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Chapterl

1. Intreduction

Lt Introduction
A large number of people with a movement problem forims & relevant social and medical problem in alf

countries. The rapidly growing mumber of elderly people, who inevitably experience increasing
limitations in their functioning as they grow older, Is a cause of major international concern. Only in the
European Community, 10% of the population is suffering from more or less severe motor problems [1].
Awareness of disability costs and demographic developments have directed the policy of governments to
quality of life problems. More than in the past, research devoled to diseases of the neuro-musculo-
skeletal system is supported. This regards diagnosis, surgical and non-surgical treatment, rehabilitation
and prevention, In alf of these areas biomechanics is essential for the assessment of the mechanical
functioning of healthy subjects and patients. Movement analysis is one of the most important parts of
biomechanical research.

Since the end of the 1%th century there have been attempts to assess movement in an objective and
quantitative manner (Muybridge, 1887; Marey, 1894; Braune & Fischer, 1895). During the past 20
years, regular technological developments like microelectronics and fast computational tools have made
this goal easier to achieve. Nowadays, in the field of Biomechanical Engineering more and more
sophisticated systems for movement analysis(MA) have been developed.

Significant results have been obfained, in several fields such as Rehabilitation, Ergonomics, Sport,
Biomechanics and orthopedics. However, in rehabilitation, MA has received limited clinical
acceptance, at least in Europe {2}.

In 1989, the European Community approved a project on Computer Aided Movement Analysis in a
Rehabilitation Context (CAMARC). In general terms, the purpose of the project was to render
procedures and instruments for MA useful for patients and clinical doctors through suitable refinernents
of both instrumentation and software [3].

In other terms, the overall objective of the CAMARC project was the transfer of the ever-improving
bioengineering methodology and techniques for MA to the clinical environment[3].

An important cause of the gap between the laboratory and the clinic could be the fact that stance and
movement analysis procedures are generally aimed at the understanding of mechanisms at a rather basic
level, whereas many clinical questions require an overall assessment of motor behavior in terms of skills
instead of functions [4).

In the rehabilitation WHO uses the following ciassification:

o the leve! of impairment;

© the level of disability;
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» {he level of handicap.

In terms of the WHO (1980}, it can be stated that in the field of rehabilitation medicine the development
of reliable procedures for the assessment of disabilities is more imporfant than the development of
methods directed at the detailed analysis of impairment [4][5].

At this moment, the majority of movement analytical applications is focused at the level of impairment,
which is especially relevant for orthopedic and surgica} procedures.

Rehabilitation medicine, however, is primarily focused at the level of disability. It is remarkable that
adequate instruments on the level of disabitity are relatively scarce,[6)

In rehabilitation medicine there is a growing interest in the investigation of daily life motor activities, as
a suitable way to study motor disabilities and as an aid to clinical decision-making.

To facilitate such investigations, new and advanced procedures and instrumentation for monitoring and
documenting of daily life motor activities have been developed. At present, a large diversity exists in the
employed methods and technology.

The system for Ambulatory Monitoring of Motor Activities (AMMAY) is one of the developments that
enables clinicians and research workers to obtain quantitative information about daily life motor

activities. This information can be used for assessing the functional level of a patient.

1.2 Methods of Monitoring

In general, there are three possibilities to monitor and document daily life motor activities and other
clinical parameters refevant for the clinician:
¢ Questionnaire-based monitoring;
¢ Laboratory-based monitoring;
» Ambulatory-based monitoring.
Questionnaire-based monitoring [7]f819[10)[11][12][13] gives a good indication of the activities of
patients through their self-reports. The questionnaires can be distinguished in accordance fo the
following main areas:
» Those which examine mainly daily life motor activities. Some exampies are:
Katz ADL scale;
Barthel Index;
Amputee aclivity.
o Those which are multidimensional assessments
These are designed to contain the physical, social, cognitive and emotional factors which determine

an individual’s level of functioning. Some examples are:
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Multilevel Assessment Instrument;

Sickness Impact Profile;

Comprehensive Assessment and Referral Evaluation.
» Those which ¢xamine only daily life motor activitics

