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SIMULATING DIFFUSIONS
WITH PIECEWISE CONSTANT COEFFICIENTS

USING A KINETIC APPROXIMATION

ANTOINE LEJAY AND SYLVAIN MAIRE

Abstract. Using a kinetic approximation of a linear diffusion
operator, we propose an algorithm that allows one to deal with
the simulation of a multi-dimensional stochastic process in a media
which is locally isotropic except on some surface where the diffusion
coefficient presents some discontinuities. Basic numerical examples
are given in dimensions one to three on PDEs or stochastic PDEs
with or without source terms. Finally, we compute the hydro-
dynamic load in a porous media in the nuclear waste context.

1. Introduction

In this article, we address the problem of the simulation of a diffu-
sion process in a discontinuous media. More precisely, we consider a
divergence-form operator of type

L =
1

2
∇ · (a∇·)

where a is a piecewise constant anisotropic diffusion coefficient, and we
identify a(x) with a scalar.

This kind of problem arises in a lot of modelling problems, such
as molecular electrostatics [36], geophysics [40], ecology [7, 39], astro-
physics [43], magneto/electro-encephalography (MEG, EEG) [19],...

One could be tempted to use a Monte Carlo method to solve linear
parabolic or elliptic problems involving such an operator L, especially
when one faces complicated and/or infinite domains and Dirac masses
in the source terms as in the MEG/EEG problems or in molecular
dynamics or electrostatics.

From a probabilistic point of view, this problem has been hardly
treated, except in dimension one where the diffusion process gener-
ated by L is solution to some stochastic differential equation involv-
ing the local time of the process. See however, a recent article from
N. Limic [31]. Several algorithms have then been proposed to simu-
late one-dimensional diffusion process with discontinuous coefficients
[13, 16, 17, 18, 30, 34, 35].
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Using the local property of the operator, the problem consists in
finding a correct approximation of the process when it is close to a
surface of discontinuity.

One knows that in general, the diffusion behavior of a physical model
may be derived from a change of scale of a transport equation. This is
the case for example for the Darcy law in geophysics [9], or for the dis-
placement of bacterium such as E. Coli [3]. It is in general convenient to
use the diffuse limit of transport equations, for example to characterize
the criticality of the neutron transport equation, as it leads to simpler
computations [2]. Rigorous development for this approximation may
be found for example in [2, 10, 22]. Here, we propose to perform the
opposite approach. In order to deal with this discontinuity, we use a
small parameter ε approximation of the operator in divergence form by
a transport operator. When the diffusion coefficient is discontinuous,
there is no simple way to write the dynamic of the particle. Reducing
the problem to a transport problem leads to a very simple simulation
algorithm, since the particle moves in a given direction at a given speed
until the next collision which changes its direction. The problem is then
reduced to prescribe the manner the direction is changed at each colli-
sion and to prescribed the way to change the next collision time when
the particle reaches a zone with a different diffusion coefficient.

First we make a global approximation of L by combining an exact
simulation (See [32, 33, 41]) and a Romberg acceleration procedure.
Then, we use only the approximation by the transport operator when
one hits the surface of discontinuity of a and efficient simulations of
the Brownian motion elsewhere. We describe the global approximation
procedure in Section 2 and the local one in Section 3. In these two
sections, we also make some comparisons with existing Monte Carlo
methods. In the next three sections, we make various numerical tests
from basic one dimensional problems in Section 4 to three dimensional
stochastic PDEs in Section 6.

In section 7, we study a more realistic problem taken from the cou-
plex exercises [4]. It consists in computing the hydro-dynamic load in
a two dimensional porous media constituted of 4 very heterogeneous
physical regions.

2. Global approximation of a diffusion by a transport
operator

2.1. The Feynman-Kac formula. In this section, we consider the
Dirichlet problem

(1)
1

2
∇ · (a∇u) = f on D with u∂D = g

in a domain D ⊂ Rd with piecewise smooth boundary, and a is a
piecewise smooth real-valued function which satisfies 0 < λ ≤ a(x) ≤
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Λ, x ∈ D for some positive constants λ and Λ. Let X denote the
process generated by 1

2
∇ · (a∇·) (On the existence of such a process,

see [27, 42]). As for the case of smooth coefficients, it can be shown
that if g and f are continuous, the solution u to (1) is still given by the
Feynman-Kac formula

u(x) = Ex

[
g(Xτ ) +

∫ τ

0

f(Xs) ds

]
,

where τ is the first exit time from τ . This follows simply for a regular-
ization argument, since if (an)n∈N is a family of smooth approximation
of a, then the corresponding processes (Xn)n∈N converges in distribu-
tion to X [42]. Besides, the corresponding solutions (un)n∈N to (1) with
a replaced by un also converges in L2(D) and locally uniformly to u.
This last statement follows from standard computations and the Har-
nack inequality which implies that un is locally Hölder continuous with
a Hölder constant that depends only on the upper and lower bound
on a [21].

Unlike the case of non-divergence form operators, for a general coeffi-
cient a, there is in general no simple formula describing the dynamics of
the process X such as a Stochastic Differential Equation (SDE) which
could be used for simulation purpose.

In our context, without loss of generality, we can assume that d = 2,
that the domain can be divided in two pieces D+ = [0, L]× [−`, `] and
D− = [−L, 0]× [−`, `] and that a = a1 on D+ and a = a2 on D−. The
process X is then solution to the generalized SDE

(2)

{
X1
t = x1 +

∫ t
0
σ(Xs) dB1

s + a1−a2

a1+a2
L0
t (X

1),

X2
t = x2 +

∫ t
0
σ(Xs) dB2

s ,

where (B1, B2) is a two-dimensional Brownian motion, L0
t (X

1) is the
symmetric local time of X1 around 0, σ(x) =

√
a1(x) if x ≥ 0 and

σ(x) =
√
a2(x) if x < 0.

The symmetric local time L0
t (X) is by definition

L0
t (X) = lim

ε→0

1

2ε

∫ t

0

1Xs∈[−ε,ε]a(Xs) ds

and characterizes the time spent by the process around 0. Note that the
process is continuous, non-decreasing but almost everywhere constant!
Such a process is difficult to simulate.

