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Abstract

We introduce new Monte Carlo simulation schemes for diffusions in a dis-
continuous media divided in subdomains with piecewise constant diffusivity.
These schemes are higher order extensions of the usual schemes and take into
account the two dimensional aspects of the diffusion at the interface between
subdomains. This is achieved using either stochastic processes techniques or
an approach based on finite differences. Numerical tests on elliptic, parabolic
and eigenvalue problems involving an operator in divergence form show the
efficiency of these new schemes.
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1 Introduction
Many diffusive models assume that the flow is proportional to the gradient of the
concentration of a fluid. In the simplest situations, the media is homogeneous and
additionally the incompressibility of the fluid is assumed. Hence, the concentration
is the solution of an equation involving the Laplace operator.

In more realistic situations, the diffusivity coefficient a present some disconti-
nuities and the involved operator takes the general form ∇(a∇ · ). We can mention
applications in geophysics when dealing with the Darcy law [12, 35, 37], magneto-
electro-encephalography [27], population ecology [4], astrophysics [38], oceanogra-
phy [11], ... The resulting numerical problems consist in solving partial differential
equations in large domains presenting complex geometries and multi-scale features.
Solving such problems is still a real issue while they have very important industrial
and academic applications.

Several very efficient algorithms, either deterministic or probabilistic, exist to
solve problems in homogeneous media. Among them are Monte Carlo algorithms
which rely on the simulation of the Brownian motion using random walks on
subdomains methods like the walk on spheres (WOS) or the walk on rectangles
(WOR). When dealing with discontinuous media, the crucial question is the be-
havior of the random walk when hitting the interface between physical domains.
Many algorithms have already been proposed mainly for one-dimensional media
(See [6–8,12,21,27–29,34,35,37] for example), while a few others deal with locally
isotropic media [17], generally in the steady state regime [3, 30].

The aim of this paper is twofold. First we remind the existing schemes and in-
troduce some new ones to deal with interface conditions of locally isotropic media,
which means that the coefficient a is scalar and piecewise constant. Second, we
compare these new schemes and the old ones on elliptic, parabolic and eigenvalue
problems on two-dimensional numerical examples.

The rest of the paper is organized as follows. In Section 2, we make a general de-
scription of the simulation algorithm and of the different kind of partial differential
equations it can deal with. We also make an error analysis of the algorithm focus-
ing especially on its bias. In Section 3, we remind the WOS and WOR methods
and discuss how they should be used on our three kinds of problems. In Section 4,
we describe the existing schemes in the one-dimensional case and especially the
Skew Brownian motion from which they derive. Sections 5 and 6 are devoted to
new schemes to deal with the discontinuity of the diffusivity coefficient in dimen-
sion two. The crucial point is to approximate efficiently the tangential component
of the motion. In Section 5, this approximation is achieved by stochastic processes
techniques based on occupation times or on a kinetic scheme. In Section 6, we use
a local approximation of the divergence form operator by finite differences tech-
niques. These schemes are higher order extensions of the standard ones developed
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in [30]. In the final section, all the schemes are tested and compared numerically
on elliptic, parabolic and eigenvalue problems in a simple domain constituted of
two subdomains with different diffusivities.

2 The general simulation method and its error
Our main goal is to focus on the quality of the schemes that take discontinuities
of the diffusivity into account. All these schemes are based on a particle moving
in a domain D divided in subdomains in which the diffusivity is constant. For the
sake of simplicity, we assume that D is divided in only two subdomains D1 and D2

with an interface Γ and that the boundary conditions on ∂D are of Dirichlet type.
This means that the particle is killed when hitting the boundary. The schemes
will be tested on three kinds of usual PDE problems that we now describe as well
as their probabilistic representations.

Elliptic PDE. We consider the following elliptic PDE with Dirichlet boundary
conditions in a domain D = D1 ∪D2 with a piecewise smooth boundary:

1

2
∇(a(x)∇u(x)) = −f(x) on D, u|∂D(x) = ϕ(x), (1)

for a bounded, continuous function f in D and a continuous function ϕ on ∂D.
The scalar coefficient a is constant on D1 and D2.

This equation has to be understood as a weak solution belonging to a Sobolev
space. However, the solution u is α-Hölder continuous on D, smooth in D1 and D2,
while the flux a(x)∇u(x) is continuous on the interface Γ between D1 and D2 [13].
Let (Z, (Ft)t≥0, (Px)x∈D) be the process generated by 1

2
∇(a∇ · ) and τ be its first

exit time from D. This process enjoys the strong Markov property, has continuous
paths and its transition density function may be compared to the Gaussian one [36].

Thanks to Itô formula and passing to the limit [36] in the approximation of
the discontinuous coefficients by smooth ones, one gets the usual probabilistic
representation of u as

u(x) = Ex
[∫ τD

0

f(Zs) ds

]
+ Ex[ϕ(ZτD)]

where τD = inf{t > 0 |Zt 6∈ D}.

Parabolic PDE. For f continuous and bounded on [0, T ]×D, ψ bounded and
continuous on D and ϕ bounded and continuous on [0, T ) × D, we consider the
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parabolic PDE
∂u(t, x)

∂t
− 1

2
∇(a(x)∇u(t, x))− f(t, x) = 0 on R+ ×D,

u(0, x) = ψ(x), x ∈ D,
u(t, x) = ϕ(t, x), x ∈ ∂D, t > 0.

(2)

The solution u(t, x) is α-Hölder continuous in space, α/2-Hölder continuous in
time for some α ∈ [0, 1] and locally smooth away from Γ ∪ ∂D [14]. Using the
same tools than for the elliptic PDE, it can be shown that

u(t, x) = Ex[ψ(Zt)1t≤τD ] + Ex[ϕ(τD, ZτD)1τD<t] + Ex
[∫ t∧τD

0

f(s, Zs) ds

]
similarly to for non-divergence form operators [36].

Principal eigenvalue problem. Since 1
2
∇(a∇ · ) has a compact resolvent, it has

a countable number of eigenvalues. The smallest eigenvalue λ1 has a significant
physical interpretation as it is related to the rate of convergence to the steady
state regime. The eigenvalue problem writesFind the smallest λ > 0 such that for some u 6≡ 0,

−1

2
∇(a∇u) = λu on D with u|∂D = 0.

(3)

If τD is the first exit time from D and λ1 the solution to (3), then for any
x ∈ D, Px[τD > t] ≈ ce−λ1t for t large enough so that λ1 may be estimated from
the empirical distribution function of τD [19, 20].

2.1 General schemes

We fix a parameter T > 0, which is the time horizon in the parabolic problem (2)
and verifies T = +∞ for either the elliptic problem (1) or the eigenvalue prob-
lem (3). The numerical approximation of the solution u(t, x) to (2), requires to
simulate τD ∧ T , ZτD∧T , σ(T, x) =

∫ τD∧T
0

f(s, Zs) ds knowing that Z0 = x and
τD = inf{t > 0|Zt 6∈ D}. Knowing these quantities allows also one to solve the
elliptic and eigenvalue problems (1) and (3) but they are not all necessary because
for instance f = 0 in the eigenvalue problem.

We define for any x ∈ ∂D and any t ≥ 0 a function θ(t, x) ≤ T − t which
is either a (Ft)t≥0-stopping time or a deterministic time. This function is an
approximation of an elapsed time or of a mean elapsed time of a trajectory starting
at x ∈ D. For x ∈ ∂D, t ≥ 0, we set θ(t, x) = 0. We also set t0 = 0 and
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tk+1 = tk + θ(tk, Ztk). A numerical scheme consists then in constructing a Markov
chain {νk, ξk}k≥0 representing a couple (time,position) and a sequence {σk}k≥0 of
local scores such that
(i) ξ0 = x ∈ D
(ii) νk+1 − νk is an approximation of θ(νk, ξk)
(iii) ξk+1 is an approximation of Zθ(νk,ξk) when Zνk = ξk

(iv) σk is an approximation of
∫ νk+1

νk
f(s, Zs) ds or of E

[∫ νk+1

νk
f(s, Zs) ds

]
(v) There exists an almost surely finite random variable n∗ such that ξk+1 = ξk

and νk+1 = νk when either ξn∗ ∈ ∂D or νn∗ = T (the Markov chain hit the
boundary and remains there, or no longer move after time T )

(vi) The total score of the walk is S =
∑n∗−1

k=0 σk.