There is no such questionnaire until now
The following paragraphs give a short description of two of the above mentioned questionnaires.
Amputee Activity
The Amputee Activity questionnaire is an instrument designed to derive a numerical Activity Score
from the fimb amputee’s answers. In this questionnaire, the total time of some activities such as sitting,
walking, standing, climbing stairs, and use of 2 wheelchair play an important role.
Sickness Impact Profile
The SIP is intended as a health status measure to be used in heaith surveys and in patient progress
monitoring. The SIP questionnaire consists of 136 items grouped into 12 categories. Each category
represents a different aspect of daily functioning. In the context of the present research it should be
emphasized that the level of daily life motor activities has an important influerce on the tota? SIP score.
For a complete description of these two and other questionnaires we refer to the literature. In Appendix
A, a part of these two questionnaires is shown.
An important point to be stressed is that there are many serious questions which have to be investigated
further, Questions such as: Does this Questionnaire-based monitoring effectively mirror changes in a
patient’s status? To what extent are the answers objective about parameters such as duration and
frequency of daily tife motor activities? Are they sufficiently sensitive to detect clinically important
changes over time? Do they mirror clinically relevant changes in a short period? Do they mirror
clinically relevant changes in a long period? Is the scoring procedure reliable? What is the correlation of
the individual question score with the overall score?
Laboratory-based monitoring is until now the most frequently used possibility to monitor and
docurnent the relevant parameters in MA. For a laboratory or clinical situation it is relevant to develop a
set of elaborate methods and protocols and to exploit the potentialities of the most sophisticated existing
instruments for measurement and analysis (3D video recording, moving through magnetism, etc.). In
this approach, the patients are attached to a stationary recording instrument through cables. Recording
is on-ling and the mumber of simultaneously measured parameters can be high, Although laboratory-
based monitoring provides highly accurate and valvable clinical information about daily life motor
activities, it has to be considered that in the [aboratofy environmental circurastances are artificial and
are not similar to those in ths natural environment. The discordance between laboratory and natural

environment initiated the discussion about the validity and objectivity of laboratory based monitoring.
q
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Ambulatory-based monitoring secms to be an appropriate approach for monitoring and documenting

daily life motor activities in natural environmental circumstances. “Various parameters from patients
are measured in such a manner that subjects are not hooked-up by wire to stationary recording
instruments and accordingly their movements are almost unrestricted during these measurements”f 14},
The Ambulatory Monitoring of Motor Activities (AMMAY} system is one of the Ambulatory-based
monitoring systems that enables clinicians and research workers to obtain quantitative information
about the motor activities of the human body.

The development of the AMMA system was started in the framework of the CAMARC-I project which
is still in progress in the Biomedical Physics and Technology Department (BNT) of the Erasmus
University in Rotterdam. The developing of the instrumentation was initially oriented to posture analysis
in the context of occupational medicine.[15]

One of the main aims of the AMMA system is to provide means for the automation of the recognition of
daily life motor activity classes such as walking, standing, sitting, lying on the back and automation of
the computation of other relevant clinical parameters from long term recorded data with high efficiency

at reasonable speed, in order to avoid time consuming human intervention.
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1.2.1 Ambulatory Monitoring of
Motor Activities (AMMA) system

A
Figure 1 shows the basic configuration and PATIENT

highlights the issues involved in the AMMA
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Figure 1: the structure of the AMMA system

perpendicular to the femur., Two other

sensors are placed on the sternuim; one is to

seitse acceleration of the trunk in the sagittal direction, the other in the lateral direction.

The environmental sensors (such as light and sound sensors) are placed somewhere on the subject’s

clothing[16][17]. Figure 2 shows a patient who is equipped with the ambulatory hardware.
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The downloading block transfers the recorded data from the RAMCORDER to a computer, using the

custom made software package RAMTALK[18}. RAMTALK also offers some types of file conversion

(e.g., from binary to ASCH) to create a new data file format compatible with the next block,

The data preprocessing block transforms raw data

into preprocessed unlabeled data and contains the

soundfiight

necessary software tools (such as the Codas “module. -

packagef19]). This block can perform some

operations on the sigoals like filtering, offset

correction and smoothing operations, Figure 3 shows

the output of the four movement sensors after signal
processing (the output of the environmental sensors is
not included here).

