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Abstract

This paper provides an overview of recent developments concerning the process of local ma-
jority voting in graphs, and its basic properties, from graph theoretic and algorithmic standpoints.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

1.1. A puzzle

In each vertex of an n-vertex graph G there lives a citizen. Tomorrow morning,
the citizens of G are about to vote “Yes=No” on a critical and highly controversial
proposition (whose details are not really of our present concern).
Out of curiosity and boredom, each citizen of G spends the afternoon amusing him-

self by conducting a private poll among his neighbors (including himself), in order
to get a sense of the outcome of this all-important election. The alarming and disap-
pointing result found by each “Yes” voter is an astounding 2 : 1 majority for the “No”
voters in his neighborhood.
Should the “Yes” voters despair?! May the “No” voters rejoice?! Or can all these

polls lie?? In short: What can be said with certainty about the minimum guaranteed
number of “No” voters in the election, given these poll results?
A moment’s re=ection reveals that the (perhaps surprising) answer is “very little

indeed”. For sure, one can deduce the existence of at least two “No” voters, but in
some cases this is all it takes! As a concrete example, consider a complete bipartite
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Fig. 1. Two “No” voters controlling the local majority poll of all other vertices. (In all our Egures, white
circles represent vertices of the coalition, and black circles represent vertices controlled by the coalition.
Vertices that fall under neither category, if exist, are represented by dotted circles.)

Fig. 2. 2
√
n “No” voters forcing a 2 : 1 majority in all polls.

graph with the two “No” voters on one side and the n− 2 “Yes” voters on the other
(see Fig. 1).
The above example clearly points to one potential explanation for these strange poll

results: while every “Yes” voter saw a small majority of “No” votes, every “No” voter
saw a huge majority of “Yes” votes. So in some sense, a more “balanced” picture
would have emerged had we looked at all the polls, rather than only at those carried
by the “Yes” voters.
This leads us to the following question. Suppose that the result of a 2 : 1 majority for

the “No” voters in the neighborhood was found by each and every voter, and not just
by the “Yes” voting ones. What could be guaranteed now about the minimum number
of “No” voters in the election?
The answer, pointed out in [44], is that it is still possible for the polls to be rather

misleading. In particular, it is possible for a negligible minority of 2
√
n “No” voters to

cause this outcome in all polls. A graph allowing such behavior is depicted in Fig. 2.
The “No” voters form a set M of 2

√
n vertices, ui; wi for 16i6

√
n, connected by a

clique. The remaining vertices (the “Yes” voters) are partitioned into
√
n − 2 groups

of
√
n vertices each, where the vertices of the ith group are attached to ui and wi.
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A major lesson clearly illuminated by the above two examples is the importance
of being well-connected; the in=uence of a vertex is determined by its degree, and
the in=uence level of a collection of vertices is decided by the distribution of their
edges.

1.2. Motivation

Overcoming failures is a central problem in distributed computing. A common theme
in a number of approaches to this problem revolves around the notion of majority
ruling. The idea is to eliminate the damage caused by failed vertices, or at least restrict
their in=uence, by maintaining replicated copies of crucial data, and performing a voting
process among the participating processors whenever faults occur, adopting the values
stored at the majority of the processors as the correct data.
This method, in one form or another, is used as a component of fault-tolerant algo-

rithms in a wide variety of contexts. Algorithms for agreement and consensus problems,
for instance (cf. [43, 11, 19, 48, 6]), are often based on using majority voting among
the participating processors in order to eradicate the harmful in=uence of “Byzantine”
(or maliciously behaving) faulty processors. This is, in fact, the inherent reason why
it is necessary to limit the number of faults t in an n-processor system to t6n=c (typ-
ically for some c¿3) in order to enable agreement algorithms to function correctly.
Similarly, majority voting is used as a basic tool in various algorithms for system-level
diagnosis (cf. [64, 54, 15]). Related studies concerned testing and reconEguration under
catastrophic fault patterns [14, 53, 62].
Data redundancy or replication is a commonly used technique in the area of dis-

tributed database management algorithms (cf. [13, 37]), and inconsistency resolution
protocols are often based on one form or another of majority voting, preferring the
version of the data supported by the majority of the available copies.
Voting systems are used also to enforce data consistency by requiring changes to be

performed on a quorum of the copies (cf. [27, 26, 63, 58, 66]). Informally, a quorum
system is collection of sets every two of which have a nonempty intersection. Thus,
updating whole quorums ensures that each subsequent change will override earlier
ones in at least one site. While a variety of quorum system types can be used for that
purpose, voting systems are often a favored form due to their ease of implementation
and use.
Majority voting systems have found applications also in the context of resource

allocation, as a means for ensuring mutual exclusion (cf. [61]). For example, once
all the processors of a certain quorum permit a user to enter the critical section, no
other user will be able to enter the critical section before the Erst user has released it,
since no matter which quorum it asks for permission, it will be refused by at least one
processor.
Finally, the applicability of majority voting as a tool for distributed fault-local mend-

ing was recently investigated in [41, 42]. This approach can be illustrated via the fol-
lowing basic problem. Consider a distributed network, whose nodes collectively store
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some function (representing, say, the output of some computation), one bit per node.
Suppose that at some point, the memory contents stored at some subset F of the nodes
of the network are distorted due to some transient failures. As a result, while the stored
values may still look locally legal, the representation of the function stored at the net-
work has changed into some inconsistent function that is no longer valid. The question
raised in [41, 42] is whether it is possible to distributedly mend the function in time
complexity dependent on the number of failed nodes, rather than on the size of the
entire network. This operation (if and when possible) is termed fault-local mending,
and the algorithm developed in [41, 42] for performing it involves majority votings in
neighborhoods of diLerent radii.
The majority voting method is usually expected to work well due to the common

assumption that given today’s reliable technology, at any given moment there can be
but a small number of failures in the system. This implies that the required level of
replication, and the extent of the voting process, can be limited. In particular, in the
distributed context, it is highly desirable to restrict both the replication of data stored
originally at a processor v, and the process of majority voting regarding the data of a
processor v, to processors in v’s local vicinity.
There are two reasons for this focus on locality. First, in many cases, processors

in the system are better aware of, and more involved in, whatever happens in their
immediate vicinity, than far away. It is thus more natural, and often much cheaper, to
store data as locally as possible. Secondly, and perhaps more importantly, the distributed
network model allows only for computations which are local in nature, namely, in t
time units, a processor can only collect data from other processors whose distance from
itself in the network does not exceed t. Therefore, voting over large areas might be
too expensive in terms of its time consumption.
However, there is an inherent risk in limiting ourselves to local vicinities in this way.

