geometry and metric expansion of order K is applied.
The calculated convergence rates for the K = 6 cases are O(h2.19p) and O(h2.05p) for
orders p = 2 and p = 3, respectively. As expected, the solution does not change at
all after the representation limit (K = 2p for the mass matrix). However, the termi-
nation of the expansion is permissible at a much earlier point since the convergence
reached its asymptotic region. As predicted by the asymptotic limit in Section 4.3.1,
Figure 4.6 clearly shows that the expansion order K = p − 1 is sufficient for the
correct convergence rate.



Hierarchical Universal Matrices 95

0 1 2 3 4 5 6
Metric expansion order K

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
er

ro
r

p=1
p=2
p=3

Figure 4.6: Relative error of the smallest nonzero eigenvalue in terms of the metric
expansion order K. Parameter: FE basis order p.
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Figure 4.7: Relative error of the smallest nonzero eigenvalue in terms of the FE
basis order p. Geometry representation: straight-sided and polynomial third-order
tetrahedral mesh with metric expansion. Parameter: metric expansion of order K.
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Figure 4.8: Relative error of the dominant eigenvalue in terms of the metric order K
for the inhomogeneous µr and εr configurations. Parameter: FE basis order p.

Rectangular Resonator with Inhomogeneous Materials

The following example demonstrates the method for straight elements and inho-
mogeneous materials. The model is a rectangular cavity with linear dimensions of
1m× 2m× 3m bounded by perfect electrical conductors. The utilized mesh consists
of 1152 straight-sided elements. Two complementary sets of material properties are
considered. In the first case, only the permittivity is inhomogeneous

εr = (11 + 8 tanh (|r| − 0.2)) , µr = 1. (4.55)

In the second configuration, the material properties are interchanged

µr = (11 + 8 tanh (|r| − 0.2)) , εr = 1, (4.56)

resulting in a smooth inhomogeneous permeability distribution. In both cases, the
relative error of the dominant eigenvalue is calculated with respect to the solution
obtained via p = 4 orders of FE basis functions with K = 6 order metric expansion
on an additionally homogeneously refined mesh. The obtained relative errors are
shown in Figure 4.8. The asymptotic limit K = p− 1 is sufficient for both configu-
rations because the higher-order expansion orders do not improve on the solution.
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Figure 4.9: Side view of the mesh for a cylindrical resonator section with regular
(left) and non-regular (right) fourth-order elements.

Cylindrical Resonator

The following example concerns the calculation of a cylindrical resonator of radius
1 m with perfect electric conductor boundaries and material properties of the vac-
uum. Due to the sole interest in the dominant eigenvalue, the symmetries of the
dominant mode are utilized, modeling only the quarter geometry with a perfect
electrical and a perfect magnetic conducting boundaries at cylinder cross-sections.
The applied two different meshes are shown in Figure 4.9. The elements are curvi-
linear and interpolate the true geometry by fourth-order basis functions. The two
different mesh versions only differ in the locations of the higher-order nodes with a
regular and a slightly non-regular distribution, which affects the smoothness of the
geometry mappings. Figure 4.10 shows the relative error of the smallest nonzero
eigenvalue with respect to the analytic solution. The different curves correspond
to solutions of different FE orders p and to the regular and non-regular meshes of
Figure 4.9. One can observe convergence by increasing the metric expansion order.
As expected, the accuracy of the solution is not improved after reaching a certain
metric expansion order K determined by the representation limit (K = 2p − 2 for
the stiffness matrix). Moreover, a rapid convergence can be seen in the case of the
regular mesh where the geometry mappings are smoother. As it is predicted by the
theorems of Section 4.3.1, the expansion can be terminated at a much earlier stage
if the geometry representation and the finite element convergence have reached the
asymptotic region. The proposed asymptotic limit K = p− 1 is in good agreement
with the results of Figure 4.10 for the case of the regular mesh.
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Figure 4.10: Relative error of the dominant eigenvalue in terms of the metric expan-
sion order K. Parameter: FE basis order p, applied to the regularized (reg.) and
non-regularized (non-reg.) higher-order mesh.

Cylindrical Cavity with Corrugated Post

The purpose of the last example is to qualitatively demonstrate the method on a
geometry that can be used for real-life applications. Therefore, a cylindrical cavity,
which includes a conducting post in the middle, is chosen. Such structures are used
to design tunable waveguide filters [CMPR98] and resonators [LM07]. The initial
geometry is an empty metallic cylinder with a radius of 30 mm and height of 86 mm,
which is loaded with a post of varying diameter (see Figure 4.11). The three differ-
ent sections have radii of 10 mm, 5 mm, and 10 mm and a height of 25 mm, 15 mm,
and 25 mm, respectively. All metallic surfaces are perfect electric conductors, and
the interior domain is vacuum. The geometry and the measurement results are
taken from [LM07], as well as the reference results using Mode Matching (MM) and
the Finite Difference Time Domain (FDTD) methods. In addition, Ansys HFSS
Version 12.0 is used to obtain reference finite element solutions utilizing curvilinear
elements with p = 3 order finite element basis functions. In the proposed implemen-
tation, curvilinear elements are applied with basis functions of order p = 3 as well as
metric expansion order K = 6. The number of unknowns is 19248 in the proposed
method and 22374 in the case of the HFSS solution. The resonance frequencies are
provided in Table 4.8. Despite the relatively low number of unknowns, the proposed
method shows a good agreement with the reference solutions and measurements.
Note that this comparison only produces qualitative information. This is due to the
fact that the approximation of the solution also depends on the mesh quality and
the representation of the curvilinear geometry.
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(a) (b)

Figure 4.11: Mesh of the cylindrical cavity with a corrugated post.

Table 4.8: Resonance frequency comparison of the resonator in Fig. 4.11.

fr [GHz]

MM [LM07] FDTD [LM07] HFSS FEM Proposed Measurements [LM07]

2.976 2.969 2.968 2.977 2.970

4.169 4.149 4.155 4.166 4.153

5.010 5.008 5.005 5.010 4.990

5.840 5.838 5.834 5.839 5.820

6.862 6.864 6.861 6.862 6.830

7.007 7.001 7.000 7.003 7.004

7.483 7.499 7.485 7.478 7.475
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4.4 Universal Matrices for Sensitivity Analysis

Sensitivity analysis plays an important role in the design process of microwave de-
vices. It tells how the solutions are affected by small changes in a given variable
or design parameter. A typical application is to incorporate the sensitivity values
into the optimization process or to investigate the effect of minor deviations in the
parameters, such as in the case of manufacturing errors. Generally, the first step is
to obtain the derivatives of the FE equation system with respect to the desired de-
sign variables. All quantities of the equation system can be sorted into two groups.
The first group consists of the known matrices and excitation vectors, and the sec-
ond group consists of the unknown solution vectors. To express and calculate the
derivatives of the solution vectors, the calculations of the FE matrices and excitation
vectors, as well as their derivatives, are necessary. In this section, the previously de-
scribed eigenvalue problem is considered for sensitivity analysis. This section shows
how the hierarchical universal matrices can be used for the calculation of the deriva-
tive matrices, which are required for the calculation of eigenvalue derivatives. The
determination of the derivative eigenvectors also requires the same matrices [Nel76].
However, the solution process differs for eigenvectors with eigenvalues of different
multiplicity [Dai89]. Moreover, even the multiplicity of the derivative of the eigen-
values effects the solution process [ATMM07]. Hence, only eigenvalue sensitivities
of a single multiplicity are considered to avoid technical complications.

Let us begin with the algebraic eigenvalue problem of (4.3) with a given eigenpair
(xi, λi) of eigenvector xi and eigenvalue λi. Provided that µr, εr ∈ R+ are real
symmetric matrices, S and T become positive definite. Furthermore, an arbitrarily
chosen design parameter is denoted by τ ∈ R, which smoothly parametrizes both
the eigenpair (xi, λi) and the finite element matrices. First, the derivative of (4.3)
is calculated with respect to τ and then left multiplied by xT

i :[
xT
i

∂

∂τ

]
(S − λiT )xi = 0, (4.57)

xT
i

(
∂

∂τ
S −

(
∂

∂τ
λi

)
T − λi

∂

∂τ
T

)
xi + xT

i (S − λiT )
∂xi

∂τ
= 0. (4.58)

Here, the term

xT
i (S − λiT ) = 0T (4.59)

becomes zero due to the definition of the eigenvector. Therefore, with the help of
the normalization

xT
i Txi = I (4.60)

and (4.59), (4.58) can be simplified, and the derivative of the eigenvalue is expressed
as

∂

∂τ
λi = xT

i

(
∂

∂τ
S − λi

∂

∂τ
T

)
xi. (4.61)
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Thus, the sensitivity analysis requires the considered eigenpair (λi,xi) as well as the
matrix derivatives ∂

∂τ
S and ∂

∂τ
T . Let us consider the calculation of the hierarchical

matrices Smn (4.44a) and Tmn (4.44b), which are block matrices of the element
matrices. Since the integrals are performed over the reference element, the basis
functions ŵa

m ∈ (Pm)
3 and ŵb

n ∈ (Pn)
3 with m + n ≤ 2p are independent of the

geometry and the material properties thus also of τ . Hence, the τ -derivatives of the
matrices (4.44) read

∂

∂τ
[Smn]ab =

∫
Ω̂e

∇̂ × ŵa
m ·
(

∂

∂τ
Λ̂

2
)
∇̂ × ŵb

ndr̂, (4.62a)

∂

∂τ
[Tmn]ab =

∫
Ω̂e

ŵa
m ·
(

∂

∂τ
Λ̂

1
)
ŵb

ndr̂, (4.62b)

where only the metric term can be dependent of τ . The structure of (4.62) implies
that ∂

∂τ
S and ∂

∂τ
T may also be constructed from UMs. The procedure becomes the

same as for the original metric expansion but with a different metric term. The
polynomial expansion of ∂

∂τ
Λ(·) in terms of blk basis functions reads

∂

∂τ
Λ̂(·)(τ, r̂) =

K∑
k=0

L(k)∑
l=1

(
∂

∂τ
Λ̂

(·)
kl (τ)

)
blk(r̂), (4.63)

where the derivative coefficients are calculated via the scalar product

∂

∂τ
Λ̂

(·)
kl =

∫
Ω̂e

(
∂

∂τ
Λ̂(·)

)
blk(r̂)dr̂. (4.64)

The substitution of the series expansion (4.63) for (4.62) leads to a polynomial
representation, which allows for analytical integration. Because the only difference
from the regular matrix calculation is the different metric coefficients, the same
universal matrices and calculation procedure can be used with the derivative metric
coefficients

∂

∂τ
Smn =

m+n−2∑
k=0

L(k)∑
l=1

∑
i,j

[
∂

∂τ
Λ̂

2

kl

]
ij

Smnk
ijl , (4.65a)

∂

∂τ
Tmn =

m+n∑
k=0

L(k)∑
l=1

∑
i,j

[
∂

∂τ
Λ̂

1

kl

]
ij

Tmnk
ijl . (4.65b)

Due to the same universal matrices, the computation cost of this evaluation is the
same as in the regular case (see Section 4.3.3). Moreover, the same asymptotic
(lower) limit, K = p−1, and representation (upper) limit, K = m+n−2 for ∂

∂τ
Smn

and K = m+ n for ∂
∂τ
Tmn, applies to the derivative metric expansion.
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4.4.1 Calculation of Metric Derivatives

The remaining question is how to obtain the exact derivatives of the metric terms,
which are the subject of the expansion (4.63) and required in (4.64). Let the geome-

try be described by H1 interpolatory FE basis functions Li(r̂) ∈ V̂p = Pp, using the
parameter-dependent locations of the element nodes ri(τ) as interpolation points.
Denoting the matrix of node coordinates by R(τ) and the vector of basis functions

by L(r̂), the geometry mapping of an element gp ∈ (V̂p)
3 takes the form

r = gp(τ, r̂) =
∑
i

ri(τ)Li(r̂) = R(τ)L(r̂). (4.66)

Thus, the derivative of the Jacobian reads

∂

∂τ
J =

∂

∂τ
∇̂gT =

[
∇̂LT

] [ ∂

∂τ
RT

]
. (4.67)

Utilizing Jacobi’s rule and the product rule, the derivatives of the metric tensors Λ̂
1

and Λ̂
2
are obtained by

∂

∂τ
Λ̂

1
= Λ̂

1
tr

[
J−1 ∂

∂τ
J

]
− det (J)

(
J−T ∂J

T

∂τ
J−T (εr ◦ g)J−1

)
− det (J)

(
J−T (εr ◦ g)J−1∂J

∂τ
J−1

)
+ det (J)J−T ∂

∂τ
(εr ◦ g)J−1, (4.68a)

∂

∂τ
Λ̂

2
= det (J)−1

(
∂J

∂τ

(
µ−1

r ◦ g
)
JT + J

(
µ−1

r ◦ g
) ∂JT

∂τ

)
− Λ̂

2
tr

[
J−1 ∂

∂τ
J

]
+ det (J)−1 J

∂

∂τ

(
µ−1

r ◦ g
)
JT . (4.68b)

The advantage of the previous form (4.68) with (4.67) is that the metric derivatives
can be formulated for arbitrary parametrizations. As an input, only the derivatives
of the nodal interpolation locations are required in (4.67) with respect to the param-
eter. Note that all involved terms are 3× 3 matrices. Therefore, the computational
cost is relatively low. In order to speed up the evaluation of J or ∂

∂τ
J in some

quadrature locations, a precalculated set of L(r̂) and ∇̂LT can be stored on the
typical numerical integration locations.
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4.4.2 Numerical Example

The following example features an empty spherical resonator placed at the center of
the coordinate system and terminated by perfect electric conductor boundaries. The
nominal radius is 1 m, and the nominal coordinate vector of the domain is denoted
by r̃. The coordinate vector r of the parameterized sphere smoothly depends on a
parameter τ and the nominal coordinate vector

r(τ) = (1 + τ)r̃, |r̃| ≤ 1. (4.69)

Thus, the interpolation nodes determining the nominal geometry depend also on the
parameter via (4.69). This can be considered as a proportional radial contraction
or expansion of the sphere. The goal is to compute the sensitivity of the smallest
nonzero eigenvalue with respect to τ . To avoid technicalities with higher-multiplicity
eigenvalues, only one-quarter of the structure is modeled. Thereby, perfect mag-
netic conductor boundary conditions are applied on the two cross-sections due to
the symmetry of the mode. The structure is discretized into 512 tetrahedra using el-
ementwise third-order polynomial interpolation for the curvilinear boundaries. The
reference values are obtained from analytical calculations [Har01].

Figure 4.12 shows the relative error in the sensitivity of the dominant eigenvalue at
the τ = 0 location of the parameter space. It can be seen that straight tetrahedral
elements are not sufficient and it is necessary to use curvilinear elements and an
appropriate approximation order for the metric tensors and their derivatives. Fig-
ure 4.13 showcases the same data as Figure 4.12 but in terms of the metric expansion
order instead of the finite element order. As expected, increasing the metric expan-
sion beyond a finite element specific limit does not change the solution and the error
remains unchanged. From the properties of the universal matrices it is known that
the metric representation (K = 2p − 2 for the stiffness matrix) provides this sharp
upper limit.

For smooth fields, the asymptotic convergence rate of the eigenvalue sensitivity ∂
∂τ
λi

is expected to be O(h2p). The rates obtained for metric expansion order K = 6
are of order O(h2.04p) and O(h2.07p) when the p = 1 order error is compared to the
p = 2 and p = 3 cases. Since the geometry representation and the finite element
convergence have reached their asymptotic region, the asymptotic limit K = p − 1
of the metric expansion is sufficient. Figure 4.13 clearly demonstrates that above
these limits, the error may change slightly but should not affect the convergence
rates.

Note how similarly the proposed method works for the ordinary eigenvalue problem
and eigenvalue sensitivity calculations. The obtained convergence curves show an
excellent agreement in tendency with Figure 4.6 and Figure 4.7, where only the
convergence of the eigenvalue is investigated.
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Figure 4.12: Relative sensitivity error of the smallest nonzero eigenvalue in terms
of the FE basis order p. Geometry representation: straight-sided and polynomial
third-order tetrahedral mesh with metric expansion. Parameter: metric expansion
of order K.
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Figure 4.13: Relative sensitivity error of the smallest nonzero eigenvalue in terms of
the metric expansion order K. Parameter: order of FE basis functions p.
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4.5 Summary

This chapter presents a new calculation scheme for curvilinear finite element matri-
ces. The method is based on a polynomial expansion of the material- and geometry-
dependent metric terms of the finite element matrices, allowing the construction of
universal matrices. For this purpose, a new set of hierarchical and pairwise orthonor-
mal polynomials are developed that reflect the topological symmetries of arbitrary
tetrahedra. As an outcome, the element matrices can be calculated efficiently by
scaled matrix additions of the precalculated universal matrices. Based on the com-
plexity analysis, the proposed method is more efficient than competing approaches.
The unique feature is a proven upper representation limit for the required order of
expansion and universal matrices. Hence, a finite number of universal matrices is
sufficient for the exact calculation of the element matrices. Moreover, if the finite
element convergence is in the asymptotic region, it is permissible to terminate the
metric expansion and the number of universal matrices at a well-defined earlier point
than the representation limit. These lower and upper limits are unique features of
the proposed method and provide reliable and efficient calculations.
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Chapter 5

A New Set of H (div)-Conforming
Basis Functions for Tetrahedra

H(div)-conforming elements have a wide range of applications. In electromagnet-
ics, they are commonly used for integral equation based methods [Bot06, CZZ+15,
PYA18] and finite elements [Néd80]. There are many applications in mechanics, fluid
dynamics [Néd80, Néd86], and in acoustic field modeling [Gev88], [Jen07], [KK15].
In these fields, the H(div)-conforming elements are commonly used by mixed finite
element methods [BF12, LAH09, WXY12, CDF+16].

There are two main types of bases in the literature. The first type is the interpola-
tory basis, where the coefficients represent the field values at specified interpolation
locations. The second type is the hierarchical basis, where the order can be in-
creased by including higher incremental order functions and allows heterogeneous
basis function orders within the same mesh. However, the constant coefficients of
the basis functions are no longer the field values. In the present work, hierarchical
bases are preferred due to their efficient application in hp-adaptive schemes [AP02]
and multilevel solvers [AFW97, Hip97]. Moreover, the proposed metric expansion
and universal matrix schemes (Chapter 4) are directly applicable to polynomial basis
functions over the reference tetrahedron.

The two best known H(div)-conforming tetrahedral elements in the electromag-
netic community are the complete-order [Néd86] and mixed-order Nédélec elements
[Néd80]. These elements are also referred to as Brezzi-Douglas-Marini and Raviart-
Thomas elements [BF12]. In [SWG84], a mixed first-order basis was given for tetra-
hedra, which is equivalent to the first-order Raviart-Thomas element [RT77]. Later
on, Coyle and Ainsworth [AC03] as well as Zaglmayr [Zag06] developed higher-order
hierarchical bases for the complete-order case with explicitly given functions. Both
bases are constructed from orthogonal polynomials to maintain linear independence
and reduce the condition number of the mass matrix. However, the orthogonality
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of the specified functions only holds on the reference domain, and it is not guar-
anteed for arbitrary mesh deformations. In [Bot07], Botha presented hierarchical
bases for both complete- and mixed-order cases. The common property of the bases
of Botha and Zaglmayr is that the functions are partitioned according to the null
space of the divergence operator. Similar functions have been presented for the
H(curl)-conforming case in [Web99], [SLC01], and [Ing06]. These partitionings are
advantageous for some solvers and preconditioners, such as [AFW97], [Hip97], and
[HX07], because they require the decomposition of the basis with respect to the ker-
nel of the divergence operator. Moreover, a higher level of sparsity can be obtained
for the stiffness matrices. The disadvantage of Botha’s bases is the high condition
number of the Gram matrix. Graglia and Peterson followed an alternative approach
and proposed a basis [GP12] for the mixed-order case, which does not span exactly
the same space as Nédélec. Their functions cannot be partitioned according to the
null space; however, they provide significantly better condition numbers compared
to Botha and Zaglmayr. This property is obtained by orthogonalizing the functions
on a regular tetrahedron and using special weighting factors.

The present work aims at developing a polynomial basis that produces sparse el-
ement matrices with low condition numbers for arbitrary straight-sided tetrahedra
and provides a fast yet accurate calculation procedure for the finite element ma-
trices. The proposed basis is hierarchical, spans the mixed-order space of Nédélec,
and the higher-order functions are partitioned according to the null space of the di-
vergence operator. The orthogonality of the basis with respect to the interpolation
operator results in a hierarchical interpolation scheme and leads to general orthog-
onality properties over arbitrary straight-sided tetrahedra. The condition numbers
are reduced by an additional orthogonalization step over a given, regular tetrahe-
dron. As a result, the element matrices are sparse, and the higher-order region of the
stiffness matrix contains nonzero elements only at the diagonal. A short comparison
of properties for some available, explicitly given, and hierarchical H(div) bases is
provided in Table 5.1.

Table 5.1: A short comparison of some hierarchical H(div) bases for tetrahedra.

Zaglmayr Botha Graglia-Peterson Proposed

[Zag06] [Bot07] [GP12]

Order complete both mixed mixed

Subspace division ✓ ✓ × ✓

Orthogonality fixed shape × fixed shape arbitrary shape
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5.1 The Proposed Family of Basis

The present approach is inspired by theH(curl) basis of Ingelström [Ing06]. The aim
is to achieve similar orthogonal properties with respect to the H(div) interpolation
operator

πd
pdq = 0, ∀dq ∈ Dq and q > p, (5.1)

as for the H(curl) case in (2.120). Hence, the following hierarchical decomposition
is considered:

Dp = D̃1 ⊕ ...⊕ D̃p, (5.2)

where D̃p denotes the incremental space of order p. The goal is to reuse the range
space functions in Ap for the construction of null space functions in the H(div)-
conforming case as ∇×Ap ⊂ Dp. Therefore, each incremental space is decomposed
as

D̃1 = F̃1, (5.3a)

D̃p = F̃p ⊕∇× Ãp, for p > 1. (5.3b)

The first-order case deserves special treatment because F̃1 already includes ∇×Ã1.
This is inevitable since there is no other way to maintain the continuity of normal
components at the boundaries [Bot07], similarly to the Whitney functions in the
H(curl,Ω)-conforming case [Web99]. However, there are hierarchical subsets of
functions in the higher-order case that form a basis for the higher-order null space
∇ × Ãp of the divergence operator. Hence, except for the first-order case, it is

sufficient to have basis functions for Ṽp, Ãp, and F̃p with the same hierarchical and
orthogonal properties. With these functions, not only the sequence of higher-order
approximation spaces becomes complete,

Ṽp
∇−−−→ Ãp ⊕∇Ṽp

∇×−−−→ F̃p ⊕∇× Ãp
∇·−−−→ ∇ · F̃p for p > 1, (5.4)

but the actual basis functions themselves show a sequence for the de Rham com-
plex. Moreover, in each space, the corresponding basis functions show the same
hierarchical and orthogonality properties with respect to the interpolation operator
and provide the same hierarchical interpolation scheme as (2.122). Based on the
two different types of finite element moments (2.114), namely face and volume, the
subspaces can be furthermore divided into

F̃1 = F̃f
1 , (5.5a)

F̃p = F̃v
p , for p > 1, (5.5b)

∇× Ãp = ∇× Ãf
p ⊕∇× Ãv

p, for p > 1. (5.5c)
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Here, F̃f
1 is the first-order face-associated function space, and F̃v

p is the higher-order

volume-associated space with the dimensions of dim{F̃f
1 } = 4 and dim{F̃v

p } = p(p+

1)/2, respectively [Bot07]. Moreover, ∇× Ãf
p is the face- and ∇× Ãv

p the volume-

associated divergence-free subspace with the dimensions of dim{∇× Ãf
p} = 4p and

dim{∇×Ãv
p} = p(p−2), respectively [Ing06]. The proposed set of basis functions for

the space F̃v
p is shown in Table 5.2 in terms of barycentric coordinates (see Section

2.6). From (5.1), the resulting orthogonality properties for the inner products of
functions dp ∈ Dp and dq ∈ Dq are∫

Ωe

∇ · dp∇ · dq dr = 0, | p− q |> 0, (5.6a)

∫
Ωe

dp · dq dr = 0, | p− q |> 2, (5.6b)

that apply for arbitrary straight-sided elements Ωe. The orthogonality relations with
respect to a scalar polynomial function fp ∈ Pp of order p are∫

Ωe

fp∇ · dq dr = 0, q > p+ 1, (5.7a)

∫
Ωe

∇fp · dq dr = 0, q > p+ 1. (5.7b)

The proofs of these relationships are provided in Appendix B.2. Moreover, there
is a way to achieve an even higher level of orthogonality. It is possible to take
any linear combination of the functions in the same subspace because it is also
orthogonal with respect to the interpolation operator. First, the functions f p ∈
F̃v

p are ordered into matrices F v
p = [f 1

p,f
2
p . . . ]. To avoid misunderstandings, the

ordering of the functions is the same as shown in Table 5.2. It is then permissible
to choose alternative bases as

F v
p,ort = [f 1

p,ort,f
2
p,ort . . . ], (5.8)

that are obtained by linear combinations

F v
p,ort = F v

pC
Fv
p , (5.9)

with invertible matricesCFv
p . These matrices are chosen such that the corresponding

stiffness matrices over the regular equilateral tetrahedron Ωreg with unit-length edges
are∫

Ωreg

(∇ · F v
p,ort)

T (∇ · F v
p,ort) dr =

3√
2
I, p > 1, (5.10)
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where I is an identity matrix. Because the remaining functions are null space
functions, the higher-order stiffness matrix contains only elements at the diagonal
for any other straight-sided elements. Such CFv

p matrices are given for the orders
p = 2, p = 3, and p = 4 in Appendix B.3, Tables B.1, B.2, and B.3.

A similar procedure can be performed on the null space functions associated with the
face or volume (see (2.119)). In this case, no additional orthogonality can be achieved
on arbitrarily deformed elements. However, it is possible to lower the condition
number of the mass matrix by orthogonalizing the functions of the same subspaces
over a fixed domain. The chosen domain is the regular equilateral tetrahedron Ωreg

with unit-length edges. First, the basis functions in Table 2.2 that are associated
to the volume wv

p ∈ Ãv
p are ordered into matrices Av

p. Second, the functions in
Table 2.2 that are associated with a given face and belong to a specific incremental
order wf

p ∈ Ãf
p are ordered into matrices Af

p . Then, the sets of H(div) null space
basis functions that are associated to a given face or volume are stored in the matrices

∇×A(·)
p = [∇×w(·),1

p ,∇×w(·),2
p , . . . ], for (·) ∈ {f, v}. (5.11)

In all cases, the ordering of functions within the matrices is the same as in Table 2.2.
Furthermore, corresponding alternative sets of basis functions can also be stored in
matrices

∇×A
(·)
p,ort = [∇×w

(·),1
p,ort,∇×w

(·),2
p,ort . . . ], for (·) ∈ {f, v}, (5.12)

that are obtained as linear combinations with coefficient matrices CAf
p and CAv

p :

∇×Af
p,ort = ∇×Af

pC
Af
p , (5.13a)

∇×Av
p,ort = ∇×Av

pC
Av
p . (5.13b)

In the present case, the additional freedom of coefficient matrices is used to achieve
the desired orthogonality∫

Ωreg

(∇×A
(·)
p,ort)

T (∇×A
(·)
p,ort) dr = D, p > 1, (5.14)

where D is a diagonal matrix. Note that the orthogonalization matrices CAf
p are the

same for the same sets of functions associated with different faces due to symmetry.
Therefore, the calculation of CAf

p matrices is only required for functions associated
with a given face and can also be used for the other face associated functions.

The details of the orthogonalization procedure are given in Appendix B.3. In the
case of face-associated functions, the coefficient matrices CAf

p for the orders p = 2,
p = 3, and p = 4 are provided in Tables B.4, B.5, and B.7, respectively. In case of
the volume-associated functions, the coefficient matrices CAv

p for the orders p = 3
and p = 4 are provided in Tables B.6 and B.8, respectively.
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Table 5.2: Basis functions for the approximation space F̃p.