Eq. (2) is obtained by a simple generalization of the computations
of [27] (See also [30] for example) which are themselves relying on argu-
ments of J.-F. Le Gall to prove existence and uniqueness of solutions of
SDE with local time [26]. The core argument is to use a regularization
procedure by smoothing the coefficients and a clever change of variable
to transform (2) into a SDE without local time.
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2.2. Approximation by a kinetic equation. In many situations,
diffusion equations are used to approximate transport equations. This
corresponds to a change of scale and is helpful to reduce the number of
variables of the unknown solution of the related PDEs. For the neutron
transport problem, only the position is computed using a diffusion ap-
proximation while the original problem requires to compute both the
velocity and the position of the particles.

Here, we use this approximation in the opposite way. The diffusion
process is approximated by a transport process depending on a small
parameter ε > 0. If d ≥ 2, we denote by V the unit sphere of Rd and
the interval [−1, 1] if d = 1. Let us consider the integral operator

Ku(x, v) =
1

Vol(V)

∫
V
u(x, v′)dv′ with Vol(V) =

∫
V

dv

on functions defined on D × V. Let us note however that Ku(x, v) =
Ku(x, v′) for any v 6= v′ but, for notational consistency, Ku is consid-
ered also as a function on D × V.

The solution u of the PDE (1) may be approximated by the solution
uε(x, v) of the equation
(3)−ε−1v · ∇xuε(x, v) +

1

CVε2a(x)
(Kuε(x, v)− uε(x, v)) = f(x),

uε(x, v) = g(x) when v · ~n(x) ≤ 0, x ∈ ∂D

solved on D × V where CV is a constant that depends on V and ~n(x)
is the inner unit vector at the boundary point x ∈ ∂D.

The value of the constant CV is obtained by solving an integral equa-
tion [2, 10]. In the case of L = 1

2
4, it is easy to prove that CV = 3/2

in dimension 1 and 3 and CV = 1 in dimension 2.
The heuristic idea of the approximation is the following [2]: We

assume uε can be expanded as

(4) uε(x, v) = u0(x, v) + εu1(x, v) + ε2u2(x, v) + ψε(x, v)

where ψε(x, v) = O(ε3). Injecting this development in (3) leads to
conclude that u0(x, v) depends only on x, and

CVa(x)v · ∇xu0(x) = Ku1(x, v)− u1(x, v),(5)

− v · ∇xu1(x, v) +
1

CVa(x)
(Ku2(x, v)− u2(x, v)) = f(x).(6)

Let us assume that x is in a zone where a is smooth. Thus differ-
entiating (5) in the direction xi, multiplying it by Di(v) = (v · ei)ei,
where {e1, . . . , ed} is the canonical basis of Rd, and summing in all the
directions,
d∑

i,j=1

(v · ei)(v · ej)CV
∂

∂xi

(
a(x)

∂u0(x)

∂xj

)
= vK∇xu1(x, v)− v∇xu1(x, v).
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Applying K to this equation leads to
d∑

i,j=1

(v · ei)(v · ej)CV
∂

∂xi

(
a(x)

∂u0(x)

∂xj

)
= −K(v∇xu1(x, v))

since Ku1(x, v) does not depend on v and Kv = 0. Let us note that
K((v · ei)(v · ej)) = 0 if i 6= j and α = K((v · ei)2) does not depend
on i ∈ {1, . . . , d} and dα = 1 for d ≥ 2. On the other hand, applying
K to the both sides of (6) leads to, since K2 = K and Kf(x) = f(x),

(7) αCV∇ · (a(x)∇u0(x)) = f(x).

One deduces from (7) that u0(x) is the solution to (1) in any subdomain
where a is smooth if CV = 1/2α. It is then possible to compute CV
and to deduce that in the case of smooth coefficients [10, Theorem 2,
p. 1238]:

(8) ‖uε − u‖L∞(D×V) ≤ εCg,f

for some constant Cg,f that depends on g and f .
The problem of the approximation of the neutron equation by the

diffusion seems to have never been treated, and in addition, one knows
that u(x, v) may be discontinuous. However, we give a formal reasoning
on why it can be expected that the kinetic approximation also holds
around discontinuities. We have seen that u0(x) is solution to (7) for
any point x where a(x) is smooth. It remains to prove that u0 is a
global solution to (1) on the whole domain D, which can be tackled
by specifying the behavior of u on the boundary. Provided that f is
continuous, it is also known that the solution u of (1) is a classical
solution on open domains subsets of D where a(x) is of smooth, and
that at any surface of discontinuity, both u and its normal flux ~n ·
a(x)∇u(x) are continuous [25], where ~n is the normal vector to the
surface of discontinuity at the point x. As uε and v · ∇uε(x, v) belongs
to L∞(D × V), one deduces that t ∈ (−η, η) 7→ uε(x + t~n, v) has a
continuous version. Then u0 and u1 are also locally continuous with
respect to x on any segment which crosses a surface of discontinuity
and (5) implies the continuity of the normal flux at any surface of
discontinuity. It follows that u0(x) is solution to (1).

The solution uε can also be represented using a Feynman-Kac for-
mula

uε(x, v) = Ex,v

[
g(Yτ ) +

∫ τ

0

f(Ys, Vs) ds

]
where τ is the first exit time from D ×V for the process (Y, V ) whose
dynamic is the following: Y is solution to dYt

dt
= Vt and the random

velocity V of the particle is constant between random collision times.
When a collision occurs, we draw a new velocity V = V0/ε where V0 is

chosen uniformly in V. The next collision time is also chosen randomly
using an exponential random variable of parameter a(y0)ε

2CV, where y0
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V

a2 a1

θ0 τ̃

θ1 = τ + e
θ1

Figure 1. Changing the collision time.

is the current position of the particle. Hence, one can compute easily
the position y1 of the particle at the next collision time. If the position
is outside D, we stop the particle when it crosses the boundary of D.
If the particle remains in zone where a is constant, then a new position
and time collision is drawn at the next collision time.

Because of the heterogeneity of a, the main difficulty is the simula-
tion of the transport process when the neutron goes from one zone to
another.