Since a is constant in a given subdomain Di, i = 1, 2, the process Z with
Z0 = x is generated by 1

2
a(x)4 and we have dZt =

√
a(x) dWt for t < τDi

. The
simulation of (τDi

∧T, ZτDi
∧T ) where τDi

is the first exit time from Di of Z reduces
to the one of a scaled Brownian case. For x ∈ Di, i = 1, 2, in the parabolic
(elliptic) case θ(t, x) is the (mean) exit time of a scaled Brownian motion from the
subdomain Di. We can hence use simulation techniques based on random walk on
subdomains which are presented succinctly in Section 3. When f is not constant,∫ τDi

∧T
0

f(Zs) ds or its mean value are also easily accurately computed by using for
example the one random point method coupled or not with quantization tools [26].

The main difficulty remains the simulation of the particle motion when it starts
from the interface. Using that the dynamic of the particle depends essentially on
the local values of the diffusivity coefficients, one only has to focus on the case of a
single discontinuity and locally constant coefficients around it. Many schemes have
been proposed to deal with discontinuities of the diffusivity in a one-dimensional
media: see [6–8,12,27–29,34,35,37] for example. In Sections 4, 5 and 6, we present
some existing schemes and introduce new ones with both better accuracy and
better order. The update at the interface of the parameters of the Markov chain
and of the local score will be described in these sections. The general method
from which one may deduce easily the solutions to (1), (2) and (3) is given in
Algorithm 1 below.

2.2 Error analysis for elliptic and parabolic PDE

For the sake of simplicity, we consider here only the elliptic problem (1) since the
parabolic problem may be treated the same way. To any x ∈ D, we associate a
family of (Ft)t≥0-stopping times θ(t, x) such that θ(t, x) = 0 for x ∈ ∂D, t ≥ 0.
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Data: A point x ∈ D and a horizon T > 0 (possibly T = +∞).
Result: A realization of an approximation of(

τD ∧ T, ZτD∧T ,Ex
[∫ τD∧T

0
f(s, Zs) ds

])
when Z0 = x.

Set ξ = x, S ← 0 and t← 0;
while ξ 6∈ ∂D or t < T do

if ξ ∈ Γ then /* If the particle is at the interface */
Draw a new position ξ′ after a time increment θ with t+ θ ≤ T , as
well as a score σ for the particle at the interface;
if ξ′ 6∈ D then /* The particle exits from D */

/* Perform a linear interpolation */
Determine the value λ ∈ (0, 1) at which ξ + λξ′ ∈ ∂D;
Set θ ← λθ;
Set σ ← λσ;
Set ξ′ ← ξ + λξ′;

end
else /* If the particle is away from the interface */

Draw a realization (θ, ξ′, σ) of an approximation of(
τDi
∧ T, ZτDi

∧T ,Eξ
[∫ τDi

∧T
t

f(s, Zs) ds
])

where

τDi
= inf{s > 0|Zs ∈ Γ ∪ ∂Di} when ξ ∈ Di and Zt = ξ;

end
Set t← t+ θ ; /* Increment the time */
Set ξ ← ξ′ ; /* Update the position */
Set S ← S + σ ; /* Update the total score */

end
return (t, ξ, S)

Algorithm 1: The general simulation algorithm for a path.

Since u|∂D = ϕ, we have

u(x) = E[u(Zθ(0,x)) |Z0 = x] + S(x) with S(x) = E

[∫ θ(0,x)

0

f(Zs) ds Z0 = x

]

and consequently

u(x) = Pu(x) + S(x) with Pu(x) = E[u(Zθ(0,x)) |Z0 = x]. (4)

Let {ξk}k≥0 be the homogeneous Markov chain defined as above with ξ0 = x
and such that ξk+1 represents an approximation of Zθ(0,ξk) (this means here that the
future positions of the particle and the elapsed time depend only on the position of
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the particle, not on the current time). Let {σk}k≥0 be the corresponding sequence
of scores which aims at approximating S(ξk), such that σk depends only on ξk and
ξk+1 and verifying σk = 0 when ξk ∈ ∂D. We also recall that there exists an almost
surely finite n∗ such that for any k ≥ n∗, ξk = ξn∗ ∈ ∂D and consequently σk = 0.

We define an approximation of u(x) by

u(x) = E

[
n∗−1∑
k=0

σk ξ0 = x

]
+ E[ϕ(ξn∗) | ξ0 = x]

= E

[∑
k≥0

σk ξ0 = x

]
+ E[ϕ(ξ∞) | ξ0 = x].

By conditioning with respect to ξ1, we obtain

u(x) = E[σ0 | ξ0 = x] + E[u(ξ1) | ξ0 = x] = Pu(x) + S(x) (5)

with S(x) = E[σ0 | ξ0 = x]. Letting w(x) = u(x)− u(x) and subtracting Eq. (5) to
Eq. (4) leads to

w(x) = Pw(x) + (P − P )u(x) + S(x)− S(x) (6)

Since {ξk}k≥0 is a Markov chain with transition matrix P , for any bounded,
measurable function f and any k ≥ 0, f(ξk) = P

k
f(x). This means that (6) may

be written

w(x) = (1− P )−1r(x) or formally w(x) =
∑
k≥0

P
k
r(x)

with r(x) = (P − P )u(x) + S(x)− S(x). Hence,

u(x) = u(x) +
∑
k≥0

E
[
(P − P )u(ξk) + S(ξk)− S(ξk)

∣∣ ξ0 = x
]

(7)

which gives an estimate of the induced bias notwithstanding the Monte Carlo error.

Remark 1. Our approach for studying the convergence of the scheme is very close
to the one used in deterministic techniques involving consistency and stability.
However, if P depends on a parameter h related to a timestep, (I − P )−1 is not
in general uniformly bounded in h (See Sections 2.3 and 7.1). The convergence of
u(x) to u(x) follows from the fact that the upper bound of r(x) decreases faster
to 0 than the growth of the upper bound of (I − P )−1.
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2.3 Analysis of the bias

Even though it seems difficult to perform a throughout analysis of the bias of the
whole algorithm, Eq. (7) gives some clues to analyze the different schemes. As
we have at our disposal exact or very accurate schemes to simulate (τDi

, ZτDi
) or

compute related functionals, we may assume that Pu(x) = Pu(x) and S(x) = S(x)
for x ∈ D \ Γ. We can hence consider that the source of bias is only due to the
scheme to move the particle from the interface Γ into D.

The bias is roughly the product between the number of times ξk ∈ Γ and
the quantity (P − P )u(ξk) + S(x) − S(x). We should explain heuristically that
for a simple domain with two layers, the number of times ξk ∈ Γ is of order
O(h−1), where h is the distance at which the particle is put away from Γ. For
this, we consider the one-dimensional domain D = [−L,L] with an interface at 0.
If a Brownian particle is at position h on [0, L], then it hits 0 before L with
probability 1 − h/L, whatever the diffusion coefficient is. Hence, the number
of times the particle passes at the interface before reaching −L or L follows a
geometric distribution of parameter 1−h/L. The average number of steps is then
L/h. In Section 7.1, this property will be confirmed numerically.

We now focus on the quantity (P − P )u(x). The bias depends on how close P
is to P . The kernel P is the density of a random variable ξ, while P is the density
of Zθ(t,x). A first way to construct a scheme is then to choose ξ as close as possible
to Zθ(t,x). Some schemes are presented in Section 5 relying on a fixed time step δt
and with θ(t, x) = δt. They are either justified by stochastic analysis or by PDE
considerations. Since u is α-Hölder continuous on D for some α ∈ [0, 1] and is
smooth in each of the Di [13], this proves that E[u(ξ)] is close to E[u(Zθ(t,x))]. In
Section 4.4, we provide an upper bound on the bias when the particle is moved in
the direction normal to the interface, by neglecting the tangential component.

