77 research outputs found

    In Memoriam, Solomon Marcus

    Get PDF
    This book commemorates Solomon Marcus’s fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus’s research fields, some of whom have been influenced by his results and/or have collaborated with him

    Dynamical Directions in Numeration

    Get PDF
    International audienceWe survey definitions and properties of numeration from a dynamical point of view. That is we focuse on numeration systems, their associated compactifications, and the dynamical systems that can be naturally defined on them. The exposition is unified by the notion of fibred numeration system. A lot of examples are discussed. Various numerations on natural, integral, real or complex numbers are presented with a special attention payed to beta-numeration and its generalisations, abstract numeration systems and shift radix systems. A section of applications ends the paper

    Complex dynamics of solid-fluid systems

    Get PDF
    The focus of this thesis was the investigation of the complex dynamics of solid-fluid systems. These systems are of great industrial importance, such as in methane clathrate formation in sub-sea pipelines. As well as being crucial to furthering our understanding of various natural phenomena, such as the rate of rain droplet formation in clouds. We began by considering the problem of the orbits tracked by ellipsoids immersed in viscous and inviscid environments. This investigation was carried out by a combination of analytical and numerical techniques: direct numerical simulations of resolved full-coupled solid-fluid systems, analysis the Kirchhoff-Clebsch equations for the case of inviscid flows, and characterising dynamics through advanced techniques such as recurrence quantification analysis. We demonstrate that the ellipsoid tracks a chaotic orbit not only in an inviscid environment but also when submerged in a viscous fluid, under specific conditions. Under inviscid environments, an ellipsoid subject to arbitrary initial conditions of linear and angular momentum demonstrates chaotic orbits when all the three axes of the ellipsoid are unequal, in agreement with the Kozlov and Onishchenko’s theorem of non-integrability of Kirchhoff’s equations and also with Aref and Jones’s potential flow solution. We then extended our methodology to understand the dynamics of a single ellipsoid tumbling in a viscous environment with the presence of both passive and viscosity coupled tracers in addition to the chaotic dynamics predicted by the Kirchhoff-Clebsch equations. Our results show that the bodies move along from viscosity gradients towards minima of the viscous stress. These bodies might become trapped in unstable minima. However, more work is needed to understand the long-term mixing of viscosity coupled tracers. Our direct numerical solver was also extended to include contact models for solid-solid interactions in the simulation domain. The validation of the contact models was presented. Finally, we expand, the theoretical framework of the Kirchhoff-Clebsch equations to account for the presence of multiple bodies. This extension was done by using Hamiltonian mechanics to extend the derivation proposed by Lamb. We present our preliminary result of simulating two solids systems using the extended Kirchhoff-Clebsch equations. The rel- ative orientations of the two solids were found to regularly switch from being correlated to anti-correlated in an otherwise chaotic system. Further work is required to understand the mechanism behind this behaviour

    Cooperative surmounting of bottlenecks

    Full text link
    The physics of activated escape of objects out of a metastable state plays a key role in diverse scientific areas involving chemical kinetics, diffusion and dislocation motion in solids, nucleation, electrical transport, motion of flux lines superconductors, charge density waves, and transport processes of macromolecules, to name but a few. The underlying activated processes present the multidimensional extension of the Kramers problem of a single Brownian particle. In comparison to the latter case, however, the dynamics ensuing from the interactions of many coupled units can lead to intriguing novel phenomena that are not present when only a single degree of freedom is involved. In this review we report on a variety of such phenomena that are exhibited by systems consisting of chains of interacting units in the presence of potential barriers. In the first part we consider recent developments in the case of a deterministic dynamics driving cooperative escape processes of coupled nonlinear units out of metastable states. The ability of chains of coupled units to undergo spontaneous conformational transitions can lead to a self-organised escape. The mechanism at work is that the energies of the units become re-arranged, while keeping the total energy conserved, in forming localised energy modes that in turn trigger the cooperative escape. We present scenarios of significantly enhanced noise-free escape rates if compared to the noise-assisted case. The second part deals with the collective directed transport of systems of interacting particles overcoming energetic barriers in periodic potential landscapes. Escape processes in both time-homogeneous and time-dependent driven systems are considered for the emergence of directed motion. It is shown that ballistic channels immersed in the associated high-dimensional phase space are the source for the directed long-range transport

    Speech and neural network dynamics

    Get PDF

    Wigner's Dynamical Transition State Theory in Phase Space: Classical and Quantum

    Full text link
    A quantum version of transition state theory based on a quantum normal form (QNF) expansion about a saddle-centre-...-centre equilibrium point is presented. A general algorithm is provided which allows one to explictly compute QNF to any desired order. This leads to an efficient procedure to compute quantum reaction rates and the associated Gamov-Siegert resonances. In the classical limit the QNF reduces to the classical normal form which leads to the recently developed phase space realisation of Wigner's transition state theory. It is shown that the phase space structures that govern the classical reaction d ynamicsform a skeleton for the quantum scattering and resonance wavefunctions which can also be computed from the QNF. Several examples are worked out explicitly to illustrate the efficiency of the procedure presented.Comment: 132 pages, 31 figures, corrected version, Nonlinearity, 21 (2008) R1-R11
    corecore