F̃p Association Basis functions

1 face ijk f ijk
1 =φi∇φj ×∇φk+

φj∇φk ×∇φi+

φk∇φi ×∇φj

2 volume ijkl f ijkl
2 = 3φif

jkl
1 ,

f jikl
2 ,

fkijl
2

3 volume ijkl f ijkl
2 (2φj − φi)− f jikl

2 (2φi − φj),

f jikl
2 (2φk − φj)− fkijl

2 (2φj − φk),

fkijl
2 (2φl − φk)− f lijk

2 (2φk − φl),

f lijk
2 (2φi − φl)− f ijkl

2 (2φl − φi),

f ijkl
2 (2φk − φi) + fkijl

2 (2φi − φk),

f jikl
2 (2φl − φj) + f lijk

2 (2φj − φl)

4 volume ijkl f ijkl
2 (6φiφj − 3φ2

j − φ2
i )+

f jikl
2 (6φiφj − 3φ2

i − φ2
j),

f jikl
2 (6φjφk − 3φ2

k − φ2
j)+

fkijl
2 (6φjφk − 3φ2

j − φ2
k),

fkijl
2 (6φkφl − 3φ2

l − φ2
k)+

f lijk
2 (6φkφl − 3φ2

k − φ2
l ),

f lijk
2 (6φlφi − 3φ2

i − φ2
l )+

f ijkl
2 (6φlφi − 3φ2

l − φ2
i ),

f ijkl
2 (6φiφk − 3φ2

k − φ2
i )−

fkijl
2 (6φiφk − 3φ2

i − φ2
k),

f jikl
2 (6φjφl − 3φ2

l − φ2
j)−

f lijk
2 (6φjφl − 3φ2

j − φ2
l ),

φif
jkl
1 (28φ2

i − 21φi + 3),

φjf
ikl
1 (28φ2

j − 21φj + 3),

φkf
ijl
1 (28φ2

k − 21φk + 3),

φlf
ijk
1 (28φ2

l − 21φl + 3)
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5.2 Application of Basis Functions

As an example, the acoustic vector wave equation [Jen07] is chosen over a domain
Ω with homogeneous Dirichlet boundary conditions on the boundary ΓD and homo-
geneous Neumann boundary conditions on ΓN :

ρ
∂2u

∂t2
−∇λL∇ · u = f , on Ω, (5.15a)

n · u = 0, on ΓD, (5.15b)

∇ · u = 0, on ΓN . (5.15c)

Here, u is the displacement vector, ρ is the material density, λL is the Lamé coef-
ficient, and f is the excitation vector. The notation n stands for the unit normal
vector on ΓD. In the case of homogeneous anisotropic material properties and time-
harmonic fields, the corresponding eigenvalue problem of (5.15a) reads

λρu−∇λL∇ · u = 0, (5.16)

where u is the eigenfunction and λ is the associated eigenvalue. Using the Galerkin
approach, the weak formulation of the problem becomes [Bot07]

λ

∫
Ω

u · (ρd) dr −
∫
Ω

∇ · u (λL∇ · d) dr = 0, (5.17)

where u and the test functions d are in the space of H(div,Ω) and satisfy the
essential boundary condition (5.15b). The finite element discretization with basis
functions da ∈ Dp and db ∈ Dp leads to a generalized algebraic eigenvalue problem

(S − λT )x = 0 (5.18)

with an eigenvalue λ and the associated eigenvector x. The mass matrix T and
the stiffness matrix S are obtained by the assembly of the corresponding element
matrices

[T e]ab =

∫
Ωe

da · (ρdb) dr, (5.19a)

[Se]ab =

∫
Ωe

∇ · da (λL∇ · db) dr. (5.19b)

Here, one can make use of the hierarchical property of the proposed functions. As
in the case of H(curl,Ω) matrices, hierarchical block matrices Tmn and Smn can be

constructed using basis functions da
m ∈ D̃m of order m ≤ p and db

n ∈ D̃n of order
n ≤ p,

Se =

S11 S12 . . .

S21 S22 . . .
...

...
. . .

 , T e =

T 11 T 12 . . .

T 21 T 22 . . .
...

...
. . .

 . (5.20)
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Moreover, applying the appropriate function mappings (2.61c) and (2.61d), the cal-

culation can be performed over the reference element Ω̂e:

(5.21a)

[Tmn]ab =

∫
Ωe

da
m · (ρdb

n) dr =

∫
Ω̂e

d̂
a

m · Λ̂
2
d̂

b

n dr̂, (5.21b)

[Smn]ab =

∫
Ωe

∇ · da
m(λL∇ · db

n) dr =

∫
Ω̂e

∇̂ · d̂
a

m Λ̂3 ∇̂ · d̂
b

ndr̂. (5.21c)

Here, the metric terms Λ̂
2
and Λ̂3 include the effect of the function mappings (2.61c)

and (2.61d) as well as the volume element (2.72):

Λ̂
2
= det(J)−1JρJT , (5.22a)

Λ̂3 = det(J)−1λL. (5.22b)

These metrics become constant matrices for straight-sided elements and elementwise
inhomogeneous materials, and the integration can be performed analytically. How-
ever, in the case of curvilinear geometries, the metric is a rational tensor function,
and exact evaluation is not possible.

5.2.1 Hierarchical Universal Matrices

For the efficient calculation of the finite element matrices, hierarchical metric ex-
pansions (Section 4.2) and hierarchical universal matrices (Section 4.3) are applied.
In the present case, the Kth-order metric expansions read

Λ̂
2
(r̂) =

K∑
k=0

L(k)∑
l=1

Λ̂
2

klb
l
k(r̂), r̂ ∈ Ω̂e, (5.23)

Λ̂3(r̂) =
K∑
k=0

L(k)∑
l=1

Λ̂3
klb

l
k(r̂), r̂ ∈ Ω̂e, (5.24)

where L(k) is the number of homogeneous polynomials of order k and l is the
index of the hierarchical orthonormal basis function blk within the incremental order.

Moreover, Λ̂
2

kl denotes the constant 3 × 3 matrix coefficients and Λ̂3
kl denotes the

constant scalar coefficients of the metric expansion. The determination of these
coefficients is done by evaluating the scalar products∫

Ω̂e

Λ̂
2
(r̂)blkdr̂ = Λ̂

2

kl, (5.25a)
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∫
Ω̂e

Λ̂3(r̂)blkdr̂ = Λ̂3
kl. (5.25b)

These integrals are evaluated numerically by a quadrature rule capable of integrat-
ing polynomials of order 2K at minimum. Because the polynomial orders of basis
functions within the mass and stiffness matrices are identical to the H(curl) case in
Section 4.3.2, the same theories apply to the present case. Therefore, the H(div,Ω)
hierarchical universal matrices are obtained by

[Smnk
l ]ab =

∫
Ω̂e

∇̂ · d̂
a

mb
l
k∇̂ · d̂

b

ndr̂, (5.26a)

[Tmnk
ijl ]ab =

∫
Ω̂e

[
d̂

a

m

]
i
blk

[
d̂

b

n

]
j
dr̂, (5.26b)

where i, j ∈ {1, 2, 3} denote the indices for the different vector components. Due to
the same metric representation limit (4.46), a finite number of universal matrices is
sufficient for the exact calculation. Hence, the calculation of the hierarchic element
matrices reads

Smn =
m+n−2∑
k=0

L(k)∑
l=1

Λ̂3
klS

mnk
l , (5.27a)

Tmn =
m+n∑
k=0

L(k)∑
l=1

∑
ij

[
Λ̂

2

kl

]
ij
Tmnk

ijl . (5.27b)

Moreover, similarly to the H(curl,Ω) case in Section 4.3.1, all integrals schemes
are specific subcases of the investigated general product (3.91). Therefore, in the
asymptotic region of the geometry error convergence, the general estimate of the
metric truncation error (3.108) applies. The application of (3.108) for the initial
problem (5.17) leads to the metric truncation error

ϵK ≤ ChK+1

(
∥u∥L2(Ωe)

∥ρ∥K+1,∞,Ωe
+ ∥∇ · u∥L2(Ωe)

∥λL∥K+1,∞,Ωe

)
, (5.28a)

ϵK ≤ ChK+1 ∥u∥H(div,Ωe)

(
∥ρ∥K+1,∞,Ωe

+ ∥λL∥K+1,∞,Ωe

)
, (5.28b)

where C is a positive constant independent of K and h and u is the exact field
approximated by the finite element. Thus, if the expected convergence rate of the
finite element inH(div)-norm is O(hp), the sufficient asymptotic limit for the metric
expansion order is

K = p− 1. (5.29)

However, if the convergence of the geometry error or the solution is not in the
asymptotic region, the metric expansion order may need to be increased until the
metric representation limits (4.37) (see Section 4.3.1 and Section 3.1.7).
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5.2.2 Numerical Examples

In this section, some numerical results are presented for the validation of the pro-
posed bases. The proposed functions lead to four cases based on the combinations
of subspaces with different orthogonality properties:

� Range space functions f (Table 5.2) and null space functions∇×w (Table 2.2).

� Range space functions f (Table 5.2) and orthogonalized null space functions
∇×wort (orthogonalized face- and volume-associated functions (5.12)).

� Orthogonalized range space functions f ort (orthogonalized volume-associated
functions (5.8)) and null space functions ∇×w (Table 2.2).

� Orthogonalized range space functions f ort (orthogonalized volume-associated
functions (5.8)) and orthogonalized null space functions ∇×wort (orthogonal-
ized face- and volume-associated functions (5.12)).

Since these different basis functions span the same space, they only differ in their
numerical properties. Therefore, a comparison is given for the numerical properties
with respect to other basis functions from the literature.

Straight-Sided Tetrahedron

First, a single straight-sided tetrahedron is chosen to show the advantage of the
presented bases. For arbitrary affine geometry mappings, the sparsity pattern of the
mass and stiffness matrix is shown in Figure 5.1 for the cases when the functions of
both subspaces are either orthogonalized (f ort,∇×wort) or not (f ,∇×w). Here,
the stiffness matrix becomes block diagonal or even diagonal in the orthogonalized
case for the higher-order functions. On the other hand, the mass matrix is less
sparse in the orthogonalized case, but the condition number is significantly lower.
In order to obtain a fair comparison with other bases, the calculation of the con-
dition numbers is performed for the element mass matrices after diagonal scaling.
In Figure 5.2, these condition numbers are shown in terms of the basis function
order p for all combinations of the bases. The geometry is chosen to be a regular
tetrahedron with unit-length edges for which the Graglia-Peterson basis is consid-
ered state-of-the-art in terms of the condition number. It can be seen that the fully
orthogonalized version of the proposed bases performs the best in the higher-order
case. Moreover, the growth of the condition number is not significantly changed for
the different deformations of the regular tetrahedron. This can be seen in Figure 5.3
for a reference tetrahedron with nodes of (0,0,0), (1,0,0), (0,1,0), and (0,0,1) and in
Figure 5.4 for a test tetrahedron with nodes of (0,0,0), (1,2,3), (-1,2,-1), and (-3,0,2).
One can also compare the condition numbers to the basis of Zaglmayr and Botha.
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(d) Mass matrix with fort and ∇×wort

Figure 5.1: Sparsity patterns of the fourth-order H(div) bases.

It is clear from Table 5.3 that the presented orthogonalized basis not just possesses
the advantageous properties of the previous bases but also has the strongest lin-
ear independence. As the order of basis functions becomes higher, this basis can
maintain a reasonable condition number on arbitrary geometries.

Moreover, Beuchler, Pillwein, and Zaglmayr suggest the usage of static condensa-
tion with higher-order basis functions, where the condition number of the volume-
associated functions is of great importance [BPZ12]. They developed a new, high-
order basis [BPZ12] using weighted Jacobi polynomials and used tensor product
construction on the reference tetrahedron. Their functions produce low condition
numbers and high sparsity for the mass matrix of the volume-associated functions
T v. Moreover, their stiffness matrix for the higher-order volume-associated func-
tions Sv is purely diagonal, which is similar to the present case. In [BPZ12], it is
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suggested that the practically achieved condition number of the matrix (T v + Sv)
should be considered with diagonal preconditioning. To compare the present work,
the test tetrahedron with the nodes of (0,0,0), (0.315,0.632,0.158), (1.5,0,0), and
(0,0,1) is used as suggested in [BPZ12, BPZ10]. The resulting condition numbers
for different p orders of basis functions are shown in Table 5.4. It can be seen that
proposed orthogonalized basis performs the best for the investigated orders.
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Figure 5.2: Condition number of the normalized mass matrix for the regular tetra-
hedron with unit length edges.
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Figure 5.3: Condition number of the normalized mass matrix for a reference tetra-
hedron with nodes of (0,0,0), (1,0,0), (0,1,0), and (0,0,1).
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Figure 5.4: Condition number of the normalized mass matrix for a straight-sided
test tetrahedron with nodes of (0,0,0), (1,2,3), (-1,2,-1), and (-3,0,2).

Table 5.3: Condition number of mass matrices after diagonal scaling. The reference
values are taken from [GP12].

Regular tetrahedron with unit length edges

p
Zaglmayr

basis [Zag06]

Botha

basis [Bot07]

Graglia-Peterson

basis [GP12]

Proposed basis

f ,w f ,wort f ort,w f ort,wort

1 1.667 1.667 1.667 1.667 1.667 1.667 1.667

2 47.2 143.8 36.71 127.8 127.9 68.87 47.19

3 188.1 303.1 156.6 158.7 155.4 106.8 62.82

4 n/a n/a 424.3 674.1 611.6 276.2 179.0

Reference tetrahedron

p
Zaglmayr

basis [Zag06]

Botha

basis [Bot07]

Graglia-Peterson

basis [GP12]

Proposed basis

f ,w f ,wort f ort,w f ort,wort

1 2.816 2.816 2.816 2.816 2.816 2.816 2.816

2 50.82 252.2 71.48 223.5 229.4 70.88 75.54

3 309.6 480.4 410.8 368.1 365.2 219.7 146.7

4 n/a n/a n/a 966.2 910.3 477.8 337.4

Table 5.4: Practically achieved condition numbers of (T v + Sv) with only volume
associated basis functions. The reference values are taken from [BPZ12].

Test tetrahedron

p
Beuchler-Pillwein-Zaglmayr

basis [BPZ12], [BPZ10]

Proposed basis

f ,w f ,wort f ort,w f ort,wort

2 6.5 5.9 5.9 1.5 1.5

3 17 9.6 8.2 7.3 4.7

4 37 82 82 21 7.5
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Rectangular Resonator

In order to demonstrate the standard convergence behavior of the mixed-order
Nédélec element with the proposed basis, the eigenvalue problem of (5.18) is chosen
for a rectangular resonator with the dimensions of 3 m× 2 m× 2 m. All boundaries
are set to homogeneous Dirichlet boundary conditions, and the material density
ρ = 1 and Lamé coefficient λL = 1 are unit valued over the whole domain. The cal-
culations are performed on a uniformly refined mesh where the size of the elements
is the same. The calculated first nonzero eigenvalues are shown in Figure 5.5.
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Figure 5.5: The first nonzero eigenvalues of the rectangular resonator.

Further on, only the dominant mode is considered which has the smallest eigenvalue.
Figure 5.6 shows the relative error for different p orders of basis functions in terms
of the number of refinements. It can be seen that an algebraic rate of convergence
is achieved. In the case of smooth fields and sufficient geometry representation,
the asymptotic rate of convergence of the Nédélec [Néd80] elements is O(h2p) for
such an eigenvalue [Bot06], where h is the element size and p is the finite element
order. From the determined steepness of the p = 1, 2, 3, and 4 order convergence
curves, the obtained convergence rates are O(h2.91), O(h3.97), O(h6.32), and O(h8.14),
respectively. Thus, the performance of the proposed basis shows good agreement
with the theoretical value.
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Figure 5.6: Relative error of the smallest nonzero eigenvalue in terms of the number
of homogeneous refinements.

Spherical Resonator

In the case of curvilinear elements, the exact integration of the finite element matri-
ces is not possible. However, it is possible to use numerical integration or to apply
the proposed method based on hierarchical universal matrices. In this example, the
basis functions and the corresponding universal matrices are demonstrated on the
eigenvalue problem of a spherical resonator with a unit radius. Both the material
density ρ = 1 and the Lamé coefficient λL = 1 are unit valued over the whole
domain. For the dominant mode, the symmetry of the solution is used to reduce
the computational domain to one eighth of the sphere. Hence, a smaller number of
unknowns is required, and the multiplicity of the smallest eigenvalue is reduced to
one. Thus, homogeneous Dirichlet boundary condition is applied to the curvilinear
outer boundary and to two of the cross-section planes. The single remaining cross-
section plane is a homogeneous Neumann boundary. Two different discretizations
are used for the domain: a coarser mesh with 678 tetrahedra and a finer mesh with
43392 tetrahedra. The finer mesh is obtained by two-times uniform refinement of
the coarser mesh, and both meshes interpolate the sphere by fourth-order basis func-
tions. For this choice, it is known that the error in geometry representation will be at
least in the same order of magnitude or less than in the FE solution for p ≤ 4. These
utilized meshes are shown in Figure 5.7. The first few nonzero eigenvalues are given
in Figure 5.8, where the proposed universal matrices are applied up to order K = 6
and FE basis functions of order p = 4 on the fine mesh. Next, only the dominant
mode and the corresponding smallest nonzero eigenvalue are considered. Figure 5.9
and Figure 5.10 show the convergence of this eigenvalue in terms of the metric ex-
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Figure 5.7: Coarse (left) and fine (right) mesh of the sphere section.
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Figure 5.8: The first nonzero eigenvalues using metric expansion order K = 6 and
FE basis functions of order p = 4 on the fine mesh.

pansion order K for the different p order basis functions. As expected, higher-order
basis yields better solutions but also requires higher-order metric expansion in order
to reach its ideal performance. The solutions obtained for the coarser and finer mesh
fit the theoretical predictions, displaying the two limiting cases. In any scenario, the
sufficient order of metric expansion is given by the representation limit (K ≤ 2p− 2
for the stiffness matrix), which is K = 0, 2, 4, 6 for the stiffness matrix orders of
p = 1, 2, 3, 4, respectively. This can be observed in Figure 5.9, where the FE con-
vergence has not fully reached its asymptotic region. However, Figure 5.10 shows
the solution for the finer mesh, where asymptotic region of convergence is reached.
In this case, it is possible to terminate the expansion at an earlier point determined
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by the asymptotic limit (K = p − 1), which is K = 0, 1, 2, 3 for FE basis functions
of order p = 1, 2, 3, 4, respectively. The present numerical experiments show a good
agreement with these theoretical limits.

0 1 2 3 4 5 6
Metric expansion order K

10-7

10-6

10-5

10-4

10-3

10-2

R
el

at
iv

e 
er

ro
r

p=1
p=2
p=3
p=4

Figure 5.9: Convergence of the smallest nonzero eigenvalue by using FE basis func-
tions of order p and metric expansions of order K for the coarse mesh.
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Figure 5.10: Convergence of the smallest nonzero eigenvalue by using FE basis
functions of order p and metric expansions of order K for the fine mesh.
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5.3 Summary

In this chapter, a new set of H(div) basis functions has been presented, which
completes the sequence of the discrete de Rham complex with the previously avail-
able H1 and H(curl) bases [Ing06]. The common properties of these bases are the
orthogonality with respect to the interpolation operators and distinct subsets of
functions for the higher-order null space functions. This leads to element matri-
ces with advantageous numerical properties, such as a high level of sparsity and
orthogonality properties, for arbitrary straight-sided elements. A special feature of
the presented orthogonalized basis is that the higher-order sections of the generated
stiffness matrices are purely diagonal for arbitrary straight-sided elements. More-
over, the condition number of the resulting mass matrix is significantly lower than
other competing basis functions from the literature. The element matrix calcula-
tion of the basis functions is accelerated with hierarchical universal matrices. The
proposed functions and methods are demonstrated via eigenvalue problems.
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Chapter 6

Hexahedral Finite Elements

Historically, the first hexahedral elements were defined as tensor product approxima-
tion spaces [Cia02, Chapter 2.2], [SF73, Section 1.9]. The advantage is the straight-
forward construction from the one-dimensional case [SF73, Section 1.9]. However,
the higher-order spaces became significantly larger than the same-order spaces for
tetrahedra. To overcome this disadvantage, serendipity spaces were developed with
fewer moments, typically leaving out face- or volume-associated functions [ZK00].
Thus, the spaces were reduced, becoming more efficient from the computational
perspective. It has been proven that including a complete-order polynomial space
and maintaining the conformity are sufficient for the theoretical rate of convergence
[AA11], [AA14] of H1-conforming elements with affine geometry mappings. Simi-
lar results have been obtained for the H(curl)- and H(div)-conforming spaces as
well [AA14], [GK19], [GKS19]. The drawback of such spaces is the restriction to
affine geometry mappings (i.e., parallelepiped elements) [Ape98], [ABF02], [ABB15],
which limits their application. For general hexahedral meshes, the traditional tensor
product [BF12, Chapter 2], [AP02], [Néd80], [Néd86] or even larger and more com-
plicated spaces [ABB15], [FGM11], [BD13b], [BD13a] are being used to maintain
the rate of convergence at the price of a greatly increased number of unknowns.
In most cases, error estimations are available; however, their application is limited
to straight-sided geometries. Moreover, up to the author’s knowledge, the effect of
different mesh refinements has not been considered yet.

In Chapter 3, convergence requirements of curvilinear elements are discussed from
the point of view of geometry interpolation and mesh refinement. These new as-
pects provide additional possibilities to maintain the theoretical rate of convergence
for highly deformed meshes. The first contributions of this chapter are alternative
definitions of the different finite elements, which are appropriate for the theories of
Chapter 3. Note that these definitions are equivalent to the known finite elements
in the literature [Néd80], [Néd86], [FGM11], [BD13b], [GK19], [GKS19] defined for
straight-sided elements. However, the present definitions of the finite element mo-
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ments are always given for the reference element, yielding different moments for the
corresponding mapped curvilinear elements. As a general consequence, all the con-
sidered spaces are capable of O(hp) convergence rates for curvilinear elements when
only affine mesh refinement is applied. In addition to these known finite element
spaces, a new serendipity function space, the mixed- or incomplete-order serendip-
ity space, is proposed for H(curl)-conforming functions. The resulting convergence
rate of the H(curl)-norm error is O(hp) for curvilinear meshes when affine refine-
ment is applied. Compared to other competing elements, the advantages are the
fewest number of finite element moments, the capability to produce hierarchical
basis functions, and the compatibility with the other mixed- or incomplete-order
tensor product spaces.

The second contribution of this chapter is a new set of basis functions for the defined
H(curl)-conforming elements. The higher-order functions are partitioned according
to the null space of the curl operator and are orthogonal with respect to the cor-
responding interpolation operator. Hence, the resulting finite element matrices are
highly sparse.

The third contribution is a new method, namely the mixed-order mixed-space finite
element, which adaptively applies different finite element spaces. Based on the ge-
ometry mapping and mesh refinement, the smallest approximation space can be used
on each element that is appropriate for the O(hp) rate of convergence. Hence, a sig-
nificantly smaller number of unknowns is required than for the uniform application
of a larger space.

Finally, the fourth contribution is another new method, the iso-serendipity element.
It applies the defined serendipity spaces and its basis functions for both the unknown
fields and for the interpolation of the curvilinear geometry. The method only allows
a special way of mesh refinement, which can improve the geometry representation
in each step. Up to the author’s knowledge, the iso-serendipity is the first method
to utilize a serendipity space for curvilinear meshes while providing an O(hp) rate
of convergence in H(curl)-norm.
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6.1 Geometry Description of Hexahedra

Following Definition 2.1 of a general finite element, the domain of the element needs
to be declared first. For a general hexahedron, the reference element is a cube with
unit length edges over the space of [0, 1]3 ⊂ R3. Each global element is produced by
the map g of the reference element to the global domain. This mapping is assumed
to be smooth and bijective; otherwise, the finite element can lose the conformity
or subspace preserving properties. Section 3.1 shows that an appropriate order
geometry interpolant gk may be used instead of the exact mapping because it does
not affect the convergence rate. This interpolant is also assumed to be bijective over
the reference element. Hence, the conformity and the subspace preserving property
also apply to interpolated geometries. First, linear functions of the local coordinates
(r̂1, r̂2, r̂3) are introduced that have a support over the reference domain:

x0 = 1− r̂1, y0 = 1− r̂2, z0 = 1− r̂3,

x1 = r̂1, y1 = r̂2, z1 = r̂3. (6.1)

The values of x0, y0, and z0 are one at the beginning of the corresponding intervals
r̂i ∈ [0, 1] and zero at the end. The values of x1, y1, and z1 are one at the end of the
corresponding intervals and zero at the beginning. Hence, the monomials of xi, yj,
and zk with the indices i, j, k ∈ {0, 1} are well suited for constructing conforming
polynomials. With these notations, a first-order geometry mapping reads

r = g1 (r̂) =
∑

rijkxi(r̂1)yj(r̂2)zk(r̂3), (6.2)

where rijk is the coordinate vector of the corresponding node. Furthermore, the
tensor product space of polynomials is denoted by Qa,b,c with the order of a in r̂1
variable, b in r̂2 variable, and c in r̂3 variable. The monomials of the geometry
mapping then belong to the space of xiyjzk ∈ Q1,1,1. If there are only four linearly
independent node coordinates, the geometry is a parallelepiped, and the geometry
mapping is a first-order polynomial g1 ∈ (P1)

3. However, in the general case (i.e.,
all eight nodes are linearly independent), the geometry mapping is in the space of
g1 ∈ (Q1,1,1)

3. In the following sections, the first, second, and third components
of the mapping are denoted by gx, gy, and gz, respectively. One can write these
components as polynomials in the form of

g1 (r̂) =

gx(r̂1, r̂2, r̂3)gy(r̂1, r̂2, r̂3)

gz(r̂1, r̂2, r̂3)

 ,

=

a1 + b1r̂1 + c1r̂2 + d1r̂3 + e1r̂1r̂2 + f1r̂2r̂3 + g1r̂3r̂1 + h1r̂1r̂2r̂3
a2 + b2r̂1 + c2r̂2 + d2r̂3 + e2r̂1r̂2 + f2r̂2r̂3 + g2r̂3r̂1 + h2r̂1r̂2r̂3
a3 + b3r̂1 + c3r̂2 + d3r̂3 + e3r̂1r̂2 + f3r̂2r̂3 + g3r̂3r̂1 + h3r̂1r̂2r̂3

 , (6.3)

where ai, bi, . . . are constants dependent on the node coordinates. The reference
element of the present configuration is shown in Figure 6.1, where the arrows indicate
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r̂3

x0y1z1

r̂1

r̂2

x1y0z0

x1y0z1

x1y1z0

x1y1z1

x0y1z0

x0y0z1

x0y0z0

Figure 6.1: The reference element of a general hexahedron.

the orientation of the edges. Each edge is associated with a monomial of xiyj, xizk,
or yjzk, which has a unit value only on the associated edge. Moreover, each face is
associated with xi, yj, or zk, which has a unit value only on the associated face. For
all of the considered hexahedral elements, the local ordering and orientation of the
nodes, edges, and faces are determined by the direction of the reference axis and the
order of coordinate components.

The next step is to specify the type of refinement. When the mesh exactly rep-
resents the geometry without errors, the volume of the initial mesh ought to be
preserved after each uniform refinement step. Hence, there are two natural choices
for the overall refinement functions f r ∈ (Pr)

3 (see section 3.1.2) for straight-sided
geometries. The first choice is an affine refinement

f r ∈ (P1)
3 , with r = 1, (6.4)

while the second choice is a first-order tensor product (general piecewise linear)
refinement

f r ∈ (Q1,1,1)
3 ⊂ (P3)

3 , with r = 3. (6.5)

The difference between these refinements is the additional freedom in choosing the
interior nodes on the faces and on the volume. Hence, the second choice provides
freedom for choosing the boundaries of the elements in the interior domain, allowing
inhomogeneous mesh refinements. When interpolated geometry mappings are used
for the curvilinear geometries, non-affine refinements, such as (6.5), can be used to
reduce the geometry error in each refinement step. However, the affine refinement
of the mesh with exact mappings is already sufficient for the theoretical convergence
rate if the exact geometry description is available.
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In the general curvilinear case, non-affine refinements have two main disadvantages:

1. The required order of geometry interpolation k = rp is higher for non-affine
refinements (r > 1); see Section 3.3. However, for polynomial geometries of

order k̃ < rp, k = k̃ is also sufficient.

2. The approximation space becomes dependent on the geometry mapping and
needs to be larger; see Section 3.3.

Hence, the even higher order (r > 3) overall refinement functions are less advan-
tageous because they increase the approximation space without providing useful
advantages (to the author’s knowledge). Thus, only the simplest scenario is consid-
ered for non-affine refinements:

� The geometry is straight-sided.

� The mesh represents the geometry without any error (k = k̃ = 1).

� The refinement function is a first-order tensor product polynomial (r = 3).

6.2 Serendipity Spaces for Affine Refinements

In the following sections, serendipity spaces are proposed for the approximation of
H1- and H(curl)-conforming functions. The definitions are given for the reference
element and the moments are specific subcases of the general moments (2.73) and
(2.74). Therefore, the various subspaces are preserved for arbitrary curvilinear el-
ements (see Section 2.5.4). Compared to the tensor product spaces, the advantage
is the smaller dimension, while the resulting convergence rate O(hp) is the same for
the affinely refined meshes (see Section 3.3). Another advantage is that the edge-,
face-, and volume-associated spaces are subspaces of the corresponding edge-, face-,
and volume-associated tensor product spaces. Hence, the mixed usage of serendipity
and tensor product spaces is possible within one mesh. This is advantageous in cases
where the majority of the elements are located in the interior of the mesh and do not
have any common face with any physical boundary. Therefore, affine refinement and
serendipity elements can be used on the dominant interior part of the mesh. The
resulting number of unknowns is significantly lower than for the uniform application
of the tensor product spaces, whereas the convergence rates are the same.

6.2.1 Serendipity H1-Conforming Element

First, the definition of the moments is provided, which is the subset of the general
moments (2.73). Hence, the same form of definition and notations are used.
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The space of test functions associated with the edge Q̂ve
p , face Q̂vf

p , and volume Q̂vv
p

are given as

� Q̂ve
p = {q̂ ∈ Qa−2 | a = p} = Pp−2(Ê),

� Q̂vf
p = {q̂ ∈ Qa−2,b−2 | a+ b = p} = Pp−4(F̂ ),

� Q̂vv
p = {q̂ ∈ Qa−2,b−2,c−2 | a+ b+ c = p} = Pp−6(V̂ ).

Here, a, b, and c as well as all subscripts are required to be non-negative integers.
The superscripts ve, vf , and vv indicate theH1-conforming edge-, face-, and volume-
associated space, respectively. The corresponding moments are

M̂ vn
p (v̂) = v̂

∣∣∣∣
N̂

, (6.6a)

M̂ ve
p (v̂) =

∫
Ê

v̂q̂ dr̂, ∀q̂ ∈ Q̂ve
p , (6.6b)

M̂ vf
p (v̂) =

∫
F̂

v̂q̂ dr̂, ∀q̂ ∈ Q̂vf
p , (6.6c)

M̂ vv
p (v̂) =

∫
V̂

v̂q̂ dr̂, ∀q̂ ∈ Q̂vv
p . (6.6d)

Hence, the number of node-associated moments M̂ vn
p is 8, independently of the order.