Once replication is restricted to local neighborhoods, we run into the danger that a large
enough set of faults may manage to gain the majority in some of these neighborhoods.
In fact, as vividly demonstrated by our previous puzzle, once the voting is performed
over subsets of the vertices, the ability of failed vertices to in=uence the outcome of
the votes becomes not only a function of their number but also a function of their
location in the network: well-situated vertices can acquire greater in=uence.
This situation has motivated recent interest in the process of local majority voting in

graphs, and its basic properties. Among the issues studied were extremal combinatorial
aspects such as the possible size of in=uential coalitions, dynamic aspects such as the
behavior of repetitive voting processes, and algorithmic aspects such as the complexity
of Ending in=uential sets of vertices. This paper provides an overview of some of the
recent developments concerning the local majority voting process.

1.3. Control and polling domains

The central notion we focus on in this paper is that of control. Intuitively, a set of
vertices M in a graph G is said to control a vertex v if it is always able to determine
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the outcome of the local poll carried by v by voting in a coordinated way. We refer
to such a set M as a coalition.
A parameter that crucially aLects the behavior of local majority polling (and the

power of coalitions) is the domain (i.e., the local region) on which the voting is
performed. For each vertex v, denote by Dom(v) the set of vertices participating in the
local poll carried out by v. Then v is controlled by the coalition M if |Dom(v)∩M |¿
|Dom(v)|=2, namely, the majority 1 of the vertices of Dom(v) are in M .
There are a number of plausible ways for deEning the domain Dom(v). The most

straightforward choice is the set of immediate neighbors. Under this choice, a vertex v
in a network G(V; E) is controlled by the coalition M if the majority of its neighbors
are in M . As this choice severely limits the scope of our majority voting, one may
consider the alternative of strengthening the validity of the polls by querying vertices to
larger distances. Letting �r(v) denote the r-neighborhood of v, i.e., the set of vertices at
distance r or less from v (including v itself), it is possible to deEne Dom(v)=�r(v). For
clarity, we will henceforth use the term r-control for control based on r-neighborhoods
as the voting domains.
Two special kinds of coalitions attaining global control are considered in the lit-

erature. A coalition M is called an r-monopoly if it r-controls every vertex in the
graph. A self-ignoring r-monopoly (r-SIMON) M is a coalition that r-controls every
vertex in V\M . Self-ignoring monopolies may be of interest in a context where we
think of the control-seeking coalition as a set of faulty (possibly malicious) processors.
In such a setting, it may as well be assumed that the coalition M is only interested in
gaining control over the neighborhoods of other vertices, belonging to V\M . This is
because, informally speaking, the (faulty) processors of the coalition are not obligated
by the rules of the game anyhow, so in order to corrupt the entire system, it suPces
for an adversary to attain control over the remaining processors. Such a coalition can
therefore be considerably smaller than a true monopoly.
Two notions that turn out to be closely related to monopolies are sphere 2 packing

and covering by spheres (cf. [12]). We will hence discuss also some basic properties
of the (weighted or unweighted) packing and covering problems on graphs.
The remainder of this review paper is organized as follows. Section 2 reviews the

known bounds on the in=uence of small coalitions, and the corresponding size bounds
on monopolies and self-ignoring monopolies. Section 3 introduces the concept of im-
mune graphs and presents some constructions of such graphs as well as bounds on
their immunity. Section 4 considers the problem in special graph families, and Sec-
tion 5 discusses computational and approximability issues. Section 6 introduces the
concepts of graph covering and packing, and their relationships with the voting game.
Section 7 introduces control based on a range of polling regions. Finally, Section 8
reviews the literature on dynamic variants of the voting process.

1 Majority is sometimes deEned as a non-strict one; this results in only slight diLerences asymptotically.
2 In the context of graphs, spheres correspond to neighborhoods.
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2. Bounds on the maximal in�uence of coalitions

One of the most fundamental questions concerning local majority voting involves
characterizing the potential in=uence of a small coalition M in a network of processors.
Denote the set of vertices r-controlled by M by Ruled(G;M; r). The number of vertices
r-controlled by M , denoted �(G;M; r) = |Ruled(G;M)|, can be used as a measure of
the in8uence of the coalition M .
For every integer 16m6n and n-vertex graph G, let �Ruled(G;m; r) denote the

maximum number of vertices that can be r-controlled by an m-vertex coalition in the
graph G,

�Ruled(G;m; r)= max
M⊆V; |M |=m

{�(G;M; r)}:

Dually, let �Mono(G; r) (resp. �Simon(G; r)) denote the minimum cardinality of an r-
monopoly (resp. r-SIMON) in G,

�Mono(G; r) = min{|M | : M ⊆ V; Ruled(G;M; r) = V};
�Simon(G; r) = min{|M | : M ⊆ V; Ruled(G;M; r) = V\M}:

The following questions were addressed in [44, 8, 9]:
(Q1) What is the maximum in=uence of a set M (as a function of |M |), namely,

how many vertices can it possibly control?
(Q2) How small can a monopoly be?
(Q3) How small can a self-ignoring monopoly be?
For 1-control, the example of Fig. 1 gives us immediate answers to questions (Q1)
and (Q3): control of virtually all vertex neighborhoods can be achieved by extremely
small coalitions, and in particular, a self-ignoring monopoly exists with as few as two
vertices.
As for question (Q2), Fig. 2 illustrates the existence of a 1-monopoly of size O(

√
n).

The tightness of this construction was established in [44].

Proposition 2.1 (Linial et al. [44]). (i) For every n-vertex graph; �Mono(G; 1)=
R(
√
n).

(ii) There exists a family of n-vertex graphs Gn with �Mono(Gn; 1)=O(
√
n).

Looking at r¿2, it turns out that an extremal behavior similar to that of the example
of Fig. 1 may occur for r-control as well, on certain graphs.

Proposition 2.2 (Bermond and Peleg [8]). For any integer r¿2 there exists a family
of n-vertex graphs Gn such that �Ruled(Gn; r + 1; r)= (n− r − 1)=r.

