236 research outputs found

    New Monte Carlo schemes for simulating diffusions in discontinuous media

    Get PDF
    International audienceWe introduce new Monte Carlo simulation schemes for diffusions in a discontinuous media divided in subdomains with piecewise constant diffusivity. These schemes are higher order extensions of the usual schemes and take into account the two dimensional aspects of the diffusion at the interface between subdomains. This is achieved using either stochastic processes techniques or an approach based on finite differences. Numerical tests on elliptic, parabolic and eigenvalue problems involving an operator in divergence form show the efficiency of these new schemes

    A Partially Reflecting Random Walk on Spheres Algorithm for Electrical Impedance Tomography

    Get PDF
    In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance of the new estimator both theoretically and experimentally. In a second step, the variance is considerably reduced via a novel control variate conditional sampling technique

    Importance Sampling for Multiscale Diffusions

    Full text link
    We construct importance sampling schemes for stochastic differential equations with small noise and fast oscillating coefficients. Standard Monte Carlo methods perform poorly for these problems in the small noise limit. With multiscale processes there are additional complications, and indeed the straightforward adaptation of methods for standard small noise diffusions will not produce efficient schemes. Using the subsolution approach we construct schemes and identify conditions under which the schemes will be asymptotically optimal. Examples and simulation results are provided

    Simulating diffusions with piecewise constant coefficients using a kinetic approximation

    Get PDF
    International audienceUsing a kinetic approximation of a linear diffusion operator, we propose an algorithm that allows one to deal with the simulation of a multi-dimensional stochastic process in a media which is locally isotropic except on some surface where the diffusion coefficient presents some discontinuities. Numerical examples are given in dimensions one to three on PDEs or stochastic PDEs with or without source terms

    Interfacial Phenomena and Natural Local Time

    Full text link
    This article addresses a modification of local time for stochastic processes, to be referred to as `natural local time'. It is prompted by theoretical developments arising in mathematical treatments of recent experiments and observations of phenomena in the geophysical and biological sciences pertaining to dispersion in the presence of an interface of discontinuity in dispersion coefficients. The results illustrate new ways in which to use the theory of stochastic processes to infer macro scale parameters and behavior from micro scale observations in particular heterogeneous environments

    On the constructions of the skew Brownian motion

    Get PDF
    This article summarizes the various ways one may use to construct the Skew Brownian motion, and shows their connections. Recent applications of this process in modelling and numerical simulation motivates this survey. This article ends with a brief account of related results, extensions and applications of the Skew Brownian motion.Comment: Published at http://dx.doi.org/10.1214/154957807000000013 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stochastic finite differences for elliptic diffusion equations in stratified domains

    Get PDF
    International audienceWe describe Monte Carlo algorithms to solve elliptic partial differen- tial equations with piecewise constant diffusion coefficients and general boundary conditions including Robin and transmission conditions as well as a damping term. The treatment of the boundary conditions is done via stochastic finite differences techniques which possess an higher order than the usual methods. The simulation of Brownian paths inside the domain relies on variations around the walk on spheres method with or without killing. We check numerically the efficiency of our algorithms on various examples of diffusion equations illustrating each of the new techniques introduced here
    • …
    corecore