1,110 research outputs found

    A novel 3D multilateration sensor using distributed ultrasonic beacons for indoor navigation

    Get PDF
    Navigation and guidance systems are a critical part of any autonomous vehicle. In this paper, a novel sensor grid using 40 KHz ultrasonic transmitters is presented for adoption in indoor 3D positioning applications. In the proposed technique, a vehicle measures the arrival time of incoming ultrasonic signals and calculates the position without broadcasting to the grid. This system allows for conducting silent or covert operations and can also be used for the simultaneous navigation of a large number of vehicles. The transmitters and receivers employed are first described. Transmission lobe patterns and receiver directionality determine the geometry of transmitter clusters. Range and accuracy of measurements dictate the number of sensors required to navigate in a given volume. Laboratory experiments were performed in which a small array of transmitters was set up and the sensor system was tested for position accuracy. The prototype system is shown to have a 1-sigma position error of about 16 cm, with errors between 7 and 11 cm in the local horizontal coordinates. This research work provides foundations for the future development of ultrasonic navigation sensors for a variety of autonomous vehicle applications

    Classification and localization of electromagnetic and ultrasonic pulsed emitters

    Get PDF
    Mención Internacional en el título de doctorThe localization of radiative sources is very important in many fields of work such as: sonar, radar and underwater radar, indoor localization in wireless networks, earthquake epicenter localization, defective assets localization in electrical facilities and so forth. In the process of locating radiative sources exist many issues which can provoke errors in the localization. The signals acquired may belong to different sources or they can be mixed with environmental noise, then, their separation before using localization algorithms is of great interest to be efficient and accurate in the computational process. Furthermore, the geometry and radiation characteristics of the receivers, the nature of the signal or their measuring process may cause deviations in the signal onset calculus and therefore the source localization could be displaced from the actual position. In this thesis, there are three kinds of algorithms to undertake three steps in the emitter localization: signal separation, onset and time delay estimation of the signals and source localization. For each step, in order to reduce the error in the localization, several algorithms are analyzed and compared in each application, to choose the most reliable. As the first step, to separate different kinds of signals is of interest to facilitate further processing. In this thesis, different optimization techniques are presented over the power ratio (PR) maps method. The PR uses a selective spectral signal characterization to extract the features of the analyzed signals. The technique identifies automatically the most representative frequency bands which report a great separation of the different kinds of signals in the PR map. After separating and selecting the signals, it is of interest to compare the algorithms to calculate the onset and time delay of the pulsed signals to know their performance because the time variables are inputs to the most common triangulation algorithms to locate radiative and ultrasonic sources. An overview of the algorithms used to estimate the time of flight (ToF) and time differences of arrival (TDoA) of pulsed signals is done in this thesis. In the comparison, there is also a new algorithm based on statics of high order, which is proposed in this thesis. The survey of their performance is done applied to muscle deep estimation, localization in one dimension (1D), and for the localization of emitters in three dimensions (3D). The results show how the presented algorithm yields great results. As the last step in the radiative source localization, the formulation and principle of work of both iterative and non-iterative triangulation algorithms are presented. A new algorithm is presented as a combination of two already existing improving their performance when working alone. All the algorithms, the proposed and the previous which already exist, are compared in terms of accuracy and computational time. The proposed algorithm reports good results in terms of accuracy and it is one of the fastest in computational time. Once the localization is achieved, it is of great interest to understand how the errors in the determination of the onset of the signals are propagated in the emitter localization. The triangulation algorithms estimate the radiative source position using time variables as inputs: ToF, TDoA or pseudo time of flight (pToF) and the receiver positions. The propagation of the errors in the time variables to the radiative source localization is done in two dimensions (2D) and 3D. New spherical diagrams have been created to represent the directions where the localization is more or less sensible to the errors. This study and their sphere diagrams are presented for several antenna layouts. Finally, how the errors in the positioning of the receivers are propagated to the emitter localization is analyzed. In this study, the effect in the propagation of both the relative distance from the receivers to the emitter and the direction between them has been characterized. The propagation of the error considering the direction is also represented in spherical diagrams. For a preferred direction identified in the spheres, the propagated error in the source localization has been quantified regarding both the source distance and the magnitude of the errors in the receivers positioning.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Andrea Cavallini.- Secretario: José Antonio García Souto.- Vocal: Iliana Portugués Peter