To illustrate this proposition, consider an integer r¿2, and Ex an integer p�r and
let n= rp+ (r+1). We now construct an n-vertex graph Gr;p in which a coalition M
of size r+1 can r-control as many as (n−r−1)=r vertices. Gr;p is leveled, namely, the
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Fig. 3. The graph Gr;p for r=3 and some p, with a set M of size 4 controlling the majority of 3-
neighborhoods of the vertices of a set X of size p= (n− 4)=3.

vertices are arranged into r+1 levels, numbered 1 through r+1, with edges connecting
only vertices in adjacent levels ‘; ‘ + 1. Each level 26‘6r + 1 contains p vertices,
v‘1 ; : : : ; v

‘
p , and level 1 contains r+1 vertices. Let X denote the set of vertices on level

r+1, and let M denote the set of vertices on level 1. X contains roughly a 1=r fraction
of the vertices of the graph, yet the edge connections deEned next will guarantee that
M has the majority in any r-neighborhood around the vertices of X .
The edges connecting two consecutive levels ‘ − 1 and ‘ are deEned as follows.

The vertices of level 1 (M) are connected by a complete bipartite graph (crossbar) to
the vertices of level 2. From level 2 and on, the vertices of the diLerent levels form
chains of length r. Namely, for 26‘6r, each vertex v‘i of level ‘ is connected to
vertex v‘+1i of level ‘ + 1.
It is straightforward to verify that the vertices of M r-control those of X . Fig. 3

depicts an example graph Gr;p for r=3 and some p.
As for r-monopolies, the following (incomplete) picture is shown in [9].

Proposition 2.3 (Bermond et al. [9]). (i) For every n-vertex graph G and even r¿2;
�Mono(G; r)=R(n3=5).
(ii) For any :xed even r¿2 there exists a family of n-vertex graphs Gn with

�Mono(Gn; r)=O(n3=5).
(iii) For every n-vertex graph and odd r¿1; �Mono(G; 3r)=R(n6=11).
(iv) For any :xed odd r¿3 there exists a family of n-vertex graphs Gn with

�Mono(Gn; r)=O(n4=7).

The second claim of the proposition is illustrated below for r=2 (see Fig. 4).
Fix a large integer t, and construct the graph Gt as follows. The vertex set of Gt is
V =M2 ∪M1 ∪ S1 ∪ S2. M2 forms a clique of size t3, the vertices being composed of t
sets of t2 vertices.
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Fig. 4. The graph Gt , with a 2-monopoly M1 ∪M2 of size T(n3=5).

M1 is an independent set of size t3 composed of t sets of t2 elements. The ith set
in M1 is connected to the ith set in M2 by a complete bipartite graph. Each set of size
t2 is decomposed into subsets of size t.
S1 is an independent set of size t4, composed of t2 sets of size t2. The ith set in

S1 (of size t2) is connected to the ith subset in M1 (of size t) by a complete bipartite
graph.
S2 is an independent set of size t5− t4, composed of t4 sets of size t−1. The nodes

of the ith set in S2 are connected to the ith node of S1.
Straightforward counting reveals that M1 ∪M2 is a 2-monopoly.
Finally, considering self-ignoring r-monopolies we have:

Proposition 2.4 (Bermond and Peleg [8]). (i) In every n-vertex graph G and :xed
r¿2; �Simon(G; r)=R(n1=2).
(ii) For every :xed integer r¿2 there exists a family of n-vertex graphs Gn such

that �Simon(Gn; r)=T(n1=2).

Note that the example of Fig. 1 clearly prevents the possibility of having a similar
lower bound for r=1.
As for the upper bound, for r=2, we note that in the graph of Fig. 2, the coalition

M (presented there as a 1-monopoly) is also a self-ignoring 2-monopoly. Next, we
give an example of such a set for any r¿2. For integers r; p, construct the graph Gr;p

as follows. The graph is again leveled, namely, the vertices are arranged into 
r=2�+2
levels, numbered 1 through 
r=2�+ 2, with edges connecting only vertices in adjacent
levels ‘; ‘ + 1. Level 1 contains p2 vertices, each level 26‘6
r=2� + 1 contains p
vertices, and level 
r=2�+ 2 contains a single vertex. Let X denote the set of vertices
on level 1, and let M =V \X be the rest of the vertices. When p is much larger than
r, M contains roughly

√
n of the vertices of the graph, yet our construction will have

the property that the vertices of M majorize all r-neighborhoods of X vertices.
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Fig. 5. The graph Gr;p for r=5 and p=5.

The edges connecting two consecutive levels ‘−1 and ‘ are now deEned as follows.
The single vertex of level 
r=2�+2 is connected to all the vertices of level 
r=2�+1.
For level 26‘6
r=2� + 1, each vertex v is connected to the corresponding vertex at
level ‘− 1. For level ‘=2, each vertex of level 2 has p distinct neighbors at level 1
(i.e., each vertex of X has exactly one neighbor on level 2). See Fig. 5 for an example
graph Gr;p for r=5, p=5.
A straightforward case analysis reveals that in the graph Gr;p, for every vertex v∈X ,

the majority of the vertices in �r(v) are from M .

3. Immune graphs and minimal in�uence

The problem of controlling coalitions was discussed in the previous section from
the angle of looking for extremal constructions allowing small coalitions to control
many vertices (namely, graphs with large �Ruled(G;m; r) and small �Mono(G; r) and
�Simon(G; r)). In contrast, one may consider the dual problem, concerning the existence
of graphs immune to the in=uence of small coalitions. These are graphs G for which
Ruled(G;M) is small (relative to |M | again) for every coalition M , or in other words,
�Ruled(G;m; r) is small, and hence also �Mono(G; r) and �Simon(G; r) are large. Upper
and lower bounds are derived in [55] on the extent to which such immunity can be
achieved.

3.1. Basic properties

To formally discuss the immunity level of a given graph, let us present the following
deEnition.

De�nition 3.1. A graph G is ( ; !)-immune if �Ruled(G;m; 1)6 m for every 16m6!.
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Let "max(G) and "min(G) denote the maximum and minimum vertex degrees in the
graph G, respectively.
Observe that a vertex v of degree deg(v) can be controlled by a coalition M

only if v has more than deg(v)=2 neighbors in M . Hence in a graph G with min-
imum degree "min, a coalition of cardinality 16m6"min=2 can rule nobody, hence
�Ruled(G;m; 1)=0 in that range, and the problem becomes interesting only for m ¿
"min=2.

Claim 1 (Peleg [55]): For every graph G(V; E);
(i) �Ruled(G;m; 1)62"max(G)m="min(G) for every m¿1; and
(ii) �Mono(G; 1)¿|E|="max.