If between two successive collision times θ0 and θ1, the particle crosses
at some time τ the boundary between two zones with different diffusion
coefficients a1 and a2, then the collision time θ1 is replaced by a new
collision time θ̃1 = τ + e, where e is an exponential random variable
with parameter a1ε

2CV (See Figure 1). For more details, check [32, 33].

Remark 1. We could also proceed the following way: we choose V
uniformly in V and θ as an exponential time θ of parameter a(y0)CV.
Then the new position is y0 + εV θ and the time is incremented by θε2.

2.3. Romberg extrapolation. We have seen in (8) that

‖uε − u‖L∞(D×V) ≤ εCg,f

where Cg,f depends on g and f but not on ε. As in addition uε has the
asymptotic development (4), uε = u0 + εu1 + ε2u2 +ψε where u0, u1, u2

and ψε are solution of some other transport equations, it is possible to
consider a Romberg extrapolation to get a better approximation of u.
For this, we just write the two following approximations:

u(2)
ε = 2u ε

2
− uε and u(3)

ε =
1

3
(8u ε

4
− 6u ε

2
+ uε),

which are respectively of order 2 and 3. These two approximations are
crucial in the numerical simulations because they allow not to take the
parameter ε too small. Indeed the CPU times increase very quickly
with this parameter.

3. A local approximation by a kinetic equation

3.1. The algorithm. Using the Markov property of the stochastic
process X, the kinetic approximation may be used only locally around
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the discontinuity. Let us denote by {Zi}i the family of open subsets of
D on which the diffusion coefficient is constant. We write a(x) = ai on
Zi. The set of points on which a is discontinuous is denoted by S.

For one particle, the algorithm becomes then the following, where
ε > 0 is a fixed real.

(1) Initialization: Set F ← 0, t← 0.
(2) If the particle is at a position x ∈ Zi then simulate the first time

τ at which X starting from x reaches S ∪ ∂D for the first time,
as well as an approximation F̃ of

∫ τ
0
f(Xs) ds. Set F ← F + F̃

and t← t+ τ .
(3) If the particle belongs to ∂D, then returns g(Xτ ) + F .
(4) If the particle y = Xτ belongs to S, then draw uniformly a

direction v on V. If y + ηv belongs to Zj for η > 0 small
enough, then draw an exponential time θ of parameter aiCV.

(5) If (y + εvs)s∈[0,θ] does not remain in D, then compute the time
τ at which y+εvτ belongs to ∂D and return g(y+εvτ)+F +F̃ ,
where F̃ is an approximation of

∫ τ
0
f(y + εvs) ds.

(6) If (y+ εvs)s∈[0,θ] crosses another zone Zi, then change θ accord-
ing to the rule given in Section 2.2. Possibly, the particle may
cross several zones, and which case, θ should be changed each
time the particle enter a new zone. Check again if (y+εvs)s∈[0,θ]

remains in D. If it is not the case, then go to Step 5. Other-
wise, compute an approximation F̃ of

∫ θε2
0

f(y + vs) ds and set
F ← F + F̃ , t← t+ ε2θ. Go back to Step 2 with x← y + εvθ.

For a particle, this algorithm returns an approximation G of the
quantity g(Xτ ) +

∫ τ
0
f(Xs) ds for the process X generated by L. In

order to get an approximation of Ex

[
g(Xτ ) +

∫ τ
0
f(Xs) ds

]
, where Px

is the distribution of the particle starting from x, one needs to run
this algorithm N times with independent random variables in order to
get a family G1, . . . , GN of approximations of realizations of g(Xτ ) +∫ τ

0
f(Xs) ds and then to compute N−1

∑N
i=1Gi.

In Step (2), one needs to compute the first exit time and position
from a domain where the diffusion coefficient is constant. Several meth-
ods can be used to simulate the time the particle reaches the surface S
or the boundary, among which the Euler scheme [24], the random walks
on spheres [38] and its variants, the random walk on squares [20, 37]
and on rectangles [11, 12]. The choice of one of the method depends
on the geometry of the problem.

Remark 2. As presented, this algorithm is used to computed an ap-
proximation of Ex

[
g(Xτ ) +

∫ τ
0
f(Xs) ds

]
. Note that however, we may

return (τ,Xτ ) instead, and then obtain an approximation of the density
of the first exit time τ or of the exit position Xτ .
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3.2. An alternative method derived from finite differences.
In [36], M. Mascagni and N. Simonov proposed another way to solve a
PDE of type (1). When the particle reaches a point x of S that sepa-
rates two zones with diffusion coefficients a1 and a2, it is reinjected at a
point x+ ε~n(x) with probability p+ = a1/(a1 + a2) and x− ε~n(x) with
probability p− = a2/(a1 + a2), where ~n(x) is the unit vector normal to
S and points toward the direction where the diffusion coefficient is a1.
The parameter ε is fixed and arbitrary. This choice is justified by a
finite-difference computation.

In dimension one, the probability p+ corresponds to the probabil-
ity that starting from x, the process X generated by 1

2
d
dx

(
a d

dx

)
with

a = a11R+ + a21R∗− reaches ε before reaching −ε. This can be easily
computed using the scale function S(x) of x (See [6] for example), since
S(x) =

∫ x
0

dy/a(y) up to some multiplicative and additive constants.
In [18], we have considered the approximation of a diffusion process

in a one-dimensional discontinuous media by a random walk on a fixed
set of points, using the local properties of the process.

The approach above for a process (X1, . . . , Xd) living on Rd if S =
{0}×Rd−1, and a = a1 on R+±×Rd−1 and a = a2 on R−×Rd−1 means
that we neglect the behavior of (X2, . . . , Xd), since we have Ex[X

i
τ ] = 0

for i = 2, . . . , d when τ is small enough, where τ is the first time X
reaches either ~n(x)ε+ S or −~n(x)ε+ S.

