17 research outputs found

    Analytic Design Techniques for MPT Antenna Arrays

    Get PDF
    Solar Power Satellites (SPS) represent one of the most interesting technological opportunities to provide large scale, environmentally clean and renewable energy to the Earth [1]‐[3]. A fundamental and critical component of SPSs is the Microwave Power Transmission (MPT) system, which is responsible for the delivery of the collected solar power to the ground rectenna [2]. Towards this end, the MPT array must exhibit a narrow main beam width (), a high beam efficiency (BWBE), and a low peak sidelobe level (). Moreover, reduced realization costs and weights are also necessary [3]. To reach these contrasting goals, several design techniques have been investigated including random methods [4] and hybrid deterministic‐random approaches [2][3]. On the contrary, well‐established design tools based on stochastic optimizers [5][6] are difficult to be employed, due to their high computational costs when dealing with large arrays as those of interest in SPS [3]

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    New stochastic algorithm for optimization of both side lobes and grating lobes in large antenna arrays for MPT

    Get PDF
    The concept of placing enormous Solar Power Satellite (SPS) systems in space represents one of a handful of new technological options that might provide large scale, environmentally clean base load power to terrestrial markets. Recent advances in space exploration have shown a great need for antennas with high resolution, high gain and low side lobe level (SLL). The last characteristic is of paramount importance especially for the Microwave Power Transmission (MPT) in order to achieve higher transmitting efficiency (TE) and higher beam collection efficiency (BCE). In order to achieve low side lobe levels, statistical methods play an important role. Various interesting properties of a large antenna arrays with randomly, uniformly and combined spacing of elements have been studied, especially the relationship between the required number of elements and their appropriate spacing from one viewpoint and the desired SLL, the aperture dimension, the beamwidth and TE from the other. We propose a new unified approach in searching for reducing SLL by exploiting the interaction of deterministic and stochastic workspaces of proposed algorithms. Our models indicate the side lobe levels in a large area around the main beam and strongly reduce SLL in the entire visible range. A new concept of designing a large antenna array system is proposed. Our theoretic study and simulation results clarify how to deal with the problems of side lobes in designing a large antenna array, which seems to be an important step toward the realization of future SPS/MPT systems

    New Stochastic Algorithm for Optimization of Both Side Lobes and Grating Lobes in Large Antenna Arrays for MPT

    Get PDF
    The concept of placing enormous Solar Power Satellite (SPS) systems in space represents one of a handful of new technological options that might provide large scale, environmentally clean base load power to terrestrial markets. Recent advances in space exploration have shown a great need for antennas with high resolution, high gain and low side lobe level (SLL). The last characteristic is of paramount importance especially for the Microwave Power Transmission (MPT) in order to achieve higher transmitting efficiency (TE) and higher beam collection efficiency (BCE). In order to achieve low side lobe levels, statistical methods play an important role. Various interesting properties of a large antenna arrays with randomly, uniformly and combined spacing of elements have been studied, especially the relationship between the required number of elements and their appropriate spacing from one viewpoint and the desired SLL, the aperture dimension, the beamwidth and TE from the other. We propose a new unified approach in searching for reducing SLL by exploiting the interaction of deterministic and stochastic workspaces of proposed algorithms. Our models indicate the side lobe levels in a large area around the main beam and strongly reduce SLL in the entire visible range. A new concept of designing a large antenna array system is proposed. Our theoretic study and simulation results clarify how to deal with the problems of side lobes in designing a large antenna array, which seems to be an important step toward the realization of future SPS/MPT systems

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them

    Summary of Research 1994

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.This report contains 359 summaries of research projects which were carried out under funding of the Naval Postgraduate School Research Program. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, and technical reports. The research was conducted in the areas of Aeronautics and Astronautics, Computer Science, Electrical and Computer Engineering, Mathematics, Mechanical Engineering, Meteorology, National Security Affairs, Oceanography, Operations Research, Physics, and Systems Management. This also includes research by the Command, Control and Communications (C3) Academic Group, Electronic Warfare Academic Group, Space Systems Academic Group, and the Undersea Warfare Academic Group
    corecore