Indeed, the constructions described in [44, 8, 9] for small coalitions controlling large
sets of vertices are all based on large degree gaps, and utilize sets M of high-degree
vertices controlling many low-degree vertices. The last claim clearly implies that in a
near-regular graph, an m-vertex coalition can rule no more than O(m) vertices, hence
we have the following corollary.

Corollary 3.2 (Peleg [55]). For every near-"-regular or bounded-degree graph G;

�Ruled(G;m; 1) = O(m) and �Mono(G; 1); �Simon(G; 1) = R(n):

This result, however, is not the best one can expect. The existence of near-"-regular
graphs G for which the power of small coalitions is even more limited than that is
established in [55]. Essentially, these graphs guarantee �Ruled(G;m; 1)=O(m="). This
is the best one can hope for, as indicated by the following lemma, providing a bound
on the possible level of immunity one can expect from a graph.

Lemma 3.3 (Peleg [55]). For every graph G and every m¿1;

�Ruled(G;m; 1)¿
⌊

2m
"max(G) + 1

⌋
:

Corollary 3.4 (Peleg [55]). There is a constant c1¿0 such that for any !¿1; there
does not exist a (c1="max(G); !)-immune) graph G.

3.2. Existential proofs and explicit constructions

In view of the above discussion, we next consider regular or near-regular graphs.

De�nition 3.5. A graph G is an (a; b)-expander if �(W )¿a|W | for every subset W
of size |W |6bn.

Strong relationships exist between immune graphs and expanders.
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Lemma 3.6 (Peleg [55]). (i) If a "-regular graph G is an (a; b)-expander for a¿1=2;
then it is ( ; !)-immune for  =1=(a− "=2) and !=(a− "=2)b− & ( for any &¿0).
(ii) If a "-regular graph G is ( ; !)-immune; then it is an (a; b)-expander for

a=1= and b=  !.

Based on part (i) of the lemma and known results concerning the existence of strong
expanders (cf. [39]) we get

Corollary 3.7 (Peleg [55]). For every su;ciently large constant integer " and for
every  ¿1=("=2− 1); there exists some !¿0 such that a random "-regular graph is
( ; !)-immune with high probability.

De�nition 3.8. A graph G(V; E) is near-"-regular if "=26deg(v)62" for every v∈V .
Let GREG

n;p denote the restriction of the probability distribution Gn;p to near-np-regular
graphs.

Proposition 3.9 (Peleg [55]). There exist constants c1; c2; c3¿0 such that for every
c1=n6p61; every graph from GREG

n;p is (c2 log n=np; n=c3)-immune with probability at
least 1− 1=n.

Corollary 3.10 (Peleg [55]). (i) There exists a constant c1¿0 such that for every
c1 log n=n6p61; every graph from GREG

n;p satis:es �Simon(G; 1)=R(n) (hence also
�Mono(G; 1)=R(n)) with probability at least 1− 1=n.
(ii) There exist constants c1; c2; c3¿0 such that for every c1=n6p6c2 log n=n; ev-

ery graph from GREG
n;p satis:es �Simon(G; 1)=R(n2p= log n) (hence also �Mono(G; 1)=

R(n2p= log n)) with probability at least 1− 1=n.

The above relationship provides us mainly with existential proofs (for the opti-
mal parameter range, at least). For "=R(

√
n), explicit examples of (asymptotically

optimal) immune graphs are established constructively in [55] on the basis of sym-
metric block designs. A symmetric block design B(n; "; () is a collection of n blocks,
B= {B1; : : : ; Bn}, where each block is a size " subset of an n-element universe U =
{u1; : : : ; un}, each element ui occurs in exactly " blocks, every two blocks Bi and Bj
have precisely ( elements in common, and every two elements ui and uj occur together
in precisely ( blocks. The order q Enite projective plane FPP(q) is an example for a
symmetric block design with n= q2 + q + 1, "= q + 1 and (=1. A comprehensive
coverage of block designs, their properties and methods for constructing them can be
found in [32].
Given a block design B=B(n; "; (), we construct an immune bipartite graph G(B)

as follows. Let G(B)= (V;W; E), where V = {v1; : : : ; vn}, W = {w1; : : : ; wn}, and (vi; wj)
∈E iL the element ui occurs in the block Bj in B.
Note that a coalition M in this graph can be decomposed into MV =M ∩V and MW =

M ∩W , and their in=uence is restricted to the other bipartition, namely, R=Ruled(G;M)
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can be decomposed into RV =R∩V and RW =R∩W where RV =Ruled(G;MV ) and
RW =Ruled(G;MW ). Therefore, it suPces to concentrate on coalitions restricted to one
bipartition. Henceforth, our coalition M will be restricted to V , and the controlled set
Ruled(G;M) will thus be a subset of W .

Lemma 3.11 (Peleg [55]). For every graph G(B) as above; and for every m-vertex
coalition M ⊆V where m¡n=8, Ruled(G(B); M; 1)=O(m=").

Proposition 3.12 (Peleg [55]). There exist explicitly constructible "-regular n-vertex
graphs Gn; "=R(

√
n); such that:

(i) For every m¡n=8; �Ruled(Gn; m; 1)=O(m=").
(ii) �Simon(Gn; 1); �Mono(Gn; 1)=R(n).

In particular, using a Enite projective plane of order q yields an asymptotically
optimally immune regular graph of degree "=T(

√
n). Symmetric block designs with

(¿1 can be used to derive asymptotically optimally immune regular graphs of degrees
higher than

√
n.

4. Special graph families

We have already noted (in Corallary 3.2) that small coalitions have limited power on
regular, near-regular or bounded-degree graphs. In this section we discuss tight bounds
for the problem with r=1 on a number of special graph classes, including planar, high
girth graphs, diameter-2 graphs, hypercubes and grids.
Given a monopoly M , let E(M) denote the set of edges of G with both endpoints

in M .

Lemma 4.1 (Linial et al. [44]). For every graph G(V; E) and monopoly M; |E(M)|¿
(|E| − 3|M |)=4.

As an immediate consequence we have

Corollary 4.2 (Linial et al. [44]). For every graph G(V; E), �Mono(G; 1)=R(
√|E|).