A second idea consists in constructing P in a way such that (P − P )u(x) is
as small as possible and that P may be interpreted as the density of a discrete or
continuous random variable. In Section 6, we construct an operator P such that

u(x) = Pu(x) + S(x) + r(x) for x ∈ Γ,

where u is the solution to (1). Subtracting this equation to (4), we also obtain
that

(P − P )u(x) + S(x)− S(x) = r(x)

which shows that the terms r(x) and S(x) − S(x) should be added to the total
bias each time the particle lies at some points x on the interface. Constructing
an approximation P of a differential operator P is a classical task in numerical
analysis. The difficulty here is to construct an approximation P giving rise to a
Markov chain.
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3 Simulation in a media with constant diffusivity
We describe two methods to simulate a Brownian particle based on walk on sub-
domains, the walk on spheres method and the walk on rectangles method. These
methods can provide unbiased or slightly biased simulations while being a lot faster
than the Euler scheme.

3.1 Random walk on spheres

Proposed by E. M. Muller in 1956 [33], the random walk on spheres (WOS) gives
a simple and efficient way to solve the Laplace equation with Dirichlet boundary
conditions. The idea it to draw the next position of a Brownian motion at a point
on the boundary of an arbitrary sphere centered on the particle and tangent to the
domain. The algorithm stops when the particle is at a distance to the boundary
of the domain smaller than a fixed parameter ε. Thanks to the invariance by
rotation of the distribution of the Brownian motion, the position of the particle
is uniformly distributed on the sphere. In dimension 2, this means that in radial
coordinate, the angle is picked uniformly at random in [0, 2π).

This method is very efficient to deal with elliptic equations of Laplace type.
Indeed, the average number of steps until absorption is proportional to |ln(ε)|.
Its main drawback is a quite hard simulation of the first exit time from the unit
sphere (see the discussion in [9]). Yet this exit time is a very important information
for solving parabolic equations or computing the first eigenvalue by Monte Carlo
methods as in [19, 20]. However, it is possible to solve this problem by using
a tabulated version of the first exit time’s distribution function of the unit ball
(obtained for instance from a fine discretization of the Brownian motion with an
Euler scheme) and scaling arguments.

3.2 Random walk on rectangles

The random walk on squares aims at superseding the random walk on spheres by
simulating exactly (Wτ , τ), where τ is the first exit time from a square (or a hyper-
square) centered on the starting point W0 of a Brownian motion. In opposite to
the case of spheres, Wτ and τ are not independent. Yet the couple (Wτ , τ) can be
simulated rather efficiently. This method has been introduced independently by
O. Faure [9] and by G.N. Milstein and M.V. Tretyakov [32].

The random walk on rectangles algorithm provides a variation of the random
walk on squares. It allows one to compute the exit position and the first exit
time (Wτ , τ) from any rectangle whatever the position of the starting point inside
the rectangle is [5]. Note that both algorithms provide an efficient simulation of
(WτD∧T , τ ∧ T ) for any T > 0 fixed. This property will be especially useful in the
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last example of Section 7.4 when using a splitting algorithm to compute the leading
eigenelements of a divergence form operator. Sampling from (WτD∧T , τD∧T ) using
the WOS method is possible but it requires to store full discretized trajectories
of a Brownian motion starting at the center of a the unit ball and killed at its
boundary [25]. This introduces however supplementary errors not easy to quantify
due to the discretization of the trajectories. This is precisely what we want to
avoid here. We refer the readers to the articles [5, 32] and to the Ph.D. thesis [9]
for a complete description of these algorithms.

4 Normal schemes for discontinuous media
We now propose some schemes for moving the particle away from the interface. For
this, we place ourselves in the case where the interface can be seen locally as lying
on a hyperplane. This approximation is usual for example when dealing with Euler
schemes for SDE with reflection, corresponding to Dirichlet or Neumann boundary
conditions (See e.g. [3, 10]).

As the diffusivity is isotropic, the behavior of the particle is invariant under
rotation so that there is no difficulty in assuming that the interface lies locally in
the hyperplane defined by x = 0.

Of course, considering a plane interface imposes some restrictions. In a general
case, the time step shall be chosen so that the jumps of the particles are small
compared to the local radius of the interface. Besides, we should take care of
corners, as well as of situations with multiple interfaces which are close to each
other.

More generally, it is important to recall that the displacement of the particle
at the interface depends mainly on its local environment. This means that our
schemes may be coupled with any scheme that can deal with a non constant
diffusivity away from the interface.

Our first class of schemes are normal schemes where we focus only on the
component of the process normal to the interface without moving the tangential
component.

A normal scheme is a scheme where we focus only on the component of the
process normal to the interface without moving the tangential component. This
way, any of the already proposed one-dimensional schemes may be also used in any
dimension. We review here three of them which are representative of the existing
schemes. In Section 4.4, we study the bias induced by moving only the particle in
the direction normal to the interface.

For the sake of simplicity, we consider that d = 2. As these schemes will be
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used locally, we may consider up to some rotation that the scalar diffusivity is

a(x, y) =

{
a1 if x ≥ 0,

a2 if x < 0,

where a1 and a2 are strictly positive coefficients, so that the interface is Γ =
{(x, y) |x = 0}. Let Z = (X, Y ) be the 2-dimensional process generated by L =
1
2
∇(a∇ · ). Since a(x, y) depends only on x, we write a(x) = a(x, y). The normal

component X is a one-dimensional stochastic process generated by 1
2

d
dx

(a d
dx
· )

where a(x) = a1 if x ≥ 0 and a(x) = a2 if x < 0.

4.1 Skew scheme for an exact simulation of the x-component

As shown for example in [21], the x-component process X is solution to the SDE
with local time

Xt = x+

∫ t

0

√
a(Xs) dWs +

a1 − a2

a1 + a2

L0
t (X)

where

L0
t (X) = lim

ε→0

1

2ε

∫ t

0

1Xs∈[−ε,ε] d〈X〉s

is the symmetric local time of X at 0 and W a Brownian motion. The quantity
〈X〉t =

∫ t
0
a(Xs) ds is the bracket of the semi-martingale X. Letting Ψ(x) =∫ x

0
y/
√
a(y) dy, the process X̂ = Ψ(X) is solution to the SDE with local time

X̂t = Ψ(x) +Wt + θL0
t (X̂), θ =

√
a1 −

√
a2√

a1 +
√
a2

.

The process X̂ is called a Skew Brownian motion (SBM). It has been introduced
by K. Itô and H. McKean as a generalization of the Brownian motion and may be
constructed by several means (See [16] for a survey). In particular, when x = 0,
X̂t = κt|Bt| for a Brownian motion B and a process κ independent from B which
is constant on each excursion of the Brownian motion with

P[κt = 1] = 1− P[κt = −1] =
1 + θ

2
=

√
a1√

a1 +
√
a2

. (8)

This justifies Algorithm 2, where the x-component is moved following the exact
dynamics of the process.

The articles [15, 22] present alternative methods that could be used when x 6=
0. Thanks to the properties of the Brownian bridge, one can achieve a perfect
simulation of the first time τ a Brownian motion reaches 0 (See [1, 22] for more
details).
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Data: A position (X, Y ) = (0, y) of the particle at time t.
Result: A position (X, Y ) of the particle after a time step δt.
Compute α =

√
a1/(
√
a2 +

√
a1);

Generate a random variate U uniform on [0, 1);
Generate a random variate ξ ∼ N (0, 1);
if U ≤ α then

Set X ←
√
a1δt|ξ|

else
Set X ← −

√
a2δt|ξ|

end
Increment time by δt;
Y is not moved;

Algorithm 2: Skew scheme.

4.2 Hoteit scheme

Algorithm 3 was introduced by H. Hoteit et al. [12] and is justified by mass
balance conditions. It could be also seen as an approximation of Algorithm 2,
where the normal distribution is replaced by the uniform distribution. Note that
as in Section 4.1, this scheme preserves the property P[Xt+δt > 0|Xt = 0] =√
a1/(
√
a1 +

√
a2) which is crucial for a good approximation.