Using the computations in [18], we can also choose two constant
ε+ and ε−, and let the particle jumps to x + ε+~n(x) and x − ε−~n(x)
with some probabilities that are deduced from the behavior of one-
dimensional process Yt = ~n(x)Xt when X reaches S at the point x.
Since we are interested only by the local properties of Y , we may assume
that S = {0} × Rd−1, a = a1 on R+ × Rd−1 and a = a2 on R− × Rd−1.
The infinitesimal generator of Y then becomes

1

2

d

dx

(
b(x)

d

dx

)
with b(x) =

{
a1 on R+,

a2 on R−.

If −ε− < 0 < ε+ and τ is the first time Y reaches either −ε− or ε+, we
have

P0[Yτ = ε+] = 1− P0[Yτ = −ε−] = u+(0) with

{
Au+ = 0 on (−ε−, ε+),

u+(ε−) = 0, u−(ε+) = 1,

E0[τ |Yτ = ε+] = T+(0) with

{
AT+ = u+ on (−ε−, ε+),

T+(ε−) = T+(ε+) = 0,

E0[τ |Yτ = ε−] = T−(0) with

{
AT− = 1− u+ on (ε−, ε+),

T−(ε−) = T−(ε+) = 0.

The functions u+, v+ and v− are easily computed. Let us note that in
addition, this approach gives us how to increment the time when the
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particle is reinjected in the media. Thus,

(9) u+(0) =
a1ε−

a1ε− + a2ε+

and

T+(0) =
a2ε

3
+ + 3a1ε

2
+ε− + 2a1ε+ε

2
−

3a1(a1ε− + a2ε+)
,(10)

T−(0) =
2a2ε

2
+ε− + 3a2ε+ε

2
− + a1ε

3
−

3a2(a1ε− + a2ε+)
.(11)

Let us remark that if ε+ = ε−, which is natural choice in view of
a “finite difference approximation” and a1 � a2, then T+(0) ≈ 5/3a1

while T−(0) ≈ 1/3a2. This means that the times are very different.
On the other hand, it is also possible to “tune” ε+ and ε− in order

to get T+(0) = T−(0).
Thus, using the results of [18], we get a flexible way of choosing

the future localization of the particle, as well as an approximation of
the average time it takes to go there. We now call this approach the
random walk approximation.

3.3. A comparison between the two methods. We can now give a
heuristic and rough justification of the kinetic approximation, based on
probabilistic comparison between the two methods. We still consider
the case of a media where a(x) = a1 on R∗+ × Rd−1 and a(x) = a2 on
R∗− × Rd−1. We denote by ~n = (1, 0, . . . , 0) the vector normal to S.

With the kinetic approximation or the random walk approximation,
the particle has the same behavior until it reaches the surface of dis-
continuity.

With the kinetic approximation, when the particle is at a point x
on the hyperplane S = {0} × Rd−1, its direction v ∈ V is chosen
uniformly on V, so that the probability that v · ~n > 0 is equal to 1/2.
If it is the case, then its average position is x + εCV(a1/2)~n and the
time is incremented in average by ε2CV(a1/2)~n. Otherwise, its average
position is x − εCV(a2/2)~n and the time is incremented in average by
ε2CV(a2/2)~n.

With the random walk approximation, we deduce from (9) that the
probability that when at x ∈ S, the particle reaches x + εCV(a1/2)~n
before x− εCV(a2/2)~n is equal to 1/2. In addition, using (10), we get
that the average time t+ (resp. t−) to reach x + εCV(a1/2)~n (resp.
x−εCV(a2/2)~n) before x−εCV(a2/2)~n (resp. x+εCV(a1/2)~n) is equal
to

t+ = CVε
2 2a2

1a2 + a1a
2
2

3(a2
1 + a2

2)
, resp. t− = CVε

2 2a2
2a1 + a2a

2
1

3(a2
1 + a2

2)
.

We then obtain that the two methods give in average comparable ways
of re-injecting the particle in the media.
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4. Basic one-dimensional examples

4.1. Description of the models. The aim of this section is to com-
pare the global and the local approximation described in Sections 2 and
3 on two basic examples in dimension one. In the domain D = (−1, 1),
we consider the two equations

(12) −1

2
∇ · (a(x)∇u(x)) = 0

with Dirichlet boundary conditions u(−1) = 0, u(1) = 1 and

(13) −1

2
∇ · (a(x)∇v(x)) = 1

with Dirichlet boundary conditions v(−1) = 0, v(1) = 0 where a(x) =
a1 if x > 0 and a(x) = a2 if x < 0. Using the continuity of the solu-
tions and of the flux at the origin, the exact solution of (12) is easily
computed and is given by

u(x) =
a1 + a2x

a1 + a2

1[0,1](x) +
a1 + a1x

a1 + a2

1[−1,0](x)

while the solution to (13) is

v(x) =
2

a1 + a2

+

(
(a1 − a2)x

a1(a1 + a2)
− x2

a1

)
1[0,1](x)

+

(
(a1 − a2)x

a2(a1 + a2)
− x2

a2

)
1[−1,0](x).

Let us denote the stochastic process Xx
t generated by the operator

1
2
∇· (a(x)∇·). The solution u(x) of the first equation is the probability

that the process Xx
t reaches 1 before −1. The solution v(x) of the

second is the mean exit time of the process of the domain D. We
approximate the operator 1

2
∇ · (a(x)∇)u by the transport operator

Tεu(x, v) = −v
ε

∂u

∂x
(x, v) +

2

3ε2a(x)

(
1

2

∫ 1

−1

u(x, v′)dv′ − u(x, v)

)
depending on the parameter ε in the domainD×[−1, 1], with boundary
conditions u(1, v) = 1 and u(−1, v) = 0 on Γ−. In the case of the
global approximation, we compute numerically an averaged solution
on the velocities at a given point x. This simply means that the initial
velocity is picked uniformly at random on the velocity space [−1, 1].

4.2. Global approximation. We first look at an example where the
jump in the diffusion coefficient is small that is a1 = 2, a2 = 1. We
compute the solution at three reference points −0.5, 0 and 0.5 using
N1 = 105 simulations. We study the accuracy on the solutions u and
v as a function of the parameter ε for the estimators based on a direct
approximation and for the ones based on the Romberg extrapolation.
We start with the point x = 0.5 for which the simulations should be
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the fastest as this point is close to the boundary and in the zone with
biggest diffusion coefficient. The exact values are u(0.5) ' 0.83333 and
v(0.5) ' 0.45833. In the following table, we compute direct approxima-
tions for values of ε from 0.1 to 0.025 and Romberg extrapolations with
ε = 0.1 and 0.01. We denote by udir and vdir the direct approximations
and by urom and vrom the Romberg type approximations.