These two facts enables us to establish tight bounds on �Mono(G; 1) for graphs G
taken from a number of special classes of graphs. Let us Erst consider the planar case.
Since the subgraph induced by a monopoly M in a planar graph is itself planar, it
satisEes |E(M)|63|M | − 6, which by Lemma 4.1 implies that |M |=R(n). Therefore

Proposition 4.3 (Linial et al. [44]). �Mono(G; 1) = R(n) for any n-vertex planar
graph G.
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A similar argument applies graphs of large girth. A well known result of Erdős
states that a graph on m vertices and girth k has at most m1+O(1=k) edges; the estimate
is known to be tight (see e.g. [10]). Therefore

Proposition 4.4 (Linial et al. [44]). �Mono(G; 1)= n1−O(1=k) for any n-vertex graph G
of girth ¿ k. The bound is tight.

To see that the bound is tight, consider the following example. Let K =(M;E′) be
an extremal (maximum possible number of edges) graph on m vertices with girth k.
For each vertex v∈M introduce d(v) − 1 new vertices (where d(v) is the degree of
v), and connect each of these newly created vertices to v. The new graph G=(V; E)
has the same girth as K , it has 2E(K)=m1+O(1=k) vertices (by the tightness of Erdős’
bound), m of which are in the monopoly as required.
Note also that this example is good not only for r=1, but for any 16r6k=2.
Concerning graphs with diameter 2 we have

Proposition 4.5 (Linial et al. [44]). �Mono(G; 1)=R(n2=3) for any n-vertex graph G
of diameter 2. The bound is tight.

As an example for the tightness of this bound, consider a projective plane over Fq.
There are q2 + q + 1 lines and the same number of points; each line is incident to
q + 1 points and vice versa. Now, take the incidence graph of these lines and points,
add an edge between any two lines, and generate q (disjoint) copies of each point.
Take the monopoly M to be the vertices corresponding to lines. There are altogether
(q2 + q + 1)(q + 1) vertices, the graph is of diameter 2 by the properties of the
projective plane, and |M |= q2 + q+1. Also each M -vertex sees q2 + q+1 M -vertices
and (q + 1)q (V\M)-vertices, and each (V\M)-vertex sees q + 1 M -vertices and a
single (V\M)-vertex, namely itself. The example shows that |M | can indeed be as
small as n2=3.
Finally, for highly structured graph classes we have tight bounds as well.

Proposition 4.6. (i) �Mono(G; 1)¿n=2 for d-dimensional hypercubes with d=2t − 1
for integer t¿1; and �Mono(G; 1)=R(n) for all other values of d.
(ii) �Mono(G; 1)¿n=2 for two-dimensional m× k grids for m; k¿1.

5. Computational aspects

Instead of looking for extremal bounds on monopoly size in certain speciEc graphs,
one may ask the following question: given a graph G, End an r-monopoly M of
minimum cardinality for G (i.e., a monopoly realizing �Mono(G; r)).
This problem can easily be shown NP-hard (say, by a reduction from the minimum

dominating set problem). In fact, given recent results [47, 20] on the hardness of ap-
proximating the set cover problem and its variants, including the minimum dominating
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set problem, it is plausible to make the following conjecture: For any &¿0, the mini-
mum monopoly problem has no ln n− & approximation unless NP⊆Dtime(nlog log n).
On the other hand, the following greedy algorithm can be used for obtaining an

approximate solution for the problem. Let M denote the intended monopoly, and let
W denote the set of uncontrolled vertices. Initially M = ∅ and W =V . While W �= ∅,
pick a vertex v∈V\M maximizing |�(v)∩W |, add it to M and remove from W any
vertex that is now controlled by M .
Since the problem is submodular, it is easy to see, using an analysis similar to

[17, 65], that the resulting monopoly M is at most ln |E| + 1 times greater than the
minimum one. Hence we have

Proposition 5.1. The greedy algorithm yields a ratio ln |E|+1 approximation for the
minimum monopoly problem.

A similar situation (in terms of hardness and approximability) holds for r-monopolies,
as well as for self-ignoring r-monopolies.

6. Sphere covering and packing

De�nition 6.1. Given an n-vertex graph G, a collection C= {C1; : : : ; Ct} of neighbor-
hoods in G whose union is V is called a cover. The degree of a vertex v in the cover
(thought of as a hypergraph over V ) is denoted by degC(v). The maximum degree of
C is deEned as "(C)= maxv{degC(v)}.

The low-degree covering problem for a graph G can be formulated as an integer
programming problem. Rather than considering the integer program, one may also con-
sider its rational relaxation. In a weighted cover of G by a family C of neighborhoods,
one associates a nonnegative weight !t;y with all neighborhoods �t(y)∈C. It is re-
quired that for every vertex x, the sum of weights associated with all neighborhoods
in C containing x be at least 1. The degree of the weighted cover at a vertex z, de-
noted �(z), is the sum

∑
t; y !t; y over all neighborhoods �t(y)∈C containing z. The

maximum degree of the cover is denoted "(C). We ask for weighted covers of least
maximal degree.

Proposition 6.2 (Linial et al. [44]). For every n-vertex graph G and integer r¡n; G
has a weighted cover C with "(C)6n1=(�log3 r�+1) by neighborhoods with radii in the
range [1; : : : ; r]. All neighborhoods in the cover may be restricted to have a radius
which is a power of 3. The degree bound is tight. Moreover; G also has an (integral)
cover C′ with the same properties; except

"(C′)6 n1=(�log3 r�+1)(ln n+ 1):

(The claim for integral covers is derived in [44] by a slight variation of [45].)
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Next, let us turn to packings.

De�nition 6.3. Given an n-vertex graph G, a collection P= {P1; : : : ; Pt} of disjoint
neighborhoods in G is called a packing. The volume of P is deEned as V(P)=

∑
i |Pi|.

Again, one may consider a weighted version of the packing problem. Nonnegative
weights !t;y are associated with neighborhoods �t(y) in a family P of neighborhoods.
For every vertex z, the degree �(z), namely, the sum of weights associated with neigh-
borhoods containing z should not exceed 1. The sum

∑
!t;y|�t;y| over all �t(y)∈P is

the volume of the fractional packing, denoted V(P).

Proposition 6.4 (Linial et al. [44]). For every n-vertex graph G and integer r¡n;
G has a packing P with volume V(P) ¿ n1−1=(�log2 r�+1) by neighborhoods with
radii in [1; : : : ; r]. All neighborhoods in the packing may be restricted to have a ra-
dius which is a power of 2. Moreover; G also has an (integral) packing P′ with
the same properties; except V(P)¿n1−1=(�log2 r�+2). For the integral case; the volume
bound is tight.

There is a strong relationship between packings and voting, allowing us to use
bounds on packings in order to derive bounds on monopolies. A basic example for
this connection is through the following lemma. Call P an r-packing if it consists
solely of r-neighborhoods.