Data: A position (X, Y ) = (0, y) of the particle at time t.
Result: A position (X, Y ) of the particle after a time step δt.
Generate a uniform random variate U on [0, 1);
Move X to

√
3a2δt(U − 1) +

√
3a1δtU ;

Increment time by δt;
Y is not moved;

Algorithm 3: Hoteit scheme.

4.3 Stochastic 1D Finite differences

This scheme was proposed in [30] and relies on a finite difference approximation
of the divergence form operator that we remind in Section 6.1 below.

4.4 Bias induced by the skew scheme

Following our error analysis technique of Section 2.3, we give a bound on the
bias for normal schemes. Let u be the solution to 1

2
∇(a∇u) = −f with Dirichlet

12



Data: A position (X, Y ) = (0, y) of the particle at time t and a small
parameter h.

Result: A position (X, Y ) of the particle away from the interface.
Generate a uniform random variate U on [0, 1);
if U < a1/(a1 + a2) then

Move X to h
else

Move X to −h
end
Y is not moved;
No time increment;

Algorithm 4: 1D finite differences scheme.

Boundary conditions u|∂D = 0, where f is continuous and bounded on D as well as
its first and second derivative. Let Z = (X, Y ) be the stochastic process generated
by L = 1

2
∇(a∇), starting initially at point (0, y) of the vertical interface Γ. When

using the Skew scheme (Algorithm 2), after a time step of θ = δt, the particle is
replaced at (Xθ, y) and the time is incremented by θ. As the corresponding score is
given by θf(0, y) and because S(0, y) = E0,y

[∫ θ
0
f(Xs) ds

]
and S(0, y) = θf(0, y),

we have
|S(x, y)− S(0, y)| ≤ 2‖f‖∞θ = O(h2)

where the parameter h =
√
θ is the mean distance of replacement of the particle

away from the interface. Let us consider

η(0, y) = E(0,y)[u(Xθ, Yθ)− u(Xθ, y)].

We assume that (0, y) belongs to a subdomain D′ such that

P(0,y)[(Xt, Yt) 6∈ D′ for some t ∈ [0, θ]] is negligible, (9)

which means that we are far enough from the intersection between the boundary
∂D and the interface Γ. The function u is globally continuous and of class C1 in
the subdomains Di ∩D′ [13].

Let ~t be the vector (0, 1) tangential to the interface and set

v(x, y) = ~t · ∇u(x, y) = ∇yu(x, y).

Since a depends only on the first component x, and f is differentiable, v(x, y) is
solution to

1

2
∇(a(x)∇v(x, y)) = −~t · ∇f(x, y) on D′.

13



This equation is simply obtained by differentiating 1
2
∇(a∇u) = −f with respect

to ∇y. Again from the results of [13], v is itself bounded on D′ with a bounded
derivative inside D′ ∩ Di, i = 1, 2. This could be rigorously shown by using a
smooth approximation of the coefficient a (in which case u is a classical solution)
and by passing to the limit. As in [3, Theorem 2.17], it is then possible to show
that v(x, y) and ~t · ∇v(x, y) are bounded on D′ by applying the same argument
twice.

Hence, ~t · ∇v(x, y) = ~t · ∇(~t · ∇u(x, y)) is regular with respect to y. We assume
that θ ≤ τD′ under (9), where τD′ is the first exit time of (X, Y ) from D′. By
applying the Itô formula to the y-component between 0 and θ ∧ τD′ ,

E(0,y)[u(Xθ, Yθ)− u(Xθ, y) | (Xs)s∈[0,θ]]

= E(0,y)

[∫ θ

0

~t · ∇(~t · ∇u)(Xθ, Ys)a(Xs) ds (Xs)s∈[0,θ]

]
,

which leads to |η(0, y)| ≤ Kθ = O(h2), where K is the upper bound of ~t · ∇v(x, y)
on D′.

Each time the particle reaches the interface, the global error is increased by at
most O(h2). Since in our test case, the number of times the particle passes through
the interface is O(h−1) (see Section 7.1), the error is at most of order O(h). We
will see in Figures 3 and 4 of the numerical part that the error is empirically of
order O(h) for the normal schemes.

5 Multi-dimensional schemes for discontinuous me-
dia

We consider the same operator as in Section 4 which generates a stochastic process
(X, Y ). We consider now some schemes where X and Y are simultaneously moved.

5.1 Kinetic scheme

The kinetic approximation was introduced in [18] as a way to deal with the multi-
dimensional case with locally isotropic coefficients. The idea is to use a neutron
transport equation to approximate the diffusion equation around the interface, as
one knows how to solve a transport equation even in presence of discontinuities.

Algorithm 5 presents the kinetic scheme in dimension d = 2. For d = 3, the pa-
rameter of the exponential time shall be multiplied by 3/2 and the direction chosen
uniformly on the unit sphere. In this kinetic scheme, the particle is moved inside
the domain D or to the boundary of the domain ∂D. The time is incremented by
at most δt.

14



Data: The position (X, Y ) = (0, y) of the particle at time t and a
parameter ε > 0.

Result: The new position of the particle (X, Y ) at a random time t+ η.
Generate a uniform random variate ϕ over [−π, π);
if ϕ ∈ (−π/2, π/2) then

Generate an exponential random variate η with parameter a1ε
2;

else
Generate an exponential random variate η with parameter a2ε

2;
end
Set x′ ← η cos(ϕ) and y′ ← y + η sin(ϕ);
/* Check if the particle is still in the domain. */
if (x′, y′) 6∈ D then

Find the time η0 at which (εη0 cos(ϕ), y + εη0 sin(ϕ)) ∈ ∂D;
Set η ← η0;

end
/* Check if the time is greater than δt. */
if η > δt then

Set η ← δt;
end
Move the particle to (εη cos(ϕ), y + εη sin(ϕ));
Increment the time by η;

Algorithm 5: Kinetic scheme.

5.2 Mixing scheme

In Section 4.1, we have seen how to simulate Xt+δt when Xt = 0 by following the
exact dynamics of this component. The y-component Y is solution to the SDE

Yt = Y0 +

∫ t

0

√
a(Xs) dWs (10)

for a Brownian motion W which is independent from X (See [15] for a proof).
The mixing scheme is a simple scheme to simulate Yt+δt from Yt by using an

approximation of (10). SinceW and X are independent, the law of Yt given Y0 = y
and X follows a Gaussian distribution with mean y and variance

Var(Yt|Y0, X) =

∫ t

0

a(Xs) ds = a1A+(0, t) + a2A−(0, t)

where

A+(0, t) =

∫ t

0

1Xs≥0 ds and A−(0, t) =

∫ t

0

1Xs≤0 ds

15



are the occupation times of R+ and R− for X. Using the properties of the SBM
(See Section 4.1), if X0 = 0 one knows that

E[A+(0, t)] = tα and E[A−(0, t)] = t(1− α) with α =

√
a1√

a1 +
√
a2

.

The idea of the mixing scheme is then to move the y-component as a Gaussian
random variable with variance equal to E[Var(Yt|Y0, X)]. This leads us to set

Dmix = a1α + a2(1− α)

and Y mix
t = y +

√
tDmixξ where ξ ∼ N (0, 1). We can also remark that if E(x,y)

is the expectation of the process (X, Y ) with initial data (X0, Y0) = (x, y), then
E[Y mix

t ] = y = E(0,y)[Yt] and

E[(Y mix
t − y)2] = tDmix = E(0,y)[(Yt − y)2].

The corresponding algorithm is presented in Algorithm 6.

Data: A position (X, Y ) = (0, y) of the particle at the interface.
Result: A position (X, Y ) of the particle after a time step δt.
Compute Dmix = a1α + a2(1− α);
Move X according to one of the schemes of Section 4;
Move Y to y +

√
δtDmixξ for a random variate ξ ∼ N (0, 1);

Increment time by δt;
Algorithm 6: Mixing scheme.