ε 0.1 0.05 0.025 0.01 0.005 0.0025
udir 0.7908 0.8103 0.8223 0.8289 0.8307 0.8322
vdir 0.8297 0.8359 0.8326 0.8340
urom 0.657 0.556 0.509 0.478 0.4687 0.4655
vrom 0.4561 0.4633 0.4591 0.463

These simulations and the following are performed on a standard
1.66 Ghz laptop. The simulations have taken 14 seconds for the first
Romberg extrapolations (that is for the total time with parameter ε
equal to successively 0.1, 0.05 and 0.025). They have taken 1550 sec-
onds for the second Romberg extrapolations (that is for the total time
with parameter ε equal to successively 0.01, 0.005 and 0.0025). We can
notice that the direct approximations require ε to be equal to 0.0025
to be acceptable in terms of bias. The same accuracy is obtained with
the the Romberg extrapolations of level one and two for ε = 0.1. This
shows that the Romberg extrapolation is very satisfactory and that the
direct method using a small value of the parameter should be discarded
because of too large computational times. We now look if this Romberg
extrapolation is still acceptable for the other reference points. For the
point x = 0, the exact values are u(0) ' 0.66666 and v(0) ' 0.66666
and for the point x = −0.5, the exact values are u(−0.5) ' 0.33333
and v(−0.5) ' 0.58333.

ε 0.1 0.05 0.025 0.1 0.05 0.025
udir 0.644 0.654 0.662 0.355 0.342 0.340
vdir 0.6647 0.671 0.331 0.340
urom 0.842 0.747 0.705 0.753 0.667 0.626
vrom 0.6529 0.6663 0.5812 0.5859

We observe that for both points, the approximations vdir and vrom

are acceptable and that the approximation using only ε = 0.1 and 0.05
may be more accurate than the one using the 3 values of the parameter.
This means that the Romberg extrapolation using two parameters is
sufficient in these cases and that the variance of the estimator using the
three parameters is bigger. The direct approximation is not accurate
enough especially for the computation of the mean exit time. The com-
putational times are 22 seconds for both points. We can conclude on
this first example that the Romberg extrapolation works well and that
it provides an approximation accurate up to about 3 digits in a compu-
tational time of roughly 20 seconds. We now study the same example
using the local approximation to check its efficiency and whether or
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not it is necessary to study more difficult examples based on the global
approximation.

4.3. Local approximation.

4.3.1. Description of the algorithm. The local approximation leads to
a very simple and very fast algorithm based on the properties of the
Brownian motion on the interval [-1,1]. We still denote by uε and vε
the approximations of equations (12) and (13) and we describe now the
motion of a particle used to compute uε(x) and vε(x) simultaneously.

The motion of the particle starts at some point x in (−1, 1). We
denote by y the position of a particle that is still alive during the
walk. If y > 0 then with probability 1 − y it goes to 0 and with
probability y it goes to 1. The time to add the total time of the walk
is in both cases y(1−y)

a1
. If y < 0 then with probability 1 + y it goes

to 0 and with probability −y it goes to −1. The time to add the total
time is in both cases −y(1+y)

a2
. If finally y = 0, we pick a velocity v

uniformly in [−1, 1] and an exponential random variable t of mean 1.
If v > 0, the time to add to the total time is min( ε

v
, 1.5a1ε

2t) and the
position is min(1, 1.5a1t

ε
v
). If v < 0, the time to add to the total time

is min(−ε
v
, 1.5a2ε

2t) and the position is min(−1, 1.5a2t
ε
v
). The motion

continues until the particle hits −1 or 1.

4.3.2. Previous example. We experiment this method on the previous
example starting with x = 0.5 using N1 = 105 and N2 = 106 simula-
tions.

N1 N2

ε 0.1 0.05 0.025 0.1 0.05 0.025
vε(0.5) 0.4621 0.4567 0.4568 0.4637 0.4588 0.4574
uε(0.5) 0.8328 0.8349 0.8342 0.8323 0.8334 0.8337

The CPU times for N1 simulations are respectively 0.2, 0.4 and 0.6
seconds for ε = 0.1,0.05 and 0.025. We can notice that we obtain
similar values for both uε and vε for ε = 0.05 and 0.025. This is
confirmed when we use N2 simulations where both approximations are
accurate up to 3 or 4 digits. On the contrary, the approximations based
on ε = 0.1 still have a bias which is larger than the Monte Carlo error.
We now compute the solutions at the two other reference points using
N2 simulations to focus on the bias.

ε 0.1 0.05 0.025 ε 0.1 0.05 0.025
uε(0) 0.664 0.6666 0.6665 uε(−0.5) 0.332 0.3337 0.3336
vε(0) 0.6791 0.6665 0.6665 vε(−0.5) 0.5887 0.5840 0.5823

We observe that we still obtain an accuracy of 4 digits taking ε = 0.05.
The CPU times for this value are 6 seconds at point 0 and 3 seconds
at point −0.5. We can conclude that the new approximation can be
used in this example with a parameter ε = 0.05 and that it provides an
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accuracy of about 3 digits using N1 = 105 simulations in no more than
0.6 seconds. For the same accuracy, the local approximation is about
40 times quicker than the global one.

4.3.3. More difficult situations. The question now is to figure out if our
method is efficient when the ratio a1

a2
is big and how to calibrate the

value of ε in such situations. We have made some numerical tests for
different values of this ratio. In fact the choice of ε depends more on
max(a1, a2) than on the ratio a1

a2
. A good choice is to take ε = 0.1

max(a1,a2)

which gives a good accuracy and low CPU times. We give a numerical
example in the case a1 = 1000 and a2 = 1 where the physical constants
are different from several degrees of magnitude. We use N = 105

simulations with ε = 0.0005. Numerical results are summarized in the
following table.

x u(x) uε(x) v(x) vε(x) CPU
0.5 0.001249 0.00124783 0.9995 0.99951 0.58
0 0.001998 0.00199742 0.999 0.99911 1.1
−0.5 0.250999 0.2509978 0.4995 0.4993 0.56

The values of uε at the reference points are accurate up to 6 digits
and the values of vε up to 4. These computations require no more than
1.1 seconds. We have obtained the same kind of results in all the tests
we have experimented.