Lemma 6.5. For every graph G; integer r¿1 and r-packing P in G; �Mono(G; r)¿
1
2V(P).

This lemma follows from the observation that due to the disjointness of the
r-neighborhoods in P, any r-monopoly would have to include at least half of the
vertices in each of these neighborhoods.
For instance, the lower bound of Proposition 2.1 on �Mono(G; 1) readily follows from

the simple fact that for every n-vertex graph there exists a 1-packing P of volume
V(P)¿

√
n.

Similarly, Proposition 4.6 follows from Lemma 6.5 and the following observations
(cf. [57] for the Erst).

Lemma 6.6. (i) The d-dimensional hypercube has a 1-packing P with V(P)= n when
d=2t − 1 for integer t¿1; and V(P)=R(n) in all other cases.
(ii) The two-dimensional m×k grid for m; k¿1 has a 1-packing P with V(P)= n.

To get similar bounds for self-ignoring monopolies, we need a stronger version of
packing, deEned next.

De�nition 6.7. Given a set of vertices X , a packing P is said to be X-centered if all
the centers of its neighborhoods are from X .
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Proposition 6.8 (Bermond and Peleg [8]). For every n-vertex graph G; set of vertices
X and :xed integer r; there exists an X -centered packing P in G; with neighborhoods
of radius at most r; and volume V(P)¿|X |1−1=(�log2 r�+1). All neighborhoods in the
packing may be restricted to have a radius which is a power of 2.

7. A range of polling regions

A somewhat diLerent picture emerges if we strengthen our voting policy, and
examine simultaneously all i-neighborhoods for a range of values of i.

De�nition 7.1. A vertex v in a network G(V; E) is said to be [1; r]-controlled by the
set M if for every 16i6r, the majority of the vertices in �i(v) are in M .

For every integer 16m6n and n-vertex graph G, let �Ruled(G;m; [1; r]) denote the
maximum number of vertices that can be [1; r]-controlled by an m-vertex coalition in
the graph G. Dually, let �Mono(G; [1; r]) (resp. �Simon(G; [1; r])) denote the minimum
cardinality of a [1; r]-monopoly (resp. [1; r]-SIMON) in G.
The number of vertices a set M can [1; r]-control was studied in [44].

Proposition 7.2 (Linial et al. [44]). (i) For every :xed r¿1 and n-vertex graph;
�Mono (G; [1; r])=R(n1−1=(�log2 r�+2)).
(ii) For every :xed r¿1 there exists a family of n-vertex graphs Gn with

�Mono(Gn; [1; r])=O(n1−1=(�log2 r�+2)).

Proposition 7.3 (Bermond and Peleg [8]). (i) For every :xed integer r¿1 there
exists a family of n-vertex graphs Gn with �Ruled(Gn; m; [1; r])=T(|Mn|1+1=�log2 r�).
(ii) For every graph G; :xed integer r¿2 and integer m¿1; �Ruled(G;m; [1; r])=

O(m1+1=�log2 r�).

Proposition 7.4 (Bermond and Peleg [8]). (i) In every graph G and for every :xed
integer r¿1; �Simon(G; [1; r])=R(n1−1=(�log2 r�+1)).
(ii) For every :xed integer r¿1 there exists a family of n-vertex graphs Gn with

�Simon(Gn; [1; r])=T(n1−1=(�log2 r�+1)).

Note that the results for monopolies and self-ignoring monopolies have a rather
similar structure, except “shifted” downwards (cf. Fig. 6). In fact, the lower bounds
are proved using similar techniques (based on Propositions 6.4 and 6.8).
Perhaps even more interesting is the fact that the upper bounds of Propositions 7.2

and 7.4 can be demonstrated on the same example graph Gt;p (though the required
case analysis is slightly diLerent, given that the bound proved is diLerent too).
For integers t; p, construct the graph Gt;p as follows. Let r=2t+1 − 1. The graph is

leveled, namely, the vertices are arranged into 2t+1 levels, numbered 1 through 2t+1,
with edges connecting only vertices in adjacent levels ‘, ‘+1. Each level 26‘62t+1
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Fig. 6. Size comparison of [1; r]-monopolies vs. self-ignoring [1; r]-monopolies.

contains m=pt vertices, and level 1 contains pt+1 vertices. Let X denote the set of ver-
tices on level 1, and Let M =V\X be the rest of the vertices. Note that the graph con-
tains n=(2t+p)pt vertices, hence Exing t, and taking p�2t , we have p=T(n1=(t+1)),
so X contains most of the vertices of the graph, and |M |=T(2tpt)=T(n1−1=(t+1)).
We break the levels into t+2 classes Ci, 06i6t+1, as follows. Class C0 consists

of level 1 alone. For 16 i6t, set Ci= {2i−1+1; : : : ; 2i}. Finally, class Ct+1 consists of
level 2t+1 alone. In each level ‘∈Ci, for i¿1, we denote the vertices by v‘1 ; : : : ; v

‘
m, and

break them into pt−i+1 “blocks” of pi−1 consecutive vertices each. Thus the vertices
of the top class Ct+1 form a single block of size m, the vertices in class Ct are broken
into p smaller blocks (of size m=p), and so on.
The edges connecting two consecutive levels ‘ − 1 and ‘ are now deEned as

follows. For ‘ ¿ 3, all the vertices of a particular block Q= {v‘x ; : : : ; v‘y} are con-
nected by a complete bipartite graph (crossbar) to the corresponding vertices at level
‘ − 1; {v‘−1

x ; : : : ; v‘−1
y }. (Note that these vertices may either form a single block or

be split into p blocks, according to whether level ‘ − 1 belongs to the same class as
‘ or one class lower.) For ‘=2, each vertex of level 2 has p distinct neighbors at
level 1 (i.e., each vertex of X has exactly one neighbor on level 2). See Fig. 7 for an
example graph Gt;p for t=3, p=2.
The fact that on this graph, the vertices of M form a self-ignoring [1; 2t+1 − 1]-

monopoly as well as a [1; 2t − 1]-monopoly is established by a straightforward case
analysis.

8. Repetitive polling processes

Certain dynamic variants of majority voting problems were studied in the literature,
in the context of discrete time dynamical systems. These variants concentrated on a
setting in which the nodes of the graph operate in discrete time steps, and at each
step, each node computes the majority in its neighborhood, and adapts the resulting
value as its own. The typical problems studied in this setting involve the behavior of
the resulting sequence of global states (represented as a vector Xt =(xt(v1); : : : ; xt(vn)),
where xt(vi) represents the value at node vi after time step t). The resulting process is
illustrated in Fig. 8.