5.3 A scheme relying on the occupation time

In [15], we have proposed a scheme to simulate (Xt, A+(0, t)) by using again the
Skew Brownian motion when X0 = 0. This scheme relies on the excursion prop-
erties of the Skew Brownian motion. The last passage time G at zero of the SBM
before t is Arc-Sine distributed on [0, t], and then equal in law to t sin2(πU1/2),
where U1 ∼ U(0, 1). At time G, the SBM starts an excursion straddling t which is
positive with probability α =

√
a1/(
√
a1 +

√
a2) (See (8) in Section 4.1). Hence,

A+(G, t) =

{
t−G if the sign of the excursion is positive
0 otherwise.

(11)

Besides, at time t, since G is known,

|Xt| law
=
√
−2(t−G) log(U2), U2 ∼ U(0, 1).
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Of course, if the excursion straddling t is positive, then Xt > 0 and Xt < 0 other-
wise. If α = 1/2, then A+(0, G)/G is uniformly distributed over (0, 1). Otherwise,
the density f of A+(0, G)/G is

f(x) = α(1− α)/2(α2(1− x) + (1− α)2x)3/2, x ∈ (0, 1)

which means that

A+(0, G)
law
= G

α2

1− 2α

(
1(

1− 1−2α
1−α U3

)2 − 1

)
, U3 ∼ U(0, 1). (12)

Finally, note that

A+(0, t) = A+(0, G) + A+(G, t) and A−(0, t) = t− A+(0, t) for any t > 0.

Hence, when Xt = 0, the y-component is moved after a time step δt to

Yt+δt = Yt +
√
δtDequivξ

where ξ ∼ N (0, 1) and

Dequiv = a1A+(0, t) + a2(t− A+(0, t)). (13)

The corresponding algorithm is presented in Algorithm 7.
We can also produce simpler schemes by replacing A+(0, G) by E[A+(0, G)|G]

or A+(G, t) by E[A+(G, t)|G]. In the former case, the averaging takes place before
G. Instead of Dequiv, we define

Dbefore = a1(αG+ A+(G, t)) + a2((1− α)G+ (δt −G− A+(G, t))) (14)

where A+(G, t) is computed using (11). In the latter case, the averaging takes
place after G. Instead of Dequiv, we define

Dafter = a1A+(0, G) + a2A−(0, G) + (t−G)(a1α + a2(1− α)) (15)

where A+(0, G) is given by (12) and A−(0, G) = G − A+(0, G). The resulting
schemes can be seen as intermediate schemes between the mixing scheme of Sec-
tion 5.2 and the one proposed in [15].

In Figure 1a, we see that the random variables Dequiv, Dafter and Dbefore have
different densities. In Table 1, we summarize the mean and variance of Dequiv with
the coefficients we consider in our numerical tests of Section 7. However, we see
in Figure 1b that the corresponding random variables Yδt have similar densities
except that the one obtained using Dbefore is more concentrated around 0.
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Figure 1: Influence of the choice of a diffusivity for the y-component.

6 Stochastic 2D Finite difference schemes

6.1 1D Finite differences

For solving the Poisson-Boltzmann equation, M. Mascagni and N. Simonov have
introduced a method based on finite differences to deal with the interface condi-
tions [30]. We now sum up this method and assume without loss of generality
that in all the following the interface Γ between the two subdomains D1 and D2 is
vertical and located at x = 0. We refer for this to our discussion at the beginning
of Section 4. The diffusion coefficient a(x, y) is equal to a1 in D1 (when x > 0)
and a2 in D2 (when x < 0).

Again, let us consider that u is the solution to (1). This solution is smooth on
D1 and D2 and is continuous on D with some flux condition at the interface. The
flux condition a1∇u(0, y) = a2∇u(0, y) becomes

a1
u(h, y)− u(0, y)

h
= a2

u(−h, 0)− u(0, y)

h
+ O(h2)

and then thanks to the continuity condition

u(0, y) =
a1

a1 + a2

u(h, y) +
a2

a1 + a2

u(−h, y) + O(h2). (16)
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Scheme Mean Variance

Exact Dequiv Dmix + 0.047 29.5
Aver. after Dafter Dmix + 0.003 7.4

Aver. before Dbefore Dmix + 0.015 22.1

Dmix = a1α + a2(1− α) = 15.675
for a1 = 20, a2 = 2

Table 1: Mean and variance of Dequiv for the three possible schemes with a1 = 20
and a2 = 2.

Data: A position (X, Y ) = (0, y) of the particle at the interface.
Result: A position (X, Y ) of the particle after a time step δt.
Draw a random variate γ = sin2(πU1/2) with U1 ∼ U(0, 1);
Draw a Bernoulli random variate κ ∈ {−1, 1} with P[κ = 1] = α where
α =
√
a1/(
√
a2 +

√
a1);

Draw a random variate ζ =
√
−2δt(1− γ) log(U2) with U2 ∼ U(0, 1);

Increment the time by δt;
Move X to κζ;
Compute Dequiv with (13), (14) or (15);
Move Y to y +

√
Dequivξ for a random variate ξ ∼ N (0, 1);
Algorithm 7: Occupation scheme.

Let ξ be a Bernoulli random variable such that

P[ξ = h] =
a1

a1 + a2

and P[ξ = −h] =
a2

a1 + a2

.

Then (16) becomes
u(0, y) = E[u(ξ, y)] + O(h2).

Comparing this expression with (5) justifies Algorithm 4 we have presented in
Section 4.3. This method is of order h2 and does not take into account the time
spent during the replacement at position −h or h. An asymmetric version has
been proposed and studied in [3]. In dimension one, this way to move the particle
may be justified by the approach of [7] in which the time is also incremented.

6.2 2D Finite differences

For Neumann or mixed boundary conditions, higher order methods have been
introduced in [31] but they are only designed for walks on a fixed grid. In [25],
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higher order methods not relying on a grid have been built for Neumann boundary
conditions by writing both the approximations of the Laplace operator and of the
boundary conditions at a point inside the domain. We shall now use this idea in
the context of a divergence form operator with a discontinuous diffusivity.

The usual Finite differences approximation of the Laplace operator for a func-
tion u of class C3 is

4hu(x, y) =
u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)− 4u(x, y)

h2

and we have
4hu(x, y) = 4u(x, y) + O(h).

We can similarly write an approximation of the partial derivative by

∇h

xu(x, y) =
4u(x+ h, y)− 3u(x, y)− u(x+ 2h, y)

2h

which is such that
∇xu(x, y) = ∇h

xu(x, y) + O(h2). (17)

The key observation is that

h2

2
4hu(x+ h, y) = −h∇h

xu(x, y) + u(x, y)− P hu(x, y) (18)

with
P hu(x, y) =

u(x+ h, y + h) + u(x+ h, y − h)

2
.

Let u be the solution to
ai
2
4u(x, y) = f(x, y) in Di (19)

for ai > 0 andDi defined previously. We shall now use the previous approximations
on both sides of the interface and take the transmission conditions into account. If
u solves (19), then u is smooth onDi, continuous on Γ and satisfies the transmission
condition

a1 lim
h→0

u(h, y)− u(0, y)

h
= a2 lim

h→0

u(−h, y)− u(0, y)

−h , ∀(0, y) ∈ Γ. (20)

We define two parameters h1, h2 > 0 both of order O(h) for the finite different
approximations in each subdomain. Thanks to (17),

a1∇xu(0, y) = a1∇h1

x u(0, y) + O(a1h
2
1)
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and
a2∇xu(0, y) = a2∇−h2

x u(0, y) + O(a2h
2
2).