The number of edge-associated moments M̂ ve
p is

12 · dim(Q̂ve
p ) = 12(p− 1), p > 0. (6.7)

The number of face-associated moments M̂ vf
p is

6 · dim(Q̂vf
p ) = 6

p−2∑
a=2

(p− a− 1) = 3(p− 3)(p− 2), p > 1. (6.8)

The number of volume-associated moments M̂ vv
p is

dim(Q̂vv
p ) =

p−4∑
a=2

p−a−2∑
b=2

(p− a− b− 1) =
(p− 5)(p− 4)(p− 3)

6
, p > 2. (6.9)

These moments induce an H1-conforming hexahedral finite element over a space of
V̂S,p whose dimension is the same as the number of moments. This approximation
space is defined by its conforming basis functions, which are associated with nodes,
edges, faces, and volume. The first-order node-associated functions v̂ijk ∈ V̂n

S,1 must
vanish on all the other nodes (and on the faces that are not adjacent) since they are
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induced by the node-associated moments that define a scalar value for each node
and are required to be linearly independent. These scalar node-associated values
of the moments are smoothly extended to the entire volume using xiyjzk functions,
which have a unit value on the corresponding node and are zero on the other nodes.
Hence, the general form of the node-associated functions is

v̂ijk = xiyjzk. (6.10)

The higher-order edge-associated functions v̂jk, v̂ik, v̂ij ∈ V̂e
S,p must provide compact

support on the associated edge and vanish on all other edges. Therefore, the edge-
associated functions of V̂e

S,p are extensions of the functions of Q̂ve
p to the entire

volume as

v̂jk = x0x1yjzk fjk(x1), for fjk(x1) ∈ Q̂ve
p on edge yjzk, (6.11a)

v̂ik = y0y1xizk fik(y1), for fik(y1) ∈ Q̂ve
p on edge xizk, (6.11b)

v̂ij = z0z1xiyj fij(z1), for fij(z1) ∈ Q̂ve
p on edge xiyj. (6.11c)

The face-associated functions v̂k, v̂j, v̂i ∈ V̂f
S,p are required to provide compact sup-

port on the associated face and vanish on all other faces. Hence, their general form
is obtained as the natural extension of the face-associated test functions:

v̂k = x0x1y0y1zk fk(x1, y1), for fk(x1, y1) ∈ Q̂vf
p on face zk, (6.12a)

v̂j = x0x1yjz0z1 fj(x1, z1), for fj(x1, z1) ∈ Q̂vf
p on face yj, (6.12b)

v̂i = xiy0y1z0z1 fi(y1, z1), for fi(y1, z1) ∈ Q̂vf
p on face xi. (6.12c)

Figure 6.1 illustrates the associated geometry entities of the node-type functions,
and Figure 6.2 illustrates the edge- and face-type functions. Finally, the volume-
associated functions v̂ ∈ V̂v

S,p are considered, which must vanish on all boundaries.
Hence, their general form is

v̂ = x0x1y0y1z0z1 f(x1, y1, z1), f(x1, y1, z1) ∈ Q̂vv
p . (6.13)

It is easy to conclude that the dimension of the edge-, face- and volume-associated
space of test functions is the same as the corresponding approximation spaces

dim(V̂e
S,p) = 12 · dim(Q̂ve

p ), (6.14a)

dim(V̂f
S,p) = 6 · dim(Q̂vf

p ), (6.14b)

dim(V̂v
S,p) = 1 · dim(Q̂vv

p ). (6.14c)

The resulting finite element space V̂S,p of order p is given as the direct sum of the
node-, edge-, face-, and volume-associated subspaces

V̂S,p = V̂n
S,1 ⊕ V̂e

S,p ⊕ V̂f
S,p ⊕ V̂v

S,p, (6.15)
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which yields the following important property:

Pp ⊂ V̂S,p ⊂ Qp,p,p. (6.16)

Using the invariance of the moments, the global approximation space VS,p is obtained
by the Piola transformation of the local space on each element. In the case of exact
geometry mappings and affine refinements, the resulting convergence rates are∥∥v − πv

p,hv
∥∥
L2(Ω)

≤ Chp+1, (6.17a)∥∥v − πv
p,hv
∥∥
H1(Ω)

≤ Chp, (6.17b)

because V̂S,p has a complete p order subspace (see Table 3.1).

edge yjzk edge xizk edge xiyj

face zk face yj face xi

x0yjzk

r̂1

x1yjzk

v̂jk

xiy0zk

r̂2

xiy1zkv̂ik

xiyjz0

r̂3

xiyjz1

v̂ij

x0y0zk x1y0zk

x0y1zk x1y1zk

r̂1

r̂2

v̂k

x0yjz0 x1yjz0

x0yjz1 x1yjz1

r̂1

r̂3

v̂j

r̂3

r̂2
xiy0z1

xiy1z1

xiy0z0

xiy1z0

v̂i

Figure 6.2: The associated edges and faces of the edge- and face-type functions.
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6.2.2 Serendipity H(curl)-Conforming Element

This section defines the complete-order serendipity element whose local approxima-
tion space ŴS,p contains (Pp)

3 as a subspace. The space of test functions associated

with the edge Q̂we
p , face Q̂wf

p , and volume Q̂wv
p are defined as

� Q̂we
p = {q ∈ ê1Qa | a = p} = ê1Pp(Ê),

� Q̂wf
p = {q ∈ (ê1Qa,b−2, ê2Qa−2,b) | a+ b = p} = (Pp−2(F̂ ))2,

� Q̂wv
p = {q ∈ (ê1Qa,b−2,c−2, ê2Qa−2,b,c−2, ê3Qa−2,b−2,c) | a+ b+ c = p} ,

= (Pp−4(V̂ ))3.

Here, a, b, and c as well as each subscript are required to be non-negative integers,
and ê1, ê2, and ê3 are the standard unit vectors. The superscripts we, wf , and wv
indicate the H(curl)-conforming edge-, face-, and volume-associated space, respec-

tively. The corresponding moments associated with the edge M̂we
p , face M̂wf

p , and

volume M̂wv
p are defined as

M̂we
p (ŵ) =

∫
Ê

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂we
p , (6.18a)

M̂wf
p (ŵ) =

∫
F̂

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂wf
p , (6.18b)

M̂wv
p (ŵ) =

∫
V̂

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂wv
p , (6.18c)

with the dimensions of

12 · dim(Q̂we
p ) = 12(p+ 1), (6.19a)

6 · dim(Q̂wf
p ) = 6 · 2

p−2∑
a=0

(p− a− 1) = 6(p− 1)p, (6.19b)

1 · dim(Q̂wv
p ) = 1 · 3

p−4∑
a=0

p−a−2∑
b=2

(p− a− b− 1) =
(p− 1)(p− 2)(p− 3)

2
, p > 0.

(6.19c)

These moments induce anH(curl)-conforming hexahedral finite element over a space

ŴS,p. The edge-associated functions ŵjk, ŵik, ŵij ∈ Ŵe
S,p of order pmust have a zero

tangential component on all other edges. Here, the subscripts indicate the associated
edges as described by Figure 6.3. Therefore, any edge-associated function may be
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written as a test function of the edge, which is extended to the entire volume with
the appropriate multiplicative factor of local coordinates:

ŵjk = yjzk fjk(x1)ê1, for fjk(x1)ê1 ∈ Q̂we
p on edge yjzk, (6.20a)

ŵik = xizk fik(y1)ê2, for fik(y1)ê2 ∈ Q̂we
p on edge xizk, (6.20b)

ŵij = xiyj fij(z1)ê3, for fij(z1)ê3 ∈ Q̂we
p on edge xiyj. (6.20c)

The face-associated functions of order p are denoted by ŵx
k, ŵ

y
k, ŵ

x
j , ŵ

z
j , ŵ

y
i , ŵ

z
i ∈

Ŵf
S,p. Here, the subscripts indicate the associated faces, and the superscripts indi-

cate the direction as described by Figure 6.3. These functions are required to have
tangential compact support over the associated face and a zero tangential component
on all other faces. Hence, the general forms of such functions are

ŵx
k = y0y1zk f

x
k (x1, y1)ê1, for fx

k (x1, y1)ê1 ∈ Q̂wf
p on face zk, (6.21a)

ŵy
k = x0x1zk f

y
k (x1, y1)ê2, for f y

k (x1, y1)ê2 ∈ Q̂wf
p on face zk, (6.21b)

ŵx
j = z0z1yj f

x
j (x1, z1)ê1, for fx

j (x1, z1)ê1 ∈ Q̂wf
p on face yj, (6.21c)

ŵz
j = x0x1yj f

z
j (x1, z1)ê3, for f z

j (x1, z1)ê3 ∈ Q̂wf
p on face yj, (6.21d)

ŵy
i = z0z1xi f

y
i (y1, z1)ê2, for f y

i (y1, z1)ê2 ∈ Q̂wf
p on face xi, (6.21e)

ŵz
i = y0y1xi f

z
i (y1, z1)ê3, for f z

i (y1, z1)ê3 ∈ Q̂wf
p on face xi. (6.21f)

The volume-associated functions of order p are denoted by ŵx, ŵy, ŵz ∈ Ŵv
S,p.

These functions must provide tangential compact support over the volume of the
element and thus have a zero tangential component on all faces. Their general forms
are

ŵx = y0y1z0z1 f
x(x1, y1, z1)ê1, fx(x1, y1, z1)ê1 ∈ Q̂wv

p , (6.22a)

ŵy = z0z1x0x1 f
y(x1, y1, z1)ê2, fy(x1, y1, z1)ê2 ∈ Q̂wv

p , (6.22b)

ŵz = x0x1y0y1 f
z(x1, y1, z1)ê3, fz(x1, y1, z1)ê3 ∈ Q̂wv

p . (6.22c)

Therefore, the dimension of the edge-, face- and volume-associated approximation
space is the same as the space of test functions

dim(Ŵwe
S,p) = 12 · dim(Q̂we

p ), (6.23a)

dim(Ŵwf
S,p) = 6 · dim(Q̂wf

p ), (6.23b)

dim(Ŵwv
S,p) = 1 · dim(Q̂wv

p ). (6.23c)

The local approximation space ŴS,p is the direct sum of the edge-, face-, and volume-
associated subspaces:

ŴS,p = Ŵe
S,p ⊕ Ŵf

S,p ⊕ Ŵv
S,p. (6.24)
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ŵx
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ŵx
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ŵy
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ŵz
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Figure 6.3: Associated edges and faces of the edge- and face-type functions.

The relations between these spaces and the tensor product spaces are

Ŵe
S,p ⊂ (Qp,p,p)

3, (6.25a)

Ŵf
S,p ⊂ (Qp,p,p)

3, (6.25b)

Ŵv
S,p ⊂ (Pp)

3 ⊂ (Qp,p,p)
3, (6.25c)

(Pp)
3 ⊂ ŴS,p ⊂ (Qp,p,p)

3. (6.25d)

The global approximation space WS,p of order p is obtained by the transforma-
tion of the local space to the global space via Piola transformation. The resulting
asymptotic rate of convergence is∥∥w − πw

p,hw
∥∥
L2(Ω)

≤ Chp+1, (6.26a)∥∥w − πw
p,hw

∥∥
H(curl,Ω)

≤ Chp, (6.26b)

for affine refinements and exact geometry mappings; see Table 3.2.
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6.2.3 Mixed-Order H(curl)-Conforming Serendipity Element

This section introduces the proposed new finite element of the thesis, namely the
mixed-order (or incomplete order) serendipity element, for the approximation of
H(curl)-conforming functions. The main advantage is the fewer dimension com-

pared to the complete-order serendipity space ŴS,p, while they both yield the same
rate of convergence in H(curl,Ω)-norm. The term “mixed-order” or “incomplete-

order” refers to the fact that the new approximation space ŴSI,p includes a poly-

nomial space (Pp−1)
3 ⊂ ŴSI,p, which yields the convergence rate of∥∥w − πw

p,hw
∥∥
L2(Ω)

≤ Chp. (6.27)

However, it is incomplete for the pth order space (Pp)
3 ̸⊂ ŴSI,p since the rate of

convergence∥∥∇×w −∇× πw
p,hw

∥∥
L2(Ω)

≤ Chp (6.28)

only requires ∇̂ × (Pp)
3 ⊂ ∇̂ × ŴSI,p (see Table 3.2). Therefore, it is permissible

to subtract the highest incremental order gradient space ∇̂(V̂S,p+1 \ V̂S,p) from ŴS,p

because it belongs to the null space of the ∇̂×-operator, which is not required for
the L2-norm convergence. Such induction of the mixed-order space is necessary for
the generation of hierarchical basis functions, which can be decomposed into a set
of null space and complementary space functions. Hence, the subscript SI is an
abbreviation for the serendipity space, which is an incomplete pth-order polynomial
space. In the case of tetrahedral elements, the procedure is straightforward. The
highest incremental order space is the space of homogeneous polynomials Pp+1 \
Pp = P̃p+1, whose gradient is a subspace of the complete-order polynomial space

∇̂P̃p+1 ⊂ (Pp)
3. Hence, the mixed-order space for tetrahedral elements is identical

to the rotational space of Nédélec (2.109a):

Rp = (Pp)
3 \ ∇̂P̃p+1. (6.29)

However, the procedure becomes more complicated for hexahedral elements where
the highest incremental order gradient space is not a subspace of the complete-order
space, i.e.,

∇̂(V̂S,p+1 \ V̂S,p) ̸⊂ ŴS,p. (6.30)

The proposed solution eliminates those test functions of the complete-order finite
element moments, which correspond to the incremental order gradient space. There-
fore, the dimension of the finite element is reduced without affecting the dimension
of the range space.

Let the derivation begin with an edge-associated function yjzk (6.11a) which yields
a single incremental order function

ṽjk = x0x1yjzkx
p−1
1 ∈ V̂e

S,p+1 \ V̂e
S,p on edge yjzk. (6.31)
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It can be seen that the gradient function

∇̂ṽjk = yjzk
∂x0x

p
1

∂r̂1
ê1 + zkx0x

p
1

∂yj
∂r̂2

ê2 + yjx0x
p
1

∂zk
∂r̂3

ê3 (6.32)

contains the higher-order term of x0x
p
1 = (1−r̂1)r̂

p
1 ∈ Qp+1,0,0 in the second and third

components. Here, ê1 is the tangential vector, whereas ê2 and ê3 are the normal
vectors on the edge yjzk. The consequence is that ∇̂ṽjk ̸∈ (Qp,p,p)

3 and ∇̂ṽjk ̸∈ ŴS,p.
However, these higher-order terms do not contribute to the finite element moments
because they are only present in the normal components, whereas the moments
are assigned to the tangential component. These other components can be viewed
as necessary byproducts of the polynomial basis construction (6.11), ensuring the
conformity of the H1-conforming basis functions. Therefore, these non-tangential
components do not contribute to the rate of convergence and are not required for
the conformity of H(curl)-conforming functions. From these considerations, the

corresponding test function q̃e
p+1 of ∇̂ṽjk is obtained as a tangential trace and the

inverse of the test function extension (6.20a), i.e.,

q̃e
p+1 =

1

yjzk
(ê1 · ∇̂ṽjk)ê1 =

∂x0x
p
1

∂r̂1
ê1,

=
∂(1− r̂1)r̂

p
1

∂r̂1
ê1 = (pr̂ p−1

1 − (p+ 1)r̂ p
1 )ê1, on edge yjzk. (6.33)

The results for the other edges are analogous. Therefore, the corresponding space
of test functions Ge

p for the incremental order gradient space ∇̂(V̂e
S,p+1 \ V̂e

S,p), which
is associated with the edges, is defined as

Ge
p = {q̃e

p+1}. (6.34)

The next step is to determine the space of test functions Q̂we
p for the edge associated

moments of the mixed-order serendipity elements. The sufficient oversized trial
space is

ê1Pp(Ê) = {ê1r̂
p
1} ⊕ ê1Pp−1(Ê), for Q̂we

p , (6.35)

which is identical to the case of complete-order serendipity element. Based on the
estimation (6.26), it is clear that the one order less space ê1Pp−1(Ê) ⊆ Q̂we

p is a
necessary condition of the convergence. Moreover, it is known that the moments
of the space Ge

p do not contribute to the convergence. Combining these results, the
space of edge-associated test functions is defined as

Q̂we
p =

(
{ê1r̂

p
1} \ (Ge

p ⊕ ê1Pp−1(Ê))
)
⊕ ê1Pp−1(Ê) = ê1Pp−1(Ê). (6.36)

Let us continue with a zk face-associated function (6.12a), which yields the following
incremental order function:

∇̂ṽk = ∇̂(x0x1y0y1zkx
a
1y

b
1) ∈ ∇̂(V̂f

S,p+1 \ V̂
f
S,p), ∀ (a+ b) = p− 3, on face zk.

(6.37)
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Similarly to the edge-associated functions, the corresponding test functions of the
face-associated moments can be obtained as a tangential trace and the inverse of
the test function extensions (6.21a) and (6.21b), i.e.,

q̃f,ab
p+1 =

[
1

y0y1zk
0 0

0 1
x0x1zk

0

]
∇̂ṽk =

∂x0x
a+1
1 yb1

∂r̂1
ê1 +

∂y0y
b+1
1 xa

1

∂r̂2
ê2,

= r̂b2
∂(1− r̂1)r̂

a+1
1

∂r̂1
ê1 + r̂a1

∂(1− r̂2)r̂
b+1
2

∂r̂2
ê2,

=

r̂b2((a+ 1)r̂ a
1 − (a+ 2)r̂ a+1

1 )

r̂a1((b+ 1)r̂ b
2 − (b+ 2)r̂ b+1

2 )

 , ∀ (a+ b) = p− 3 on face zk. (6.38)

The substitution of the condition (a + b) = p − 3 into the three different cases
a > b ≥ 0, b > a ≥ 0, and a = b leads to the relations of (p − 3) ≥ a > (p − 3)/2,
(p − 3) ≥ b > (p − 3)/2, and a = b = (p − 3)/2, respectively. Note that the last
case is only present for the odd values of p, due to the integers a and b. The space
of test functions Gf

p for the incremental order gradient functions is defined as the
direct sum of the three different cases

Gf
p =Ga>b

p ⊕ Ga<b
p ⊕ Ga=b

p ,

={q̃f,ab
p+1 | ∀ (p− 3) ≥ a > (p− 3)/2, b = p− 3− a}⊕

{q̃f,ab
p+1 | ∀ (p− 3) ≥ b > (p− 3)/2, b = p− 3− a}⊕

{q̃f,ab
p+1 | a = b = (p− 3)/2 for odd p}. (6.39)

The next step is the determination of the test function space Q̂wf
p for the face-

associated moments. The procedure is the same as for the edge-associated space,
where the unnecessary terms are removed from the case of the complete-order space.
The sufficient oversized trial space reads

(Pp−2(F̂ ))2 = (Pp−3(F̂ ))2 ⊕ Pa≤b
p ⊕ Pa>b

p , for Q̂wf
p , (6.40)

where the highest order subspaces Pa≤b
p and Pa>b

p are defined as

Pa≤b
p ={êir̂

a
i r̂

b
j | ∀(a+ b) = p− 2 and a ≤ b}, (6.41a)

Pa>b
p ={êir̂

a
i r̂

b
j | ∀(a+ b) = p− 2 and a > b},

={êir̂
a+1
i r̂ b

j | ∀(a+ b) = p− 3 and a ≥ b},
={êir̂

a+1
i r̂ b

j | p− 3 ≥ a ≥ (p− 3)/2, b = p− 3− a},
={ê1r̂

a+1
1 r̂ b

2 | p− 3 ≥ a ≥ (p− 3)/2, b = p− 3− a}
⊕ {ê2r̂

a
1 r̂

b+1
2 | p− 3 ≥ b ≥ (p− 3)/2, b = p− 3− a}. (6.41b)

It is known from the error estimation (6.26) of the complete-order serendipity ele-

ment that (Pp−3(F̂ ))2 is a necessary condition of the convergence. Moreover, we have
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also considered that the curl operator requires the derivative of a vector components
with respect to the other variables, i.e., êir̂j for i ̸= j. Hence, any êir̂

a
i r̂

b
j monomial,

for arbitrary indices i, j ∈ {1, 2} and a ≤ b, corresponds to a higher-order range
space than its counterpart êir̂

a
i r̂

b
j for a > b . Based on these considerations, it is

reasonable to preserve the subspace Pa≤b
p and only eliminate functions from Pa>b

p

via Gf
p . This constraint enforces the inclusion of the serendipity space functions into

the lowest possible order tensor product space, since always the monomials with the
highest powers are eliminated. Thus, the compatibility of the functions within the
different function spaces can be ensured. Consequently, the definition for the space
of face-associated test functions is

Q̂wf
p = (Pp−3(F̂ ))2 ⊕ Pa≤b

p ⊕
(
Pa>b

p \ (Gf
p ⊕ Pa≤b

p ⊕ (Pp−3(F̂ ))2)
)
. (6.42)

For even p orders, all functions of Pa>b
p can be eliminated by the functions of

Gf
p = Ga>b

p ⊕ Ga<b
p , and the remaining space becomes Pa≤b

p ⊕ (Pp−3(F̂ ))2. How-
ever, there is only one function in Ga=b

p for odd p orders which cannot eliminate

both the corresponding functions ê1r̂
p−3
2

+1

1 r̂
p−3
2

2 ∈ Pa>b
p and ê2r̂

p−3
2

1 r̂
p−3
2

+1

2 ∈ Pa>b
p .

Hence, an additional function, and the corresponding space

Ra=b
p =

{
ê1r̂

a+1
1 r̂ a

2 − ê2r̂
a
1 r̂

a+1
2

∣∣∣∣ for a =

⌊
p− 3

2

⌋
=

p− 3

2

}
, (6.43)

needs to be preserved for the odd orders. Therefore, the final expression for the
space of face-associated test functions is

Q̂wf
p = (Pp−3(F̂ ))2 ⊕ Pa≤b

p ⊕Ra=b
p . (6.44)

The results for the other faces are analogous.

Finally, a volume-associated function (6.13) is considered, which yields the following
incremental order function:

∇̂ṽ = ∇̂(x0x1y0y1z0z1x
a
1y

b
1z

c
1) ∈ ∇̂(V̂v

S,p+1 \ V̂v
S,p), ∀ (a+ b+ c) = p− 5. (6.45)

The corresponding test function of the volume-associated moments can be obtained
as the inverse of the test function extensions (6.22), i.e.,

q̃v,abc
p+1 =


1

y0y1z0z1
0 0

0
1

x0x1z0z1
0

0 0
1

x0x1y0y1

 ∇̂ṽ =


r̂c3r̂

b
2((a+ 1)r̂ a

1 − (a+ 2)r̂ a+1
1 )

r̂c3r̂
a
1((b+ 1)r̂ b

2 − (b+ 2)r̂ b+1
2 )

r̂a1 r̂
b
2((c+ 1)r̂ c

3 − (c+ 2)r̂ c+1
3 )

 ,

= r̂a1 r̂
b
2r̂

c
3


a+ 1

b+ 1

c+ 1

−


(a+ 2)r̂a+1

1 r̂b2r̂
c
3

(b+ 2)r̂a1 r̂
b+1
2 r̂c3

(c+ 2)r̂a1 r̂
b
2r̂

c+1
3

 , ∀ (a+ b+ c) = p− 5. (6.46)
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Hence, the space of test functions Gv
p for the incremental order gradient function is

defined as the direct sum of the different subspaces, depending on the relations of
a, b, and c:

Gv
p =Ga>b,c

p ⊕ Gb>a,c
p ⊕ Gc>a,b

p ⊕ Ga=b>c
p ⊕ Ga=c>b

p ⊕ Gb=c>a
p ⊕ Ga=b=c

p ,

={q̃v,abc
p+1 | ∀ (a+ b+ c) = p− 5 and a > b, c}⊕

{q̃v,abc
p+1 | ∀ (a+ b+ c) = p− 5 and b > a, c}⊕

{q̃v,abc
p+1 | ∀ (a+ b+ c) = p− 5 and c > a, b}⊕

{q̃v,abc
p+1 | ∀ (a+ b+ c) = p− 5 and a = b > c}⊕

{q̃v,abc
p+1 | ∀ (a+ b+ c) = p− 5 and a = c > b}⊕

{q̃v,abc
p+1 | ∀ (a+ b+ c) = p− 5 and b = c > a}⊕

{q̃v,abc
p+1 | ∀ (a+ b+ c) = p− 5 and a = b = c}. (6.47)

The next step is the determination of the test function space Q̂wv
p for the volume-

associated moments. The procedure is the same as for the face-associated space,
where the unnecessary terms are removed from the complete-order space. The suf-
ficient oversized trial space reads

(Pp−4(V̂ ))3 = (Pp−5(V̂ ))3 ⊕ Pa≤b,c
p ⊕ P̄a≤b,c

p for Q̂wv
p , (6.48)

where the highest-order subspaces Pa≤b,c
p and P̄a≤b,c

p are defined as

Pa≤b,c
p ={êir̂

a
i r̂

b
j r̂

c
k | ∀(a+ b+ c) = p− 4 and a ≤ b or a ≤ c}, (6.49a)

P̄a≤b,c
p ={êir̂

a
i r̂

b
j r̂

c
k | ∀(a+ b+ c) = p− 4 and a > b, c},

={êir̂
a+1
i r̂ b

j r̂
c
k | ∀(a+ b+ c) = p− 5 and a ≥ b, c}. (6.49b)

The one order less subspace (Pp−5(V̂ ))3 is a necessary condition of the convergence
due to the error estimation (6.26) of the complete-order serendipity element. More-
over, using a similar argumentation as for the face-associated space, it is also consid-
ered that the curl operator requires the derivative of vector components with respect
to the other variables, i.e., êir̂j for i ̸= j. Hence, any êir̂

a
i r̂

b
j r̂

c
k monomial, for arbi-

trary indices i, j, k ∈ {1, 2, 3} and a ≤ b or ≤ c, corresponds to a higher-order range
space than its counterparts êir̂

a
i r̂

b
j r̂

c
k for a > b, c . Based on these considerations,

the subspace Pa≤b,c
p is preserved, and functions are only eliminated from P̄a≤b,c

p via
Gv
p . Therefore, the definition for the space of volume-associated test functions is

Q̂wv
p = (Pp−5(V̂ ))3 ⊕ Pa≤b,c

p ⊕
(
P̄a≤b,c

p \ (Gv
p ⊕ Pa≤b,c

p ⊕ (Pp−5(V̂ ))3)
)
. (6.50)
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In order to simplify this expression, a further subdivision of P̄a≤b,c
p is required for

the distinct cases

P̄a≤b,c
p =Pa>b,c

p ⊕ Pa=b>c
p ⊕ Pa=c>b

p ⊕ Pa=b=c
p ,

={êir̂
a+1
i r̂ b

j r̂
c
k | ∀(a+ b+ c) = p− 5 and a > b, c}

⊕ {êir̂
a+1
i r̂ b

j r̂
c
k | ∀(a+ b+ c) = p− 5 and a = b > c}

⊕ {êir̂
a+1
i r̂ b

j r̂
c
k | ∀(a+ b+ c) = p− 5 and a = c > b}

⊕ {êir̂
a+1
i r̂ b

j r̂
c
k | ∀(a+ b+ c) = p− 5 and a = b = c}. (6.51)

It can be seen that the subspace Pa>b,c
p is completely eliminated by Ga>b,c

p , Gb>a,c
p ,

and Gc>a,b
p in (6.50). However, the remaining subspaces cannot be eliminated en-

tirely. For example, Pa=b=c
p contains three functions, due to the different vector

components, whereas Ga=b=c
p is only of a single dimension. Hence, (6.50) requires

preserving the following two functions, and the corresponding space

Ra=b=c
p =

{(
ê1r̂

a+1
1 r̂ a

2 r̂
a
3 − ê2r̂

a
1 r̂

a+1
2 r̂ a

3

)
,
(
ê1r̂

a+1
1 r̂ a

2 r̂
a
3 − ê3r̂

a
1 r̂

a
2 r̂

a+1
3

) ∣∣∣∣
for a =

⌊
p− 5

3

⌋
=

p− 5

3

}
. (6.52)

Finally, the functions of Ga=b>c
p ⊕ Ga=c>b

p ⊕ Gb=c>a
p can be used to eliminate either

Pa=b>c
p or Pa=c>b

p in (6.50), since their dimensions are identical and their highest-
order monomials are the same. However, the difference between the two functions
is picked to obtain symmetrical functions instead of choosing one over the other.
Thus, resulting the remaining subspace is

Ra=b,a=c
p =

{
êir̂

a+1
i r̂ a

j r̂
b
k−êir̂

a+1
i r̂ b

j r̂
a
k

∣∣∣∣
for

p− 5

2
≥ a >

p− 5

3
, b = p− 5− 2a

}
. (6.53)
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Definition of the Finite Element Moments

In order to summarize the previously obtained results, a short definition is given for
the finite element moments of the mixed-order serendipity element. The spaces of
test functions associated with the edge Q̂we

p , face Q̂wf
p , and volume Q̂wv

p are

Q̂we
p = Pp−1(Ê)ê1, (6.54a)

Q̂wf
p = (Pp−3(F̂ ))2 ⊕ Pa≤b

p ⊕Ra=b
p , (6.54b)

Q̂wv
p = (Pp−5(V̂ ))3 ⊕ Pa≤b,c

p ⊕Ra=b,a=c
p ⊕Ra=b=c

p , (6.54c)

where the subspaces are defined as

Pa≤b
p ={êir̂

a
i r̂

b
j | ∀(a+ b) = p− 2 and a ≤ b},

Pa≤b,c
p ={êir̂

a
i r̂

b
j r̂

c
k | ∀(a+ b+ c) = p− 4 and a ≤ b or a ≤ c},

Ra=b
p =

{
ê1r̂

a+1
1 r̂ a

2 − ê2r̂
a
1 r̂

a+1
2

∣∣∣∣ for a =

⌊
p− 3

2

⌋
=

p− 3

2

}
,

Ra=b,a=c
p =

{
êir̂

a+1
i r̂ a

j r̂
b
k − êir̂

a+1
i r̂ b

j r̂
a
k

∣∣∣∣ for
p− 5

2
≥ a >

p− 5

3
, b = p− 5− 2a

}
,

Ra=b=c
p =

{(
ê1r̂

a+1
1 r̂ a

2 r̂
a
3 − ê2r̂

a
1 r̂

a+1
2 r̂ a

3

)
,
(
ê1r̂

a+1
1 r̂ a

2 r̂
a
3 − ê3r̂

a
1 r̂

a
2 r̂

a+1
3

) ∣∣∣∣
for a =

⌊
p− 5

3

⌋
=

p− 5

3

}
,

with a, b, and c non-negative integers. The corresponding moments, associated
with the edges M̂we

p , faces M̂wf
p , and volume M̂wv

p are defined identically to the
complete-order serendipity element, i.e.,

M̂we
p (ŵ) =

∫
Ê

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂we
p , (6.56a)

M̂wf
p (ŵ) =

∫
F̂

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂wf
p , (6.56b)

M̂wv
p (ŵ) =

∫
V̂

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂wv
p . (6.56c)
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Definition of the Approximation Space

After the declaration of the domain and the finite element moments, only the defini-
tion of the approximation space remains. The natural way to obtain approximation
spaces is via smooth extensions of test functions, associated with the edge (6.20),
face (6.21), and volume (6.22), to the entire domain while providing the necessary
compact support. However, these extensions are not capable of generating functions
for ∇̂V̂S,p since there are higher-order polynomial components normal to the associ-
ated edge (6.32) or face (6.37). This would prevent constructing higher-order basis
functions with subsets of purely null space functions. To overcome this problem,
only the range space functions are obtained as the natural extensions of the test
functions, whereas the null space functions are already available from (6.11), (6.12),

and (6.13) via ∇̂V̂S,p.