5. Two dimensional examples

5.1. Description of the models. We now study two equations in
dimension 2 using only the local approximation which appeared as the
most efficient in the previous section. The spatial domain D is the
square [−1, 1]2 divided in the two rectangles D2 = [−1, 0]× [−1, 1] and
D1 = [0, 1]× [−1, 1] in which the diffusion coefficient a(x, y) is constant
and equal to a2 in D2 and a1 in D1.

The first equation is

−1

2
∇ · (a(x, y)∇u(x, y)) = 0

with Dirichlet boundary conditions u(x, y) = (1 + x
a1

)(1 + y) if x ≥ 0

and u(x, y) = (1 + x
a1

)(1 + y) if x ≤ 0. The exact solution is

u(x, y) =

(
1 +

x

a2

)
(1 + y)1[−1,0](x) +

(
1 +

x

a1

)
(1 + y)1[0,1](x).

It verifies the continuity and flux conditions at the interface x = 0.
The second equation is

−1

2
∇ · (a(x, y)∇w(x, y)) = 1

with Dirichlet boundary conditions w(x, y) = 0 on ∂D. Let us denote
the stochastic process Zx,y

t generated by the operator 1
2
∇· (a(x, y)∇)w.
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The solution w(x, y) of this second equation is the mean exit time of
Zx,y
t from the domain D. As the exact solution is unknown, we will

use as a reference solution, a numerical solution using a finite element
method taken from the pdetool package of Matlab with a very fine
mesh.

We approximate the operator 1
2
∇ · (a(x, y)∇u) by the transport op-

erator

Tεu(x, y, θ) = −cos(θ)

ε
∇xu(x, y, θ)− sin(θ)

ε
∇yu(x, y, θ)

+
1

ε2a(x, y)

(
1

2π

∫ 2π

0

u(x, y, θ)dθ − u(x, y, θ)

)
depending on the parameter ε in the domainD×V, with boundary con-
ditions of absorption type (no incoming neutrons). We use the follow-
ing algorithm to compute the solution at point (x, y). This algorithm
is a combination of the walk on spheres method with a η absorbing
boundary layer for each of the subdomains and of a local approxima-
tion based on Tε at the interface. Obviously, we could have used the
walk on rectangles method [11] but it would be maybe too favourable
on this particular example. The walk starts at point (x, y). If for ex-
ample x > 0, we walk until we are close to η from the boundary of D1.
Along with this walk, we compute the contribution of the source term
for each of the n circles of radius ri until we hit the boundary. As the
source term is equal to one, this contribution is equal to

n∑
i=1

r2
i

2a1

.

In the case of a non-constant source term, the modified walk on spheres
could be used to compute this contribution [23]. If the walk hits ∂D
it stops. If it hits the interface, we pick an angle θ uniformly in [0, 2π]
and an exponential random variable to choose the new position. As
in dimension one, we have to study carefully if there is an intersection
or not with the boundary. According to the sign of vx = cos(θ), the
particle goes into D1 or D2 and the motion continues until a boundary
of D is reached.

5.2. Numerical results. As we did in dimension one, we first con-
sider the case a1 = 2 and a2 = 1. We use N = 104 simulations with
ε = 0.02 and η = 10−5. The three reference points are mesh points
of the pdetool mesh. We take (x0, y0) = (0, 0.002674), (x1, y1) =
(−0.5027, y0) and (x2, y2) = (−x1, y0). Numerical results are summa-
rized in the following table.
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u uε v vε CPU
(x0, y0) 1.00267 1.00127 0.39290 0.38500 1.8
(x1, y1) 0.49862 0.49180 0.38040 0.37812 0.8
(x2, y2) 1.25469 1.2468 0.26676 0.26500 0.8

The values of uε and vε at the reference points are accurate from 2 to 3
digits. We now study the case a1 = 80 and a2 = 4 where the physical
constants are taken from a problem on the computation of molecule
physical properties [36] and where now ε = 0.0005 using the same
scaling than in dimension one. The values of uε and vε at the reference
points are as accurate as previously and the CPU times similar which
indicates that our scaling is efficient.

u uε v vε CPU
(x0, y0) 1.00267 0.98900 0.01401 0.01392 2.3
(x1, y1) 0.87670 0.87260 0.06232 0.06276 1
(x2, y2) 1.00897 1.00033 0.00830 0.00826 0.9

On this last case, we have also tested the method based on the finite
differences approximation at the boundary. When the particle hits
the interface at point (0, y) it is replaced at the position (h, y) with
probability 80/(4 + 80) and at position (−h, y) with probability 4/(4 +
80). Taking h = 0.01, we have obtained an accuracy and CPU times
similar to the ones obtained with our method.

6. PDE and stochastic PDE in dimension 3

6.1. The physical model. We study the same equation than in di-
mension 2 with no source term. The spatial domain D is the square
[−1, 1]3 divided in the two hyper-rectangles D2 = [−1, 0]× [−1, 1]2 and
D1 = [0, 1]× [−1, 1]2 in which the diffusion coefficient a is constant and
equal to a2 in D2 and a1 in D1. The equation is

−1

2
∇ · (a∇u) = 0

with Dirichlet boundary conditions u(x, y, z) = (1 + x
a1

)(1 + y)(1 + z)

if x ≥ 0 and u(x, y, z) = (1 + x
a2

)(1 + y)(1 + z) if x ≤ 0. The exact
solution is

u(x, y, z) = (1+
x

a2

)(1+y)(1+z)1[−1,0](x)+(1+
x

a1

)(1+y)(1+z)1[0,1](x).