    Combined infrared-ultrasonic positioning system to improve the data availability

    Get PDF
    Many indoor positioning applications related to accurate monitoring and tracking targets require centimeter precision. Infrared (IR)- and ultrasound (US)-based systems represent a feasible approach providing high robustness against interference. Furthermore, their combination may achieve better performance by mitigating their complementary drawbacks, covering larger areas, and improving the availability of positioning measurements. In this context, this work presents the proposal and experimental evaluation of a tightly coupled fusion method that uses an extended Kalman filter (EKF) to merge an IR- and a US-based positioning system. An outlier detection method is considered to select measurements with an adequate performance. Experimental results reveal that the IR and US systems are unable to position in 4.08% and 26.06% of locations, whereas the combined IR -US system has 100% of availability. In addition, the merged solution achieves less than 4 cm of positioning error in 90% of cases, outperforming the IR and US systems when they work independently

    ALO4: Angle localization and orientation system with four receivers

    Full text link
    This paper presents a 2D indoor localization and orientation system based on a TDOA (Time Difference of Arrival) technique. It uses an array of receivers (four low-cost ultrasonic resonant devices in a square distribution) to implement low-computational-effort DOA (Direction of Arrival) algorithms, based on assumed plane-wave reception. The system only demands two transmitters at well-known positions on the ceiling of the room for obtaining the node position and orientation when it is deployed on the floor of the room. This system has been tested using a Xilinx Spartan-3A FPGA that implements a 52 MHz MicroBlaze. The experimental results include a total of 1,440 points, obtaining a mean localization error of 5.17 cm and a mean orientation error of 3.34 degrees. For this system, the localization and orientation processes are executed in less than 50 us.This work has been supported by the Spanish Ministerio de Ciencia e Innovacion under project TEC2009-0987

    HALO4: Horizontal Angle Localization and Orientation System with 4 Receivers and Based on Ultrasounds

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10846-015-0283-2This paper presents a low cost ultrasonic localization and orientation system based on the DTOA (Differential Time Of Arrival) technique. The proposed system consists in deploying any number of autonomous nodes at the floor of a room and place some transmitters at the ceiling. Each node shall have four ultrasonic receivers to obtain the basic measures for the localization and orientation systems, and the coverage area of the system is defined by any region covered by at least three transmitters. The localization system is based on an estimation process of the horizontal angle of the node with respect to the transmitters. This implementation allows deploying the transmitters at different heights and ignores the error introduced by an incorrect estimation of the ultrasonic signal speed. The computational effort of the proposed system is greater than other ALO (Angle Localization and Orientation) systems, needing a minimization process to obtain the localization results, but it is smaller than in other typical techniques, like those based on the intersection of hyperboloids.This work has been supported by the Spanish Ministerio de Ciencia e Innovación under project TEC2009-09871

    Outdoor navigation of mobile robots

    Get PDF
    AGVs in the manufacturing industry currently constitute the largest application area for mobile robots. Other applications have been gradually emerging, including various transporting tasks in demanding environments, such as mines or harbours. Most of the new potential applications require a free-ranging navigation system, which means that the path of a robot is no longer bound to follow a buried inductive cable. Moreover, changing the route of a robot or taking a new working area into use must be as effective as possible. These requirements set new challenges for the navigation systems of mobile robots. One of the basic methods of building a free ranging navigation system is to combine dead reckoning navigation with the detection of beacons at known locations. This approach is the backbone of the navigation systems in this study. The study describes research and development work in the area of mobile robotics including the applications in forestry, agriculture, mining, and transportation in a factory yard. The focus is on describing navigation sensors and methods for position and heading estimation by fusing dead reckoning and beacon detection information. A Kalman filter is typically used here for sensor fusion. Both cases of using either artificial or natural beacons have been covered. Artificial beacons used in the research and development projects include specially designed flat objects to be detected using a camera as the detection sensor, GPS satellite positioning system, and passive transponders buried in the ground along the route of a robot. The walls in a mine tunnel have been used as natural beacons. In this case, special attention has been paid to map building and using the map for positioning. The main contribution of the study is in describing the structure of a working navigation system, including positioning and position control. The navigation system for mining application, in particular, contains some unique features that provide an easy-to-use procedure for taking new production areas into use and making it possible to drive a heavy mining machine autonomously at speed comparable to an experienced human driver.reviewe