In the first-order case, no separation is possible since the scalar functions are only
associated with the nodes (6.10), whereas the vector functions are associated to
the edges with different conformity requirements. Hence, the first-order functions
ŵjk, ŵik, ŵij ∈ Ŵe

SI,1 must be the same as for the other finite element spaces (6.20):

ŵjk = (yjzkê1), on edge yjzk, (6.57a)

ŵik = (xizkê2), on edge xizk, (6.57b)

ŵij = (xiyjê3), on edge xiyj. (6.57c)

Here, the subscripts indicate the associated edges as shown in Figure 6.3. Con-
sidering that the highest-order test functions of the moments contribute only to
the range space, they can be used to generate range space basis functions. The
difference between the test function space of the mixed-order element (6.54) and
the one-order less test function space of the complete-order element (6.18) yields

Q̂we
p \ ê1Pp−1(Ê) = ∅. Hence, there are no edge-associated range space functions for

p > 1, and the definition of the edge-associated approximation space Ŵe
SI,p reads

Ŵe
SI,p = Ŵe

SI,1 ⊕ ∇̂V̂e
S,p. (6.58)

However, both null and range space functions are present in the higher-order case for
the face- and volume-associated functions. The face-associated functions of order
p are denoted by ŵk, ŵj, ŵi ∈ Ãf

SI,p, that contribute to the range space of the
curl operator. Here, the subscripts are indices for the associated faces as shown in
Figure 6.3. These functions are required to have tangential compact support over
the associated face and zero tangential component on all other faces. The general
form of such a functions are

ŵk =

y0y1zkfx
k (x1, y1)

x0x1zkf
y
k (x1, y1)

0

 , for

[
fx
k (x1, y1)

f y
k (x1, y1)

]
∈ (Q̂wf

p \ (Pp−3(F̂ ))2) on face zk,

(6.59a)
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ŵj =

z0z1yjfx
j (x1, z1)

0

x0x1yjf
z
j (x1, z1)

 , for

[
fx
j (x1, z1)

f z
j (x1, z1)

]
∈ (Q̂wf

p \ (Pp−3(F̂ ))2) on face yj,

(6.59b)

ŵi =

 0

z0z1xif
y
i (y1, z1)

y0y1xif
z
i (y1, z1)

 , for

[
f y
i (y1, z1)

f z
i (y1, z1)

]
∈ (Q̂wf

p \ (Pp−3(F̂ ))2) on face xi.

(6.59c)

Therefore, the face-associated approximation space Ŵf
SI,p is given as a direct sum

of the incremental order spaces Ãf
SI,p and the null space ∇̂V̂f

S,p, i.e.,

Ŵf
SI,p = Ãf

SI,2 ⊕ . . .⊕ Ãf
SI,p ⊕ ∇̂V̂f

S,p. (6.60)

The volume-associated range space functions of incremental order p are denoted
by ŵ ∈ Ãv

SI,p. These functions must provide tangential compact support for the
element, having zero tangential components on all faces. Their general form is

ŵ =

y0y1z0z1fx(x1, y1, z1)

x0x1z0z1f
y(x1, y1, z1)

x0x1y0y1f
z(x1, y1, z1)

 ,

fx(x1, y1, z1)

f y(x1, y1, z1)

f z(x1, y1, z1)

 ∈ (Q̂wv
p \ (Pp−5(V̂ ))3). (6.61a)

Therefore, the volume-associated approximation space Ŵv
SI,p is given as a direct sum

of the incremental order spaces Ãv
SI,p and the null space ∇̂V̂v

S,p, i.e.,

Ŵv
SI,p = Ãv

SI,4 ⊕ . . .⊕ Ãv
SI,p ⊕ ∇̂V̂v

S,p. (6.62)

Using the fact that the finite element moments induce the approximation space, the
dimensions of the subspaces can be determined as

dim(Ŵe
SI,p) = dim(Ŵe

S,p) + dim(V̂e
S,p)− dim(V̂e

S,p+1) = 12p, (6.63a)

dim(Ŵf
SI,p) = dim(Ŵf

S,p) + dim(V̂f
S,p)− dim(V̂f

S,p+1),

= 6(p2 − 2p+ 2), p > 1, (6.63b)

dim(Ŵv
SI,p) = dim(Ŵv

S,p) + dim(V̂v
S,p)− dim(V̂v

S,p+1),

=
(p− 3)(p2 − 4p+ 6)

2
, p > 2. (6.63c)

Thus, the finite element approximation space ŴSI,p of order p is defined as the direct
sum of the edge-, face-, and volume-associated subspaces:

ŴSI,p = Ŵe
SI,p ⊕ Ŵf

SI,p ⊕ Ŵv
SI,p. (6.64)
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6.2.4 Comparison to Other Serendipity Spaces

The first dimension independent definition of the scalar serendipity element was
given by Arnold and Awanou [AA11]. They showed that these spaces provide the
same convergence rate as the same order tensor product space for straight-sided ge-
ometries that are discretized by parallelepiped elements with affine geometry map-
pings. After them, several researchers have revisited the topic [RGB14], [AA14],

[GKS19], [GK19]. In all cases, including the presented space V̂S,p, the approxima-
tion space turned out to be the same for hexahedra. Further, similar results have also
been obtained for H(curl)- and H(div)-conforming elements. Arnold and Awanou
published a general definition for serendipity spaces [AA14] based on differential
forms. Their spaces for H(curl)-conforming hexahedra turned out to be the same

as the complete-order serendipity space ŴS,p in this work. Exact basis functions
were not provided; however, some nodal association locations were given for an in-
terpolatory basis. Based on the analysis of Arnold, Boffi, and Bonizzoni [ABB15],
the theoretical convergence rate is only achieved for serendipity spaces when each
element is obtained via affine geometry mappings (parallelotope meshes). The main
advantage of the presented new definitions over the existing ones is the explicit ex-
pression of the moments and the approximation spaces on the reference element,
allowing the direct application of the results of Chapter 3. Hence, the ideal rate of
convergence is guaranteed for affine refinements of curvilinear meshes and not just
for parallelotope meshes with affine geometry mappings.

Recently, Gillette and Tyler published papers [GK19, GKS19] on the so-called
trimmed serendipity spaces for H(curl)-conforming hexahedra. Their theory is
based on the application of differential forms for the globally defined finite element
moments. They showed that the exclusion of some higher-order test functions of
the finite element moments that contribute to the highest-order null space is per-
missible. Furthermore, they provided a semi-hierarchical basis for hexahedra, which
is hierarchical except for the highest-order case [GKS19]. This is considered as a
“feature of serendipity spaces, not a bug”[GKS19]. They suspected [GKS19] that
it is not possible to achieve a fully hierarchical basis with the trimmed serendipity
space. Their space has the same dimension as the proposed mixed-order serendipity
space ŴSI,p. However, the actual finite element moments and the approximation
space are different due to the difference in the highest-order incremental space. The
main reason for this is that the approximation spaces are usually determined via
smooth extensions of the test functions to the entire element domain. Oftentimes,
these smooth extensions are multiplications with functions of the local coordinates,
which provides sufficient compact support and conformity requirements. However,
different conformity requirements yield different smooth extensions for the hexa-
hedral spaces ŴS,p and ∇̂V̂S,p+1, resulting in ∇̂(V̂S,p+1 \ V̂S,p) ̸⊂ ŴS,p. Since the
trimmed serendipity space of Gillette and Tyler is a subspace of the complete-order
serendipity space ŴS,p, the highest-order functions must contribute to both the
highest-order range space and null space. Therefore, the trimmed serendipity space
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is not suitable for the generation of truly hierarchical basis functions. In contrast,
the present analysis utilizes the de Rham complex of the approximation spaces to ob-
tain the finite element moments instead of using the appropriate differential forms.
The test functions of the moments that correspond to the highest-order gradient
space ∇̂(V̂S,p+1 \ V̂S,p) are determined. After the elimination of these moments from

the complete-order serendipity space ŴS,p, the highest-order functions only belong
to the range space and are independent of the highest-order null space functions.
Subsequently, the mixed-order (or incomplete-order) approximation space ŴSI,p is
defined as the direct sum of incremental order range spaces and a lower-order null
space. Hence, the proposed mixed-order serendipity space is defined to facilitate
the construction of a hierarchical basis with subsets of purely range space and null
space functions for p > 1.
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6.3 Tensor Product Spaces

Tensor product spaces are widely used for their structured way of implementation, al-
lowing systematic procedures for the finite element assembly [ALM+09, AMGC19].
Another advantage is that some important properties from the lower dimensions
can be easily extended to higher dimensions, such as the approximation proper-
ties. Generally, these spaces yield more accurate solutions and are applicable to
general straight-sided geometries without affecting the convergence rate of the L2-
norm error [ABB15]. In the framework presented in Chapter 3, this is equivalent
to the elements, that are obtained via the piecewise linear (non-affine) refinements
of straight-sided meshes. Each refinement ought to preserve the node locations of
the initial elements; however, the newly inserted node locations on the faces and
on the volume can be placed freely. Hence, piecewise linear refinement can reduce
the geometry error in each refinement step if interpolated geometry mappings are
used. This is the main advantage over affine refinement, where the nodes of the
refined elements are determined by the mappings of the parent elements, denying
any correction. Non-affine refinements always degrade the rate of convergence for
serendipity elements. However, the main disadvantage of tensor product elements
compared to serendipity elements is their much larger size, which increases the num-
ber of unknowns in the finite element equation system. In the following subsections,
alternative definitions are provided for the best-known tensor product spaces for
H1- and H(curl)-conforming hexahedral elements. The form and the notations of
the finite element moments are identical to the general moments (2.73) and (2.74).
Hence, the results of Chapter 3 are directly applicable.

6.3.1 H1-Conforming Tensor Product Element for
Straight-Sided Geometries

The space of test functions associated with the edge Q̂ve
p , face Q̂vf

p , and volume Q̂vv
p

are given as

� Q̂ve
p = Qp−2,

� Q̂vf
p = Qp−2,p−2,

� Q̂vv
p = Qp−2,p−2,p−2,

with the dimensions of

dim(Q̂ve
p ) = 12(p− 1), p > 0, (6.65a)

dim(Q̂vf
p ) = 6(p− 1)2, p > 0, (6.65b)
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dim(Q̂vv
p ) = (p− 1)3, p > 0. (6.65c)

The finite element moments are defined on the reference element and are associated
with the nodes M̂ vn

p , edges M̂ ve
p , faces M̂ vf

p , and volume M̂ vv
p of the unit-cube:

M̂ vn
p (v̂) = v̂

∣∣∣∣
N̂

, (6.66a)

M̂ ve
p (v̂) =

∫
Ê

v̂q̂ dr̂, ∀q̂ ∈ Q̂ve
p , (6.66b)

M̂ vf
p (v̂) =

∫
F̂

v̂q̂ dr̂, ∀q̂ ∈ Q̂vf
p , (6.66c)

M̂ vv
p (v̂) =

∫
V̂

v̂q̂ dr̂, ∀q̂ ∈ Q̂vv
p . (6.66d)

Hence, the number of node-associated moments M̂ vn
p and the dimension of the node-

associated approximation space V̂n
T,p is 8, independent of the order. The resulting

finite element space of order p is denoted by V̂T,p, and it is the direct sum of the
node-, edge-, face-, and volume-associated subspaces:

V̂T,p = V̂n
T,1 ⊕ V̂e

T,p ⊕ V̂f
T,p ⊕ V̂v

T,p. (6.67)

As shown for the serendipity spaces in Section 6.2.1, the smooth extensions of the
test functions to the entire volume with (6.10), (6.11), (6.12), and (6.13) lead to the

tensor product space of V̂T,p = Qp,p,p. This can also be verified by comparing the
dimensions of the moments and the approximation space:

dim(V̂T,p) = (p+ 1)3 = 8 + 12(p− 1) + 6(p− 1)2 + (p− 1)3. (6.68)

One can see that the serendipity space V̂S,p of order p is a subspace V̂S,p ⊂ V̂T,p , which
yields the convergence rate of (6.17). Moreover, the one order higher serendipity

space is not a subspace V̂S,p+1 ̸⊂ V̂T,p. Therefore, both the tensor product and the
serendipity space yield the same convergence rate,∥∥v − πv

p,hv
∥∥
L2(Ω)

≤ Chp+1, (6.69a)∥∥v − πv
p,hv
∥∥
H1(Ω)

≤ Chp, (6.69b)

for affine refinements of the exact geometry mapping. Furthermore, in the case of
straight-sided elements and piecewise linear (non-affine) refinements, the sufficient

condition for the same rate of convergence is Pp ◦ g1 = V̂T,p for ∀g1; see Table 3.1.
Since Pp ◦ g1 = Qp,p,p, the rate of convergence is not affected for arbitrary straight-
sided elements. This finite element space [M+03, Chapter 6] and its convergence
property [ABF02] are the best-known results of tensor product finite elements due
to their wide range of applications.



Tensor Product Spaces 149

6.3.2 H(curl)-Conforming Tensor Product Element for
Straight-Sided Geometries

The space of test functions associated with the edge Q̂we
p , face Q̂wf

p , and volume

Q̂wv
p are defined as

� Q̂we
p = ê1Qp−1,

� Q̂wf
p = ê1Qp−1,p−1 ⊕ ê2Qp−1,p−1,

� Q̂wv
p = ê1Qp−1,p−1,p−1 ⊕ ê2Qp−1,p−1,p−1 ⊕ ê3Qp−1,p−1,p−1.

The dimensions of these spaces are

12 · dim(Q̂we
p ) = 12p, (6.70a)

6 · dim(Q̂wf
p ) = 12p2 (6.70b)

1 · dim(Q̂wv
p ) = 3p3. (6.70c)

The corresponding moments associated with the edge M̂we
p , face M̂wf

p , and volume

M̂wv
p are

M̂we
p (ŵ) =

∫
Ê

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂we
p , (6.71a)

M̂wf
p (ŵ) =

∫
F̂

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂wf
p , (6.71b)

M̂wv
p (ŵ) =

∫
V̂

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂wv
p , (6.71c)

which induce the corresponding approximation spaces the same way as for the
serendipity elements. The edge-, face-, and volume-associated approximation spaces
are denoted by Ŵe

T,p, Ŵ
f
T,p, and Ŵv

T,p, respectively. These spaces are defined by the
smooth extensions of the edge- (6.20), face- (6.21), and volume-associated (6.22) test
functions to the entire domain. Their direct sum is the finite element approximation
space ŴT,p, which is the tensor product space of

ŴT,p = Ŵe
T,p ⊕ Ŵf

T,p ⊕ Ŵv
T,p =

Qp−1,p+1,p+1

Qp+1,p−1,p+1

Qp+1,p+1,p−1

 . (6.72)

This can also be verified by comparing the dimension of the space to the dimension
of the moments:

dim(ŴT,p) = 3p(p+ 2)2 = 12p+ 12p2 + 3p3. (6.73)
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Convergence Properties

The first-order ŴT,1 approximation space was reported by Falk et al. [FGM11],
whereas their definition of moments was different. Falk et al. rely on the construction
of theH(div)-conforming space, which is used for the separation of the curl operator
null space. The authors prove that in the case of a general straight-sided hexahedron,
the sufficient condition of the first-order convergence is

ŴT,1 =

Q0,2,2

Q2,0,2

Q2,2,0

 =⇒


∥∥w − πw

p,hw
∥∥
L2(Ω)

= O(h),∥∥w − πw
p,hw

∥∥
H(curl,Ω)

= O(h).
(6.74)

In a later work, Bergot and Duruflé claim [BD13b] that the optimal, sufficient, and
necessary condition for the higher-order approximation space is

ŴT,p =

Qp−1,p+1,p+1

Qp+1,p−1,p+1

Qp+1,p+1,p−1

 =⇒


∥∥w − πw

p,hw
∥∥
L2(Ω)

= O(hp),∥∥w − πw
p,hw

∥∥
H(curl,Ω)

= O(hp).
(6.75)

Their reasoning is that the global approximation space WT,p must include the ro-

tational space Rp of Nédélec (2.109a). Bergot et al. claim that the optimal ŴT,p

space is obtained via the Piola transformation of such a global space Rp to the ref-
erence element, which yields the desired rate of convergence (6.75). However, they
provide no definition of the degrees of freedom and no proofs of error estimations
for hexahedra. These elements were validated by numerical experiments where the
convergence rates seem correct. However, no details of the model geometries are
given, and the applied mesh [BD13b] seems to be a straight-sided mesh of a sphere
inside a cube. In that case, achieving a higher convergence rate than O(h1) is the-
oretically impossible; see Section 3.3 or [Cia02, Section 4.2] or [SF73, Section 3.2].
Furthermore, even if curvilinear meshes are used, achieving the correct convergence
rates (6.75) is theoretically not possible for general curvilinear meshes; see Section
3.3 or [ABB15]. In the following, however, proofs are given for the minimality of

such a ŴT,p space for the restricted case of straight-sided geometries.

The starting point is the L2(Ω)-norm estimate. According to Table 3.2, the sufficient
condition for the convergence in case of exact, piecewise linear g1 geometry mappings
is

∀g1, J1(Pp−1)
3 ◦ g1 ⊂ ŴT,p =⇒

∥∥w − πw
p w
∥∥
L2(Ωe)

= O(hp). (6.76)

Thus, the transformation involves the geometry mapping and its Jacobian. This is
why theH(curl)-conforming function space is more intricate than theH1-conforming
space. In the rest of the section, the condition of ∀g1 applies to each equation; how-
ever, it is left out to ease the readability. Using the definition of g1 from equation



Tensor Product Spaces 151

(6.3), the general form of the Jacobian becomes

JT
1 =

[
∇̂gx, ∇̂gy, ∇̂gz

]T
,

=

[
b1+e1r̂2+g1r̂3+h1r̂2r̂3, c1+e1r̂1+f1r̂3+h1r̂1r̂3, d1+f1r̂2+g1r̂1+h1r̂1r̂2
b2+e2r̂2+g2r̂3+h2r̂2r̂3, c2+e2r̂1+f2r̂3+h2r̂1r̂3, d2+f2r̂2+g2r̂1+h2r̂1r̂2
b3+e3r̂2+g3r̂3+h3r̂2r̂3, c3+e3r̂1+f3r̂3+h3r̂1r̂3, d3+f3r̂2+g3r̂1+h3r̂1r̂2

]
. (6.77)

It can be seen that each column vector of the Jacobian is in the space of

J1êi ∈

Q0,1,1

Q1,0,1

Q1,1,0

 . (6.78)

Moreover, the function composition of a (p− 1)-order polynomial and the geometry
mapping satisfies

(Pp−1)
3 ◦ g1 ⊂ (Qp−1,p−1,p−1)

3. (6.79)

Combining (6.78) and (6.79), the sufficient space for the L2(Ωe)-norm convergence
becomes

J1(Pp−1)
3 ◦ g1 ⊂

Qp−1,p,p

Qp,p−1,p

Qp,p,p−1

 . (6.80)

Since this space is a subspace of ŴT,p, the resulting error estimate readsQp−1,p,p

Qp,p−1,p

Qp,p,p−1

 ⊂ ŴT,p =⇒
∥∥w − πw

p w
∥∥
L2(Ωe)

= O(hp), (6.81)

for straight-sided elements.

Next, the investigation continues with the H(curl)-norm estimate. Two different
proofs are provided for the determination of the minimal approximation space. The
first proof is based on the estimation of functions ∇ × w ∈ H(div). Then, the

sufficient space ŴT,p is determined by using the commutation of the interpolation
operator, as well as the mappings of the differential operators. The second proof is
based on the estimation of functions d ∈ H(div), where the sufficient D̂T,p space is

determined. Then, all those subspaces that are not in the form of ∇̂×ŵ ⊂ ∇̂×ŴT,p

are eliminated. Hence, there is no need to use the commutation properties or to
assume that the dimension of the subspaces is unaffected. The provision of these
proofs from both sides guarantees the minimality of ŴT,p.

Applying the results of Table 3.2, the convergence requirement of functions ∇×w ∈
H(div) for straight-sided elements and piecewise linear refinements is

det(J1)J
−T
1

(
∇× (Pp)

3
)
◦ g1 ⊂ ∇̂ × ŴT,p =⇒

∥∥∇× (w − πw
p w)

∥∥
L2(Ωe)

= O(hp).

(6.82)
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Let us consider a decomposition [DVBMR17] for the complete-order polynomial
space

(Pp)
3 = (Pp−1)

3 ⊕ r × (P̃p−1)
3 ⊕∇P̃p+1, (6.83)

where r denotes the coordinate vector and P̃p−1 is the space of homogeneous polyno-

mials of order p− 1. Here, the highest-order gradient subspace ∇P̃p+1 is negligible.
since it is in the null space of the curl operator. Thus, the sufficient space is simplified
to

det(J1)J
−T
1

(
∇×

(
(Pp−1)

3 ⊕ r × (P̃p−1)
3
))

◦ g1 ⊂ ∇̂ × ŴT,p. (6.84)

Further simplification is possible through applying the mapping of the curl operator
(2.64) to the local domain:

det(J1)J
−T
1

(
∇×

(
(Pp−1)

3 ⊕ r × (P̃p−1)
3
))

◦ g1 =

∇̂ ×
(
J1

(
(Pp−1)

3 ⊕ r × (P̃p−1)
3
)
◦ g1

)
. (6.85)

Hence, the sufficient condition becomes

J1

(
(Pp−1)

3 ⊕ r × (P̃p−1)
3
)
◦ g1 ⊂ ŴT,p =⇒

∥∥∇× (w − πw
p w)

∥∥
L2(Ωe)

= O(hp).

(6.86)

Here, the polynomial space (Pp−1)
3⊕r× (P̃p−1)

3 = Rp becomes the rotational space
of Nédélec (2.109a). Therefore, it is equivalent to the statement of Bergot and
Duruflé [BD13a]. The first term

J1(Pp−1)
3 ◦ g1 ⊂

Qp−1,p,p

Qp,p−1,p

Qp,p,p−1

 ⊂ ŴT,p (6.87)

is already included in the space ŴT,p, since it is required for the L2(Ωe)-norm con-
vergence. Hence, the remaining requirement is to include the space of

J1

(
r × (P̃p−1)

3
)
◦ g1 =

(
J1

(
g1 × (Qp−1,p−1,p−1)

3
))

⊂ ŴT,p. (6.88)
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All functions of this space are of the form

J1 (g1 ×w) = (gz∇̂gy − gy∇̂gz)[w]1 + (gx∇̂gz − gz∇̂gx)[w]2+

(gy∇̂gx − gx∇̂gy)[w]3, (6.89)

where [w]i ∈ Qp−1,p−1,p−1 and gx, gy, gz ∈ Q1,1,1 are polynomials. Next, the inves-
tigation is only continued for the last term of (6.89) and only for the first vector
component

[(gy∇̂gx − gx∇̂gy)]1 = gy
∂gx
∂r̂1

− gx
∂gy
∂r̂1

, (6.90)

since the other components and terms would yield similar results due to symmetry.
Consider a decomposition for the geometry mapping based on the variable r̂1:

gx = ax + bxr̂1, ax, bx ∈ Q0,1,1, (6.91a)

gy = ay + byr̂1, ay, by ∈ Q0,1,1. (6.91b)

Thus, the term of (6.90) yields

gy
∂gx
∂r̂1

− gx
∂gy
∂r̂1

= (ay + byr̂1)bx − (ax + bxr̂1)by = aybx − axby ∈ Q0,2,2. (6.92)

Hence, each term of (6.89) belongs to the space of

(gz∇̂gy − gy∇̂gz), (gx∇̂gz − gz∇̂gx), (gy∇̂gx − gx∇̂gy) ∈

Q0,2,2

Q2,0,2

Q2,2,0

 . (6.93)

Moreover, the effect of the multiplication with a component of w ∈ (Qp−1,p−1,p−1)
3

polynomial in (6.89) yields

J1 (g1 ×w) ∈

Qp−1,p+1,p+1

Qp+1,p−1,p+1

Qp+1,p+1,p−1

 , (6.94)

which is the sufficient approximation spaceQp−1,p+1,p+1

Qp+1,p−1,p+1

Qp+1,p+1,p−1

 = ŴT,p. (6.95)

The second approach for the derivation of the sufficient space ŴT,p uses the ap-
proximation theory of functions d ∈ H(div). This method is suggested by Falk
in [FGM11], where the analysis is carried out for first-order elements with exact,
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straight-sided geometry mapping g1. In the following, this theory of Falk is extended
to the higher-order case, starting with the requirement (3.175) for the L2(Ωe)-norm
convergence:

det(J1)J
−T
1 (Pp−1)

3 ◦ g1 ⊂ D̂T,p =⇒
∥∥d− πd

pd
∥∥
L2(Ωe)

= O(hp). (6.96)

Following the proof of Falk, the definition of the adjugate matrix can be used to show
that the multiplicative term of det(J1)J

−T
1 is a polynomial. Applying the general

form of the Jacobian (6.77), the first column of the matrix det(J1)J
−T
1 becomes

det(J1)J
−T
1 ê1 = adj(JT

1 )ê1

=

[
A1

1+(D1
3−C1

2 )r̂1+C1
1 r̂2+D1

1 r̂3−(E1
2+G1

2)r̂1r̂2+(E1
3−G1

3)r̂1r̂3+G1
1r̂

2
1+H1

3 r̂
2
1 r̂2−H1

2 r̂
2
1 r̂3

A1
2+B1

2 r̂1+(B1
1−D1

3)r̂2+D1
2 r̂3+(E1

1−G1
1)r̂2r̂1−(E1

3+G1
3)r̂2r̂3+G1

2r̂
2
2−H1

3 r̂1r̂
2
2+H1

1 r̂
2
2 r̂3

A1
3+B1

3 r̂1+C1
3 r̂2+(C1

2−B1
1)r̂3−(E1

1+G1
1)r̂3r̂1+(E1

2−G1
2)r̂3r̂2+G1

3r̂
2
3+H1

2 r̂1r̂
2
3−H1

1 r̂2r̂
2
3

]
,

where ê1 = (1, 0, 0)T is a unit vector. The constant coefficients are determined as

A1
1 = c2d3 − d2c3, A1

2 = d2b3 − b2d3, A1
3 = b2c3 − c2b3,

B1
1 = f2b3 − b2f3, B1

2 = g2b3 − b2g3, B1
3 = b2e3 − e2b3,

C1
1 = c2f3 − f2c3, C1

2 = g2c3 − c2g3, C1
3 = e2c3 − c2e3,

D1
1 = f2d3 − d2f3, D1

2 = d2g3 − g2d3, D1
3 = e2d3 − e3d2,

E1
1 = h2b3 − h3b2, E1

2 = h2c3 − h3c2, E1
3 = h2d3 − h3d2,

G1
1 = e2g3 − g2e3, G1

2 = f2e3 − e2f3, G1
3 = g2f3 − f2g3,

H1
1 = f2h3 − h2f3, H1

2 = h3g2 − h2g3, H1
3 = e2h3 − h2e3.