We approximate the operator 1
2
∇ · (a∇·) by a transport operator on

the interface depending on the parameter ε in the domain D×V, with
boundary conditions of absorption type (no incoming neutrons) where
the velocity space is the unit sphere. The walk on spheres method is
used elsewhere with η = 10−4 in the numerical simulations.
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6.2. Numerical results. We perform N = 104 simulations at the
three reference points M0 = (0, 0, 0), M1 = (−0.5, 0, 0) and M2 =
(0.5, 0, 0) for the same two sets of diffusion coefficients used in the
test case in 2D. We take respectively ε1 = 0.02 for the first one and
ε2 = 0.0005 for the second one. We obtain the same accuracy on the
solution of two or three digits for CPU times about 5 times bigger
compared to the problems in dimension 2.

u uε1 CPU u uε2 CPU
M0 1.0 1.0060 11 1.0 0.9989 13
M1 0.5 0.5053 4.9 0.8750 0.8742 5.4
M2 1.2500 1.2417 4.8 1.00625 1.0091 5.5

6.3. A stochastic PDE.

6.3.1. Introduction. In some physical situations, the diffusion coeffi-
cient is not known exactly and is considered as a random variable which
modelizes the error on its measure. More precisely, the domain is di-
vided into different zones in which the diffusion coefficient is constant
and has a given distribution independent of the other zones. In gen-
eral one is interested in the mean value of the solution. It is obtained
by solving many times the PDE using a deterministic method with a
random distribution of the diffusion coefficient in each zone [1, 14, 15].

It is possible to use our approach to build a double Monte Carlo
method to compute this mean value at a fixed point. We pick at
random according to their distributions the diffusion coefficients and we
make only one simulation of the diffusion process in the heterogeneous
medium to approximate the Feynman-Kac representation. Moreover,
we can also compute the integral of the solution in the domain by
just picking in addition the starting point uniformly at random in the
domain.

6.3.2. Numerical results. We assume that a1 and a2 are uniform and
independent random variables on [0.5, 1.5]. The mean value of the so-
lution is

v(x, y, z) = (1 + x ln(3))(1 + y)(1 + z)

and its integral is equal to 8. The parameter ε is adapted to the values
of a1 and a2 to ensure low CPU times. For each simulation, we take
ε = 0.03

max(a1,a2)
using once again a scaling argument. We compute the

mean value of the solution at point M0, M1,M3 = (− 1
ln(3)

, 0, 0) and
its integral using respectively N1 = 104 simulations and N2 = 105

simulations.
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u uN1 CPU uN2

D 8 8.067 3.3 8.021
M0 1 0.979 13.6 1.0026
M1 0.4507 0.444 5.4 0.4509
M3 0 −0.0047 1.3 0.001

The accuracy and the CPU times are similar to the ones obtained
when solving the deterministic PDE of Section 6.2. This means that the
cost of the resolution of the stochastic PDE is about the same than the
one of the deterministic PDE, when one is interested on the solution
at just one point of the domain D. This is really a big advantage
compared to the resolution by means of deterministic methods.

7. Computation of the hydro-dynamic load in a porous
media

In order to deal with a realistic case, we present some results on the
computation of the hydro-dynamic load in a porous media. For this, we
consider the couplex exercises provided in 2001 by the French agency
andra (Agence Nationale pour la Gestion des Déchets Radioactifs –
French National Radioactive Waste Management Agency) regarding
the disposal of nuclear waste. The exercises are presented in [4]. A
special issue of Computational Geoscience (vol. 8:2, 2004) is dedicated
to them.

7.1. Description of the model. We aim at solving at some point the
equation

∇ · (K∇H) = 0 in D

where D is a two dimensional rectangle (0, 25000)× (0, 695). The do-
main is decomposed in several zones according to Figure 2, which cor-
responds to different types of rocks. The permeabilities are

Marl Limestone Clay Dogger
K (m/year) 3.1536 · 10−5 6.3072 3.1536 · 10−6 25.2288

The boundary conditions are

H = 289 on {25000} × (0, 200) (right Dogger),
H = 310 on {25000} × (350, 595) (right limestone),

H = 180 +
160x

25000
on (0, 25000)× {695} (top),

H = 200 on {0} × (295, 595) (left limestone),
H = 286 on {0} × (0, 200) (left Dogger),

∂H

∂n
= 0 elsewhere.
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Dogger

Clay

Limestone

Marl

Figure 2. The geometry of the domain.

7.2. Approximate analytical solution. We propose here to give an
approximate analytical solution in each of the physical zones based on
probabilistic arguments. This has been already done in [8] for two of
the zones using physical arguments.

In Dogger, a Brownian motion starting at (x, z) cannot cross the
barrier z = 0 because of the reflexion due the Neumann boundary con-
ditions and the barrier y = 200 can also be replaced approximatively
by Neumann boundary conditions because K is very small in clay and
large in dogger. Only the horizontal motion is important in this case
and this motion is just a one dimensional Brownian motion because
K is constant in dogger. So we can approximate H(x, z) by the so-
lution Ha(x) of the one dimensional Laplace equation with boundary
conditions Ha(0) = 286 and Ha(25000) = 289 that is

Ha(x) = 286 +
3x

25000
.

In limestone, we can use the same reasoning by replacing the two
barriers constituted of marl and clay by Neumann boundary conditions
at the interfaces between limestone and marl or limestone and clay.
If we also consider that the slope of the barrier separating clay and
limestone is negligible, we obtain the approximate solution

Hb(x) = 200 +
110x

25000
.

The approximation proposed in [8] which takes into account the slope
of the barrier is

Hc(x) = 200 +
110

ln(245
300

)
ln

(
1− 55x

300× 25000

)
.

The approximation Hb(x) can be obtained using a first order expansion
of the two terms in logarithm in Hc(x). An easy computation shows



KINETIC APPROXIMATION FOR DIFFUSIONS 19

that Hb(x)−Hc(x) ≥ 0 and that

max
xε(0,25000)

Hb(x)−Hc(x) = 2.783

at point x = 12, 921. It has also been noticed in [8] that the differ-
ence between the numerical solution obtained using the finite volume
method and the approximate analytical one never exceeded 1.5 in dog-
ger and limestone.

