37 research outputs found

    Matchings, coverings, and Castelnuovo-Mumford regularity

    Full text link
    We show that the co-chordal cover number of a graph G gives an upper bound for the Castelnuovo-Mumford regularity of the associated edge ideal. Several known combinatorial upper bounds of regularity for edge ideals are then easy consequences of covering results from graph theory, and we derive new upper bounds by looking at additional covering results.Comment: 12 pages; v4 has minor changes for publicatio

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author

    Beyond Helly graphs: the diameter problem on absolute retracts

    Full text link
    Characterizing the graph classes such that, on nn-vertex mm-edge graphs in the class, we can compute the diameter faster than in O(nm){\cal O}(nm) time is an important research problem both in theory and in practice. We here make a new step in this direction, for some metrically defined graph classes. Specifically, a subgraph HH of a graph GG is called a retract of GG if it is the image of some idempotent endomorphism of GG. Two necessary conditions for HH being a retract of GG is to have HH is an isometric and isochromatic subgraph of GG. We say that HH is an absolute retract of some graph class C{\cal C} if it is a retract of any GCG \in {\cal C} of which it is an isochromatic and isometric subgraph. In this paper, we study the complexity of computing the diameter within the absolute retracts of various hereditary graph classes. First, we show how to compute the diameter within absolute retracts of bipartite graphs in randomized O~(mn)\tilde{\cal O}(m\sqrt{n}) time. For the special case of chordal bipartite graphs, it can be improved to linear time, and the algorithm even computes all the eccentricities. Then, we generalize these results to the absolute retracts of kk-chromatic graphs, for every fixed k3k \geq 3. Finally, we study the diameter problem within the absolute retracts of planar graphs and split graphs, respectively

    Edge ideals: algebraic and combinatorial properties

    Full text link
    Let C be a clutter and let I(C) be its edge ideal. This is a survey paper on the algebraic and combinatorial properties of R/I(C) and C, respectively. We give a criterion to estimate the regularity of R/I(C) and apply this criterion to give new proofs of some formulas for the regularity. If C is a clutter and R/I(C) is sequentially Cohen-Macaulay, we present a formula for the regularity of the ideal of vertex covers of C and give a formula for the projective dimension of R/I(C). We also examine the associated primes of powers of edge ideals, and show that for a graph with a leaf, these sets form an ascending chain

    Math Department Newsletter, 2011

    Get PDF

    Efficient domination and polarity

    Get PDF
    The thesis considers the following graph problems: Efficient (Edge) Domination seeks for an independent vertex (edge) subset D such that all other vertices (edges) have exactly one neighbor in D. Polarity asks for a vertex subset that induces a complete multipartite graph and that contains a vertex of every induced P_3. Monopolarity is the special case of Polarity where the wanted vertex subset has to be independent. These problems are NP-complete in general, but efficiently solvable on various graph classes. The thesis sharpens known NP-completeness results and presents new solvable cases

    Local majorities, coalitions and monopolies in graphs: a review

    Get PDF
    AbstractThis paper provides an overview of recent developments concerning the process of local majority voting in graphs, and its basic properties, from graph theoretic and algorithmic standpoints
    corecore