Similar results can be obtained for all other column vectors of adj(JT
1 ) by replacing

the constant coefficients A1
1, A

1
2, A

1
3, B

1
1 . . . by Ai

1, A
i
2, A

i
3, B

i
1 . . . . Thus, all column

vectors belong to the space of

det(J1)J
−T
1 êi ⊂

Q2,1,0 ∪Q2,0,1

Q0,2,1 ∪Q1,2,0

Q1,0,2 ∪Q0,1,2

 . (6.97)

Then, the sufficient approximation space is obtained by the combination of such an
adjugate matrix and the composition of polynomials (6.79) as

det(J1)J
−T
1 (Pp−1)

3 ◦ g1 ∈ D̂T,p =

Qp+1,p,p−1 ∪Qp+1,p−1,p

Qp−1,p+1,p ∪Qp,p+1,p−1

Qp,p−1,p+1 ∪Qp−1,p,p+1

 . (6.98)

The next step of the proof is to look for the appropriate curl subspace ∇̂ × ŴT,p ⊂
D̂T,p, where dim(ŴT,p) is minimal. One can obtain a lower and upper bound for the

space ŴT,p with the L2(Ωe)-norm convergent space (6.81) of order p and p+ 1;Qp−1,p,p

Qp,p−1,p

Qp,p,p−1

 ⊆ ŴT,p ⊆

Qp,p+1,p+1

Qp+1,p,p+1

Qp+1,p+1,p

 . (6.99)
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Thus, the incremental trial spaces that need to be investigated areQp,p+1,p+1

Qp+1,p,p+1

Qp+1,p+1,p

 \

Qp−1,p,p

Qp,p−1,p

Qp,p,p−1

 =

r̂p+1
2 r̂p+1

3 Qp−1,0,0

r̂p+1
1 r̂p+1

3 Q0,p−1,0

r̂p+1
1 r̂p+1

2 Q0,0,p−1

⊕

r̂p+1
2 Qp−1,0,p

r̂p+1
1 Q0,p−1,p

r̂p+1
1 Q0,p,p−1

⊕

r̂p+1
3 Qp−1,p,0

r̂p+1
3 Qp,p−1,0

r̂p+1
2 Qp,0,p−1

⊕

r̂p1Q0,p+1,p+1

r̂p2Qp+1,0,p+1

r̂p3Qp+1,p+1,0

 . (6.100)

In the following, the proof is determined only for the ê1-component of the space,
due to the structured nature of the geometry. Then, an arbitrary monomial of the
first term of the decomposition reads r̂i1r̂

p+1
2 r̂p+1

3 ∈ r̂p+1
2 r̂p+1

3 Qp−1,0,0 for all indices
i ≤ p− 1. It can be shown that the curl of this monomial belongs to the space of

∇̂ × (ê1r̂
i
1r̂

p+1
2 r̂p+1

3 ) =

 0

r̂i1r̂
p+1
2 r̂p3(p+ 1)

−r̂i1r̂
p
2 r̂

p+1
3 (p+ 1)

 ∈ D̂T,p. (6.101)

The same procedure can be repeated for the monomials of the second r̂i1r̂
p+1
2 r̂k3 ∈

r̂p+1
2 Qp−1,0,p and third r̂i1r̂

k
2 r̂

p+1
3 ∈ r̂p+1

3 Qp−1,p,0 terms of the decomposition. For all
indices of i ≤ p− 1 and k ≤ p, the curl of the monomials belong to the space of

∇̂ × (ê1r̂
i
1r̂

p+1
2 r̂k3) =

 0

r̂i1r̂
p+1
2 r̂k−1

3 (k)

−r̂i1r̂
p
2 r̂

k
3(p+ 1)

 ∈ D̂T,p, (6.102)

∇̂ × (ê1r̂
i
1r̂

k
2 r̂

p+1
3 ) =

 0

r̂i1r̂
k
2 r̂

p
3(p+ 1)

−r̂i1r̂
k−1
2 r̂p+1

3 (k)

 ∈ D̂T,p. (6.103)

Hence, the condition ofQp−1,p+1,p+1

Qp+1,p−1,p+1

Qp+1,p+1,p−1

 ⊆ ŴT,p, (6.104)

is necessary for the convergence. In the remaining part, it is shown that this is also
a sufficient condition. A further decomposition can be obtained for ê1r̂

p
1Q0,p+1,p+1,

which is the last remaining term of (6.100):

r̂p1Q0,p+1,p+1 = r̂p1 r̂
p+1
2 Q0,0,p+1 ⊕ r̂p1 r̂

p+1
3 Q0,p,0 ⊕ r̂p1Q0,p,p. (6.105)

Here, any monomial of the first term can be written as r̂p1 r̂
p+1
2 r̂i3 ∈ r̂p1 r̂

p+1
2 Q0,0,p+1 for

all indices i ≤ p+ 1. Moreover, any monomial of the second term can be written as
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r̂p1 r̂
k
2 r̂

p+1
3 ∈ r̂p1 r̂

p+1
3 Q0,p,0 for all indices k ≤ p . Since the curl of these monomials do

not belong to the space of D̂T,p

∇̂ × (ê1r̂
p
1 r̂

p+1
2 r̂i3) =

 0

r̂p1 r̂
p+1
2 r̂i−1

3 (i)

−r̂p1 r̂
p
2 r̂

i
3(p+ 1)

 ̸∈ D̂T,p, (6.106)

∇̂ × (ê1r̂
p
1 r̂

k
2 r̂

p+1
3 ) =

 0

r̂p1 r̂
k
2 r̂

p
3(p+ 1)

−r̂p1 r̂
k−1
2 r̂p+1

3 (k)

 ̸∈ D̂T,p, (6.107)

they are unnecessary for the space of ŴT,p as well. Finally, the remaining space of

ê1r̂
p
1Q0,p,p needs to be eliminated from ŴT,p. For this, one may use an arbitrary

linear combination of the highest-order gradient functions in ∇(V̂T,p+1 \ V̂T,p), since
they do not contribute to the curl-subspace, i.e.,

∇̂ × ŴT,p = ∇̂ ×
(
ŴT,p \ ∇̂(V̂T,p+1 \ V̂T,p)

)
. (6.108)

Hence, the highest-order gradient functions of

∇(r̂p+1
1 Q0,p,p) =

 r̂p1Q0,p,p

r̂p+1
1

∂
∂r̂2

Q0,p,p

r̂p+1
1

∂
∂r̂3

Q0,p,p

 ⊂ ∇(V̂T,p+1 \ V̂T,p), (6.109)

can be used to eliminate ê1r̂
p
1Q0,p,p, since the second ê1r̂

p+1
1

∂
∂r̂2

Q0,p,p and third com-

ponents ê1r̂
p+1
1

∂
∂r̂3

Q0,p,p are already included in ŴT,p. One can obtain analogous
results for the other vector components of (6.100), since the symmetry of the refer-
ence hexahedron corresponds to a symmetric approximation space. Therefore, the
sufficient and necessary condition becomesQp−1,p+1,p+1

Qp+1,p−1,p+1

Qp+1,p+1,p−1

 = ŴT,p =⇒
∥∥w − πw

p w
∥∥
H(curl,Ωe)

= O(hp), (6.110)

for general straight-sided elements.
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6.3.3 Complete-Order Nédélec Element

Nédélec proposed two different approximation spaces for hexahedra. The so-called
Nédélec element of the second kind [Néd86] is also referred to as the complete-
order Nédélec element, since it contains a complete p-order polynomial subspace.
Furthermore, the so-called Nédélec elements of the first kind [Néd80] are also known
as mixed-order or incomplete-order elements. Here, the dimension of the range
space is identical to the complete p-order case, whereas the dimension of the null
space is identical to the case of (p − 1)-order. The mixed-order Nédélec space is
obtained via removal of the appropriate functions from the complete-order Nédélec
space. Hence, the main difference between these spaces is their dimension and the
resulting convergence rates. In this subsection, a definition is given for the complete-
order Nédélec element. As always, the reference domain is a cube with unit length
edges. The spaces of test functions associated with the edge Q̂we

p , face Q̂wf
p , and

volume Q̂wv
p are defined as

� Q̂we
p = ê1Qp,

� Q̂wf
p = ê1Qp,p−2 ⊕ ê2Qp−2,p,

� Q̂wv
p = ê1Qp,p−2,p−2 ⊕ ê2Qp−2,p,p−2 ⊕ ê3Qp−2,p−2,p,

with the dimensions of

12 · dim(Q̂we
p ) = 12(p+ 1), (6.111a)

6 · dim(Q̂wf
p ) = 12(p+ 1)(p− 1), (6.111b)

1 · dim(Q̂wv
p ) = 3(p+ 1)(p− 1)2. (6.111c)

The corresponding moments are associated with the edge M̂we
p , face M̂wf

p , and vol-

ume M̂wv
p as

M̂we
p (ŵ) =

∫
Ê

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂we
p , (6.112a)

M̂wf
p (ŵ) =

∫
F̂

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂wf
p , (6.112b)

M̂wv
p (ŵ) =

∫
V̂

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂wv
p . (6.112c)

These moments induce subspaces associated to the edges Ŵe
N,p, faces Ŵ

f
N,p, and vol-

ume Ŵv
N,p via the smooth extensions of the edge- (6.20), face- (6.21), and volume-
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associated (6.22) test functions to the entire domain. The direct sum of the sub-
spaces provides the approximation space

ŴN,p = Ŵe
N,p ⊕ Ŵf

N,p ⊕ Ŵv
N,p = (Qp,p,p)

3 (6.113)

with the dimension of

dim(ŴN,p) = 3(p+ 1)3. (6.114)

The relation to the complete-order serendipity spaces is

ŴS,p ⊂ ŴN,p. (6.115)

Hence, the same (6.26) error estimation applies for affine refinements of the exact
geometry mappings (this includes the parallelotope meshes), i.e.,∥∥w − πw

p,hw
∥∥
L2(Ω)

≤ Chp+1, (6.116a)∥∥w − πw
p,hw

∥∥
H(curl,Ω)

≤ Chp. (6.116b)

However, this rate changes for general straight-sided geometry mappings and non-
affine refinements. One can see that the sufficient condition (6.81) of the L2-norm
convergence is met, whereas the H(curl)-norm condition (6.110) is not. Hence, the
rate of convergence suffers a degrade of one order compared to (6.116b) in H(curl)-
norm, i.e.,∥∥w − πw

p,hw
∥∥
L2(Ω)

≤ Chp+1, (6.117a)∥∥w − πw
p,hw

∥∥
H(curl,Ω)

≤ Chp−1. (6.117b)

In the case of curvilinear elements and non-affine refinements, the rate of conver-
gence would degrade even more for both norms due to the general requirements of
Table 3.2.
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6.3.4 Mixed-Order Nédélec Element

In this section, a definition is given for the mixed-order Nédélec element. The
reference domain is a cube with unit length edges. The spaces of test functions are
defined as

� Q̂we
p = ê1Qp−1,

� Q̂wf
p = ê1Qp−1,p−2 ⊕ ê2Qp−2,p−1,

� Q̂wv
p = ê1Qp−1,p−2,p−2 ⊕ ê2Qp−2,p−1,p−2 ⊕ ê3Qp−2,p−2,p−1,

with the dimensions of

12 · dim(Q̂we
p ) = 12(p), (6.118a)

6 · dim(Q̂wf
p ) = 12p(p− 1), (6.118b)

1 · dim(Q̂wv
p ) = 3p(p− 1)2. (6.118c)

The corresponding moments are given as

M̂we
p (ŵ) =

∫
Ê

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂we
p , (6.119a)

M̂wf
p (ŵ) =

∫
F̂

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂wf
p , (6.119b)

M̂wv
p (ŵ) =

∫
V̂

ŵ · q̂ dr̂, ∀q̂ ∈ Q̂wv
p . (6.119c)

Similar to the complete-order case, these moments induce subspaces associated with
the edges Ŵe

NI,p, faces Ŵf
NI,p, and volume Ŵv

NI,p, whose direct sum gives the ap-
proximation space

ŴNI,p = Ŵe
NI,p ⊕ Ŵf

NI,p ⊕ Ŵv
NI,p =

Qp−1,p,p

Qp,p−1,p

Qp,p,p−1

 (6.120)

with the dimension of

dim(ŴNI,p) = 3p(p+ 1)2. (6.121)

The important relations to the other finite element approximation spaces are

ŴNI,p ⊂ ŴN,p, (6.122a)
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ŴSI,p ⊂ŴNI,p ⊂ ŴT,p. (6.122b)

Therefore, the mixed-order Nédélec element yields the same rate of convergence for
the affine refinement of the exact geometry mappings as the mixed-order serendipity
element ŴSI,p (6.27), (6.28), i.e.,∥∥w − πw

p,hw
∥∥
L2(Ω)

≤ Chp, (6.123a)∥∥w − πw
p,hw

∥∥
H(curl,Ω)

≤ Chp. (6.123b)

For general straight-sided elements (and non-affine refinements), the L2-norm con-
vergence rate is unaffected due to (6.81). However, the convergence rate of the
H(curl)-norm degrades by one order, i.e.,∥∥w − πw

p,hw
∥∥
L2(Ω)

≤ Chp, (6.124a)∥∥w − πw
p,hw

∥∥
H(curl,Ω)

≤ Chp−1, (6.124b)

since the condition (6.110) is not met. Similar results were shown by several authors
[FGM11], [ABB15], [BD13b]. The advantage over the complete-order element is the
smaller space, which produces fewer number of unknowns for the same convergence
rate in H(curl)-norm.



Hierarchical Basis Functions 161

6.4 Hierarchical Basis Functions

Hierarchical basis functions are widely used for their flexibility in degree elevation,
since there is no need to use a completely different basis for the different orders.
Only the higher, incremental order functions need to be added to the lower-order
basis, resulting in faster assembly times and minimizing the storage requirements.
The second advantage of hierarchical basis functions is that they allow the usage
of different order basis functions within one mesh without affecting conformity. For
an element with higher-order neighbors, only the incremental order functions that
belong to the common interfaces need to be included. In the following, a set of hier-
archical basis functions is provided, capable of spanning most of the finite element
spaces discussed in the previous sections.

The basis functions are defined on the reference element in terms of xi(r̂), yj(r̂), and
zk(r̂), that are given in equation (6.1). On the global element, these are functions
of the global coordinates xi(r) = xi(r̂) ◦ g−1, yj(r) = yj(r̂) ◦ g−1, and zk(r) =
zk(r̂) ◦ g−1, due to the inverse geometry mapping r̂ = g−1(r). The construction of
basis functions is based on Jacobi polynomials due to their orthogonality properties.
Let P ij

q (x1) denote the Jacobi polynomial of order q with the indices i and j. This is
a classical orthogonal polynomial over the interval of [−1, 1]. For present purposes,
the domain of orthogonality is shifted to [0, 1], which gives rise to the following
definition of the shifted Jacobi polynomial P ij

q :

P ij
q (x1) = P ij

q (2x1 − 1). (6.125)

Hence, the orthogonality relation for arbitrary functions vp(x1) ∈ Pp and fq(x1) ∈
P ij

q (x1) yields

1∫
0

vp(x1)(1− x1)
ixj

1fq(x1) dx1 =

1∫
0

vp(x1)x
i
0x

j
1fq(x1) dx1 = 0, q > p, (6.126)

with respect to the weighting function of xi
0x

j
1. The next step is to provide the basis

functions in a structured way. Since the finite element moments are determined
the same way on all nodes, edges, and faces, it is reasonable to provide the node-
associated functions for one general node, the edge-associated functions for one
general edge, and the face-associated functions for one general face. Let the general
variables be denoted by ai, bj, and ck, which are combinations of xi, yj, and zk
variables. A general node of a hexahedral element is associated with the function
aibjck, since it has a unit value on the associated node. Similarly, a generic edge is
parametrized by the variable c1 and associated with the function aibj, since it has a
unit value over the edge. A generic face is parametrized by the variables a1 and b1
and associated with a function ck, since it has a unit value over the face.
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edge aibj face cknode aibjck

r̂3

x0y1z1

r̂1

r̂2

x1y0z0

x1y0z1

x1y1z0

x1y1z1

x0y1z0

x0y0z1

x0y0z0

a0b1c1

a1b0c0

a1b0c1

a1b1c0

a1b1c1

a0b1c0

a0b0c1

a0b0c0

volume

c0 c1
a0b0 a1b0

a0b1 a1b1

Figure 6.4: Associated functions of a general node, edge, and face.

Hence, the possible combinations are

( node aibjck) = ( node xiyjzk),

( edge aibj, variable: c1) ∈


( edge yjzk, variable: x1)

( edge xizk, variable: y1)

( edge xiyj, variable: z1)

 ,

( face ck, variables: a1, b1) ∈


( face zk, variables: x1, y1)

( face yj, variables: x1, z1)

( face xi, variables: y1, z1)

 ,

( volume, variables: ai, bj, ck) = ( volume, variables: xi, yj, zk).

The graphical representation of these general partitions are shown in Figure 6.4.
It can be seen that these general nodes, edges, faces, and volume are identical to
the previously specified association types in Figure 6.1, Figure 6.2, or Figure 6.3.
However, these notations allow a more compact representation of bases with large
dimensions. With these notations, the scalar basis functions are shown in Table 6.1
and their dimensions in Table 6.2. The H1-conforming approximation spaces of VS,p

and VT,p contain hierarchical subspaces

V(·),p = Ṽ(·),1 ⊕ · · · ⊕ Ṽ(·),p, (·) ∈ {S, T}, (6.128a)

that are associated with the nodes, edges, faces, and volume of the element

Ṽ(·) = Ṽn
(·) ⊕ Ṽe

(·) ⊕ Ṽf
(·) ⊕ Ṽv

(·), (·) ∈ {S, T}. (6.129)

The basis functions of theH(curl)-conforming spacesAS,p, AN,p, andAT,p are shown
in Table 6.4 and their dimensions in Table 6.3. Each space is hierarchical in terms
of the polynomial order

A(·),p = Ã(·),1 ⊕ · · · ⊕ Ã(·),p (·) ∈ {S,N, T}, (6.130)
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as well as containing subspaces, which are associated with the edges, faces, and
volume:

Ã(·) = Ãe
(·) ⊕ Ãf

(·) ⊕ Ãv
(·), (·) ∈ {S,N, T}. (6.131)

Table 6.1: H1-conforming basis functions.

ṼT,p ṼS,p Assoc. Num. Basis functions

1 1 node aibjck 1 vijk = aibjck,

2 2 edge aibj 1 vγij = c0c1aibjP1,1
γ (c1), |γ = 0

2 4 face ck 1 vαβk = a0a1b0b1ckP1,1
α (a1)P1,1

β (b1), |α, β = 0

2 6 volume 1 vαβγ = a0a1b0b1c0c1P1,1
α (a1)P1,1

β (b1)P1,1
γ (c1), |α, β, γ = 0

3 3 edge aibj 1 v1ij,

3 α + β + 4 face ck 3 vαβk , 0 ≤ α, β ≤ 1 while α = 1 or β = 1

3 α + β + 6 volume 7 vαβγ, 0 ≤ α, β, γ ≤ 1 while α = 1 or β = 1 or γ = 1

4 4 edge aibj 1 v2ij,

4 α + β + 4 face ck 5 vαβk , 0 ≤ α, β ≤ 2 while α = 2 or β = 2

4 α + β + 6 volume 19 vαβγ, 0 ≤ α, β, γ ≤ 2 while α = 2 or β = 2 or γ = 2

Table 6.2: Dimensions of the H1-conforming bases.

p Vn
T,p Ve

T,p Vf
T,p Vv

T,p VT,p Vn
S,p Ve

S,p Vf
S,p Vv

S,p VS,p

1 8 0 0 0 8 8 0 0 0 8

2 8 12 6 1 27 8 12 0 0 20

3 8 24 24 8 64 8 24 0 0 32

4 8 36 54 27 125 8 36 6 0 50

Table 6.3: Dimensions of the range space H(curl)-conforming bases.

p Ae
T,p Af

T,p, Av
T,p Ae

N,p Af
N,p Av

N,p Ae
S,p Af

S,p Av
S,p

1 12 12 3 12 0 0 12 0 0

2 12 42 23 12 18 5 12 12 0

3 12 84 73 12 48 28 12 30 0

4 12 138 165 12 90 81 12 54 3
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Table 6.4: Range space H(curl)-conforming basis functions.

ÃT,p ÃN,p ÃS,p Assoc. Num. Basis functions

1 1 1 edge aibj 1 aibj∇c1,

1 2 2 face ck 1 wa,αβ
k = b0b1ckP0,0

α (a1)P1,1
β (b1)∇a1, |α, β = 0

1 2 2 face ck 1 wb,αβ
k = a0a1ckP1,1

α (a1)P0,0
β (b1)∇b1, |α, β = 0

1 2 4 volume 1 wa,αβγ = b0b1c0c1P0,0
α (a1)P1,1

β (b1)P1,1
γ (c1)∇a1, |α, β, γ = 0

1 2 4 volume 1 wb,αβγ = a0a1c0c1P1,1
α (a1)P0,0

β (b1)P1,1
γ (c1)∇b1, |α, β, γ = 0

1 2 4 volume 1 wc,αβγ = a0a1b0b1P1,1
α (a1)P1,1

β (b1)P0,0
γ (c1)∇c1, |α, β, γ = 0

2 2 3 face ck 1 wa,10
k −wb,01

k ,

2 2 5 volume 1 wa,100 −wb,010,

2 2 5 volume 1 wa,100 −wc,001,

2 3 α + β + 2 face ck 2 wa,αβ
k , 0 ≤ α ≤ 1, β = 1

2 3 α + β + 2 face ck 2 wb,αβ
k , 0 ≤ β ≤ 1, α = 1

2 3 α + β + 4 volume 6 wa,αβγ, 0 ≤ α, β, γ ≤ 1 while β = 1 or γ = 1

2 3 α + β + 4 volume 6 wb,αβγ, 0 ≤ α, β, γ ≤ 1 while α = 1 or γ = 1

2 3 α + β + 4 volume 6 wc,αβγ, 0 ≤ α, β, γ ≤ 1 while α = 1 or β = 1

3 3 5 face ck 1 wa,21
k −wb,12

k ,

3 3 7 volume 1 wa,210 −wa,201,

3 3 7 volume 1 wb,021 −wb,120,

3 3 7 volume 1 wa,102 −wa,012,

3 3 8 volume 1 wa,211 −wb,121,

3 3 8 volume 1 wa,211 −wc,112,

3 4 α + β + 2 face ck 3 wa,αβ
k , 0 ≤ α ≤ 2, β = 2

3 4 α + β + 2 face ck 3 wb,αβ
k , 0 ≤ β ≤ 2, α = 2

3 4 α + β + 4 volume 15 wa,αβγ, 0 ≤ α, β, γ ≤ 2 while β = 2 or γ = 2

3 4 α + β + 4 volume 15 wb,αβγ, 0 ≤ α, β, γ ≤ 2 while α = 2 or γ = 2

3 4 α + β + 4 volume 15 wc,αβγ, 0 ≤ α, β, γ ≤ 2 while α = 2 or β = 2

4 4 7 face ck 1 wa,32
k −wb,23

k ,

4 4 9 volume 1 wa,320 −wa,302,

4 4 9 volume 1 wb,230 −wb,032,

4 4 9 volume 1 wc,023 −wc,203,

4 4 10 volume 1 wa,321 −wa,312,

4 4 10 volume 1 wb,231 −wb,132,

4 4 10 volume 1 wc,123 −wc,213,

4 4 11 volume 1 wa,322 −wb,232,

4 4 11 volume 1 wa,322 −wc,223,

4 5 α + β + 2 face ck 4 wa,αβ
k , 0 ≤ α ≤ 3, β = 3

4 5 α + β + 2 face ck 4 wb,αβ
k , 0 ≤ β ≤ 3, α = 3

4 5 α + β + 4 volume 28 wa,αβγ, 0 ≤ α, β, γ ≤ 3 while β = 3 or γ = 3

4 5 α + β + 4 volume 28 wb,αβγ, 0 ≤ α, β, γ ≤ 3 while α = 3 or γ = 3

4 5 α + β + 4 volume 28 wc,αβγ, 0 ≤ α, β, γ ≤ 3 while α = 3 or β = 3
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This single set of basis functions for each subspace enables most previously described
finite element spaces forH(curl)-conforming functions. The mixed-order serendipity
space reads

WSI,p = W̃SI,1 ⊕ · · · ⊕ W̃SI,p, (6.132a)

W̃SI,1 = ÃS,1, (6.132b)

W̃SI,p = ÃS,p ⊕∇ṼS,p, for p > 1. (6.132c)

The mixed-order Nédélec space reads

WNI,p = W̃NI,1 ⊕ · · · ⊕ W̃NI,p, (6.133a)

W̃NI,1 = ÃN,1, (6.133b)

W̃NI,p = ÃN,p ⊕∇ṼT,p, for p > 1. (6.133c)

The tensor product space for general straight-sided geometries reads

WSI,p = W̃T,1 ⊕ · · · ⊕ W̃T,p, (6.134a)

W̃T,1 = ÃT,1, (6.134b)

W̃T,p = ÃT,p ⊕∇ṼT,p, for p > 1. (6.134c)

Table 6.5: Dimensions of H(curl)-conforming bases.

p We
T,p Wf

T,p, Wv
T,p WT,p We

NI,p Wf
NI,p Wv

NI,p WNI,p We
SI,p Wf

SI,p Wv
SI,p WSI,p

1 12 12 3 27 12 0 0 12 12 0 0 12

2 24 48 24 96 24 24 6 54 24 12 0 36

3 36 108 81 225 36 72 36 144 36 30 0 66

4 48 192 192 432 48 144 108 300 48 60 3 111

The main orthogonality property of the bases is provided by the Jacobi polynomials.
These properties can be formalized in a compact form using the corresponding p-
order interpolation operator of the approximation space, which acts on a higher,
q-order basis function as

πv
pvq = 0, vq ∈ V(·),q for q > p, (6.135a)

πw
p ∇vq = 0, ∇vq ∈ W(·),q for q > p. (6.135b)

Here, the second relation follows from the first one using the commutation property
of the interpolation operators.
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Similar orthogonality properties apply to the vector functions

πw
p wq = 0, wq ∈ W(·),q for q > p, (6.136a)

πd
p∇×wq = 0, ∇×wq ∈ D(·),q for q > p, (6.136b)

πd
p∇×wq = 0, wq ∈ ∇V(·),q. (6.136c)

Here, (6.136b) follows from (6.136a) through the commutation property of the in-
terpolation operators. The third relation is the result of the separated set of basis
functions for the null space of the curl operator. The consequences of the orthog-
onality and the distinguished null space functions are the advantageous numerical
properties of the finite element matrices. For the demonstration, consider the nor-
malized element mass matrices

[T ]ab =
1

∥va∥L2(Ωe)
∥vb∥L2(Ωe)

∫
Ωe

vavb dr, for va, vb ∈ V(·), (6.137a)

[T ]ab =
1

∥wa∥L2(Ωe)
∥wb∥L2(Ωe)

∫
Ωe

wa ·wb dr, for wa,wb ∈ W(·), (6.137b)

and the corresponding stiffness matrices

[S]ab =
1

∥va∥L2(Ωe)
∥vb∥L2(Ωe)

∫
Ωe

∇va · ∇vb dr, for va, vb ∈ V(·), (6.138a)

[S]ab =
1

∥wa∥L2(Ωe)
∥wb∥L2(Ωe)

∫
Ωe

∇×wa · ∇ ×wb dr, for wa,wb ∈ W(·).

(6.138b)

The shape of the element is set to be a cube with unit length edges Ωe = [0, 1]3.
The calculated sparsity patterns are shown in Figure 6.6 and Figure 6.7. The zero
blocks of the stiffness matrices in Figure 6.7 are provided by the separable higher-
order subset of gradient functions, whose curl is zero independent of the geometry
mapping. The condition numbers of the normalized mass matrices are shown in
Figure 6.5 for the different finite element spaces, in terms of the basis order p.
Evidently, the serendipity spaces are more advantageous in terms of these properties.
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Figure 6.5: Condition number of mass matrices.
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Figure 6.6: Sparsity patterns of the H1 bases.
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Figure 6.7: Sparsity patterns of the H(curl) bases.
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6.4.1 Comparison to Other Basis Functions

The main advantage of the proposed single set of hierarchical basis functions is its
capability to span various finite element spaces: VS,p, VT,p, WSI,p, WNI,p, and WT,p.
Hence, it is possible to use different orders of elements and different finite element
spaces within one mesh. To the author’s knowledge, no such basis functions have
existed so far. Therefore, only a short comparison is given for the basis functions of
the specific finite element spaces.

In the case of the complete-order serendipity spaceWS,p, Arnold and Awanou [AA14]
provided sets of nodes that are associated with the finite element moments. There-
fore, explicit basis functions were not provided; however, one can interpret the loca-
tions as an interpolatory basis. The disadvantage of the spaceWS,p is that it requires
a larger number of unknowns for the same rate of convergence in the H(curl)-norm
than the mixed-order serendipity space WSI,p. Moreover, their interpolatory func-
tions are not compatible with other finite element spaces and cannot be partitioned
according to the null space.

Gillette and Kloefkorn proposed basis functions [GK19] for their trimmed serendipity
space with the same dimension and convergence properties as the proposed basis
for WSI,p. However, the finite element moments and the approximation space are
different due to the difference in the highest-order functions. The definitions of
the space WSI,p and finite element moments are designed to construct hierarchical
basis functions, which can be partitioned according to the null space. Unlike the
basis of Gillette and Kloefkorn, the proposed basis is orthogonal with respect to the
interpolation operator and compatible with other finite element spaces.

Next, let us consider the scalar serendipity space VS,p for H1-conforming functions.
Historically, the 8-point serendipity basis functions have been presented first for
quadrilateral (face) elements [SB91, Chapter 6] [ZK00]. These are interpolatory
basis functions that span the proposed face-associated serendipity space Vf

S,p for
p = 2. Later on, a generalized framework was given by Arnold and Awanou based
on differential forms [AA11]. They showed interpolation locations for a higher-
order hexahedra, which can be interpreted as an interpolatory basis. However,
explicit basis functions were not provided. Gillette and Kloefkorn also proposed basis
functions [GK19] for VS,p that are hierarchical. Since all the above mentioned bases
span the same space, their approximation property is the same. The main difference
between these bases and the proposed hierarchical basis is the orthogonality with
respect to the interpolation operator.

Next, let us consider the tensor product space WT,p for H(curl)-conforming func-
tions. The first-order space and the corresponding basis functions were reported in
[FGM11]. After that, Bergot and Duruflé presented hierarchical basis functions with
the same orthogonality property as the proposed functions. However, no subset of
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null space functions is available for p > 1. The advantages of the present basis over
that of Bergot and Duruflé are the much sparser stiffness matrix, the straightforward
way for the separation of the higher-order gradient subspace, and the compatibility
with other finite element spaces WSI,p, WNI,p, and WT,p.

Finally, the best-known spaces are considered: the tensor product scalar space VT,p

and the mixed-order Nédélec spaceWNI,p. Many different bases have been developed
for these spaces with similar numerical properties. Recently, Martin et al. [C5]
proposed a hierarchical basis for WNI,p which, similar to the proposed basis, reuse a
scalar basis for the gradient subspace ∇VT,p ⊂ WNI,p and yield similar orthogonality
properties. The difference between the basis in [C5] from the proposed functions is
the lack of compatibility with the other finite element spaces WSI,p and WT,p.
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6.5 Mixed-Order Mixed-Space Finite Elements

At this point, it is possible to implement various finite element spaces using basis
functions from the same set. Thus, the only open problem is the choice of the
finite element space. The proposed solution is to use the smallest appropriate space,
which results in an O(hp) rate of convergence in the natural norms. The present
discussion is restricted to computational domains with straight-sided boundaries,
allowing to mesh the geometry with straight-sided elements without introducing
any geometry error. In practice, most meshes are such that the major number of
the elements are parallelepiped, described by affine geometry mappings, or where
affine refinement is acceptable. The domain of all such elements is denoted by ΩA.
Over all the elements of ΩA, the serendipity spaces VS,p and WSI,p are sufficient for
the correct, asymptotic rate of convergence. The other tensor product spaces, VT,p

and WT,p, might provide better approximations but with the same convergence rate
and higher numbers of unknowns. On the other hand, tensor product spaces are
advantageous since they can provide the theoretical convergence rate for arbitrary
straight-sided meshes without restrictions on the refinement. If the elements are not
parallelepipeds and the way of refinement is unknown, the tensor product spaces
of VT,p and WT,p should be used to preserve the desired asymptotic convergence
rates. However, in most practical applications, such elements are only present in
small numbers, typically close to the boundaries. Those domains with non-affine
refinements are denoted by ΩĀ.