The classification block transforms unlabeled data to
labeled data and contains an artificial neural network
or fuzzy system as a classifier. This block will be

discussed in the following chapter. Figure 4 shows the

uniabeled data of Figure 3, but now with labels which

indicate daily life motor activities.

Figure 2: patient instrumentation
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Figure 3: Representalive signals for some activities measured with four accelerometers (unlabeled)
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Figure 4: Representative signals for some activities measured with four accelerometers (labeled).

The data visualization block transforms numerical data to graphical output for better interpretation in
the subsequent block, The way in which the output is presented, is fundamental for its optimal
evaluation by the clinicians. In section 1.2.2, some suggestions are presented for the numerical and
graphical representation of the information extracted from the output file of the classification block,
which is manipulated in the data visualization block,

The clinical block performs the interpretational, evaluational and analytical operations on the graphical

and numerical results, and it may suggest some therapeutical strategies. It is the clinician’s concern to

improve this block in future.

1.2.2 Activity Profiles

Figure 5 shows an “Activity Profile’. Here the occurrence of a certain activity over a certain recording
time is drawn, In this example, the activitics have been classified into six classes. A class can be
divided into subclasses, when more details of an activity are of interest. During the recording session,
the subject performed a sequence of activities as is clearly demonstrated in

Figure 5. The signal waveforins that could not be recognized by the classification block are indicated as

a separate class “unlabeled”. All transition activities, e.g., from standing to sitting, from siting to lying,

etc., are shown as the class “transition”,
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Class Transition Lying  Walking  Standing Sitting Unlabeled

Figure 5: Graphical presentation of an activity profile: sequence and duration of daily life motor

activity classes over a period of 20 minutes

An overview of the distribution in time of daily-life activity classes of two amputees during a long term
recording is presented in the pie graph in Figure 6. This shows the duration of each activity as a
percentage fo the total recording time (+ 10 hours). In this figure the classes ‘fransition’ and

‘unclassified’ are put together.

trausition and unclassified (4.76%) transition and unclassifigd (3.38%)
walking (4.86%) walking {3.80%)

standing {27.04% standing (5.26%)
b N (] ‘

Bitting (63.34%)
sitting (83.55%)

Figure 6: overview of an activity profile: distribution of activities as a percentage of long term
recording time for two subjects.

Figure 7 shows two histograms in which the horizontal axis displays the duration of the activity
‘walking’ divided in category-intervals of 10 seconds, and the vertical axis displays the frequency of

each category-inferval as recorded during the total recording time.
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Figure 7: histogram of an activity profile for two subjects: the activity walking is divided in
category-intervals (walking blocks) of 10 seconds. In these cases the frequency distribution of the
duration of the walking blocks shows a prevalence of short walking periods.

Figure 8 shows a 3-D bar graph of the mean footstep time, as a function of walking block interval time

and monitoring time.

Figure 8: 3-D bar graph of an activity profite: the mean footstep time as a function of
monitoring time and walking block interval time.

10
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BLOCK ]| DIIME(min} | LENGTH(min)] AVG(s) | MODE(s) | SIDS(3) | LARGEST (s) | SMALLEST (g
i 12 1.70 1.17 1.18 0.10 1.43 (.65
2 18 1.30 1.13 112 0.1 1.96 1.00
3 22 4.33 1.10 1.06 0.07 1.63 0.87
4 27 6.90 1.07 1.06 0.04 1.28 0.96
5 34 1.85 1.04 1.06 0.05 1.18 0.65
6 49 8.51 1.04 1.08 0.06 1.25 0.65
7 58 12.38 1.04 1.08 0.08 2.03 0.65
8 72 1.92 1.12 1.12 0.08 1.43 0.65

Table 1: some computed parameters for walking block interval time
Table | shows additional computed parameters for each walking block,

Where:

BTIME represents the begin time of a walking biock;

LLENGTH represents the duration of a walking block;

AVG represents the average of all footstep time valuses in a walking block;

MODE is the footstep time that appears most frequently in a walking block;

STDS represents the standard deviation of all footstep time values in a walking block;
LARGEST represents the largest footstep fime value in a walking block;
SMALLEST represents the smallest footstep time value in a walking block.