    A Hybrid Indoor Location Positioning System

    Get PDF
    Indoor location positioning techniques have experienced impressive growth in recent years. A wide range of indoor positioning algorithms has been developed for various applications. In this work a practical indoor location positioning technique is presented which utilizes off-the-shelf smartphones and low-cost Bluetooth Low Energy (BLE) nodes without any further infrastructure. The method includes coarse and fine modes of location positioning. In the coarse mode, the received signal strength (RSS) of the BLE nodes is used for location estimation while in the fine acoustic signals are utilized for accurate positioning. The system can achieve centimeter-level positioning accuracy in its fine mode. To enhance the system’s performance in noisy environments, two digital signal processing (DSP) algorithms of (a) band-pass filtering with audio pattern recognition and (b) linear frequency modulated chirp signal with matched filter are implemented. To increase the system’s robustness in dense multipath environments, a method using data clustering with sliding window is employed. The received signal strength of BLE nodes is used as an auxiliary positioning method to identify the non-line-of-sight (NLoS) propagation paths in the acoustic positioning mode. Experimental measurement results in an indoor area of 10 m2 indicate that the positioning error falls below 6 cm

    Desenvolvimento de metodologias para localização indoor de smartphones com exatidão ao centímetro

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaThis thesis describes the design and implementation of a reliable centimeter-level indoor positioning system fully compatible with a conventional smartphone. The proposed system takes advantage of the smartphone audio I/O and processing capabilities to perform acoustic ranging in the audio band using non-invasive audio signals and it has been developed having in mind applications that require high accuracy, such as augmented reality, virtual reality, gaming and audio guides. The system works in a distributed operation mode, i.e. each smartphone is able to obtain its own position using only acoustic signals. To support the positioning system, a Wireless Sensor Network (WSN) of synchronized acoustic beacons is used. To keep the infrastructure in sync we have developed an Automatic Time Synchronization and Syntonization (ATSS) protocol with a standard deviation of the sync offset error below 1.25 μs. Using an improved Time Difference of Arrival (TDoA) estimation approach (which takes advantage of the beacon signals’ periodicity) and by performing Non-Line-of-Sight (NLoS) mitigation, we were able to obtain very stable and accurate position estimates with an absolute mean error of less than 10 cm in 95% of the cases and a mean standard deviation of 2.2 cm for a position refresh period of 350 ms.Esta tese descreve o projeto e a implementação de um sistema de localização para ambientes interiores totalmente compatível com um smartphone convencional. O sistema proposto explora a capacidade de aquisição de sinais áudio e de processamento do smartphone para medir distâncias utilizando sinais acústicos na banda do audível; foram utilizados sinais áudio não-invasivos, i.e. com reduzido impacto perceptual em humanos. No desenvolvimento deste sistema foram consideradas aplicações que exigem elevada exatidão, na ordem dos centímetros, tais como realidade aumentada, realidade virtual, jogos ou guias virtuais. Utilizou-se uma infraestrutura de faróis de baixo custo suportada por uma rede de sensores sem fios (RSSF). Para manter a infraestrutura síncrona, foi desenvolvido um protocolo de sincronização e sintonização automática, (Automatic Time Synchronization and Syntonization - ATSS) que garante um desvio padrão do erro de offset abaixo de 1.25 μs. Cada smartphone efectua medidas MT-TDoA que posteriormente são utilizadas pelo algoritmo de localização hiperbólica. As estimativas de posição resultantes são estáveis e precisas, com um erro médio absoluto menor do que 10 cm em 95% dos casos e um desvio padrão médio de 2.2 cm, para um período de atualização de posição de 350 ms

    Anchor Self-Calibrating Schemes for UWB based Indoor Localization

    Get PDF
    Traditional indoor localization techniques that use Received Signal Strength or Inertial Measurement Units for dead-reckoning suffer from signal attenuation and sensor drift, resulting in inaccurate position estimates. Newly available Ultra-Wideband radio modules can measure distances at a centimeter-level accuracy while mitigating the effects of multipath propagation due to their very fine time resolution. Known locations of fixed anchor nodes are required to determine the position of tag nodes within an indoor environment. For a large system consisting of several anchor nodes spanning a wide area, physically mapping out the locations of each anchor node is a tedious task and thus makes the scalability of such systems difficult. Hence it is important to develop indoor localization systems wherein the anchors can self-calibrate by determining their relative positions in Euclidean 3D space with respect to each other. In this thesis, we propose two novel anchor self-calibrating algorithms - Triangle Reconstruction Algorithm (TRA) and Channel Impulse Response Positioning (CIRPos) that improve upon existing range-based implementations and solve existing problems such as flip ambiguity and node localization success rate. The localization accuracy and scalability of the self-calibrating anchor schemes are tested in a simulated environment based on the ranging accuracy of the Ultra-Wideband modules
    corecore