571 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Strategies for neural networks in ballistocardiography with a view towards hardware implementation

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy at the University of LutonThe work described in this thesis is based on the results of a clinical trial conducted by the research team at the Medical Informatics Unit of the University of Cambridge, which show that the Ballistocardiogram (BCG) has prognostic value in detecting impaired left ventricular function before it becomes clinically overt as myocardial infarction leading to sudden death. The objective of this study is to develop and demonstrate a framework for realising an on-line BCG signal classification model in a portable device that would have the potential to find pathological signs as early as possible for home health care. Two new on-line automatic BeG classification models for time domain BeG classification are proposed. Both systems are based on a two stage process: input feature extraction followed by a neural classifier. One system uses a principal component analysis neural network, and the other a discrete wavelet transform, to reduce the input dimensionality. Results of the classification, dimensionality reduction, and comparison are presented. It is indicated that the combined wavelet transform and MLP system has a more reliable performance than the combined neural networks system, in situations where the data available to determine the network parameters is limited. Moreover, the wavelet transfonn requires no prior knowledge of the statistical distribution of data samples and the computation complexity and training time are reduced. Overall, a methodology for realising an automatic BeG classification system for a portable instrument is presented. A fully paralJel neural network design for a low cost platform using field programmable gate arrays (Xilinx's XC4000 series) is explored. This addresses the potential speed requirements in the biomedical signal processing field. It also demonstrates a flexible hardware design approach so that an instrument's parameters can be updated as data expands with time. To reduce the hardware design complexity and to increase the system performance, a hybrid learning algorithm using random optimisation and the backpropagation rule is developed to achieve an efficient weight update mechanism in low weight precision learning. The simulation results show that the hybrid learning algorithm is effective in solving the network paralysis problem and the convergence is much faster than by the standard backpropagation rule. The hidden and output layer nodes have been mapped on Xilinx FPGAs with automatic placement and routing tools. The static time analysis results suggests that the proposed network implementation could generate 2.7 billion connections per second performance

    Data mining an EEG dataset with an emphasis on dimensionality reduction

    Get PDF
    The human brain is obviously a complex system, and exhibits rich spatiotemporal dynamics. Among the non-invasive techniques for probing human brain dynamics, electroencephalography (EEG) provides a direct measure of cortical activity with millisecond temporal resolution. Early attempts to analyse EEG data relied on visual inspection of EEG records. Since the introduction of EEG recordings, the volume of data generated from a study involving a single patient has increased exponentially. Therefore, automation based on pattern classification techniques have been applied with considerable success. In this study, a multi-step approach for the classification of EEG signal has been adopted. We have analysed sets of EEG time series recording from healthy volunteers with open eyes and intracranial EEG recordings from patients with epilepsy during ictal (seizure) periods. In the present work, we have employed a discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time - that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. Principal components analysis (PCA) and rough sets have been used to reduce the data dimensionality. A multi-classifier scheme consists of LVQ2.1 neural networks have been developed for the classification task. The experimental results validated the proposed methodology

    Artificial Neural Network and its Applications in the Energy Sector – An Overview

    Get PDF
    In order to realize the goal of optimal use of energy sources and cleaner environment at a minimal cost, researchers; field professionals; and industrialists have identified the expediency of harnessing the computational benefits provided by artificial intelligence (AI) techniques. This article provides an overview of AI, chronological blueprints of the emergence of artificial neural networks (ANNs) and some of its applications in the energy sector. This short survey reveals that despite the initial hiccups at the developmental stages of ANNs, ANN has tremendously evolved, is still evolving and have been found to be effective in handling highly complex problems even in the areas of modeling, control, and optimization, to mention a few

    ZyON: Enabling Spike Sorting on APSoC-Based Signal Processors for High-Density Microelectrode Arrays

    Get PDF
    Multi-Electrode Arrays and High-Density Multi-Electrode Arrays of sensors are a key instrument in neuroscience research. Such devices are evolving to provide ever-increasing temporal and spatial resolution, paving the way to unprecedented results when it comes to understanding the behaviour of neuronal networks and interacting with them. However, in some experimental cases, in-place low-latency processing of the sensor data acquired by the arrays is required. This poses the need for high-performance embedded computing platforms capable of processing in real-time the stream of samples produced by the acquisition front-end to extract higher-level information. Previous work has demonstrated that Field-Programmable Gate Array and All-Programmable System-On-Chip devices are suitable target technology for the implementation of real-time processors of High-Density Multi-Electrode Arrays data. However, approaches available in literature can process a limited number of channels or are designed to execute only the first steps of the neural signal processing chain. In this work, we propose an All-Programmable System-On-Chip based implementation capable of sorting neural spikes acquired by the sensors, to associate the shape of each spike to a specific firing neuron. Our system, implemented on a Xilinx Z7020 All-Programmable System-On-Chip is capable of executing on-line spike sorting up to 5500 acquisition channels, 43x more than state-of-the-art alternatives, supporting 18KHz acquisition frequency. We present an experimental study on a commonly used reference dataset, using on-line refinement of the sorting clusters to improve accuracy up to 82%, with only 4% degradation with respect to off-line analysis

    Personalized Health Monitoring Using Evolvable Block-based Neural Networks

    Get PDF
    This dissertation presents personalized health monitoring using evolvable block-based neural networks. Personalized health monitoring plays an increasingly important role in modern society as the population enjoys longer life. Personalization in health monitoring considers physiological variations brought by temporal, personal or environmental differences, and demands solutions capable to reconfigure and adapt to specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of modular basic blocks that can be easily implemented using reconfigurable digital hardware such as field programmable gate arrays (FPGAs) that allow on-line partial reorganization. The modular structure of BbNNs enables easy expansion in size by adding more blocks. A computationally efficient evolutionary algorithm is developed that simultaneously optimizes structure and weights of BbNNs. This evolutionary algorithm increases optimization speed by integrating a local search operator. An adaptive rate update scheme removing manual tuning of operator rates enhances the fitness trend compared to pre-determined fixed rates. A fitness scaling with generalized disruptive pressure reduces the possibility of premature convergence. The BbNN platform promises an evolvable solution that changes structures and parameters for personalized health monitoring. A BbNN evolved with the proposed evolutionary algorithm using the Hermite transform coefficients and a time interval between two neighboring R peaks of ECG signal, provides a patient-specific ECG heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia database demonstrate a potential for significant performance enhancements over other major techniques
    corecore