In Table 2 an example is given of a numerical representation of activities, The statistical data refer to
the time necessary for a patient to transit from standing (o sitting and from sitling to lying on the back.

It is clear that in a similar way transition times for other ‘transitions’ can be calculated.

Minimum (s) Maximum {s) Average (s)
Transition time
standing to sitting 1.63 3.75 2,77
Transition time
sitting to lying on back 341 5.09 4.63

Table 2: Some statistics about transition time.

11
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1.3 Relevant motor activities and related clinical parameters

It is up to the clinical user of the AMMA system to indicate what information is of relevance. Péruchon
[20] postulated that according to the clinicians’ point of view and need, the following activities and
parameters can correctly reflect the functional profile of a patient.

1.3.] Relevant motor activities

Figure 9 shows some proposed dynamic and static motor activities and their subclasses which have been
suggested In & questionnaire by many clinicians [20}{21]. At present, our system is able to detect all

daily-life motor activitics which are shown in gray in Figure 9,

Anlvitia

Dysamle E Statte

Cydh Noea<yele Sialag i—
—— —[ Lying E o
Cyding Traesldea From Iastocped

-5 Sitting to Standing posliien
— o | e f

asblrease Trassidea From side | Inupigil -
-< Standiag to Sittlag On (e TeR ] positien -
! e (1Y ,
Tramiden From Foc | lateral Beadiag
ji i 1o Shitkn, sce . totke kRl
===, | [ trestostis | 1M _
—— 2 Ispore! bending
L I On the back b9 (ke right

Figure 9: Main relevant motor activities

Soute additionat clinically representative activities have been proposed such as: to squat, to run, to fura
about, ete,
1.3.2 Relevant related parameters
The following parameters are suggested in a questionnaire by many clinicians[20](21):
total duration in lying position;
total duration in sitting posture;
total daily walking time;
12
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total duration in standing position;

number of times of each activity;

mean duration of each activity;

max, min and average time of transition activities;

speed of walking.
Completion of this list will require further investigations. OFf course, it must be noticed that the nature

and relevance of motor activities and related parameters depend on the type of the considered

pathology[20][21].

1.4 Aim of study

The aim of this study is to investigate and to analyze the abilities of Artificial Neural Networks
{ANNs) and Fuzzy Rule Based Systems for the automated recognition of daily life motor activity
classes and the computation of refevant clinical parameters.

One of the main aims of the AMMA system is to provide a means for automating the recognition of
activity classes in long term recorded data with high efficiency and at reasonable speed, in order o
avoid time consuming human intervention.

Some attempts were made fo solve the automatic recognition problem by means of a simple signal
processing approach, like peak detection, threshold setting, correlation, smoothing, etc. However, all
these techniques operated with low efficiency. This is comprehensible, because each class of daily life
motor activities shows extreme inter-and intra individual yariation, as was discussed in [22]. It is
demonstrated that such an approach is not suitable for the recognition of patterns in a noisy
environment,

We have chosen the arlificial neural network and the fuzzy rule based classifier as an alternative

because these have been successfully applied in other pattern recognition problems.

1.5 Overview
The contents of this work are as follows.

Chapter 2 briefly reviews various pattern recognition techniques and addresses a new method - for
generating new features, which are critical for solving the automated pattern recognition problem for the
AMMA system.

Chapter 3 begins with an introduction to neural networks, A short general introduction on the subject is
given first, followed by somewhat more detailed descriptions of a number of specific networks, Also,

our experiment with neural networks as a pattern recognition system will be considered,

13
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In chapter 4, the basic concepts of fuzzy set theory, fuzzy logic and fuzzy systems are shortly
summarized. Also our experiment with 2 fuzzy rule based system as a pattern recognition system will be

considered.
Chapter § presents an overview of the different approaches towards constructing Neuro-fuzzy decision

systems and their application to the multichannel recorded data.

