2,444 research outputs found

    Product assurance technology for custom LSI/VLSI electronics

    Get PDF
    The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification

    The Rolf of Test Chips in Coordinating Logic and Circuit Design and Layout Aids for VLSI

    Get PDF
    This paper emphasizes the need for multipurpose test chips and comprehensive procedures for use in supplying accurate input data to both logic and circuit simulators and chip layout aids. It is shown that the location of test structures within test chips is critical in obtaining representative data, because geometrical distortions introduced during the photomasking process can lead to significant intrachip parameter variations. In order to transfer test chip designs quickly, accurately, and economically, a commonly accepted portable chip layout notation and commonly accepted parametric tester language are needed. In order to measure test chips more accurately and more rapidly, parametric testers with improved architecture need to be developed in conjunction with innovative test structures with on-chip signal conditioning

    Custom Integrated Circuits

    Get PDF
    Contains reports on six research projects.U.S. Air Force - Office of Scientific Research (Contract F49620-84-C-0004)Analog Devices, Inc.Defense Advanced Research Projects Agency (Contract N00014-80-C-0622)National Science Foundation (Grant ECS83-10941

    Effect of wearout processes on the critical timing parameters and reliability of CMOS bistable circuits

    Get PDF
    The objective of the research presented in this thesis was to investigate the effects of wearout processes on the performance and reliability of CMOS bistable circuits. The main wearout process affecting reliability of submicron MOS devices was identified as hot-carrier stress (and the resulting degradation in circuit performance). The effect of hot-carrier degradation on the resolving time leading to metastability of the bistable circuits also have been investigated. Hot-carrier degradation was identified as a major reliability concern for CMOS bistable circuits designed using submicron technologies. The major hot-carrier effects are the impact ionisation of hot- carriers in the channel of a MOS device and the resulting substrate current and gate current generation. The substrate current has been used as the monitor for the hot-carrier stress and have developed a substrate current model based on existing models that have been extended to incorporate additional effects for submicron devices. The optimisation of the substrate current model led to the development of degradation and life-time models. These are presented in the thesis. A number of bistable circuits designed using 0.7 micron CMOS technology design rules were selected for the substrate current model analysis. The circuits were simulated using a set of optimised SPICE model parameters and the stress factors on each device was evaluated using the substrate current model implemented as a post processor to the SPICE simulation. Model parameters for each device in the bistable were degraded according to the stress experienced and simulated again to determine the degradation in characteristic timing parameters for a predetermined stress period. A comparative study of the effect of degradation on characteristic timing parameters for a number of latch circuits was carried out. The life-times of the bistables were determined using the life-time model. The bistable circuits were found to enter a metastable state under critical timing conditions. The effect of hot-carrier stress induced degradation on the metastable state operation of the bistables were analysed. Based on the analysis of the hot-carrier degradation effects on the latch circuits, techniques are suggested to reduce hot-carrier stress and to improve circuit life-time. Modifications for improving hot- carrier reliability were incorporated into all the bistable circuits which were re-simulated to determine the improvement in life-time and reliability of the circuits under hot-carrier stress. The improved circuits were degraded based on the new stress factors and the degradation effects on the critical timing parameters evaluated and these were compared with those before the modifications. The improvements in the life-time and the reliability of the selected bistable circuits were quantified. It has been demonstrated that the hot-carrier reliability for all the selected bistable circuits can be improved by design techniques to reduce the stress on identified critically stressed devices

    Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    Get PDF
    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis

    Custom Integrated Circuits

    Get PDF
    Contains reports on ten research projects.Analog Devices, Inc.IBM CorporationNational Science Foundation/Defense Advanced Research Projects Agency Grant MIP 88-14612Analog Devices Career Development Assistant ProfessorshipU.S. Navy - Office of Naval Research Contract N0014-87-K-0825AT&TDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    SIRENA: A CAD environment for behavioural modelling and simulation of VLSI cellular neural network chips

    Get PDF
    This paper presents SIRENA, a CAD environment for the simulation and modelling of mixed-signal VLSI parallel processing chips based on cellular neural networks. SIRENA includes capabilities for: (a) the description of nominal and non-ideal operation of CNN analogue circuitry at the behavioural level; (b) performing realistic simulations of the transient evolution of physical CNNs including deviations due to second-order effects of the hardware; and, (c) evaluating sensitivity figures, and realize noise and Monte Carlo simulations in the time domain. These capabilities portray SIRENA as better suited for CNN chip development than algorithmic simulation packages (such as OpenSimulator, Sesame) or conventional neural networks simulators (RCS, GENESIS, SFINX), which are not oriented to the evaluation of hardware non-idealities. As compared to conventional electrical simulators (such as HSPICE or ELDO-FAS), SIRENA provides easier modelling of the hardware parasitics, a significant reduction in computation time, and similar accuracy levels. Consequently, iteration during the design procedure becomes possible, supporting decision making regarding design strategies and dimensioning. SIRENA has been developed using object-oriented programming techniques in C, and currently runs under the UNIX operating system and X-Windows framework. It employs a dedicated high-level hardware description language: DECEL, fitted to the description of non-idealities arising in CNN hardware. This language has been developed aiming generality, in the sense of making no restrictions on the network models that can be implemented. SIRENA is highly modular and composed of independent tools. This simplifies future expansions and improvements.Comisión Interministerial de Ciencia y Tecnología TIC96-1392-C02-0

    Robust low-power digital circuit design in nano-CMOS technologies

    Get PDF
    Device scaling has resulted in large scale integrated, high performance, low-power, and low cost systems. However the move towards sub-100 nm technology nodes has increased variability in device characteristics due to large process variations. Variability has severe implications on digital circuit design by causing timing uncertainties in combinational circuits, degrading yield and reliability of memory elements, and increasing power density due to slow scaling of supply voltage. Conventional design methods add large pessimistic safety margins to mitigate increased variability, however, they incur large power and performance loss as the combination of worst cases occurs very rarely. In-situ monitoring of timing failures provides an opportunity to dynamically tune safety margins in proportion to on-chip variability that can significantly minimize power and performance losses. We demonstrated by simulations two delay sensor designs to detect timing failures in advance that can be coupled with different compensation techniques such as voltage scaling, body biasing, or frequency scaling to avoid actual timing failures. Our simulation results using 45 nm and 32 nm technology BSIM4 models indicate significant reduction in total power consumption under temperature and statistical variations. Future work involves using dual sensing to avoid useless voltage scaling that incurs a speed loss. SRAM cache is the first victim of increased process variations that requires handcrafted design to meet area, power, and performance requirements. We have proposed novel 6 transistors (6T), 7 transistors (7T), and 8 transistors (8T)-SRAM cells that enable variability tolerant and low-power SRAM cache designs. Increased sense-amplifier offset voltage due to device mismatch arising from high variability increases delay and power consumption of SRAM design. We have proposed two novel design techniques to reduce offset voltage dependent delays providing a high speed low-power SRAM design. Increasing leakage currents in nano-CMOS technologies pose a major challenge to a low-power reliable design. We have investigated novel segmented supply voltage architecture to reduce leakage power of the SRAM caches since they occupy bulk of the total chip area and power. Future work involves developing leakage reduction methods for the combination logic designs including SRAM peripherals
    corecore