248 D. Peleg / Theoretical Computer Science 282 (2002) 231–257

Fig. 7. The graph Gt; p for t=3 and p=2. Dashed lines indicate the partitioning of levels into blocks. The
self-ignoring [1; 2t+1 − 1]-monopoly (or, [1; 2t − 1]-monopoly) M consists of all vertices but those of the
bottom level.

Fig. 8. An example for a multi-round repetitive polling game.

Processes of similar nature can model the in=uence and =ow of information in a
variety of diLerent environments, such as societies, genetic processes and distributed
multiprocessor systems. In biological and physical systems the prevailing interpretation
is that nature operates on the basis of micro rules which cause the macro behavior
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observed from outside the system. Hence in all of those cases, it is interesting to
understand how the local rules used by the individual participants aLect the global
dynamic behavior of the system. Indeed, discrete in=uence systems of this type were
studied extensively in areas such as social in=uence [33, 25, 16] and neural networks
[28–30, 59].

8.1. Periodicity behavior

DeEne the period of a repetitive voting process as

Period(Xt) = min{7 |Xt∗+7 = Xt∗ for some t∗}:

Typical questions dealt with in the literature include the following:
– Is Xt periodic?
– Does it reach a Exed point? (i.e., Period(Xt)= 1).
In Enite graphs, the system can have but a Enite number of conEgurations, hence Xt

is clearly periodic. In fact, we know the following.

Proposition 8.1 (Goles and Olivos [28]). For a :nite graph; Period(Xt) is 1 or 2.

See Fig. 9 for various examples of periodic systems.
This result was extended to more general discrete-time dynamical systems [59, 60],

including general threshold functions, and weighted graphs (with a weight function on
the edges, ! : E �→R+), where

xt+1(v)←
{
1;

∑
w∈�(v) !(w; v) · xt(w)¿ 80;

0; otherwise:

Some considered also using multiple colors {0; 1; : : : ; p} for coloring the vertices, as-
signing a color for the next time step by the rule

Ct+1(v)← color j maximizing
∑

w∈�(v);Ct(w)=j
!(w; v):

Finally, the question was studied for dynamical systems based on more general gradient
mappings. In all of these cases the following was shown.

Proposition 8.2 (Poljak and Sura [59] and Poljak and Turzik [60]). Assuming sym-
metric weights !; the system has period 1 or 2.

8.2. Stable con:gurations on the ring

Special attention was given to the problem on the ring, due to its potential applica-
tions for modeling biological processes such as the immune system, drug scheduling,
gene rearrangement, etc. Consider Exed-point conEgurations under r-control, namely,
colorings that remain invariant after applying majority on r-neighborhoods.
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Fig. 9. Examples for repetitive polling games with period 1 or 2.

De�nition 8.3. A conEguration is stable if all its runs (maximal segments of identical
vote) are longer than r.

Lemma 8.4 (Ager [1]). (i) In an unstable :xed-point con:guration; changing a single
0 value to 1 drives the sequence Xt to the all-1 sequence; and vice versa.
(ii) An unstable :xed-point con:guration is balanced (i.e.; contains an equal num-

ber of 0’s and 1’s).

A number of other problems were studied on the ring. Among these are counting
the number of stable Exed-points, done for r=1 [3, 31] and r¿1 [2]. The behavior of
inEnite sequences, and inEnite graphs in general, was also studied under the r-majority
operator.
For inEnite structures the period-2 property is not guaranteed to hold, and conditions

suPcient to ensure it were established in [49–51].

8.3. Size bounds

Bounds on the size of monopolies in the dynamic case have also been considered.
Here the focus is on cases in which the system reaches a monochromatic Expoint.
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Fig. 10. A dynamo of size 2 for the (PW, SN) model.

Fig. 11. A nonmonotone dynamo.

A set of vertices M is said to be a dynamic monopoly, abbreviated dynamo, if starting
the game with the vertices of M colored white, the system eventually reaches an all-
white global state. Cast in these terms, a monopoly is a dynamo that reaches the Enal
all-white conEguration in a single round).
The question of establishing the minimum number of vertices (as a function of n) a

dynamic monopoly must contain is raised in [56]. This question seems to be aLected by
some parameters of the model. In particular, two points were left obscure so far. First,
we have not speciEed how ties are to be broken in dynamic majority computations.
Two plausible options would be to give priority to one speciEc color, w.l.o.g. white,
or to give priority to the current color of the vertex (i.e., require strict majority in
order to change the current color). Another (perhaps less well-motivated) option is to
give priority to =ipping the current color in case of a tie. Let us denote these three
options by Prefer-White (PW), Prefer-Current (PC) and Prefer-Flip (PF), respectively.
The second parameter concerns the question whether the neighborhood of a vertex v
contains v itself or not. Let us denote these two options by Self-Included (SI) and
Self-Not-included (SN), respectively. Combinations of these two parameters give rise
to a number of possible models, which we will denote by the appropriate pair. (E.g.,
the (PW, SN) model gives priority to white in case of ties, and computes tha majority
on the neighborhood including v’s own value.)
Observe that in the (PW, SN) model, there exist graphs with a constant-size dynamo.

An example is given in Fig. 10.
Notice that the example of Fig. 10 is monotone, in the sense that it never “loses

ground”, i.e., once a vertex becomes white, it remains white forever. Formally, letting
Mt denote the set of white-colored vertices after round t (with M0 =M), a dynamo is
said to be monotone if it satisEes Mt ⊆ Mt+1 for every t ¿ 0. As another example,
the white set in the initial state in Fig. 8 is a monotone dynamo. An example for a
nonmonotone dynamo (say, in the (PC, SI) model) is depicted in Fig. 11.
It is shown in [7] that in fact there exist constant-size dynamos in all models.
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Fig. 12. A 12-node monotone dynamo on the 5× 9 toroidal mesh in the (PW, SN) model.

Proposition 8.5 (Berger [7]). In all models; for every n¿ 1; there exists a graph G
of n or more vertices with a dynamo of size O(1).

In contrast, the following is proven in [56] for the limited class of monotone
dynamos, in a number of the above models.

Proposition 8.6 (Peleg [56]). In the (PW; SI); (PC; SI); (PF; SI) and (PC; SN ) models;
for every n-vertex graph G; every monotone dynamo is of size R(

√
n).