The transmission condition (20) becomes

a1∇h1

x u(0, y) = a2∇−h2

x u(0, y) + O(a2h
2
2 + a1h

2
1). (21)

In D1, we have

a1h
2
1

2
4h1u(x+ h1, y) = h2

1f(x+ h1, y) + O(a1h
3
1) (22a)

and in D2, we have similarly

a2h
2
2

2
4−h2u(x− h2, y) = h2

2f(x− h2, y) + O(a2h
3
2). (22b)

With (18), (22a) becomes

a1u(x, y)− a1h1∇h1
u(x, y)− a1P

h1u(x, y) = h2
1f(x+ h1, y) + O(a1h

3
1), (23a)

while (22b) becomes

a2u(x, y) + a2h2∇−h2
u(x, y)− a2P

−h2u(x, y) = h2
2f(x− h2, y) + O(a2h

3
3). (23b)

Multiplying (23a) by h2 and (23b) by h1 and summing, we obtain thanks to (21)
at x = 0,

u(0, y) =
a1h2

a1h2 + a2h1

P h1u(0, y) +
a2h1

a1h2 + a2h1

P−h2u(0, y)

+
h2

1h2

a1h2 + a2h1

f(h1, y) +
h1h

2
2

a1h2 + a2h1

f(−h2, y) + O(a1h
2
1h2 + a2h

2
2h1). (24)

6.3 Choice of the parameters

There are now three natural choices for the parameters h1 and h2 with which
one recovers modified versions of already proposed schemes. The first choice cor-
responds to the kinetic scheme, where the direction which was originally chosen
uniformly in (0, 2π) is replaced by a random variable taking only four values. In
the second choice, the probabilities to go to one side or another of the interface
are the same than in the one-dimensional approach of [30]. The third choice cor-
responds to the approach where the Skew Brownian motion is used. However the
new schemes now rely on positions of replacements that are not normal to the
interface.
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We rewrite (24) in a generic form as

u(0, y) = pP h1u(0, y) + (1− p)P−h2u(0, y) +R(f)(y) + O(h3) (25)

with p ∈ (0, 1).
First choice: h = a1h2 = a2h1. Then

p = 1− p =
1

2
and R(f)(y) =

h2

2a2
2a1

f(h1, y) +
h2

2a1a2
2

f(−h2, y).

Second choice: h1 = h2 = h. Then

p =
a1

a1 + a2

, 1− p =
a2

a1 + a2

and R(f)(y) =
h2

a1 + a2

(f(h, y) + f(−h, y)).

Third choice: h1 = h/
√
a2, h2 = h/

√
a1. Then

p =

√
a1√

a2 +
√
a1

, 1− p =

√
a2√

a2 +
√
a1

and R(f)(y) =
h2(a2

√
a1)−1

√
a1 +

√
a2

f(h1, y) +
h2(
√
a2a1)−1

√
a1 +

√
a2

f(−h2, y).

6.4 The algorithm

Except when h1 = h2, the grids in D1 and D2 do not match on the interface. They
could nevertheless be used as probabilistic schemes. Comparing (25) with (5), we
define

G(y) = {(h1, y − h1), (h1, y + h1), (−h2, y − h2), (−h2, y + h2)}

and a random variable ξ which takes its values in G(y) with

P[ξ = (h1, h1)] = P[ξ = (h1,−h1)] =
p

2

and P[ξ = (−h2, h1)] = P[ξ = (−h2,−h1)] =
1− p

2
.

Furthermore, the local scores defined in Section 2.1 are given by σk = R(f)(y).
For example, for the second choice of parameters,

R(f)(y) =
h2

a1 + a2

(f(h, y) + f(−h, y)),

P[ξ = (h, h)] = P[ξ = (h,−h)] =
a1

2(a1 + a2)

and P[ξ = (−h, h)] = P[ξ = (−h,−h)] =
a2

2(a1 + a2)
.
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The operator P = pP h1 + (1− p)P−h2 may be expressed as some expectation:
Pu(0, y) = E[u(ξ)]. Using ξ for replacing the particle away from the interface is
then justified by (25) and the considerations of Section 2.3. Here, ξ serves as an
approximation of Xθ(x) with X0 = (0, y) for some stopping time θ(x) which is not
known. The score S(0, y) is equal to R(f)(y). When f = 1, S(0, y) = R(1)(y) is
an approximation of E[θ(x)]. In the parabolic case, this justifies to increment the
time by R(1)(y) (which in fact does not depend on y). The 2D finite differences
algorithm is described in Algorithm 8.

Data: A position (X, Y ) = (0, y) of the particle at time t and a small
parameter h.

Result: A position (X, Y ) of the particle away from the interface at time
t+R(1).

Move the particle to one of the four points of G(y) using a realization of ξ
based on one of the three choices of Section 6.3;
Increment the time by R(1);

Algorithm 8: 2D Finite differences.

7 Numerical results
The aim of this numerical part is to compare the different schemes described in
the previous sections on three different problems (elliptic, parabolic and eigenvalue
problems) which require a finer and finer description of the stochastic process
related to the divergence form operator. We really want to focus on the behaviour
of the schemes near the interface of discontinuity of the diffusion coefficient and
preferably not on the other parameters of these schemes. In order to do that, we
consider for all three problems a very simple square domain D = [−1, 1]2 divided
in two rectangular subdomains D1 = [−1, 0]× [−1, 1] and D2 = [0, 1]× [−1, 1] with
respectively a1 and a2 for diffusion coefficients.

The elliptic problem only requires the computation of Ex[τD] of the stochastic
process X where τD is the exit time from D. For the parabolic problem, we need
to approximate the law of the exit time τD via its distribution function F (t) =
Px[τD ≤ t] at a fixed time t. The eigenvalue problem requires the approximation
of F (t) for large values of t and more importantly the density of Xt given t > τD.

The WOR method has no bias in such subdomains and for the WOS method
we chose a very small absorption parameter ε = 10−6 such that this parameter
has a weak influence on the bias. The number of Monte Carlo simulations is large.
Finally, for the first two problems, the starting point is taken close to the center of
the domain in order to maximize the number of hits of the interface. This enables
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1Figure 2: Number of passages at the interface in function of the parameter h.

to discriminate more efficiently the different schemes and reduces the impact of
the other boundaries. Obviously these numerical tests are not designed for an
optimization of the accuracy as a function of the CPU times as we focus mainly
on the bias of the different schemes.

7.1 Number of passages at the interface

Following the discussion on the error analysis of Section 2.3, we show here that
the number of passages at the interface is roughly of order O(h−1), where h is a
parameter which characterizes the mean distance at which the particle is replaced
away from the interface.

We have performed N = 5 · 105 simulations using the mixing scheme, where
the particle is placed away from the interface after a time step δt. As asserted
by the Giorgi-Nash-Aronson estimate [36], the density of Xδt is bounded — up
to multiplicative constants — above and below by a Gaussian ones. Thus, we
set h =

√
δt. In Figure 2, we represent in a log-log scale the number of passages

N versus the value of h =
√
δt for δt ranging from 10−4 to 10−2. Using a linear

regression, we have that N = Ch−0.97, which shows that roughly, N = O(h−1) for
this simple geometry.

7.2 Elliptic problem: mean exit time computation

We consider the Poisson type equation

1

2
∇(a(x)∇u(x)) = −1

with a1 = 20, a2 = 2 and Dirichlet boundary conditions. The solution u(x, y) =
E(x,y)[τD] is computed at point (x, y) ' (−0.1019,−0.00192) and we have u(x, y) '
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0.08765 thanks to a computation performed with the Pdetool package of Matlab
with a very fine mesh. Inside each subdomain, the WOS method is used until
reaching the absorption boundary layer ε = 10−6. The contribution of a sphere
of radius r in the subdomain Di to the total score is simply r2

2ai
. The number

of Monte Carlo simulations is N = 2 · 106. We divide the methods to deal with
the interface conditions in three categories: normal schemes, 2D schemes and 2D
finite differences methods. We first compare the different methods inside their own
category. To give an indication of the Monte Carlo error, we have obtained for all
methods σ√

N
' 9 · 10−5.We have made some other tests on either different starting

points or different values of the diffusion coefficients. The conclusions were more
or less the same than the ones we now present on this particular example.