In chapter 6, summary and future direction are presented.
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2. Pattern Recognition

In the following sections, we provide an introduction to many of the key concepts in pattern recognition

and to various techniques for solving pattern recognition problems which are relevant to this thesis.

2.1 Introduction

The term patiern recognition encompasses a wide range of information processing techniques of great
practical significance, from computer vision tasks, speech recognition, fingerprint identification, and
character recognition, to fault defection in machinery and medical diagnosis. Although such tasks can
often be solved without much conscious effort by humans, their solution using computers has, in many
cases, proved to be immensely difficult.

Pattern recognition can be defined as a process of identifying structure in data, often by comparison to
known structure; the structure may be developed through methods of clustering. Basically, clustering
seeks the structure in data, whereas classification attempls to assign new data to one of the classes

defined in the classification process. The components of a pattern recognition system are illusirated in

F, F,
T TPETPI, Measured features
v A 4

Figure 10,

= = P Preprocessing
: F, TR F,
| v Vv v v v « Preprocessed features
& 1
3
bl EIEE Feature analysis
21
£
| F‘ errarnieeesta Fm
: \ A 4 4r Y Y ¥ Optimal features
= = b Classification
CiCpiiC, Ciasses

Figure 10: Pattern recognition system in design mode,
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The purpose of this pattern recognition system is to assign an observation as represented by a fixed

number of measured features to one of C possible pattern classes. Presumably, different input
observations should be assigned to the same class if they have similar features and to different classes if
they have dissimilar features, A set of features is called a pattern or feature vector and is described by a
vector I ={ Fy, F,....Fu}. The n individual features, F), ...Fa, are assumed to be representative and
sufficient to recognize the underlying pattern.

The preprocessing part often has a significant effect on the performances of the total system.

2,2 Feature analysis

Feature analysis refers to methods for conditioning the raw data (measured features) so that the
information that is most relevant for classification and recognition is enhanced and represented by a
minimal number of features. Feature analysis consists of fwo component:

e feature selection

¢ feature extraction

Feature selection refers to choosing the subset of m features with the highest discriminating ability from
the n originai features {m<n), as illustrated in the example in Figure 11, In general, the selection of the
features is more imporiant than the choice of a specific classifier. When features with no discriminating
ability are used, no classifier will give acceptable results. On the other hand, when features with & very
high discriminating ability are used, all classifiers will give comparable resuits. In almost all problems,
one does not know beforehand how many features must be used in the classifier. One of the simplest
techniques for dimensionality reduction is to select a subset of the features, and discard the remainder,
This approach can be useful if there are features which carry little useful information for the solution of
the problem, or if there are strong correlation between pairs of features so that the same information is

repeated in several variables. There are many procedures for feature selectionf13[2][3].

F,

F, « >

F, E,
.____WW.F_p R,
——S—,_,..,’ -

F, » X F,
I | g

Feature selector

Figure 11: Dimensionality reduction by feature selection.

Feature extraction (FE) refers to the process of transforming the original n-dimensional feature space

into an m-dimensional space in some manner that preserves or enhances the information available in the

18
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original n-dimensional space, as illustrated in the example in Figure 12. It is accomplished

mathematically by means of either some linear or nonlinear combination of the original features.
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Feature extractor

Figure 12: Dimensionality reduction by feature extraction.

2,3 Partitioning of the feature space
Partitioning the feature space info ¢ regions that are associated with classes, is usually in the domain of

classifier design. Usually, the feature space is R", and classifiers partition R® into ¢ disjoint regions. A
region is called a decision region, and its boundary is a decision boundary,