In marl, the probability to reach the top of the domain before the
bottom starting at the point (x, z) can be approximated by p(z) = z−595

100
using the previous arguments this time for the vertical motion. Then,
the Dirichlet boundary conditions on the top of the marl region are
modelled by the linear function g(x) = 180 + 160x

25000
and we can also use

linear or close to linear Dirichlet boundary conditions on the bottom
boundary by taking Hb(x) or Hc(x) on it. Now the conditional law
fx,z(y) of the hitting position of the top of the domain is close to a
symmetric function with a fast decay away from x so we have∫ 25000

0

g(y)fx,z(y)dy '
∫ 25000

0

(g(x) + g(t))fx,z(x+ t)dt ' g(x).

Using the same arguments for the bottom boundary, we can give the
analytical approximation

Hd(x, z) = p(z)g(x) + (1− p(z))Hc(x)

in the marl region.
In clay, we can use the same method assuming furthermore that the

slope of the interface between limestone and clay is negligible. This
leads to the approximation

He(x, z) = p1(x, z)Hc(x) + (1− p1(x, z))Ha(x)

with

p1(x, z) =
z − 200

z − 200 + 295 + 55
25000

x− z
=

z − 200

95 + 55
25000

x
.

7.3. Numerical results. For each of the physical regions, we use the
walk on spheres method inside the regions with an absorption parame-
ter η = 10−8. When the particle hits an interface between two regions,
we use the local approximation with parameter ε = 0.2. When the
particle hits the boundary at a point with Neumann boundary con-
ditions, we still use the local approximation by always replacing the
particle inside the domain. For each of the regions, we give the nu-
merical approximations H̃ at 4 significant points and compare it with
the approximate analytical solutions of the previous subsection. We
perform N = 100 Monte Carlo simulations on a standard laptop. We
also give the CPU times in second, the variance σ2 and σ√

N
which is

an indicator of the expected accuracy.
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Dogger H̃(x, z) Ha(x) σ2 σ√
N

CPU
(x, z) = (1000, 50) 286.2 286.1 0.59 0.07 15
(x, z) = (6000, 150) 286.8 286.7 1.79 0.13 71
(x, z) = (12500, 100) 287.3 287.5 2.2 0.15 103
(x, z) = (18440, 200) 288.1 288.2 1.94 0.14 72

In dogger, we observe that the variance is very small and that for all
the points where the numerical solution is computed the error between
the approximate numerical solution and the approximate analytical one
is always less than 0.2. The numerical solution seems not to depend
on z even for the point (x, z) = (18440, 200) which is located on the
interface. The CPU times are large, one second for a single trajectory
when starting from the center of the domain. In this case, the trajectory
has hit 240, 000 times in average the interface between dogger and clay.
None of the 100 trajectories reached the limestone region.

Limestone H̃(x, z) Hc(x) σ2 σ√
N

CPU
(x, z) = (1000, 320) 202.2 204 121 1.1 59
(x, z) = (6000, 570) 224.2 224.4 2097 4.6 236
(x, z) = (12500, 460) 251.7 252.2 3044 5.5 344

(x, z) = (21680, 342.7) 291 294 1804 4.2 187

In limestone, the variance is a lot bigger than in clay. Nevertheless we
achieve a good accuracy, only the error at point (x, z) = (21680, 342.7)
is greater then 3 which is bigger than the acceptable error given in [8].
The CPU times are bigger than in dogger because the limestone region
is larger. Starting from point (x, z) = (12500, 460), the trajectory has
hit in average 1.6 million times one or the other interface. One single
trajectory among the hundred has reached the top of the marl region
and none the dogger region.

Clay H̃(x, z) He(x, z) σ2 σ√
N

CPU
(x, z) = (1000, 220) 270.6 269.2 1104 3.3 15
(x, z) = (6000, 280) 240.3 240.7 2321 4.8 261
(x, z) = (12500, 260) 268.9 270.2 1948 4.4 250
(x, z) = (20560, 247) 286.1 288.5 705 2.7 99

In clay and marl, we observe a good agreement between the ana-
lytical and the numerical approximate solutions. The CPU times and
variances are between the one of the limestone and dogger regions.

Marl H̃(x, z) Hd(x, z) σ2 σ√
N

CPU
(x, z) = (1000, 670) 191 190.8 179 1.3 10
(x, z) = (6000, 620) 220.4 223 1384 3.7 200
(x, z) = (12500, 645) 253.8 256.1 1448 3.8 179
(x, z) = (20000, 675) 301.8 303.6 665 2.5 58

We can conclude that our method is efficient and that it treats well
the discontinuity of the diffusion coefficients. This example is especially
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a good test for our method because the trajectory hits a huge number
of times the interface between the regions.

8. Conclusion

We have introduced two kinetic schemes to approximate the solu-
tions of partial differential equations in divergence form with piecewise
constant diffusion coefficients.

Both schemes have provided accurate approximations but the scheme
based on a local approximation is a lot more efficient as it uses the ki-
netic approximation only at the interface and a fast simulation of the
Brownian motion elsewhere. On the two dimensional basic examples,
the pdetool solver of Matlab was more efficient than our method as it
gives a global solution in lower CPU times. The kinetic approximation
has also given a good approximation in the case of the pointwise com-
putation of the hydro-dynamic load in a very heterogeneous physical
domain. For problems in dimension three and especially for stochastic
PDEs, our approach seems really efficient as it cost increases slowly
compared to the ones of two dimensional problems.

Our method has several advantages compared to the finite differences
method of Mascagni and Simonov. With Remark 2, it can provide the
law of the exit time from the domain, which is crucial in the computa-
tion of the principal eigenelements of the operator by means of Monte
Carlo methods [28, 29]. In a recent work [5] it has also been used
successfully for solving the Poisson-Boltzmann equation of molecular
electrostatics for which the finite differences method was originally de-
signed. It has been proved for example that in the case of a molecule
constituted of one sphere our method is of order two in ε instead of
order one for the finite differences method. Moreover, the numerical
performances of our method were very satisfactory.

Our modified finite difference scheme also allows one to overcome
the problem of the precision of the time simulation. Finally the kinetic
approximation allows one to deal more easily when several discontinuity
surfaces are close to each other.
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