Near-tight upper and lower bounds on the size of monotone dynamos for various
families of tori, including the classical toroidal mesh, the torus cordalis and the torus
serpentinus, are derived in [24]. These results reveal marked diLerences between the
(PW,SN) and (PC, SN) models. For instance, in n× n tori of all three types, the
former model allows monotone dynamos of size T(n), whereas the latter one admits
only monotone dynamos of size T(n2). Fig. 12 depicts a 12-node monotone dynamo
on the 5× 9 toroidal mesh in the (PW, SN) model.
The problem was studied also in the so-called irreversible model, in which white

nodes are not allowed to reverse their color back to black. In the context of fault-
tolerant computing, the irreversible model captures situations in which the initial faults
are permanent. Under such assumptions, situations in which the system converges to
a monochromatic state correspond to initial fault distributions that cause the entire
system to fail.
Characterizations of irreversible dynamos have recently been given for various graph

classes, including chordal rings, tori and butter=ies [21–24, 46]. Fig. 13 depicts a
4-node irreversible dynamo on the 5× 5 toroidal mesh in the (PW, SN) model. While
most of those bounds are rather tight, there is a wide gap between the upper and lower
bounds obtained for the butter=y in [46], and tightening the lower bound remains an
interesting open problem.

8.4. Mixing variants

Some natural variants of the problem one may consider are based on mixing the
in=uences, through applying averaging instead of majority in each time step. The rule
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Fig. 13. A 5-node irreversible dynamo on the 5× 5 toroidal mesh in the (PW, SN) model.

Fig. 14. An example for the application of a local averaging distribution as a tool for load balancing.

to be applied is

xt+1← [weighted] AVERAGEw∈�(v){xt(w)}

=

∑
w∈�(v) !(w; v) · xt(w)∑

w∈�(v) !(w; v)
:

Such a rule may End applications in modeling social in=uences of opinions on quanti-
tative questions (e.g., deciding on the sum of money to be spent on a certain project).
Nonlocal variants of this problem (namely, on a complete graph), with diLerent weights
assigned to diLerent opinions, were studied by several authors (cf. [16]). In an entirely
diLerent context, such a rule can be used for balancing the workload in a distributed
network of servers (see Fig. 14).

8.5. Randomized variants

The repetitive polling process was studied also in the probabilistic model, in which
a vertex colors itself according to some probabilistic rule in each round, based on the
colors of its neighbors. One natural probabilistic rule requires each vertex to choose at
random one of its neighbors and adopt its color. Equivalently, if the vertex has w white
neighbors and b black neighbors, it recolors itself white with probability w=(w + b)
and black with probability b=(w + b).
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This natural process is studied in [34, 35], where the main question addressed is
determining the probability of ending up in the all-white state, for any given graph and
initial coloring. In fact, the problem is analyzed in the slightly more general weighted
setting, where real nonnegative weights are assigned to the edges, and the probability
to pick a particular neighbor depends on the weight of the edge leading to it. The
paper analyzes the underlying Markov chain and proves that the probability of the
process ending in the all-white state is proportional to the sum of the edge weights
of the initially colored white nodes. In the special unweighted case, this probability is∑

i∈W di=2m , where m is the number of edges, W is the set of nodes initially colored
white and di is the degree of node i. The theorem is generalized also to processes on
graphs with multiple colors (instead of two). A similar result, although only for the
unweighted case, was obtained independently in [52], using a diLerent proof. Some
extremal questions related to such processes are studied in [36].
In [35] it is also observed that this process has applications in the area of consen-

sus protocols (cf. [43, 11, 19, 48, 6]), especially under benign fault models. While the
probabilistic polling process is much slower to converge than other (structured) con-
sensus algorithms, and it does not provide termination detection, it is in fact suitable
for solving a “repetitive” variant of the consensus problem, in which the variables are
occasionally changed by failures or other external forces, and the process must repeat-
edly bring the system back to a monochromatic view. Put another way, this process is
“self-stabilizing” in a weak sense (cf. [5, 40]), i.e., assuming an adversary is allowed to
arbitrarily change the colors of some of the nodes, the process will eventually converge
back to a monochromatic state, albeit not necessarily to the original one. This type of
stability is achieved even in the rather powerful dynamic network model of [4].
Another advantage of the probabilistic polling process is that it yields proportionate

agreement, i.e., the Enal consensus value is zero or one with probability based on their
proportion in the initial inputs.
In addition, some lower and upper bounds are proven in [35] for the size of small

monopolies which can bring the process to the all-white state with high probability. It
is shown that for reasonably high probabilities (1 − & for 1

2 ¿ & ¿ 1=n) the smallest
monopolies are of size T(

√
n=&). This extremal result indicates that the probabilistic

model is not very diLerent from the deterministic model, when considering the size of
the smallest monopolies.
Some related results concern a probabilistic asynchronous model called the voter

model, introduced by Holley and Ligget [38]. This is a continuous time Markov process
with a state space consisting of all the 2-colorings of V . The process evolves according
to the following mechanism. Attached to each vertex is a clock which rings at an
exponentially distributed (unit) rate independently of all other clocks. When its clock
rings, the vertex chooses a neighbor at random and adopts its color. This process
was extensively studied in inEnite grid graphs [38], and the model for arbitrary Enite
connected graphs is studied in [18].
Among the parameters studied on such models are convergence time (i.e., the time

it takes to reach a Exed point) and convergence probability (i.e., the probability to end
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up with all nodes colored white, given some initial coloring). Although the underlying
Markov chain is quite diLerent from the synchronous probabilistic model of [35], it
turns out that the probabilities to end in the all-white state in the two models are the
same.

8.6. Other variants

Finally, one may also consider other computational modes. For instance, little is
known about the basic properties of the two-party game in which one of the two
players attempts to paint the entire graph white and the other black. Each round is
divided into two sub-rounds, and the two players alternate in picking one vertex and
ordering it to recolor itself (obeying the majority rule).
Another possible model to consider is the asynchronous one, in which a scheduler

determines the order in which vertices perform their polls. It is easy to see that in
this model, there are graphs and initial small sets that the scheduler can help color
the entire graph. For example, the two white vertices of Fig. 1 can color the entire
graph white if the scheduler starts the schedule by asking each of the black vertices
to perform a poll. On the other hand, it is also easy to see that certain initial sets are
“resistant”, or self-protective. For example, the two initial sets in the third example
in Fig. 9 are stable (say, in the (PC; SI)-model) under any strategy of the scheduler.
Again, not much is known about the problem in this model either.
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