Sometimes the decision regions can be linearly separated (i.e., by straight lines in R?, by planes in R?,
by hyperplanes in higher dimensional spaces). If decision regions are intertwined in a way that makes
it impossible to separate them with linear decision boundaries, the problem is cafled non-linearly

separable. Figure 13 fllustrates two examples of partitioning in a two- dimensional feature space.
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Figure 13: Examples of partitioning in a two-dimensional feature space:

left:  partitioning by linear decision boundaries,
right:  a general partitioning of the feature space.
A classifier generally consists of a set of discriminant functions g(F), i=1,....c where F is the input

feature vector, and ¢ is the number of classes [4]. A discriminant function giF) is defined for each

decision reglon i. The cfassifier assigns an observation with input feature vector F to region m

associated with class m if the relationship
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g(F)> g(F) forallizm
holds. That is, the classifier computes ¢ discriminant functions and selects the class corresponding to the

largest discriminant,

The decision boundaries can be easily found from this description; e.g., the boundary between the
regions i and j is given by the equation:

&(F) - g(F)=0

This representation of a classifier is given as a block-diagram in Figure 14.

. g(F)
L ]
&(F)
g
MAX o
] = —eC,
- &F) g )
gc g(F)

Figure 14: A pattern classifier.

The discriminant functions may be linear or nonfinear combinations of the input feature values. An
example of a linear discriminant function is given by:

g(Fy=Wi F +wio= wi. Friwp. Fat. . wi Fotwio

where vector W; is a so-called weight vector associated with class i (the superseript T stands for
transposition of a (column) vector) and vector F is the pattern vector (or feature vector). The weighis
(free parameters) of each linear discriminant function are calculated to minimize the rate of
misclassification {4][5].

It should be pointed out that the choice of dicriminant functions is not unique; every gi(F) can be
replaced by f{g(F)) without influencing the decision, if f is a monotonically increasing function,

There are various fechniques for solving pattern recognition problems. Some of them which are refevant

to this thesis will be discussed in the following sections.
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2.4 Statistical pattern recognition techniques

Statistical pattern recognition system assigns a randomly ob‘served pattern vector FeR" to a decision
region R; c R” associated with class i using the distribution of the pattern vectors in R” as established
in a learning phase. This is usvally accomplished by defining suitable discriminant functions that divide
the n-dimensional feature space into reglons that correspond to the different classes. Suppose P(c;) is the
{(known, estimated, or assumed) a priori probability of occurrence of patterns from class ¢; and P(F | c;),
the class-conditional density function of the random variable F given that the corresponding sample
belongs to class ¢ (this density function is estimated during learning or training). From Bayes theorem
we have: '
P(ci| ¥) = P(F | ¢)).P(c:}/ P(F)
where the posterior probability P(c; | F) gives the probability of the pattern belonging to class ¢; once we

have observed the feature F, and P(F) is the density function for F irrespective of class, and is given by

<
P(F) = > P(F|c;)P(c;)
i=}

The division by P(F) ensures that the posterior probabilities sum to unity :

[+
> P(Fei)=1

i=1
Therefore, we can easily compute P(¢; | F ) once we have the estimates for P(F | ¢; } and P(¢;). These are
then used to assign the sample corresponding to the measurement vector T to the class ¢ if
P{ca{F)>P(c;{F) foralli=m
We can then represent the discriminant functions as
=Pl F)
The remaining problem is how to determing the class-conditional probability density functions (PDFs)
P(F | c; ). This problem can be solved using training sefs. A training set contains observations, either
with or without class labels. Using a training set for the estimation of the PDFs is referred to as learning
or training.
There are two broad types of statistical learning methods: parametric and non-parameiric.
Parametric methods assume a specific functional form of the class-conditional density functions P(F | ¢;)
for each pattern class c¢;. Such functions contain a number of adjustable parameters which are optimized
by fitting the model to the fraining set. The simplest, and most widely used, parametric model is the
normal or Gaussian distribution, which has a number of convenient analytical and statistical properties.
The drawback of such an approach is thét the assumed parametric form for the density function may not

be a good representation of the true density, It should be emphasized that accurate modeling of PDFs
21



Chapter 2
from finite data seis in spaces of high dimensionality is, in general, extremely difficult. However,

parametric models allow the density function to be evaluated very rapidly for new values of the input
veotor,

Non-parametric methods do not assume a particular functional form for the density functions, but aliow
the form of the density to be determined enfirely by the training set. A number of non-parameric
techniques are avaifable [2){4)]6].