These arguments motivate the mixed-space finite elements, utilizing different finite
element spaces within one mesh, since the heterogeneous application of different
spaces is much more efficient than using tensor product spaces on all elements.
These finite elements are also mixed-order elements in the H(curl)-conforming case,
because the highest-order gradient subspace is not included. In order to preserve the
conformity between elements of ΩA and ΩĀ, the functions, belonging to the common
interfaces ΩA ∩ ΩĀ = ∂ΩAĀ need to be included in ΩA. The compatibility of the
proposed basis functions with both the tensor product space and the serendipity
space results in incremental spaces:

VT,p = VS,p ⊕ Ṽe
S→T,p ⊕ Ṽf

S→T,p ⊕ Ṽv
S→T,p. (6.139)

Here, Ṽe
S→T,p is the incremental edge-associated, Ṽf

S→T,p is the face-associated, and

Ṽv
S→T,p is the volume-associated subspace. Using this decomposition, the definition

of the H1-conforming mixed-space reads

Vadapt,p

{
VT,p on ΩĀ,

VS,p ⊕ Ṽe
S→T,p (∂ΩAĀ)⊕ Ṽf

S→T,p (∂ΩAĀ) on ΩA.
(6.140)

The notation (∂ΩAĀ) after the incremental spaces means that only those functions
need to be included which are associated with the boundary ∂ΩAĀ. The advantage
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is that the asymptotic rate of convergence,∥∥v − πv
p,hv
∥∥
H1(Ω)

≤ Chp, (6.141)

remains unchanged, whereas dim(Vadapt,p) ≤ dim(VT,p). A similar definition is pos-
sible for the H(curl)-conforming functions. There, the decomposition of the tensor
product space reads

WT,p = WSI,p ⊕ W̃e
SI→T,p ⊕ W̃f

SI→T,p ⊕ W̃v
SI→T,p, (6.142)

where W̃e
SI→T,p is the incremental edge-associated, W̃f

SI→T,p is the face-associated,

and W̃v
SI→T,p is the volume-associated subspace. Thus, the H(curl)-conforming

mixed-order mixed-space reads

Wadapt,p

{
WT,p on ΩĀ,

WSI,p ⊕ W̃e
SI→T,p (∂ΩAĀ)⊕ W̃f

SI→T,p (∂ΩAĀ) on ΩA.
(6.143)

Note that the adaptive gradient subspace is always included in the adaptiveH(curl)-
conforming approximation space,

∇Vadapt,p ⊂ Wadapt,p, (6.144)

by construction. Hence, the discrete de Rham complex, as well as all previously
established error estimates, apply:∥∥w − πw

p,hw
∥∥
L2(Ω)

≤ Chp, (6.145a)∥∥w − πw
p,hw

∥∥
H(curl,Ω)

≤ Chp. (6.145b)

Definition 6.1 (Mixed-order mixed-space H(curl)-conforming element).
The mixed-order mixed-space H(curl)-conforming element is defined by the follow-
ing three points:

� The reference cube Ω̂e is mapped to the global element Ωe via the geometry
mapping g1 ∈ (VS,1)

3 = (Q111)
3.

� The space of approximation is Wadapt,p.

� The finite element moments are the hybrid combination of the moments of
WSI,p and WT,p.
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6.5.1 Numerical Examples

The main goal of the present numerical examples is to compare the finite element
solutions obtained for the following approximation spaces:

� Tensor product space WT,p of order p,

� Mixed-order Nédélec space WNI,p of order p,

� Mixed-order serendipity space WSI,p of order p,

� Mixed-order mixed-space (adaptive) Wadapt,p of order p.

Each space is represented by basis functions from the same set (Table 6.1, Table 6.4).
Even though the calculations are only performed with the proposed basis functions,
any other set would yield the same solution that spans the same space. The only
differences concern the numerical properties, such as the condition number, orthog-
onality, or sparsity.

The following numerical examples concern the calculation of the electric field E in a
rectangular waveguide with the dimensions of 1 m × 2 m × 4 m. The boundary value
problem (2.35) leads to the finite element discretization of (2.51) in a lossless media.
The numerical model consists of PEC boundaries on the sides of the waveguide and
wave ports on the two ends. In all cases, the model is excited by the electric field
of the dominant TE01 mode [Poz11, Chapter 3.3] at the frequency of 140MHz. The
focus is on the asymptotic rate of convergence in terms of the mesh parameter h,
using L2- and H(curl)-norms. The desired ideal rates in all cases are considered to
be ∥∥E − πw

p,hE
∥∥
L2(Ω)

≤ Chp, (6.146a)∥∥E − πw
p,hE

∥∥
H(curl,Ω)

≤ Chp. (6.146b)

In some cases, the H(curl)-norm error might be dominated by the L2-norm in the
early asymptotic stage of the convergence. Therefore, the error of the electric field
E and ∇×E are separately investigated in the L2-norm, relative to the analytical
solution. Hence, the equivalent rates of (6.146) revealing the correctness in a more
clearer way are∥∥E − πw

p,hE
∥∥
L2(Ω)

≤ Chp, (6.147a)∥∥∇×E −∇× πw
p,hE

∥∥
L2(Ω)

≤ Chp. (6.147b)

In all the following examples, these errors are calculated and normalized with ref-
erence to the analytical solutions and the convergence rates are compared to the
ideal rates. The main argument for the watertight nature of these tests involves the
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Figure 6.8: Magnitude of the calculated electric field strength (TE01 mode). All
values are given in coherent SI units.

applications of several different meshes with highly distorted elements. Hence, even
if the underlying analytical solution is the same, each element of the different meshes
must approximate a different local finite element solution. Moreover, different ways
of mesh refinement are applied to each initial mesh, which allows to demonstrate
the effectiveness of the mixed-order mixed-space elements. The first method is the
complete new remeshing of the domain with elements whose shape does not depends
on the previous mesh. Indeed, meshing simple block-like domains with uniform cu-
bic elements of affine geometry mappings is easy. In the general case, however,
variously deformed hexahedrons are expected with non-affine geometry mappings.
Thus, this remeshing process is equivalent to the case where the elements are ob-
tained via non-affine refinements, allowing arbitrary node placement for the new
elements. The second method is the affine refinement, which obtains any new ele-
ment of the refined mesh through the affine reparametrization of the corresponding
parent element. Details on the mesh refinement can be found in Section 3.1.2.

Uniform Mesh with Non-Affine Refinement

The first mesh consists of elements with the same shape, but with different trans-
lations, orientations, rotations, and scales. Each face of the elements is planar;
however, the geometry mappings are non-affine. In each refinement, a completely
new mesh is generated, consisting of the scaled-down versions of the initial element
shapes. Hence, the smoothness of the geometry mappings are uniform on each ele-
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Figure 6.9: Number of unknowns for the finite element spaces WSI,p, WNI,p, WT,p,
and Wadapt,p, with respect to the basis function order p. All values are obtained for
the mesh with h = 2−3.

ment and also on each refined mesh. Since the initial elements’ geometry mapping
are non-affine, such a sequence of meshes is equivalent to the non-affine mesh refine-
ment of the initial mesh. The side view of the mesh sequence is shown in Figure 6.10.
In Figure 6.11, the PEC boundary faces are colored red and the ports of the model
are colored yellow.

The calculated electric field strength can be seen in Figure 6.8, which shows the
reflection-free propagation of the dominant mode. Figure 6.12 shows the convergence
of the relative errors in terms of the mesh parameter h, with respect to the analytical
solution. For each convergence curve, the corresponding reference rate (O(hp)) is
plotted with red color, starting backward from the finest calculation step, in order
to neglect the preasymptotic region. It can be seen that the serendipity space WSI,p

does not meet the required rate in any case. The mixed-order Nédélec space WNI,p

performs better. The convergence rate of the electric field E meets the expectations
in the higher-order case (p > 1). However, the convergence rate of ∇×E becomes
one order less O(hp−1). Thus, in the first-order case (p = 1), neither ∇×E nor E
shows any convergence for the space WNI,1. In order to achieve the same rate of
convergence in both norms, either WT,p or Wadapt,p should be used, which happen to
be the same for a uniform, non-affinely refined mesh. The number of unknowns in
the finite element equation systems is shown in Figure 6.9 for the mesh of h = 2−3,
in terms of the basis order p. It can be seen that the serendipity space WSI,p has
the lowest number of unknowns; however, it produces low rates of convergence. The
mixed-order Nédélec space WNI,p produces a compromised solution, with acceptable
(but not ideal) convergence and a higher number of unknowns. Finally, spaces WT,p

and Wadapt,p produce the highest number of unknowns but achieve the expected
ideal convergence rates.
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Figure 6.10: Side view of the uniform mesh sequence during non-affine refinement.
The illustration includes the interior edges of the mesh.

Figure 6.11: Boundaries of the uniform mesh sequence during non-affine refinement.
The red faces are PEC and the yellow faces are wave ports.
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Figure 6.12: Relative error of the electric field E and its curl ∇ × E, in terms of
the mesh parameter h. The calculations are obtained for the finite element spaces
WSI,p, WNI,p, WT,p, and Wadapt,p, which are compared to the ideal rates O(hp).
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Half Affinely and Half Non-Affinely Refined Uniform Mesh

In practice, it is unusual for an entire mesh to consist of hexahedral elements with
a non-regular shape and for all of them to be refined in a non-affine way. To get
a compromised solution, a mesh whose upper half utilizes affine refinement is con-
sidered, whereas the bottom half uses non-affine refinement. The side view of the
mesh sequence is shown in Figure 6.14. In Figure 6.15, the PEC boundary faces are
colored red and the wave ports of the model are marked with yellow. The calculated
convergence curves are shown in Figure 6.16, in terms of the mesh parameter h. Sim-
ilarly to the previous example, the serendipity space WSI,p shows poor performance,
and the mixed-order Nédélec space WNI,p provides O(hp−1) rate for ∇×E. More-
over, both the tensor product space WT,p and the mixed-order mixed-space Wadapt,p

finite elements show ideal convergence rates. The main difference from the previous
example is that the serendipity space WSI,p is sufficient for the O(hp) convergence
over the affinely refined (upper) half of the mesh. Therefore, the mixed-order mixed-
space elements with Wadapt,p require much fewer unknowns than the tensor product
space WT,p while providing the same convergence rates. These achieved numbers
of unknowns, as shown in Figure 6.13, are comparatively the same for the Nédélec
space WNI,4 and the mixed-order mixed-space Wadapt,4, while only the second one
provides the correct rates.
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Figure 6.13: Number of unknowns for the finite element spaces WSI,p, WNI,p, WT,p,
and Wadapt,p, with respect to the basis function order p. All values are obtained for
the mesh with h = 2−3.
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Figure 6.14: Side view of the half affinely and half non-affinely refined mesh sequence.
The illustration includes the interior edges of the mesh.

Figure 6.15: Boundaries of the half affinely and half non-affinely refined mesh se-
quence. The red faces are PEC and the yellow faces are wave ports.
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Figure 6.16: Relative error of the electric field E and its curl ∇ × E, in terms of
the mesh parameter h. The calculations are obtained for the finite element spaces
WSI,p, WNI,p, WT,p, and Wadapt,p, which are compared to the ideal rates O(hp).
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Uniform Mesh with a Non-Affine Element Layer

Taking a further step from the previous example, consider a mesh that mainly
consists of regular cubical elements but has a non-affinely refined boundary layer of
non-regular elements. This mesh sequence is shown in Figure 6.18 and Figure 6.19.
Usually, the practical applications only require the elements to be non-regular and
to be refined in a non-affine way if they are located next to a domain boundary,
which is necessary for the correct representation of the geometry. However, it is
allowed to set the dominant number of elements on the interior to be affine elements
(parallelepipeds) and utilize affine refinement. In all those elements, the serendipity
space WSI,p is sufficient, which leads to a much lower number of unknowns for
the mixed-order mixed-space Wadapt,p finite element than for WNI,p or WT,p. The
comparison of the number of unknowns is shown in Figure 6.17 and the achieved
convergences rates in Figure 6.20. It can be seen that the serendipity space WSI,p

performs better than in the previews examples, but still far from the ideal behavior.
The Nédélec spaceWNI,p shows almost perfect convergence; however, it cannot reach
exactly the O(hp) rate for ∇×E. Furthermore, both the mixed-order mixed-space
Wadapt,p and the tensor product space WT,p comply with the ideal convergence rates.
The main advantage of the proposed method and space Wadapt,p is that it provides
the ideal rates while requiring the least number of unknowns.
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Figure 6.17: Number of unknowns for the finite element spaces WSI,p, WNI,p, WT,p,
and Wadapt,p, with respect to the basis function order p. All values are obtained for
the mesh with h = 2−3.
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Figure 6.18: Side view of the dominantly cubic mesh sequence with a non-affinely
refined mesh layer. The illustration includes the interior edges of the mesh.

Figure 6.19: Boundaries of the dominantly cubic mesh sequence with a non-affinely
refined mesh layer. The red faces are PEC and the yellow faces are wave ports.
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Figure 6.20: Relative error of the electric field E and its curl ∇ × E, in terms of
the mesh parameter h. The calculations are obtained for the finite element spaces
WSI,p, WNI,p, WT,p, and Wadapt,p, which are compared to the ideal rates O(hp).
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Non-Uniform Mesh with Affine Refinement

As the last example, consider an initial cubic mesh whose nodes are randomly dis-
placed with the maximum deviation of 1/6 element side length in each direction.
Therefore, the initial mesh consists of highly distorted elements with non-flat faces
in the interior of the domain. However, each element is refined in an affine way
by the affine reparametrization of the corresponding parent element. The applied
mesh sequence is shown in Figure 6.22 and Figure 6.23. Due to the uniformly ap-
plied affine refinement, the mixed-order mixed-space Wadapt,p becomes identical to
the serendipity space WSI,p. Therefore, the necessary number of unknowns becomes
minimal in this case (see Figure 6.21). The achieved convergence curves are shown
in Figure 6.24. As expected, all finite element spaces produce the expected or even
better convergence rates. The main difference between them is the higher accuracy
on the given mesh, which comes at the price of a much higher number of unknowns.
However, the space Wadapt,p can afford a higher number of refinement than WT,p

or WNI,p (if p > 1) for a given number of unknowns, which generally yields higher
accuracy.
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Figure 6.21: Number of unknowns for the finite element spaces WSI,p, WNI,p, WT,p,
and Wadapt,p, with respect to the basis function order p. All values are obtained for
the mesh with h = 2−3.
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Figure 6.22: Side view of the non-uniform mesh sequence with affine refinement.
The illustration includes the interior edges of the mesh.

Figure 6.23: Boundaries of the non-uniform mesh sequence with affine refinement.
The red faces are PEC and the yellow faces are wave ports.
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Figure 6.24: Relative error of the electric field E and its curl ∇ × E, in terms of
the mesh parameter h. The calculations are obtained for the finite element spaces
WSI,p, WNI,p, WT,p, and Wadapt,p, which are compared to the ideal rates of O(hp).
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6.6 Iso-Serendipity Finite Elements

The previous section only considered geometries that can be meshed by straight-
sided elements without introducing any geometry error. General domains with curvi-
linear elements have not been discussed yet. The main problem with curvilinear
geometries is that exact initial meshes are usually not available without geometry
errors or are hard to construct. In most practical applications, only some inter-
polation locations are provided by the mesh generators or solid modellers and not
the exact mappings of the initial elements. In other cases, exact mappings of the
curvilinear boundaries might be available but not for the mapping of the volume.
Therefore, the affine refinement of these unavailable mappings is almost impossible.
The problem now is that the ideal convergence rate of the investigated finite ele-
ments is only guaranteed in the curvilinear case for the affine refinement of the exact
meshes, where there are no geometry errors. To resolve this issue, a special way of
refinement, namely the quasi-affine refinement, is proposed for meshes with interpo-
lated geometry mappings. Quasi-affine refinement is based on the affine refinement
of the interpolated geometry mappings and on a correction step for the boundary
nodes. The main advantage is that interpolation nodes are always available, and
the procedure is equivalent to the affine refinement of an explicitly unknown but
exact initial mesh. There is no need for the exact geometry mappings since they are
iteratively constructed in each refinement step.

Consider an element Ωn with an exact geometry mapping, obtained as the n-times
affine refinement of the initial element Ω0. According to Section 3.1.2, the geometry
mapping g (r̂n) of the element Ωn is a function composition of the mapping of the
initial element g̃0( r̂0) and some affine refinement function r̂0 = fn( r̂n) with a
unique inverse r̂n = f−1

n ( r̂0),

g (r̂n) = g̃0 (r̂0) ◦ fn (r̂n) . (6.148)

Then, the pth-order interpolant of this mapping is denoted by gp (r̂n), which intro-
duces a geometry error Rp (r̂n) for the refined element as

r = g̃0 (r̂0) ◦ fn (r̂n) = gp (r̂n) +Rp (r̂n) . (6.149)

However, this error vanishes on the associated interpolation locations of the global
rn,i and reference element r̂n,i by the definition of interpolation

rn,i = g̃0 (r̂0) ◦ fn (r̂n,i) = gp (r̂n,i) . (6.150)

According to Section 3.1 and Section 3.3, if the interpolated geometry mapping is
H1-conforming and capable of interpolating polynomials of order p, then the finite
element convergence rates are not affected. Thus, an appropriate choice of such
a geometry interpolating basis is the H1-conforming serendipity basis vi ∈ VS,p.
Therefore, the interpolated mapping can be written as

gp =
∑
i

civi, for vi ∈ VS,p, (6.151)
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where the vector coefficients ci are determined through interpolation. In the present
setting, the higher-order locations are uniformly distributed over the edges, faces,
and volumes of the global and reference elements. A different selection could provide
a better solution, but without improving the asymptotic convergence rate.

So far, the initial mapping g̃0( r̂0) is undetermined, whereas the type of refinement
and the interpolation locations are known. Thus, the only requirement for maintain-
ing the affine refinement of g̃0( r̂0) is the backward compatibility with the previous
interpolations. Since the interpolated geometry mapping is uniquely determined by
the interpolation locations r̂m,i for m < n, the compatibility of the actual and the
parent element is guaranteed if the points of previous interpolation locations map
to the same global point after each refinement:

rm,i =
(
gp (r̂n) ◦ f−1

n (r̂0)
)
◦ fm (r̂m,i) , ∀rm,i ∈ Ωn with m < n. (6.152)

A straightforward way to ensure this is to use all the old interpolation locations of
the parent elements rm,i ∈ Ωn with m < n for the new interpolation locations on
the refined element. The remaining new boundary interpolation locations must be
placed at the exact curvilinear surface to eliminate the pointwise geometry error.
The rest of the new interpolation locations without constraints are located in the
interior of the domain and can be placed freely. Naturally, placing these free nodes
to yield smoother geometry mappings is advantageous since the smoothness is a sig-
nificant source of the finite element error (see Section 3.1). The previously discussed
points result in the quasi-affine refinement.

Definition 6.2 (Quasi-affine refinement).
Quasi-affine refinement is a mesh refinement procedure that consists of three steps:

1. Affine refinement of the mesh where the elements are equipped with interpolated
geometry mappings gp ∈ (VS,p)

3.

2. Displacement of the new interpolation nodes on the curvilinear boundaries to
the true (exact) curvilinear boundary.

3. All face- and volume-associated interpolation locations that do not coincide
with previous interpolation locations can be displaced as long as they do not
affect the geometry representation. These locations can be regularized such that
the polynomial orders of the mappings are minimized.

This way, the initial mappings free of the geometry error are iteratively constructed
in each refinement step. In the case of p = 2 order elements, this process is illustrated
in the bottom half of Figure 6.25, where the second-order continuity of the parent
element is preserved. Moreover, the upper half of Figure 6.25 illustrates a coun-
terexample, taking the affine refinement of the corresponding straight-sided element
and then displacing the boundary points. Therefore, this is a non-affine refinement
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2, node displacement1, element refinement

non-affine

affine

via reparametrization to the true boundary

non-affine

(an example)

quasi-affine

refinement

refinement

Figure 6.25: Illustration of the quasi-affine refinement and a counterexample for a
second-order element.

that only maintains first-order continuity. A common approach for obtaining a finer
mesh for curvilinear geometries is the generation of a completely new straight-sided
mesh with half the size of the previous mesh. Then, higher-order nodes are inserted
and displaced to the true curvilinear boundaries. The problem with this method
is that each mesh introduces a different representation of the boundary, indepen-
dent of the previous mesh. Hence, all constants in the convergence proofs might
differ. Moreover, the convergence rate is affected by the differences in mesh con-
tinuity between consecutive meshes. An average mesh generator can provide such
smooth meshes for simple structured domains that result in solutions close to the
ideal theoretical limit. However, for complicated and unstructured domains, this is
an unlikely outcome.

Some technical aspects of the quasi-affine refinement only arise in the higher-order
case. For even numbers of geometry interpolation orders, such as 3, 5, ..., the in-
terpolation locations are uniformly distributed on the edges and do not contain
the midpoint. Hence, compatibility with the previous interpolation locations and
conformity of the mapping would yield nonuniform interpolation locations. More-
over, the third point of Definition 6.2 concerns the regularization of the face- and
volume-associated interpolation locations, which do not affect the boundary of the
element and the previous interpolation locations. In the p > 3 order case, some
interpolation locations must be located on the face or within the element’s interior
volume. However, for all flat faces with curvilinear edges, the face-associated func-
tions and interpolation locations do not contribute to the geometry representation.
Similarly, none of the volume-associated interpolation functions and interpolation
locations contributes to the boundary representation. Therefore, these interpolation
locations can be displaced such that the polynomial order and the smoothness of
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the mapping is decreased. The advantage of smoothness is the better approxima-
tion since the geometry mappings yield a smaller constant in (3.33). Moreover, the
geometry error convergence and, consequently, the finite element error convergence
reach their asymptotic region faster.

Overall, quasi-affine refinement with interpolated geometry mappings gp ∈ (VS,p)
3

resolves the problems with affine refinement when exact geometry mappings are
unavailable. Hence, any finite element is capable of achieving an O(hp) conver-
gence rate for curvilinear geometries if it is appropriate for parallelepipeds. Thus,
an appropriate choice of finite element is the scalar serendipity space VS,p for H1-
conforming functions and the mixed-order (or incomplete) serendipity space WSI,p

for H(curl)-conforming functions, since they possess the least dimensions. Due to
this feature, the method is called “iso-serendipity”, since the same orders of serendip-
ity spaces are used for both the geometry and field representations. The method
can be viewed as the serendipity version of the isoparametric elements with some
constraints on the mesh refinement procedure.

Definition 6.3 (Iso-serendipity H1-conforming element).
The iso-serendipity H1-conforming element is defined by the following four points:

� The reference element Ω̂e = [0, 1]3 is mapped to the global element by an in-
terpolated geometry mapping gp ∈ (VS,p)

3.

� The finite element moments are defined according to Section 6.2.1.

� The approximation space is the scalar H1-conforming serendipity space VS,p.

� The only allowed way of refinement is quasi-affine refinement.

Definition 6.4 (Iso-serendipity H(curl)-conforming element).
The iso-serendipity H(curl)-conforming element is defined by the following four
points:

� The reference element Ω̂e = [0, 1]3 is mapped to the global element by an in-
terpolated geometry mapping gp ∈ (VS,p)

3.

� The finite element moments are defined according to Section 6.2.3.

� The approximation space is the H(curl)-conforming mixed-order serendipity
space WSI,p.

� The only allowed way of refinement is quasi-affine refinement.

The main advantages of the iso-serendipity elements are the small number of un-
knowns and the resulting asymptotic convergence rates for smooth fields:∥∥v − πv

p,hv
∥∥
H1(Ω)

≤ Chp, (6.153a)
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∥∥w − πw
p,hw

∥∥
H(curl,Ω)

≤ Chp. (6.153b)

At the same time, tensor product finite elements, such as in [Néd80, FGM11, BD13b],
may be used instead, as they might provide better solutions. However, the conver-
gence rates are expected to be the same, whereas the required number of unknowns
is significantly higher for tensor product spaces.

6.6.1 Numerical Examples

In the following, the iso-serendipity finite element method is demonstrated with
several numerical examples. In most cases, the model is chosen to be a coaxial
waveguide whose electric field E is calculated. There are multiple reasons for this
choice. First, the boundary of the domain is required to be curvilinear, which
cannot be interpolated exactly by a finite number of polynomial basis functions;
thus, a perfect geometry representation is not possible. Second, explicit analytical
solutions are expected for both eigenvalue and excitation problems that cannot be
represented exactly by a finite number of basis functions. This solution must be p
times differentiable so that the desired convergence rates can be achieved:∥∥E − πw

p,hE
∥∥
L2(Ω)

≤ Chp, (6.154a)∥∥∇×E −∇× πw
p,hE

∥∥
L2(Ω)

≤ Chp. (6.154b)

In each calculation, these relative errors are obtained with respect to the exact
analytical solution. The third reason is purely practical. If the hexahedral mesh
is topologically not equivalent to a block structure with missing elements, it might
be impossible to define only one reference element with a given orientation, which
is only determined by the indices of the hexahedra nodes. In order to avoid the
programming technicalities of the element orientations based on the mesh topology,
my decision was to choose a structured mesh. However, note that the iso-serendipity
method is not limited to structured meshes.

In each numerical example, the following three finite element spaces are compared
using basis function from the same set (Table 6.4, Table 6.1):

� Mixed-order serendipity space WSI,p (iso-serendipity method),

� Mixed-order Nédélec space WNI,p,

� Tensor product space WT,p.

The geometry mapping gp of each element is expressed in terms of the serendipity
basis functions vi ∈ VS,p as

gp =
∑
i

civi, (6.155)
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where the vector coefficients ci are determined through interpolation.

As a remark, no separate numerical example is given for the demonstration of theH1-
conforming iso-serendipity elements and the corresponding serendipity space VS,p.
However, the approximation space WSI,p of the H(curl)-conforming iso-serendipity
element is such that it includes the gradient serendipity space ∇VS,p ⊂ WSI,p. Fur-
thermore, the very same basis functions are used for v ∈ VS,p as for the gradient
subspace w = ∇v ∈ ∇VS,p ⊂ WSI,p in the higher-order (p > 1) case. Therefore, the
commutation of the interpolation operators yields∥∥w − πw

p,hw
∥∥
L2(Ω)

w=∇v
=

∥∥∇v − πw
p,h∇v

∥∥
L2(Ω)

=
∥∥∇(v − πv

p,hv)
∥∥
L2(Ω)

, (6.156)

which guarantees the H1-conforming convergence rate∥∥v − πv
p,hv
∥∥
H1(Ω)

≤ Chp, for πv
pv ∈ VS,p, (6.157)

due to Table 3.1 if the convergence rate of∥∥w − πw
p,hw

∥∥
L2(Ω)

≤ Chp, for πw
p w ∈ WSI,p, (6.158)

is satisfied for H(curl)-conforming functions.

Coaxial Cavity with a Quasi-Affinely Refined Mesh

The purpose of the first numerical example is to demonstrate quasi-affine refinement
on a simple finite element model using different orders of interpolated geometry
mappings. The geometry consists of a single coaxial domain with the material
properties of the vacuum. The considered boundary value problem (2.35) of the
electric field leads to the algebraic eigenvalue problem (2.52) for lossless domains.
The dominant mode of the coaxial line is the TEM mode, which is comparatively
simple to approximate due to the angular independence of the electric field [Poz11].
It is easy to provide a curvilinear mesh where the direction of the electric field is
perfectly aligned with the mesh edges, and the approximation of the solution is not
challenging. In order to obtain a higher-order and less trivial physical mode as the
dominant mode of the numerical model, only half of the coaxial cavity is considered,
and the cross-section plane is replaced by a PEC. Thus, each boundary became a
PEC, allowing us to calculate only the antisymmetric resonant field patterns of
the entire coaxial cavity. The second advantage of this configuration is the single
multiplicity of the smallest nonzero eigenvalue and the uniqueness of the dominant
mode. The investigation of higher-order eigenvalues is not favorable since they are
less smooth and the preasymptotic region of the convergence is significantly larger.
Moreover, eigenvalues with higher multiplicity are also not preferred since they might
result in reduced convergence rates.
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Figure 6.26: Side view of the mesh for the coaxial cavity during quasi-affine refine-
ment. The illustration includes the interior edges of the mesh.

Figure 6.27: Boundaries of the mesh for the coaxial cavity during quasi-affine re-
finement.
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Figure 6.28: Magnitude of the calculated electric field strength for the dominant
mode. All values are given in coherent SI units.

Two different mesh sequences are used in the calculations. In both cases, the vertices
of the elements are the same; however, the interpolated geometry order is different.
In the first case, the geometry mappings are chosen to be second-order g2 ∈ (VS,2)

3.
In the second case, the geometry mappings are chosen to be fourth-order g4 ∈
(VS,4)

3. Since the two cases cannot be distinguished visually, only the meshes of the
g4 mappings are shown in Figure 6.26 and Figure 6.27. In both cases, the quasi-
affine refinement is applied and the smallest non-zero eigenvalue is calculated. The
corresponding dominant mode is shown in Figure 6.28.