7.2.1 Normal schemes

The schemes belonging to this category are the Skew (Algorithm 2), Hoteit (Al-
gorithm 3) and the 1D finite differences (Algorithm 4). When the particle reaches
the interface between the two subdomains, it is moved only in the direction nor-
mal to the interface. We observe that the three methods are accurate up to two
or three digits for the parameters we consider. The skew scheme and the Hoteit
scheme have a very similar accuracy. The Hoteit scheme is more competitive only
because it takes more time to simulate a Gaussian random variable than a uniform
one. The 1D finite difference scheme performs slightly better than the two other
schemes. It certainly takes benefit that the other boundaries are very far from
the interface. The values of the parameter δt of the Skew and Hoteit schemes
and the parameter h of the finite Difference scheme have been chosen to provide
comparable CPU times.

Skew Hoteit Finite Diff.

(δt, h) Err CPU Err CPU Err CPU

(1 · 10−2,0.5) 1.7 · 10−2 24 1.6 · 10−2 21 1.6 · 10−2 17

(5 · 10−3,0.4) 1.2 · 10−2 30 1.1 · 10−2 26 1.2 · 10−2 19

(2 · 10−3,0.3) 7.4 · 10−3 41 6.9 · 10−3 36 8.3 · 10−3 23

(1 · 10−3,0.2) 5.3 · 10−3 53 4.9 · 10−3 45 5.2 · 10−3 29

(5 · 10−4,0.1) 3.7 · 10−3 69 3.5 · 10−3 59 2.4 · 10−3 47

7.2.2 2D schemes

The schemes belonging to this category are the kinetic scheme, the mixing scheme
and the scheme based on occupation times. First, these 2D schemes are accurate
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up to 4 digits for the parameters we consider. The accuracy of the mixing scheme
and the occupation scheme is the same. The mixing scheme is more competi-
tive because it requires the simulation of less random variables. These two new
schemes are really more efficient than the kinetic scheme which was already an
improvement of the 1D finite differences schemes as observed in [3,18]. The values
of the parameter ε of the kinetic time and the parameter δt of the Mixing and
Occupation schemes have been chosen to provide comparable CPU times.

Kinetic Mixing Occupation

(ε, δt) Err CPU Err CPU Err CPU

(5 · 10−2,2 · 10−2) 3.7 · 10−2 20 5.9 · 10−3 17 6.0 · 10−3 24

(3 · 10−2,1 · 10−2) 1.6 · 10−2 27 1.8 · 10−3 21 1.7 · 10−3 30

(2 · 10−2,5 · 10−3) 7.6 · 10−3 34 6.6 · 10−4 28 6.4 · 10−4 40

(1 · 10−2,2 · 10−3) 1.6 · 10−3 58 2.6 · 10−4 39 2.5 · 10−4 57

(7 · 10−3,1 · 10−3) 8.3 · 10−4 77 1.2 · 10−4 51 1.3 · 10−4 76

7.2.3 2D finite differences methods

The 2D finite differences schemes tested are the three ones described in Section 6.3.
The value of h1 (resp. h2 and h3) in the table below is the parameter for the finite
difference method corresponding to the first (resp. second and third) replacement
method. We can see that all three schemes are accurate up to 4 digits for the
parameters we consider. The method based on the second algorithm is the most
accurate among the three 2D Finite differences schemes but also among all the
methods considered.

Finite Diff. 1 Finite Diff. 2 Finite Diff. 3

(h1, h2, h3) Err CPU Err CPU Err CPU

(0.7,0.5,0.6) 2.2 · 10−3 27 3.8 · 10−3 15 3.1 · 10−3 19

(0.6,0.4,0.5) 1.7 · 10−3 30 2.2 · 10−3 17 2.2 · 10−3 21

(0.5,0.3,0.4) 1.2 · 10−3 34 1.1 · 10−3 20 1.3 · 10−3 24

(0.4,0.2,0.3) 7.5 · 10−4 40 4.5 · 10−4 27 8.5 · 10−4 29

(0.3,0.1,0.2) 4.8 · 10−4 51 1.1 · 10−4 45 3.5 · 10−4 40
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1Figure 3: Comparison of error vs. CPU times for some of the schemes in the
elliptic test case.

7.2.4 Global comparison

In Figure 3, we compare for 5 methods representative of the previous results the
accuracy as a function of CPU times in a logarithmic scale. We can see on the
slopes of the different curves that 2D schemes have a higher order of convergence
than the 1D schemes. The 2D finite differences scheme is slightly more efficient
than the mixing scheme. These two schemes are a lot more accurate than the
kinetic, Skew and 1D finite differences scheme.

7.3 Parabolic problem: survival probability computation

We consider the parabolic problem

∂u(t, x, y)

∂t
=

1

2
∇(a(x).∇u(t, x, y))

with a1 = 20, a2 = 2, Dirichlet boundary conditions and u(0, x, y) ≡ 1. The solu-
tion u(t, x, y) = P(x,y)[τD > t] is computed at point (t, x, y) ' (0.1, 0.1006, 0) with
N = 106 simulations. We have u(t, x, y) ' 0.11638 thanks again to a computation
performed with the Pdetool package of Matlab. The contribution of a sphere of
radius r in the subdomain Di to the total time is now r2τ1

ai
where τ1 is the exit time

of the unit circle. In order to reduce the computational times, we precompute 107

values of this exit time using the inversion method. To sample from τ1, we just pick
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one value uniformly at random in the precomputed ones. To give an indication of
the Monte Carlo error, we have obtained for all methods σ√

N
' 3 · 10−4.

7.3.1 Normal schemes

We observe roughly the same conclusions than in the elliptic case. This parabolic
problem is harder to solve as we now have only two digits of accuracy instead of
three. The performances of the skew and Hoteit schemes are even closer because
more time is spent in the simulation of the exit time from the circles. The 1D
Finite differences scheme is still slightly more efficient than the two other schemes.

Skew Hoteit Finite Diff.

(δt, h) Err CPU Err CPU Err CPU

(1 · 10−2,0.5) 8.4 · 10−2 29 6.9 · 10−2 25 4.8 · 10−2 19

(5 · 10−3,0.4) 5.3 · 10−2 33 4.8 · 10−2 31 3.5 · 10−2 22

(2 · 10−3,0.3) 3.2 · 10−2 44 2.9 · 10−2 41 2.4 · 10−2 26

(1 · 10−3,0.2) 2.2 · 10−2 56 2.0 · 10−2 52 1.4 · 10−2 32

(5 · 10−4,0.1) 1.5 · 10−2 73 1.4 · 10−2 67 6.1 · 10−3 53

7.3.2 2D schemes

On this example, the kinetic scheme is clearly less efficient than the two others.
In opposite to the elliptic case, the occupation scheme seems more efficient than
the mixing scheme for two main reasons. First, the simulation of exit times from
circles is the main cost of the simulation algorithms: both algorithms have now
similar CPU times. Second, the occupation scheme gives a finer description of the
stochastic process than the mixing scheme which is useful as we now need more
than the mean exit time.

Kinetic Mixing Occupation

(ε, δt) Err CPU Err CPU Err CPU

(4 · 10−2,5 · 10−2) 9.4 · 10−2 25 1.4 · 10−2 18 1.4 · 10−2 19

(3 · 10−2,3 · 10−2) 5.5 · 10−2 30 3.6 · 10−3 23 3.5 · 10−3 24

(2 · 10−2,2 · 10−2) 2.4 · 10−2 38 8.5 · 10−4 29 1.1 · 10−3 30

(1 · 10−2,1 · 10−2) 6.0 · 10−3 63 6.5 · 10−4 41 2.4 · 10−4 42

(8 · 10−3,7 · 10−3) 4.4 · 10−3 74 3.6 · 10−4 53 1.2 · 10−4 55
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7.3.3 2D finite differences methods

The second finite differences scheme is still the most efficient on this parabolic
problem. All three algorithms are also less accurate than in the elliptic case and
two of them hardly reach an accuracy of three digits.