A popular example of a non-parametric method is the nearest neighbors method in which a sample is
assigned to the class of its nearest neighbor(s) (in terms of a suitable measure of distance} in the fraining
set. Non-parametric methods suffer from the fact that the number of parameters in the model grows with
the number of training data points.

The field of statistical pattern recognition techniques is very large, and it is not possible to give a
complete description of all the aspects and issues mentioned in this section. The implementation of these

technique as a neural network will be discussed in chapter 3

2.5 Symbolic Artificial Intelligence Techniques

Symbolie processing, as the name suggests, deals with Information in terms of symbols. The symbols,
representing pleces of information, are usually manipulated using IF-THEN rules. IF-THEN rules are
expressions of the form IF input is A THEN output is B, where A and B are symbols characterized by
appropriate characteristic functions (membership functions),
An example that describes a simple fact is:

If pressure is high, then volume is small,
Where pressure and volume are variables, high and small are symbols that are characterized by

membership functions, Examples are shown in Figure 15, for high and small symbols.

b4 x
1 high ] small
0 350 500 X 0 10 20 g
bressure volume

Figure 15: Membership functions for (left) high pressure and (right) small volume,
Expert systems are well-known systems for manipulating symbolic representations [7)[8][9]. Rather
than discussing all different kinds of expert systems we will focus our attention mainly on an expert
system which uses the rules formalism for representation of the knowledge. There are several

formalisms available and used for representing the different types of knowledge: rules, frames, semantic
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network, inheritance, predicate calculus, Basically, ar expert system is composed of four blocks, as

shown in Figure 16:

Knowledge base

ruie base

¢———p+  inference engine

database

user interface

input
Figure 16: Structure of an expert system.

¢ arule base containing a number of IF-THEN rules;

+ adatabase which defines the membership functions of the symbols in the rules;

e an inference engine which performs the inference operations on the rules;

o a user interface which facilitates data-entry and data-refrieval, Furthermore, it is used to give

explanations to the user.

Usually, the rule base and the database are jointly referred to as the knowledge base. The domain-
specific knowledge is stored in a knowledge base. Since the knowledge base is separated from the other
blocks of system, it is possible to use the inférence mechanism and the user interface of such developed
expert systems as a fool to build other expert systems. One needs to replace only the knowledge base by
another one. This reduces the development time of an expert system considerably. A significant
chargcteristic of expert systems is that they operate in a transparent fashion, ie. the path to their
conclusion can be traced. New knowledge in the form of new rules may be added, hence allowing for
incrementat development, refinement and tuning of the knowledge base. This expert system is similar to

a fuzzy rule-based system which will be in introduced section 2.7 and fully discussed in chapter 4,
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2,6 Neural network techniques
Artificial neural networks are processing structures that are inspired on the architecture and functioning

of the human nervous system. They have become popular in many research fields because of their
ability to solve complex problems for which no analytical solutions appear to be feasible. Therefore,
there is an exponentially increasing growth of ANN research. As a result of this research, ANN’s have
been used in a broad range of applications which include pattern recognition [10], classification [11],
approximation {12], optimization [13], prediction [14], control [15], speech recognition [16], modeting
f17], systems identification {18], etc. They are able to learn by example; given a set of examples and
their class, a network can learn to emulate the required decisions, They are able to generalize; an ANN
can not only learn to recognize patterns which are used to train it, but it can also recognize similar
unseen patterns,

Basically, an artificial neural network consists of many, highly inferconnected simple processing
clements, called “nevrons”, “units” or “nodes”. The neurons are usually arranged in series of layers,
bounded by input and output layers with generally a number of hidden layers in between, Bach of these
neurons receives input from other neurons in the previous layer and applies an activation function to its
summed inputs in order to obtain an output which is propagated to other neurons in the next layer.
Information from the input layer is propagated through the network to the output layer. The input and
output neurons ar¢ the means of the network to communicate with the outside world. Input layer
neurons are merely a mechanism for distributing the input signal to the subsequent hidden layers. Figure

17 shows a simpie fully connected feed-forward neural network with one hidden fayer.