In the first case, the relative error of the calculated eigenvalue is shown in Figure 6.29
with reference to the analytical solution, in terms of the mesh parameter h. For each
finite element space, the ideal rate of convergence O(h2p) is plotted backward from
the finest step, in order to neglect the preasymptotic region. It can be seen that
the serendipity space WSI,p and the Nédélec space WNI,p show the desired rates
for orders p = 1 and p = 2. However, in the higher order (p > 2) case, the
rate of convergence is unchanged. This is the expected behavior for using only
second-order geometry mappings g2. The result of the tensor product space WT,p

is slightly inconsistent. This can be explained by the fact that WT,p contains much
higher-order monomials than p, whereas the geometry mapping only belongs to the
serendipity space g2 ∈ (VS,2)

3. This strong difference between the field and geometry
representations distorts the results.
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Figure 6.29: Relative error of the smallest nonzero eigenvalue in terms of the mesh
parameter h. The calculations are obtained for the second-order mesh with spaces
WSI,p, WNI,p, and WT,p, which are compared to the ideal rates of O(h2p).

In the second case, fourth-order geometry mappings g4 ∈ (VS,4)
3 are applied. The

relative error of the calculated (smallest non-zero) eigenvalue is shown in Figure 6.30
in terms of the mesh parameter h. The serendipity space WSI,p clearly provides the
expected convergence rates for the orders p = 1, 2, 3, 4. However, both WNI,p and
WT,p show inconsistent results. Again, this can be explained by the enlarged range of
the preasymptotic region due to the large difference between the geometry and field
representations. The numbers of unknowns in the finite element equation systems
are shown in Figure 6.31 for different p-orders of basis functions. According to the
results, the serendipity space requires the lowest number of unknowns and the lowest
order in the geometry representation while providing the ideal convergence rates.
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Figure 6.30: Relative error of the smallest nonzero eigenvalue in terms of the mesh
parameter h. The calculations are obtained for the fourth-order mesh with spaces
WSI,p, WNI,p, and WT,p, which are compared to the ideal rates of O(h2p).
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Figure 6.31: Number of unknowns for the finite element spaces WSI,p, WNI,p, and
WT,p, with respect to the basis function order p. All values are obtained for the
mesh with h = 2−3.
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Coaxial Cavity with a Non-Affinely Refined Mesh

The purpose of the second example is to demonstrate the effect of the non-affine
refinement compared with the quasi-affine refinement, as shown in Figure 6.25. In
order to make a fair comparison, the same calculation is performed on the same
fourth-order initial mesh as in the previous example. The only difference is that the
applied non-affine refinement (Figure 6.25) only preserves the first-order continuity
of the elements instead of the required fourth-order continuity. This non-affinely
refined mesh sequence is shown in Figure 6.33 and Figure 6.34. The relative error of
the first nonzero eigenvalue is shown in Figure 6.32 in terms of the mesh parameter
h. As expected, only the first-order WSI,1, WNI,1, and WT,1 result in the correct
rate of convergence O(h2). For all the higher-order cases, the convergence rates are
not sufficient and are inconsistent.
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Figure 6.32: Relative error of the smallest nonzero eigenvalue in terms of the mesh
parameter h. The calculations are obtained for the fourth-order mesh with spaces
WSI,p, WNI,p, and WT,p, which are compared to the ideal rates of O(h2p).
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Figure 6.33: Side view of the mesh for the coaxial cavity during non-affine refine-
ment. The illustration includes the interior edges of the mesh.

Figure 6.34: Boundaries of the mesh for the coaxial cavity during non-affine refine-
ment.

Coaxial Waveguide with a Quasi-Affinely Refined Regular Mesh

The following numerical example is an excitation problem with the finite element
formulation (2.51). The inner and outer conductors of the coaxial waveguide are
PEC, whereas the two ends are wave ports. The dominant mode of the coaxial line is
the TEMmode, which has a comparatively simple field pattern [Poz11]. It is possible
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to find a structured mesh with edges in the direction of the electric field. Therefore,
the next, higher-order TE11 mode is considered. With this excitation, the electric
field changes its direction smoothly from radial to tangential, and the hexahedral
mesh cannot be aligned everywhere. The symmetry of the TE11 mode allows for the
simulation of only a quarter of the coaxial waveguide, placing appropriate PEC and
PMC boundary conditions. Hence, the model is excited by the electric field of the
TE11 mode [Mar51, Section 2-4.] on the quarter of the coaxial cross-section. The
sequence of the fourth-order quasi-affinely refined mesh is shown in Figure 6.36 and
Figure 6.37.

Since the space WT,4 is the largest in dimension, it is expected to provide the best
solution. The corresponding electric field and its error are shown in Figure 6.38 for
the calculation on the finest mesh. The error pattern makes clear that the dominant
error occurs in the regions close to the curvilinear boundary. However, the error
pattern is smooth and similar to the solution. The calculated convergence curves
for the electric field E and ∇ × E are shown in Figure 6.39. In accordance with
the theoretical predictions, the required order of convergence O(hp) is reached in
the H(curl)- and L2-norm for all elements. The only notable difference between the
investigated elements is the higher convergence rate of ∇×E for the tensor product
space WT,p than the stated ideal rate (6.154b). This is the expected behavior since
WT,p is a larger space tailored for general straight-sided elements and non-affine
refinements. In the case of using affine or quasi-affine refinements, WT,p satisfies the
higher-order convergence requirement for ∇×E but not for E (see Table 3.2). In
terms of the H(curl)-norm, the presented elements only differ in the accuracy of the
solutions on the initial mesh. Naturally, the higher accuracy comes at the price of a
much higher number of unknowns; see Figure 6.35. However, space WSI,p can afford
a higher number of refinements that WT,p or WNI,p (if p > 1) for a given number of
unknowns, which generally yields higher accuracy.
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Figure 6.35: Number of unknowns for the finite element spaces WSI,p, WNI,p, and
WT,p, with respect to the basis function order p. All values are obtained for the
mesh with h = 2−3.
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Figure 6.36: Side view of the mesh for the coaxial waveguide during quasi-affine
refinement. The illustration includes the interior edges of the mesh.

Figure 6.37: Boundaries of the coaxial mesh during quasi-affine refinement. The red
faces are PEC, the green faces are PMC, and the yellow faces are wave ports.

Figure 6.38: Magnitude of the calculated electric field strength (left) and its error
with respect to the analytical solution (right). The results are obtained for the space
WT,4 on the mesh with h = 2−3. All values are given in coherent SI units.
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Figure 6.39: Relative error of the electric field E and its curl ∇×E in terms of the
mesh parameter h. The calculations are obtained for the spaces WSI,p, WNI,p, and
WT,p, which are compared to the ideal rates of O(hp).

Coaxial Waveguide with a Non-Affinely Refined Regular Mesh

This numerical example shows how the convergence rate is affected by a change
in the refinement method from quasi-affine refinement (as in the previous section)
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to non-affine refinement. The applied sequence of fourth-order meshes is shown in
Figure 6.41 and Figure 6.42, where the initial mesh is the same as in the previous
section. The electric field and its error are shown in Figure 6.38 from the calculation
on the finest mesh with the space of WT,4. It can be seen that the numerical error is
much higher than in the previous case. Furthermore, the error pattern is determined
by the pattern of the mesh and does not resemble the solution. The obtained
convergence curves are shown in Figure 6.44. For all first-order finite element spaces
WSI,1, WNI,1, and WT,1, the correct convergence rates O(h1) are achieved for both
E and ∇ × E. However, in all higher-order cases, the desired rates are not met.
This behavior is expected since the utilized non-affine refinement (illustrated in
Figure 6.25) only preserves the first-order continuity of the initial mapping. Hence,
in terms of convergence rates, all the investigated spaces are equally insufficient.
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Figure 6.40: Number of unknowns for the finite element spaces WSI,p, WNI,p, and
WT,p, with respect to the basis function order p. All values are obtained for the
mesh with h = 2−3.

Figure 6.41: Side view of the mesh for the coaxial waveguide during non-affine
refinement. The illustration includes the interior edges of the mesh.
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Figure 6.42: Boundaries of the coaxial waveguide mesh during non-affine refinement.
The red faces are PEC, the green faces are PMC, and the yellow faces are wave ports.

Figure 6.43: Magnitude of the calculated electric field strength (left) and its error
with respect to the analytical solution (right). The calculation is obtained for the
space WT,4 on the mesh with h = 2−3. All values are given in coherent SI units.
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Figure 6.44: Relative error of the electric field E and its curl ∇×E in terms of the
mesh parameter h. The calculations are obtained for the spaces WSI,p, WNI,p, and
WT,p, which are compared to the ideal rates of O(hp).
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Coaxial Waveguide with a Quasi-Affinely Refined Non-Regular Mesh

To demonstrate the robustness of quasi-affine refinement, a similar coaxial waveguide
problem is solved as in the previous examples but with a much worst initial mesh.
All inner faces within the mesh are also curvilinear and not parallel to any other
boundary. Moreover, all edges on the interior of the boundaries and on the interior
of the domain are not aligned with any edge of the geometrical domain. The applied
sequence of fourth-order meshes is shown in Figure 6.46 and Figure 6.47. Due to
the quasi-affine refinement, the nodes of the refined elements are always displaced
to the true boundary. Therefore, none of these elements is a parallelepiped. Even
in an asymptotic sense, the boundary elements do not converge to parallelotope
elements due to the repeated correction step. However, the continuity of the fourth-
order geometry mappings of the initial elements is preserved by the quasi-affine
refinement.

The calculated electric field and its error can be seen in Figure 6.48 for the finite
element space WT,4 on the finest mesh. This solution is supposed to provide the
lowest error since it is the largest space. It appears that the main source of error
is the deformed elements on the curvilinear boundary. The calculated convergence
rates are shown in Figure 6.49. In accordance with the theoretical predictions, the
required order of convergence O(hp) is reached in the H(curl)- and L2-norm for
all elements. Among them, the serendipity space WSI,4 has the lowest number of
unknowns; see Figure 6.45. The other spaces result in higher accuracy at the price
of a much higher number of unknowns. However, the space WSI,p can afford a
higher number of refinements that WT,p or WNI,p (if p > 1) for a given number
of unknowns, which generally yields higher accuracy. Therefore, the iso-serendipity
element is a promising new method.

1 2 3 4
Basis order p

104

105

106

N
um

be
r 

of
 u

nk
no

w
ns

WT;p

WNI;p

WSI;p

Figure 6.45: Number of unknowns for the finite element spaces WSI,p, WNI,p, and
WT,p, with respect to the basis function order p. All values are obtained for the
mesh with h = 2−3.



206 Hexahedral Finite Elements

Figure 6.46: Side view of the non-regular mesh for the coaxial waveguide during
quasi-affine refinement. The illustration includes the interior edges of the mesh.

Figure 6.47: Boundaries of the non-regular mesh during quasi-affine refinement. The
red faces are PEC, the green faces are PMC, and the yellow faces are the ports.

Figure 6.48: Magnitude of the calculated electric field strength (left) and its error
with respect to the analytical solution (right). The calculation is obtained for the
space WT,4 on the mesh with h = 2−3. All values are given in coherent SI units.
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Figure 6.49: Relative error of the electric field E and its curl ∇×E in terms of the
mesh parameter h. The calculations are obtained for the spaces WSI,p, WNI,p, and
WT,p, which are compared to the ideal rates of O(hp).
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Scattering Parameter Calculation of a Rectangular Waveguide with a
Conducting Post

The aim of this last example is to demonstrate the iso-serendipity method for models
closer to realistic applications, where the geometry is partially curvilinear. In most
practical applications, microwave devices are characterized based on a scattering
parameter description, and the fields have only secondary importance. Therefore,
the convergence of the scattering parameters is of primary importance.

For the model geometry, a rectangular waveguide section with the dimensions 10
mm × 39 mm × 50 mm is chosen, in which a round conducting post of radius 2 mm
is embedded in the middle perpendicular to the H-plane. Such structures are widely
used for constructing microwave filters [LM04, AKIH08], since they exhibit inductive
behavior [PKCR13] in a lumped-element sense. From the modeling perspective, all
boundaries and the cylindrical post are considered to be a perfect electric conductor,
and the material properties in the interior are of the vacuum. The structure is
terminated by two wave ports at the ends, of which the bottom one is excited by
the incident electric field of the dominant TE01 mode [Poz11] at 5.5 GHz. Due to the
symmetry of the geometry and the excitation, it suffices to model the half domain
and impose a perfect magnetic boundary condition on the symmetry plane. The
initial mesh and the magnitude of the electric field strength on a refined mesh are
given in Figure 6.50.

According to the iso-serendipity method, fourth-order geometry mappings g4 ∈
(VS,4)

3 and affine refinement are applied for the mesh and the finite element basis
functions of the mixed-order serendipity elements WSI,4. Therefore, minimal num-
ber of unknowns are required for the ideal algebraic convergence rates. In contrast
to the previous examples, the L2(Ω)-norm error of the reflection coefficient S11 is
calculated in each refinement step, and its error is determined with reference to the
solution for the largest (and most accurate) FE space, WT,4, on the finest possible
mesh that I was able to compute. Note that the finite element convergence rate in
energy is twice the convergence rate of the natural H(curl,Ω) intensity norm. Since
the scattering parameters are related to the energy and are stationary quantities,
the ideal theoretical rate is O(h2p). The obtained rates are shown in Figure 6.51.
It can be clearly seen that the method tends to the ideal convergence rate for the
higher refinement steps. The deviations from the ideal rates with the coarser meshes
are due to the enlarged preasymptotic region since the smoothness of the geometry
mappings affects the constant scaling of the convergence. Due to the improvement
of geometry representation at each refinement step (quasi-affine refinement), the ge-
ometry mappings of the elements change next to the boundaries. Thus, the constant
factor of the convergence rate changes in the preasymptotic region of convergence.
Note that this effect can be significantly reduced by generating a good initial mesh
where the curvilinear geometry mappings of the initial elements are already rela-
tively smooth; see the coaxial waveguide examples.
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Figure 6.50: The initial mesh (left) and the magnitude of the calculated electric
field strength on a refined mesh (right). The red faces are PEC, the green faces are
PMC, and the yellow faces are wave ports.
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Figure 6.51: Relative L2-norm error of the S11 parameter in terms of the mesh
parameter h, compared to the corresponding ideal rates O(h2p).
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6.7 Summary

This chapter has given an overview and provided alternative definitions for some
of the commonly used H1 and H(curl) hexahedral finite elements to which the
convergence requirements specified in Chapter 3 are directly applicable. Moreover, a
new serendipity element, the so-called mixed-order serendipity element, is presented
for H(curl)-conforming functions. Its main feature is the least number of unknowns
while providing the asymptotic convergence rate O(hp) in the H(curl)-norm for the
affine refinement of the mesh. Moreover, hierarchical basis functions are provided
that have a separate subset of higher-order null space functions and are compatible
with other tensor product elements. These properties have led to a new method, the
mixed-order mixed-space finite element, which uses different finite element spaces
within one mesh without affecting conformity. As a result, it is possible to use the
smallest necessary space on each element, based on the type of refinement and the
geometry mapping, and achieve the ideal rate of convergence globally.

For curvilinear geometries where only pointwise (interpolatory) information is avail-
able on the boundary, another new method is proposed, namely the iso-serendipity
element. This element uses the functions of the defined serendipity spaces for both
geometry interpolation and field representation. It is more restrictive than the
mixed-order mixed-space element since it only allows the developed quasi-affine
refinement of the mesh. Its advantage over affine refinement is that while the ge-
ometry representation improves with each refinement step, only some interpolation
locations are required on the curvilinear boundary instead of the exact mapping.
Consequently, the resulting number of unknowns is minimal, and the asymptotic
convergence rate is O(hp) in the H(curl)-norm. Therefore, the number of unknowns
with the iso-serendipity element is significantly less than with other known tensor
product finite elements with the same convergence rates.
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Chapter 7

Summary

The thesis concerns new higher-order finite element basis functions and their ap-
plications for curvilinear finite elements. In order to lay down the foundations for
the different contributions, rigorous finite element error analyses are provided in
Chapter 3, which verify and motivate the different methods. The new aspects lie
in the alternative definition of the mesh parameter and mesh refinement and in
their relation to the interpolated geometry mappings. The resulting different finite
element error estimations provide new possibilities for maintaining the ideal con-
vergence rates. As an outcome, general convergence requirements are provided in
the presented framework for curvilinear finite elements with interpolated geometry
mappings, considering different ways of mesh refinements.

The second contribution of the thesis, in Chapter 4, is an efficient calculation scheme
for curvilinear finite element matrices. The method is based on a polynomial ex-
pansion of the material- and geometry-dependent metric terms of the finite element
matrices, allowing the construction of universal matrices. For this purpose, a new
set of hierarchical and pairwise orthonormal polynomials was developed, reflecting
the topological symmetries of arbitrary tetrahedra. As an outcome, the element
matrices can be calculated efficiently by the scaled matrix additions of the precal-
culated universal matrices. Based on a complexity analysis, this procedure is more
efficient than competing methods. The unique feature is a proven upper representa-
tion limit for the required order of expansion and universal matrices. Hence, a finite
number of universal matrices is sufficient for the exact calculation of the element
matrices. Moreover, the expansion can be terminated at a much earlier point if
the finite element convergence is in the asymptotic region. These well-defined lower
and upper limits are unique features of the method and yield efficient and reliable
calculations.

For H(div)-conforming tetrahedral elements, a new set of basis functions is given
in Chapter 5, which completes the sequence of the discrete de Rham complex with
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the previously available H1- and H(curl)-conforming bases [Ing06]. The common
properties of these bases are the orthogonality with respect to the interpolation
operator and a subset of functions for the higher-order null space. These features
lead to element matrices with advantageous numerical properties, such as a high level
of sparsity and preservation of orthogonality for arbitrary straight-sided elements.
The higher-order sections of the generated stiffness matrices are purely diagonal for
arbitrary straight-sided elements. Moreover, the condition numbers of the resulting
mass matrices are significantly lower than for competing basis functions from the
literature.

Pertaining to the field of hexahedral finite elements, several original contributions
are presented in Chapter 6. It is generally believed that serendipity spaces can
only produce an O(hp) rate of convergence in the H(curl)-norm for parallelepiped
meshes [ABB15], [DG19], [GK19]. Several different proofs in the literature reflect
this result: [ABF02], [FGM11], [Ape98], [ABB15]. In order to overcome this prob-
lem, error estimations are provided for a general element, considering the effect of
geometry interpolation and different mesh refinements. Based on this new view-
point, modified definitions and error estimations are proposed for the best-known
hexahedral finite elements and introduced a new mixed-order serendipity element
for H(curl)-conforming functions. The main advantage of these definitions is the
resulting O(hp) rate of convergence in the H(curl)-norm, which applies to affinely
refined curvilinear meshes. The proposed mixed-order serendipity element provides
the least number of unknowns while allowing the construction of hierarchical basis
functions. The presented basis functions are hierarchical, have a subset of null space
functions, and are compatible with other tensor product finite elements. These prop-
erties led to the development of the mixed-order mixed-space finite element, using
different finite element spaces within one mesh without affecting conformity. The
smallest finite element space is chosen for each element which is sufficient for the
theoretical convergence rate. This can extensively lower the number of unknowns
for meshes where most elements are paralleled or affinely refined.

For curvilinear geometries, another new method is proposed: the iso-serendipity ele-
ment. This element uses the functions of the defined serendipity spaces for both ge-
ometry interpolation and field representation. It is more restrictive than the mixed-
order mixed-space element since it only allows a special way of mesh refinement, the
quasi-affine refinement. Its advantage over affine refinement is that while the ge-
ometry representation improves with each refinement step, only some interpolation
locations on the curvilinear boundary are required instead of the exact mapping.
It is shown that quasi-affine refinement is equivalent to the affine refinement of an
exact yet unknown mesh. Therefore, the proposed iso-serendipity element is guaran-
teed to converge with the ideal rate while requiring a minimal number of unknowns.
To the author’s best knowledge, the iso-serendipity element is the first method for
curvilinear meshes which applies a serendipity space and provides O(hp) rate of
convergence in the H(curl)-norm.
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Appendix A

Hierarchical Orthonormal Basis
for Tetrahedra

This section deals with the construction of polynomial functions used for the metric
expansion of finite element matrices in Chapter 4 and Section 5.2.1.

The most straightforward way of generating an orthonormal basis is via the Gram-
Schmidt method, applied to the monomials of linearly independent coordinates.
This approach is applicable to arbitrary domains and produces basis functions that
are hierarchical, greatly simplifying the degree elevation of orthogonal expansions.
On the contrary, the resulting basis does not inherit any symmetry property from
the underlying domain since the subsequent functions within the same order consist
of increasing numbers of monomials. Symmetric functions are generally considered
more advantageous since their evaluation and approximation may be performed
more accurately and efficiently [JGBY16, BDO21, ZCL09, Coo97].

There also exist methods that start from tensor product domains or from the n-
dimensional ball and apply reparameterization techniques for mapping it to the
simplex [DX14, Koo75, GS11, OTV20, AAG20]. They produce hierarchical, pairwise
orthogonal polynomials but do not reflect the natural symmetries of the simplex.
Other classes of orthogonal polynomials are the monomial orthogonal bases and the
corresponding biorthogonal bases [DX14, Sec. 5.2]. These are symmetry-preserving
on the simplex but not hierarchical. Also, they do not provide orthogonality between
the same-order functions.

Lately, several different approaches have been presented, combining some explicitly
available orthogonal polynomials and a further orthogonalization and symmetriza-
tion step [HS98, FGS03, RA05, Sau07]. However, none of the previously mentioned
bases has the three essential properties simultaneously: pairwise orthonormality,
degree-ordered hierarchical functions, and symmetry over arbitrary tetrahedron.
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These features are generally useful for adaptive approximation problems and par-
ticularly advantageous for the metric expansion method.

A.1 Basis Properties

The goal is to produce hierarchical and L2 orthonormal (4.13) (Legendre-type) basis

functions blq ∈ P̃q that span the polynomial space Pp over the reference element Ω̂e.

Here, l ∈ {1, · · ·L(q)} and P̃q is an incremental space of degree q such that

Pp(Ω̂e) = P̃0 ⊕ · · · ⊕ P̃q ⊕ · · · ⊕ P̃p, (A.1a)

dimPp = (p+ 1)(p+ 2)(p+ 3)/6, (A.1b)

dim P̃q = L(q) = (q + 1)(q + 2)/2. (A.1c)

The reference element is defined in Section 2.6. The domain is parameterized by
the linearly independent Cartesian coordinates r̂ = [r̂1, r̂2, r̂3]

T and determined by
the coordinates of the vertices n̂1 = [1, 0, 0]T , n̂2 = [0, 1, 0]T , n̂3 = [0, 0, 1]T and
n̂4 = [0, 0, 0]T . Any vector of this reference element can be described in terms
of barycentric coordinates (φ1, . . . , φ4), where 0 ≤ φi ≤ 1. According to [Ska08],
[Cox61, Section 13.7], the relationship to the linearly independent coordinates is
given by

r̂1
r̂2
r̂3
1

 =


1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1



φ1

φ2

φ3

φ4

 , (A.2)

yielding the linear combination of the node coordinates

r̂ =
∑
i

n̂iφi. (A.3)

Their advantage is the uniform parameterization of the element since each barycen-
tric coordinate is associated to a given node and gives a zero value on the other
nodes. Moreover, the permutation of the node coordinates is equivalent to the per-
mutation of the barycentric coordinates; see (A.3). Therefore, they are appropriate
for describing symmetries over tetrahedral domains since the symmetric functions
of barycentric coordinates are symmetric with respect to the geometry (defined by

the nodes). Therefore, the aim is to obtain an ordered set of blq ∈ P̃q functions as a
vector

b̃q = [b1q ... b
i
q︸ ︷︷ ︸

b̃q,1

... bkq ... b
l
q︸ ︷︷ ︸

b̃q,s

...], (A.4)

where the b̃q,s sub-vectors contain the sth set of tetrahedron symmetric functions.



Basis Symmetry 215

A.2 Basis Symmetry

Further on, let us denote the node set of a tetrahedron by N , the edge set by E,
the face set by F , and the volume by V . Moreover, let us denote a symmetry group
of functions over a general tetrahedron by S[type], which consists of such a sym-
metrical functions v(φi, φj, φk, φl) of the barycentric coordinates (A.2) that remain
unchanged for some permutations of its arguments. The naturally arising symmetry
groups for the different permutations are

SV = {v | v(φi, φj, φk, φl) = v(φ1, φ2, φ3, φ4),

∀(i, j, k, l) = Perm.(1, 2, 3, 4)}, (A.5a)

SNF = {v | v(φi, φj, φk, φl) = v(φi, φb, φc, φd),

∀(b, c, d) = Perm.(j, k, l)}, (A.5b)

SEE = {v | v(φi, φj, φk, φl) = v(φa, φb, φc, φd),

∀(a, b) = Perm.(i, j) and (c, d) = Perm.(k, l)}, (A.5c)

SE = {v | v(φi, φj, φk, φl) = v(φj, φi, φk, φl)} . (A.5d)

Here, the functions of SV show a complete volumetric symmetry, SNF a node-type
or face-type symmetry, and SEE and SE edge-type symmetries. For example, the
uniform exponents of the barycentric coordinates are {φm

i } ∈ SNF ,
{
φm
i φ

m
j

}
∈ SEE

or {φm
k φ

n
l } ∈ SE. Unfortunately, not all symmetries can be maintained for hier-

archical bases where the functions are degree ordered. Since the set of barycentric
coordinates already spans the first-order polynomial space and forms a node-type
symmetry group SNF , some adjustments are required to allow a separate representa-
tion for the constant term. This attempt results in breaking the natural symmetries.
However, it is possible to maintain a structure by forming additional groups of an-
tisymmetric functions

SV = {v ∈ SEE | v(φi, φj, φk, φl) = −v(φk, φl, φi, φj)} , (A.6a)

SEE = {v ∈ SE | v(φi, φj, φk, φl) = −v(φi, φj, φl, φk)} , (A.6b)

SE = {v | v(φi, φj, φk, φl) = −v(φj, φi, φk, φl)} , (A.6c)

and a sequential, zig-zag symmetry along two complementary paths

SZ = {v | v(φi, φj, φk, φl) = v(φl, φk, φj, φi), for (ijkl) ∈ {(1234), (2413)}} .
(A.7)

The functions of SV show volume-type and the functions of SEE and SE show edge-
type antisymmetries. The dimensions of the defined groups are given in Table A.1.
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Table A.1: Dimensions of the different symmetry and antisymmetry groups.

SV SNF SEE SE SV SEE SE SZ {Perm.(1, 2, 3, 4)}
dim 1 4 6 12 3 6 12 2 24

A.3 The Initial Symmetric Basis

The first step of the basis construction is the generation of such incremental order
sets Ṽq of qth-order functions that span the completer-order polynomial space

Pp(Ω̂e) = Ṽ0 ⊕ · · · ⊕ Ṽq ⊕ · · · ⊕ Ṽp, (A.8a)

dim Ṽq = L(q) = (q + 1)(q + 2)/2, (A.8b)

and possess symmetries on a general tetrahedron. With the notations introduced in
the previous sections, the general definition of the incremental sets of basis functions
are

Ṽ0 = {1} , Ṽ0 ∈ SV , (A.9a)

Ṽ1 = {(φ3 + φ4)− (φ1 + φ2), (φ2 + φ4)− (φ1 + φ3),

(φ1 + φ4)− (φ2 + φ3)}, Ṽ1 ∈ SV , (A.9b)

Ṽq =

(⊕
ij

Ṽ ij
q

)
⊕

(⊕
ijk

Ṽ ijk
q

)
⊕ ṼZ

q ⊕ Ṽ1234
q for q ≥ 2, (A.9c)

where the higher-order functions are partitioned into different subsets Ṽ ij
q , Ṽ ijk

q , ṼZ
q ,

and Ṽ1234
q . In the beginning, let us set ṼZ

q = ∅ as an empty set. The subset of

edge-associated functions Ṽ ij
q , with indices ij ∈ (12, 13, 14, 23, 24, 34), is given as

Ṽ ij
2 = {φiφj}, Ṽ ij

2 ∈ SEE, (A.10a)

Ṽ ij
3 = {φiφj(φi − φj)}, Ṽ ij

3 ∈ SEE, (A.10b)

Ṽ ij
q = φiφjṼ ij

q−2 for q ≥ 4, Ṽ ij
q ∈ S(·). (A.10c)

The subset of face-associated functions Ṽ ijk
q , with indices ijk ∈ (123, 124, 134, 234),

is given as

Ṽ ijk
q = ∅ for q ≤ 2, (A.11a)

Ṽ ijk
3 = {φiφjφk}, Ṽ ijk

3 ∈ SNF , (A.11b)

Ṽ ijk
4 = {φiφjφk(φk − φi), φiφjφk(φk − φj)}, (A.11c)

Ṽ ijk
q = φiφjφk(Ṽ ij

q−3 ⊕ Ṽ ik
q−3 ⊕ Ṽjk

q−3)︸ ︷︷ ︸
∈ SE or SE

⊕ φiφjφkṼ ijk
q−3︸ ︷︷ ︸

∈ SE, SE, or SNF

for q ≥ 5. (A.11d)
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The subset of volume-associated functions Ṽ1234
q is given as

Ṽ1234
q = ∅ for q ≤ 3, (A.12a)

Ṽ1234
q = φ1φ2φ3φ4Ṽq−4 for q ≥ 4, Ṽ1234

q ∈ S(·). (A.12b)

The dimensions of these subsets are

dim Ṽ ij
q = 1, for q ≥ 2, (A.13a)

dim Ṽ ijk
q = k − 2, for q ≥ 2, (A.13b)

dim Ṽ1234
q = dim Ṽq−4 = L(q − 4) = (q − 3)(q − 2)/2, for q ≥ 2. (A.13c)

It can be shown by using (A.8) and (A.13) that the generated functions form a valid
basis since the proposed set span a polynomial space with the correct dimension

dim Ṽq = 6dim Ṽ ij
q + 4dim Ṽ ijk

q + dim Ṽ1234
q ,

= 6 + 4(q − 2) + (q − 3)(q − 2)/2 = (q + 1)(q + 2)/2 = (A.8b). (A.14)

A.3.1 The Problem of Face-Type Symmetries

The only remaining problem of the previous initial basis is that the functions are
grouped into symmetry or antisymmetry groups except for Ṽ ijk

4 (A.11c) since their
dimension does not match any group

4 dim Ṽ ijk
4 = 8 ̸= dim S(·), ∀(·) ∈

{
V,NF,EE,E, V ,EE,E, Z

}
. (A.15)

Due to geometrical reasons, any complete symmetry group associated with triangu-
lar faces would require 1 or 3 functions for each face. Moreover, any complete face-
associated antisymmetry group would require 3 functions per face. In the present
case, this is not possible since the three available function

{
φ2
iφjφk, φiφ

2
jφk, φiφjφ

2
k

}
for Ṽ ijk

4 would be linearly dependent on the face with the lower-order function

φiφjφk. To resolve the problem, we decided to replace the face-type sets Ṽ ijk
4 with

a correction set ṼZ
4 , consisting of such linear combinations of the previous func-

tions that result in edge-type SEE and zig-zag type SZ symmetries. Therefore, all
functions belong to a complete group, and the dimension of the basis is correct

4 dim Ṽ ijk
4 = 8 = dim ṼZ

4 = dim SEE + dim SZ = 6 + 2. (A.16)

Since the basis generation (A.11d) recursively multiplies the lower-order functions
with the face monomial φiφjφk, the same corrections are required in the higher-order
cases

⊕
ijk

φn
i φ

n
jφ

n
k Ṽ

ijk
4

ṼZ
q = ∅,

 =⇒


⊕
ijk

φn
i φ

n
jφ

n
k Ṽ

ijk
4 = ∅

ṼZ
q ̸= ∅

 , for n ∈ N0 and q = 3n+ 4.