Finite Diff. 1 Finite Diff. 2 Finite Diff. 3

(h1, h2, h3) Err CPU Err CPU Err CPU

(0.7,0.5,0.6) 1.2 · 10−2 31 1.5 · 10−2 18 1.2 · 10−2 21

(0.6,0.4,0.5) 9.0 · 10−3 34 1.0 · 10−2 20 9.7 · 10−3 24

(0.5,0.3,0.4) 6.6 · 10−3 39 6.3 · 10−3 23 6.7 · 10−3 27

(0.4,0.2,0.3) 4.1 · 10−3 46 2.3 · 10−3 30 4.0 · 10−3 33

(0.3,0.1,0.2) 2.2 · 10−3 57 2.8 · 10−4 50 1.8 · 10−3 44

7.3.4 Global comparison

We compare the same schemes than in the elliptic case except the mixing scheme
that has been replaced by the occupation scheme which is more efficient in the
parabolic case. On this parabolic problem, the 2D finite differences scheme and
the occupation scheme are even more efficient compared to the three other schemes.
Nevertheless the occupation scheme is now preferable to the 2D finite differences
maybe because it gives a finer approximation of the exit time.

7.4 Principal eigenelements computation

7.4.1 Description of the method

The method we propose to compute the principal eigenelements of the divergence
form operator L = 1

2
∇(a∇) in a bounded domain D is less standard than the

resolution of the elliptic and parabolic problems studied in the previous subsec-
tions. This method was originally designed to compute the principal eigenvalue of
neutron transport operators [23,24] and was then applied to the Laplace operator
in [19, 20]. The idea is to combine the spectral expansion of the solution of a
Cauchy problem relative to the operator and the Monte Carlo approximation of
its Feynman-Kac representation.

The operator −L is self-adjoint, has a countable basis of eigenfunctions {ϕk}k∈N
corresponding to positive eigenvalues {λk}k∈N and is hence very similar to the
Laplace operator. The solution u(t, x, y) = P(x,y)[τD > t] of the parabolic problem
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of Section 7.3 verifies

P(x,y)[τD > t] =
∞∑
k=1

(u0, ϕk) exp(−λkt)ϕk(x, y) ' β exp(−λ1t) + O(exp(−λ2t))

which provides an estimator λ1(t1, t2) of λ1 defined by

λ1(t1, t2) = − ln(P(x,y)[τD > t2])− ln(P(x,y)[τD > t1])

t2 − t1
using two discretization times t1 and t2 chosen large enough so that the term
O(exp(−λ2t)) is negligible. Some more sophisticated estimators based on regres-
sion have also been introduced in [20].

The survival probability P(x,y)[τD > T ] is very small for T large and thus we
have introduced in [19] a splitting method to compute more accurately this survival
probability than with a crude Monte Carlo method. We write for t < T

Pµ[τD > T ] = Pπt [τD > T − t]Pµ[τD > t]

where µ is the law of Z0 and πt the law of Zt conditioned by the event {τD > t}.
The conditional law πt is approximated by the empirical law of the particles still
alive at time t. Using the spectral expansion, we can prove that this conditional
law converges to ϕ1 up to a multiplicative constant when T goes to infinity. The
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ti = i∆t Pπi−1
[τ > ti] Pµ[τ > ti]

0.1 0.203 0.2034
0.2 0.320 0.0651
0.3 0.328 0.0213
0.4 0.330 0.0071
0.5 0.328 0.0023
0.6 0.329 0.0007

Table 2: Survival probabilities for the mixing scheme for N = 2 · 105 particle when
∆t = 0.1 and the timestep is δt = 10−3.

survival probability is now approximated by a product of the probabilities of two
events that are less rare and hence more accurately approximated by means of
Monte Carlo procedures.

In order to chose the times t1 and t2 online, we use the splitting method itera-
tively until convergence of the empirical approximation of πt to ϕ1.We first choose
a step ∆t and an initial distribution µ such that Pµ[τD > ∆t] is sufficiently large.
We compute iteratively

Pπn∆t
[τD > 2∆t] = Pπ(n+1)∆t

[τD > ∆t]Pπn∆t
[τD > ∆t]

until this probability converges to a fix value. This means that πn∆t has converged
to ϕ1. Then, we set t1 = n∆t, t2 = (n+ 1)∆t and compute λ1(t1, t2) thanks to the
transition probabilities from a slice to the next one.

As observed in [19,20], the bias of the method is very sensitive to the approx-
imation of the stochastic process Z. It is hence a very good test for the different
methods of simulation of Z. at the interface between subdomains we have intro-
duced and studied in the previous sections. For the simulation in the subdomains,
the walk on rectangles method will be used for the reasons explained in Section 3.2.

7.4.2 Numerical results

We test our method in the previous domain with initial distribution µ = π0 the
uniform law in Dinit = [−0.8, 0.8]2 and with a step ∆t = 0.1. The approximate
value of λ1 using Matlab is 11.095.

Table 2 shows the survival probabilities for the mixing scheme. We see that
Pπti−1

[t > τi] fluctuates around 0.329 as soon as we have reached the third slice at
time t3 = 0.3. We can hence assume that we are in the quasi-stationary regime for
larger times. Similar results were obtained for the other schemes we have tested.

Table 3 shows the eigenvalue approximation for three schemes: mixing, skew
and Finite difference 2 using λ(t1, t2) with t1 = 0.3 and t2 = 0.6. We denote by

31



Mixing Skew Finite Diff. 2

δt Error CPU Error CPU h Error CPU

10−2 −4.1 · 10−2 77 5.4 · 10−1 86 0.34 −1.8 · 10−1 74
10−3 −5.3 · 10−2 152 1.3 · 10−1 161 0.104 −5.8 · 10−2 134
10−4 −2.7 · 10−2 358 2.6 · 10−2 355 0.034 −4.8 · 10−2 307
10−5 −4.4 · 10−2 1,004 −2.2 · 10−2 994 0.011 −5.7 · 10−2 852

Table 3: Absolute error λ(t1, t2) − λ1 of the eigenvalue estimator for the three
schemes with t1 = 0.3 and t2 = 0.6 for ∆t = 0.1 and N = 2 · 105 particles.

Error the absolute error λ(t1, t2)− λ1. We observe that the results are very good
for small values of h for the finite difference scheme and a small time step δt for the
normal scheme. For the mixing scheme, the error fluctuates around 4 · 10−2, which
means that the first eigenvalue λ1 is accurately estimated even with the largest
values of δt. In any case, we recover the same relative error we have obtained in our
previous paper [19] for the computation of the principal eigenvalue of the Laplace
operator. This confirms the efficiency of our new schemes and especially of the
mixing scheme for problems of parabolic type.

8 Conclusion
We have introduced new schemes for the simulation of diffusions in discontinuous,
locally isotropic media. They take into account the two-dimensional aspects of the
diffusion by means of stochastic process techniques based on occupation times or
by using finite differences approximation. These new schemes have both better
accuracy and better order than the schemes based on normal schemes. In fact,
we have shown theoretically and numerically on various examples that the new
schemes reach an order O(h2) instead of an order O(h) for the normal schemes.
The kinetic scheme provided in [18] has also a an order close to a O(h2) but is
clearly less accurate than the new schemes.

In our numerical test cases, we have chosen to use the random walk on spheres
or on rectangles methods because they are both very fast and almost unbiased.
This enables to focus on the error induced by the schemes dealing with the re-
placements at the interface. Yet there is no problem in using any of the proposed
schemes locally close to a discontinuity, and other simulation schemes such as the
Euler scheme, in regions where the diffusivity is smooth enough, but not neces-
sarily constant. For example, we could simulate the process until it reaches the
boundary using the Euler scheme for killed diffusion process (see e.g. [10]) and
then restart the particle at the interface with one of the proposed schemes by con-

32



sidering that the diffusivity coefficients are constant on each sides of the interface.
This implies that the diffusivity coefficients vary slowly around the interface so
that they could be approximated locally by constant ones, as done for example in
[8, 27–29]. However, at the best of our knowledge, quantifying the error done by
mixing two schemes used in different regions remains a largely open and difficult
problem which requires some precise estimates of the time spent by the particle
in each region (See for example [2] for a related discussion in the one-dimensional
case).
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proved this article.
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