(A.17)
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The correction set is defined as

ṼZ
q =

⊕
ij

{(φkφl)
n+1(φn+2

i − φn+2
j )}︸ ︷︷ ︸

∈ SEE

⊕ {vZn (φ1, φ2, φ3, φ4), v
Z
n (φ2, φ4, φ1, φ3)}︸ ︷︷ ︸

∈ SZ

,

for
q − 4

3
= n ∈ N0, (A.18)

and the zig-zag functions vZn are given as

vZn (φ1, φ2, φ3, φ4) =(φ1φ2)
n+1(φn+2

3 + φn+2
4 )−

(φ2φ3)
n+1(φn+2

4 + φn+2
1 ) + (φ3φ4)

n+1(φn+2
1 + φn+2

2 ). (A.19)

As an outcome, the structure of the initial basis (A.9c) remains the same, and the
higher-order functions are generated recursively with (A.10c), (A.11d), and (A.12b).

The only differences are Ṽ ijk
4 = ∅ and there is an additional correction set ṼZ

q for
q = 4, 7, 10, · · · , 4 + 3n.

A.3.2 Recursively Inherited Symmetries

In the higher-order case, all incremental order subsets are generated recursively by
multiplying the already available lower-order functions with either the corresponding
edge monomial φiφj, face monomial φiφjφk, or volume monomial φiφjφkφl (except

for ṼZ
q ). Since these monomials are symmetric, all the recursively obtained higher-

order functions inherit the same symmetry or antisymmetry of the lower-order func-
tions. For example, all edge-associated functions are generated by (A.10c), yielding
alternating symmetric and antisymmetric functions

Ṽ ij
2 = {φiφj}, Ṽ ij

2 ∈ SEE, (A.20a)

Ṽ ij
3 = {φiφj(φi − φj)}, Ṽ ij

3 ∈ SEE, (A.20b)

Ṽ ij
4 = φiφjṼ ij

2 = φiφj{φiφj} = {φ2
iφ

2
j}, Ṽ ij

4 ∈ SEE, (A.20c)

Ṽ ij
5 = φiφjṼ ij

3 = φiφj{φiφj(φi − φj)} = {φ2
iφ

2
j(φi − φj)}, Ṽ ij

5 ∈ SEE. (A.20d)

The face-associated functions are generated by (A.11d), reusing both the lower-
order edge- and face-associated functions. Therefore, the higher-order functions are
partitioned into multiple different symmetry groups

Ṽ ijk
3 = {φiφjφk}, Ṽ ijk

3 ∈ SNF , (A.21a)

Ṽ ijk
4 = ∅, (A.21b)

Ṽ ijk
5 = φiφjφk(Ṽ ij

2 ⊕ Ṽ ik
2 ⊕ Ṽjk

2 ) ⊕ φiφjφkṼ ijk
2 , (A.21c)

= φiφjφk({φiφj} ⊕ {φiφk} ⊕ {φjφk})︸ ︷︷ ︸
∈ SE

⊕ ∅, (A.21d)
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= {φ2
iφ

2
jφk, φ

2
iφjφ

2
k, φiφ

2
jφ

2
k}, Ṽ ijk

5 ∈ SE, (A.21e)

Ṽ ijk
6 = φiφjφk(Ṽ ij

3 ⊕ Ṽ ik
3 ⊕ Ṽjk

3 ) ⊕ φiφjφkṼ ijk
3 , (A.21f)

= {φ2
iφ

2
jφk(φi − φj), φ

2
iφjφ

2
k(φi − φk), φiφ

2
jφ

2
k(φj − φk)}︸ ︷︷ ︸

∈ SE

⊕{φ2
iφ

2
jφ

2
k}︸ ︷︷ ︸

∈ SNF

.

(A.21g)

The volume-associated functions are generated by (A.12b), reusing all the functions
of the (q − 4)th-order incremental space (A.9c). Thus, all the previously defined
symmetry groups will appear

Ṽ1234
4 = φ1φ2φ3φ4Ṽ0 = φ1φ2φ3φ4{1} = {φ1φ2φ3φ4}, Ṽ1234

4 ∈ SV , (A.22a)

Ṽ1234
5 = φ1φ2φ3φ4Ṽ1, Ṽ1234

5 ∈ SV , (A.22b)

Ṽ1234
6 = φ1φ2φ3φ4Ṽ2 = φ1φ2φ3φ4

(⊕
ij

Ṽ ij
2

)
, Ṽ1234

6 ∈ SEE. (A.22c)

A.4 Symmetric Orthonormalization

A.4.1 Orthogonalization Between Different Orders

Now that an initial basis is available with subsets of symmetric functions, the re-
maining task is an orthonormalization procedure that transforms the functions of
each symmetry group symmetrically. The first step is to place the functions of
Ṽ0, ..., Ṽq in ascending order into a row vector vq, and apply an ordering within
each order according to (A.9c). Let us denote the row vector of the functions in

the highest order incremental space Ṽq by ṽq, which gives vq = [vq−1, ṽq]. Thus,
the orthogonalization of ṽq with respect to the lower-order functions vq−1 can be
uniquely obtained in the form of

ṽlow
q = ṽq + vq−1Aq, (A.23)

where the orthogonalization matrix Aq is determined by the orthogonality require-
ment∫

Ω̂e

vT
q−1ṽ

low
q dr̂ =

∫
Ω̂e

vT
q−1ṽq dr̂ +

∫
Ω̂e

vT
q−1vq−1 dr̂Aq = 0, (A.24a)

Aq = −

∫
Ω̂e

vT
q−1vq−1 dr̂


−1 ∫

Ω̂e

vT
q−1ṽq dr̂. (A.24b)
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This step can be interpreted as a blockwise Gram-Schmidt method. The following
way obtained functions are shown in Table A.2 up to order 3 (additional scaling is
applied to avoid rational coefficients). The obtained functions of ṽlow

q are hierar-
chical, symmetrical, and only orthogonal with respect to the lower-order functions.

Table A.2: Symmetric basis functions that are orthogonal with respect to lower-
order functions.

q l
[
ṽlow
q

]
l

SV 0 1
√
6,

SV 1 1
√
30(1− 2(φ1 + φ2)),

1 2
√
30(1− 2(φ2 + φ3)),

1 3
√
30(1− 2(φ3 + φ1)),

SEE 2 1 1− 5(φ1 + φ2) + 30φ1φ2,

2 2 1− 5(φ1 + φ3) + 30φ1φ3,

2 3 1− 5(φ1 + φ4) + 30φ1φ4,

2 4 1− 5(φ2 + φ3) + 30φ2φ3,

2 5 1− 5(φ2 + φ4) + 30φ2φ4,

2 6 1− 5(φ3 + φ4) + 30φ3φ4,

SEE 3 1 (2− 7(φ1 + φ2) + 56φ1φ2)(φ1 − φ2),

3 2 (2− 7(φ1 + φ3) + 56φ1φ3)(φ1 − φ3),

3 3 (2− 7(φ1 + φ4) + 56φ1φ4)(φ1 − φ4),

3 4 (2− 7(φ2 + φ3) + 56φ2φ3)(φ2 − φ3),

3 5 (2− 7(φ2 + φ4) + 56φ2φ4)(φ2 − φ4),

3 6 (2− 7(φ3 + φ4) + 56φ3φ4)(φ3 − φ4),

SNF 3 7 −1 + 6(φ1 + φ2 + φ3)− 42(φ1φ2 + φ1φ3 + φ2φ3) + 336φ1φ2φ3,

3 8 −1 + 6(φ1 + φ2 + φ4)− 42(φ1φ2 + φ1φ4 + φ2φ4) + 336φ1φ2φ4,

3 9 −1 + 6(φ1 + φ3 + φ4)− 42(φ1φ3 + φ1φ4 + φ3φ4) + 336φ1φ3φ4,

3 10 −1 + 6(φ2 + φ3 + φ4)− 42(φ2φ3 + φ2φ4 + φ3φ4) + 336φ2φ3φ4,
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A.4.2 Orthogonalization Between Same-Order Functions

The remaining task is a symmetrical orthogonalization within the same order func-
tions via Bq coefficient matrices

b̃q = ṽlow
q Bq. (A.25)

Orthogonalization Between Different Groups

In order to obtain orthogonality between the functions of different symmetry groups
within ṽlow

q , the same procedure can be continued as between the different order
functions. Let us denote the row vector of the functions in the first (s − 1)th
symmetry group by vlow

q,s−1 and the sth group by ṽlow
q,s . Thus, a similar decomposition

is possible as in the initial case (A.23),

ṽlow
q = [ṽlow

q,1 · · · ṽlow
q,s−1︸ ︷︷ ︸

vlow
q,s−1

ṽlow
q,s , ...] (A.26)

and the orthogonalization can be uniquely obtained in the form of

ṽort
q,s = ṽlow

q,s + vlow
q,s−1Aq,s, (A.27)

where the orthogonalization matrix Aq,s is determined by

Aq,s = −

∫
Ω̂e

(
vlow
q,s−1

)T
vlow
q,s−1 dr̂


−1 ∫

Ω̂e

(
vlow
q,s−1

)T
ṽlow
q,s dr̂. (A.28)

Orthogonalization Within Groups

The single remaining problem is the symmetric orthonormalization of functions
within each ṽort

q,s symmetry group. Let us denote a vector of orthonormal functions

by b̃q,s, which is obtained by an orthonormalization matrix Bq,s as

b̃q,s = ṽort
q,sBq,s. (A.29)

The orthogonality requirement between these functions yields∫
Ω̂e

b̃
T

q,sb̃q,sdr̂ = BT
q,s

∫
Ω̂e

(
ṽort
q,s

)T (
ṽort
q,s

)
dr̂ Bq,s = BT

q,sGq,sBq,s = I, (A.30)
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where I is the identity matrix and Gq,s is the Gram matrix. Since Gq,s is an
invertible symmetric square matrix, it can be orthogonalized

Gq,s = V q,sDq,sV
T
q,s, (A.31)

with eigenvectors contained in V q,s and the corresponding eigenvalues at the di-
agonal of matrix Dq,s. Due to the positive definiteness of the Gramm matrix, all
eigenvalues are real and positive. It can be seen that with the symmetric matrix

Bq,s = G−1/2
q,s = V q,sD

−1/2
q,s V T

q,s, (A.32)

the orthogonality of (A.30) is satisfied since V q,s is orthogonal

BT
q,sGq,sBq,s =

(
V q,sD

−1/2
q,s V T

q,s

)
V q,sDq,sV

T
q,s

(
V q,sD

−1/2
q,s V T

q,s

)
= I. (A.33)

This symmetric orthogonalization within the same symmetry group turned out to be
the same as Löwdin’s symmetric orthogonalization for orbitals [Löw50]. It has been
shown that Bq,s is unique for a given ṽort

q,s [AEG80]. Moreover, the generated set of
functions remains unchanged for the permutation or orthogonal transformation of
the vector ṽort

q,s [AEG80]. Thus, the associated rotations of the initial symmetric func-
tions result in the same orthogonalization [May02, May04, RSS08]. Consequently,

the generated set b̃q,s will inherit the symmetry of the starting set ṽort
q,s [AEG80]. An

additional feature of Löwdin’s orthogonalization is that it minimizes the pairwise
L2-norm error of the initial and orthogonal functions∑

i

∥∥∥[b̃q,s − ṽort
q,s

]
i

∥∥∥2
L2

= min. (A.34)

Therefore, the functions of b̃q,s are highly similar to the functions in ṽort
q,s .

The functions of ṽlow
0 = b̃0 ∈ SV and ṽlow

1 = b̃1 ∈ SV in Table A.2 are already
orthonormal, so no further orthogonalization is required. The functions in ṽlow

2

belong to a single symmetry group, SEE, so the corresponding vector of orthonormal
functions b̃2 is obtained via

b̃2 = b̃2,1 = ṽort
2,1B2,1 = ṽlow

2 B2, (A.35a)

B2 =


a b b b b −c
b a b b −c b
b b a −c b b
b b −c a b b
b −c b b a b
−c b b b b a

 , where
a = 2.86155787682788,
b = 0.229204245589015,
c = 0.0367174724100048.

(A.35b)

The functions in ṽlow
3 belong to two symmetry groups, so the corresponding vector

of orthonormal functions b̃3,1 ∈ SEE and b̃3,2 ∈ SNF are obtained via

b̃3 =
[
b̃3,1, b̃3,2

]
= ṽlow

3

[
B3,1 A3,2B3,2

0 B3,2

]
= ṽlow

3 B3, (A.36a)
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B3 =



a b b −b −b 0 0 0 −d d
b a b b 0 −b 0 −d 0 d
b b a 0 b b −d 0 0 d
−b b 0 a b −b 0 −d d 0
−b 0 b b a b −d 0 d 0
0 −b b −b b a −d d 0 0
0 0 0 0 0 0 c e e e
0 0 0 0 0 0 e c e e
0 0 0 0 0 0 e e c e
0 0 0 0 0 0 e e e c


,

a = 3.99973289167987,
b = 0.0982693727007718,
c = 2.15382222237972,
d = 0.132170133159420,
e = 0.127213513935276.

(A.36b)

These results are also summarized in Table A.3. In the higher-order case, all func-
tions and matrices are obtained by repeating the described orthogonalization steps.

Table A.3: Symmetric, hierarchical, pairwise orthonormal basis functions.

q b̃q

SV 0 ṽlow
0

SV 1 ṽlow
1

SEE 2 ṽlow
2 B2

SEE, SNF 3 ṽlow
3 B3
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Appendix B

Construction of H (div) Bases for
Tetrahedra

This section presents the construction of the proposed H(div)-conforming bases.
In the first subsection, only the higher-order volume-associated functions that are
orthogonal only with respect to the interpolation operator (Table 5.2) are discussed.
Then, proofs are provided for the verification of the orthogonality properties (5.6a),
(5.6b), (5.7a), and (5.7b). Moreover, a symmetric orthogonalization process is pre-
sented over a given fixed domain. This method is used to achieve the desired orthog-
onality properties (5.10) and (5.14) for the range space of the higher p > 1 order

functions in ∇ · F̃p and ∇ × Ãp, respectively. As a result, separate matrices are
obtained for functions of Table 5.2 and Table 2.2, which describe their appropriate
linear combinations.
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B.1 Construction of Range Space Functions

The first order H(div)-conforming basis functions are the so-called Raviart-Thomas
functions f ijk

1 ∈ D1 that are associated to each triangular face of an element with
the node indices ijk. They have zero normal components on all boundaries except
the associated face. In the case of straight-sided elements, their general form reads
[M+03, Section 5.4] f ijk

1 = αijkr + βijk, where αijk is a constant scalar, r is the
coordinate vector, and βijk is a constant vector. Hence, it is sufficient to construct
the basis functions f p ∈ Dp of order p as

f p =
∑
ijk

f ijk
p−1

(
αijkr + βijk

)
, f ijk

p−1 ∈ Pp−1(Ωe), (B.1)

since there is no contribution to the highest-order null space. In order to obtain basis
functions with the appropriate mappings for curvilinear elements, it is reasonable
to rewrite this expression in terms of the barycentric coordinates φi and work on
the reference element Ω̂e. Therefore, the general expression for the basis functions
[ZC06, Section 2.5.3] reads

f̂
ijk

1 = φi∇̂φj × ∇̂φk + φj∇̂φk × ∇̂φi + φk∇̂φi × ∇̂φj, (B.2a)

f̂ p =
∑
ijk

f̂ ijk
p−1f̂

ijk

1 , f̂ ijk
p−1 ∈ Pp−1(Ω̂e). (B.2b)

Since the higher-order range space functions are all volume-associated and the finite
element moments are independent of the domain, the orthogonality with respect to
the interpolation operator (5.1) is satisfied by the following conditions:

f̂ p · n̂ = 0, p > 1, (B.3a)∫
V̂

f̂ p · q̂ dr̂ = 0, ∀ q̂ ∈ (Pp−3(V̂ ))3. (B.3b)

The first requirement (B.3a) is easy to satisfy since any φlf̂
ijk

1 function has a zero
normal component on the faces. Hence, it can be multiplied by an arbitrary linear
combination of polynomials f ijk,a

p−2 ∈ Pp−2(Ω̂e) of order p − 2 and corresponding
constant coefficients cijk,ap . Here a is an index for the different polynomials that
span Pp−2. These linear combinations can be formulated as a matrix-vector product
of the coefficients cijk,ap , ordered into a column vector cp, and a matrix F p of linearly

independent vector functions f̂ ijk,a
p−2 φlf̂

ijk

1 , i.e.,

f̂ p =
∑
ijk

∑
a

f̂ ijk,a
p−2 φlf̂

ijk

1 cijk,a = F p cp, span{f ijk,a
p−2 } = Pp−2(Ω̂e). (B.4)

The second property (B.3b) requires an orthogonalization with respect to the test
functions. Here, we considered the test functions to be in the incomplete order space
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q̂ ∈ Ŵp−2 = Rp−2 of Nédélec (2.109a), since it includes the desired polynomial space

Pp−3 ⊂ Ŵp−2. The advantage is that this larger space corresponds to the volume-
associated moments of the complete-order Nédélec space [Néd86]. Hence, the same
orthogonality property πd

pf q = 0, q > p is obtained for both the complete [Néd86]
and incomplete [Néd80] order interpolation operators of Nédélec. This way, all the
available polynomials are utilized to obtain the orthogonality property with respect
to the (complete-order) interpolation operator. Since the H(curl)-conforming ap-

proximation space on the reference tetrahedra is Ŵp, it is possible to express an

arbitrary test function q̂ in terms of basis functions ŵb
p−2 ∈ Ŵp−2, i.e.,

q̂ =
∑
b

αb
p−2ŵ

b
p−2. (B.5)

Here, b is an index between the basis functions and αb
p−2 is the corresponding con-

stant coefficient. By ordering the basis functions ŵb
p−2 into a matrix W p−2 and

the corresponding coefficients αb
p−2 into a vector αp−2, any test function can be

expressed as a matrix-vector product

q̂ =
∑
b

αb
p−2ŵ

b
p−2 = W p−2αp−2. (B.6)

Then, the construction of the H(div) basis functions reduces to the calculation
of an appropriate set of linear independent cp coefficient vectors which satisfies
(B.3b) for arbitrary αp−2 vectors. Let us order all coefficient vectors into a matrix
Cp = [c1p, ..., c

i
p, ...]. Then, the criterion (B.3b) requires this coefficient matrix to be

in the null space of the following product

Null

∫
Ω̂e

W T
p−2F p dv

 = Cp. (B.7)

Note that there is no unique solution since any linear combination of a specific Cp

satisfies the same condition. Hence, a manually selected appropriate Cp is chosen,
which provides tetrahedron symmetric sets of basis functions; see Table 5.2.
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B.2 Orthogonality on Straight-Sided Elements

This subsection provides proofs for the orthogonality of the basis functions over an
arbitrary straight-sided tetrahedron. In Section B.1, the orthogonality of the range
space functions is discussed with respect to the interpolation operator. However, the
null space functions ∇×wp ∈ ∇×Wp have not been considered. The reason for this
is that the commutation of the interpolation operators πd

p∇×wq = ∇×πw
p wq leads

to the case of H(curl) interpolation, where the orthogonality is already satisfied
(2.120). Then, the properties of (5.6b) and (5.7b) are direct consequences of the
orthogonality with respect to the interpolation operator. Therefore, proofs are only
provided for (5.6a) and (5.7a).

First, the orthogonality of the stiffness matrix is discussed. The general form of the
integrals is∫

Ωe

∇ · dp∇ · dq dr, (B.8)

where dp ∈ D̃p and dq ∈ D̃q are the hierarchical basis functions. Here, the integrand
can be transformed via the vector identity

∇ · dp∇ · dq = ∇ · (dq∇ · dp)− dq · ∇∇ · dp. (B.9)

Moreover, by applying the divergence theorem, the integral becomes∫
Ωe

∇ · dp∇ · dq dr =

∮
F

dq · n (∇ · dp) dr −
∫
Ωe

dq · ∇∇ · dp dr. (B.10)

Here, n denotes the normal vector of the different planar faces F for an arbitrary
straight-sided tetrahedron. The first surface integral vanishes since all the higher-
order p > 1 range space functions have a zero normal component on the faces.
Moreover, ∇∇ · dp ∈ (Pp−2)

3 is a polynomial of order p − 2. Hence, this term also
vanishes for the cases |p − q| > 0 due to (B.3b). The consequence is that each
hierarchical basis function is orthogonal with respect to the lower-order functions
in the stiffness matrix (5.6a). In the case of mixed inner products (5.7a), the same
proof holds with the replacement of the ∇ · dp by a polynomial of order fp ∈ Pp. In
that case, the resulting orthogonality reads∫

Ωe

fp∇ · dq dr =

∮
F

dq · nfp dr −
∫
Ωe

dq · ∇fp dr = 0, q > p+ 1. (B.11)
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B.3 Symmetric Orthogonalization

The presented hierarchical bases in Table 2.2 and Table 5.2 fulfill the orthogonality
requirements with respect to the interpolation operators. Moreover, each function
is either associated with the face or the volume, as well as belonging to the range
or null space of the divergence operator. However, the bases are not unique since
any linear combination of functions ∇ · f i

p ∈ ∇ · F̃v
p or ∇ × wi

p ∈ ∇ × Ãf
p or

∇ × wi
p ∈ ∇ × Ãv

p in the corresponding subspaces fulfills the same requirements.
This additional freedom can be used to orthogonalize the functions within the same
subspace for a given shape. My choice is the regular equilateral tetrahedron Ωreg with
unit length edges. Conceptually, this is the same orthogonalization procedure as in
Section A.4, but for vector-valued functions and over a regular element. Therefore,
the initial function subsets with symmetries are transformed in a symmetric way,
unlike with the Gram-Schmidt process.

Let di
p denote a function which needs to be orthogonalized, and i is the index of the

function in the corresponding subspace. Every di
p function is linearly independent of

the other. Hence, for all nonsingular coefficient matrices C(·)
p , the linear combination

of

[d1
p,ort,d

2
p,ort, ...] = [d1

p,d
2
p, ...]C

(·)
p , (B.12)

also provides an appropriate basis. Here, (·) denotes Fv for functions in ∇ · F̃v
p , Af

for functions in ∇× Ãf
p , and Av in case of ∇× Ãv

p.

The goal is to construct these coefficient matrices in such a way that the symmetry of
the original di

p functions is preserved. Let the matrix Sp contain the first n functions

as Sp = [d1
p, ...,d

n
p ], which are symmetric with respect to each other on a tetrahedral

domain and let Rp contain the remaining functions as Rp = [dn+1
p ,dn+2

p , ...]. In
order to orthogonalize Rp with respect to Sp, one may use their linear combination

as R̃p = Rp + SpAp with the constant coefficient matrix Ap. The orthogonality
over a regular tetrahedron Ωreg reads∫

Ωreg

ST
p R̃p dr =

∫
Ωreg

ST
p (Rp + SpAp) dr = 0. (B.13)

After evaluating the integrals, the linear equation system can be solved for the
coefficient matrix Ap, which reads

Ap = −

 ∫
Ωreg

ST
pSp dr


−1 ∫

Ωreg

ST
pRp dr. (B.14)
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Since Sp is orthogonal with respect to the remaining functions in R̃p, any linear
combination of these functions is orthogonal as well. This relation can be written as
SpBp, where the constant matrixBp describes such an arbitrary linear combination.
Moreover, the orthogonality of the functions in SpBp with respect to each other
requires∫

Ωreg

(SpBp)
T SpBp dr = BT

p

∫
Ωreg

ST
pSp dr Bp = Dp, (B.15)

where Dp is a diagonal matrix. Since the second integral of (B.15) results in a
symmetric positive definite matrix, it is orthogonally diagonalizable as∫

Ωreg

ST
pSp dr = V pΛpV

T
p . (B.16)

Here, the matrix V p contains the eigenvectors as column vectors andΛp is a diagonal
matrix containing the eigenvalues. One can show by substitution that with the
symmetric choice of

Bp = V pΛ
− 1

2
p V T

pD
1
2
p , (B.17)

the orthogonality (B.15) is satisfied. Hence, the first n orthogonalized functions are
calculated as

[d1
p,ort, ...,d

n
p,ort] = SpBp. (B.18)

If the matrix of the remaining functions R̃p is an empty matrix, then C(·)
p = Bp.

Otherwise, the same process needs to be repeated until reaching that point. Note
that in the orthogonalization procedure for basis functions of order p = 4, the matrix
of the remaining functions R̃p consists of a single set of symmetric functions at most.
Thus, the orthogonalization procedure needs to be repeated only once. In the second
round, Bp,2 denotes the unknown matrix which determines the appropriate linear

combination of the remaining functions as R̃pBp,2. The new functions of R̃pBp,2

are required to be piecewise orthogonal. Therefore, the product of∫
Ωreg

(
R̃pBp,2

)T
R̃pBp,2 dr = BT

p,2

∫
Ωreg

R̃
T

p R̃p dr Bp,2 = Dp,2, (B.19)

should result in a diagonal matrix Dp,2. Then, the orthogonal diagonalization is
required with the matrix of eigenvectors V p,2 and the diagonal matrix of eigenvalues
Λp,2, i.e.,∫

Ωreg

R̃
T

p R̃p dr = V p,2Λp,2V
T
p,2. (B.20)
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Therefore, the calculation of Bp,2 with a diagonal, normalization matrix Dp,2 reads

Bp,2 = V p,2Λ
− 1

2
p,2V

T
p,2D

1
2
p,2, (B.21)

and the full orthogonalization matrix becomes

C(·)
p =

[
Bp ApBp,2

0 Bp,2

]
. (B.22)

Note that the orthogonality of functions ∇·f 1
p not just applies to a regular tetrahe-

dron Ωreg but also to arbitrary straight-sided tetrahedron since it is a scalar function.

Table B.1: Orthogonalization matrix (5.9) for functions in F̃v
2 from Table 5.2.

CFv
2 =

 a −b b

−b a −b

b −b a

 ,
a = 1.490711984999860

b = 0.372677996249965

Table B.2: Orthogonalization matrix (5.9) for functions in F̃v
3 from Table 5.2.

CFv
3 =



a b c b −b b

b a b c b −b

c b a b −b b

b c b a b −b

−b b −b b a −c

b −b b −b −c a


,

a = 1.227406393014804

b = 0.088770422604629

c = 0.044190436394881

Table B.3: Orthogonalization matrix (5.9) for functions in F̃v
4 from Table 5.2.

CFv
4 =



a −b 0 −b −b −b c c 0 0

−b a −b 0 b −b 0 c c 0

0 −b a −b b b 0 0 c c

−b 0 −b a −b b c 0 0 c

−b b b −b a 0 c 0 −c 0

−b −b b b 0 a 0 c 0 −c

0 0 0 0 0 0 d e −e e

0 0 0 0 0 0 e d e −e

0 0 0 0 0 0 −e e d e

0 0 0 0 0 0 e −e e d



,

a = 1.533295567153832

b = 0.038428702322497

c = 2.568915451961508

d = 5.059024700653003

e = 0.996276007541980
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Table B.4: Orthogonalization matrix (5.13a) for functions in ∇×Ãf
2 from Table 2.2.

CAf
2 =

[
a b

b a

]
,

a=0.544237547893580

b=0.145828011448779

Table B.5: Orthogonalization matrix (5.13a) for functions in ∇×Ãf
3 from Table 2.2.

CAf
3 =

 a −b −b

−b a −b

−b −b a

 ,
a = 0.446430946524381

b = 0.042073263934821

Table B.6: Orthogonalization matrix (5.13b) for functions in ∇×Ãv
3 from Table 2.2.

CAv
3 =

a b b

b a b

b b a

 ,
a = 1.080123449734652

b = 0.2700308624336632

Table B.7: Orthogonalization matrix (5.13a) for functions in ∇×Ãf
4 from Table 2.2.

CAf
4 =


a b b 0

b a b 0

b b a 0

0 0 0 c

 ,

a = 0.415182195396832

b = 0.014959527169861

c = 0.694685625986152

Table B.8: Orthogonalization matrix (5.13b) for functions in ∇×Ãv
4 from Table 2.2.

CAv
4 =



a b −g −f −e −c −g d

b a d −g −c −e −f −g

−g d a b −g −f −e −c

−f −g b a d −g −c −e

−e −c −g d a b −g −f

−c −e −f −g b a d −g

−g −f −e −c −g d a b

d −g −c −e −f −g b a


,

a = 1.577430193626924

b = 0.429924197921561

c = 0.216403501134851

d = 0.211046239810806

e = 0.142510605811004

f = 0.076210515325377

g = 0.067417862242715



233

List of Publications

Peer-Reviewed Journal Articles
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