Figure 17: A feedforward neural
network with one hidden layer.

There is a number of different types of artificial neural network architectures which are usually

characterized by:
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the topology of the network; the topology of a neural network is the organization of neurons into
layers and the connections between them;
the characteristics of the neurons;

the type of learning scheme.

A detailed description of these items is presented in chapter 3. The following paragraphs focus on how

artificial neural networks can be used in pattern recognition tasks.

As explained in section 2.3, classifiers are designed to determine the decision regions in feature space.

Artificial neural networks as classifiers can be categorized according to the manner in which they

estimate the decision regions in feature space [19] as follows:

In Kemne¢l classifiers each neuron has a kernel function
cenfered around a location in the feature space. The idea
is to cover the feature space with kernel functions. A
neuron gives a maximum response to input vectors near
the center of its kerne! function. We say that each neuron
has its own receptive field in the feature space. Decisions
regarding the classification are made by using a weighted

summation of the outputs of neurons. One of the special

Kernel classifier;
Hyperplane classifier;
Probabilistic classifier;

Exemplar classifier.

basis functions that are commonly used is a Gaussian Figure 18: The estimated decision regions

kernel function. Figure 18 shows schematically how a

by Kernel! classifiers.

Kernel classifier estimates the decision regions in feature space. An example of an artificial nevral

network that belongs to this category s the radial basis function networks (RBFN) [20][21),

Hyperplane classiffers partition the feature space by hyperplanes which are generated by computation of

a sum of weighted inputs for every neuron and applying a non-linear transfer function to this sum.

Figure 19 shows an example of a partitioning which is produced by a hyperplane classifier. An example

of this type of classifier is the back propagation neural network (BPN).
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Figure 19; A schematic illustration of a decision
boundary produced by a hyperplane classifier.

A probabilistic classifier is simply an example of the parametric, non-parametric and mixture approach
to density estimation implemented as a neural network. The activation function of each neuron is
replaced by a statistically detived one, Figure 20 shows a schematic illustration of a decision boundary
which produced by a probabilistic neural network classifier. An example of this type of classifier is the

Gaussian mixture classifier.

Figure 20: A schematic illustration of a
decision boundary produced by a prebabilistic
neural network classifier.

Exemplar classifiers check the distance (Euclidean or using some other metric) separating an unknown
input pattern from each member of the training set. The unknown pattern will then be assigned to the
class to which the closest training set member belongs, Some examples of this 1ype of classifier are

Adaptive Rescnance Theory (ART) [22], Kohonen networks [23], Learning Vector Quantization LVQ
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Figure 21; A schematic illustration of the
decision regions in feature space produced
by an exemplar classifier.

Despite this obvious diversity in the discussed categories of artificial neural network classifiers, all of
them perform the same task: partitioning of the feature space into decision regions. They differ only in
the way they perform this task.

It js difficult to determine which type has the greatest probability of success. The choice of a classifier
from the numerous available artificial neural network classifiers is most ofien based on its success in
previous applications, practical experience with a wide variety of them used in various applications and
the complexity of the problem. Engineering judgment and creativity are nearly always required. In this

way it may be possible to provide acceptable solutions to problems that were not yet solved otherwise.

2.7 Fuzzy Rule-Based technigues
A fuzzy rule-based system is an extension of the crisp rule-based system discussed in section 2.3, This

section will introduce the way in which fuzzy rule-based system can be used in pattern recognition. A
detailed discussion of this subject will be presented in chapter 4.

Unlike conventional (crisp) approaches of pattern classification, fuzzy classification assumes that the
boundary between two neighboring classes is an overlapping area within which & pattern (an object) has
partial membership in each of the two classes. This viewpoint not only reflects the reality of many
applications in which categories have fuzzy boundaries, but also provides a simple representation of the
potentially complex partitioning of the feature space. The classifier is described by fuzzy IF-THEN
rules. Typical fuzzy classification rules for a 2-dimensional feature space are like:

Ri:  IF xy is small AND x, is very large THEN x = (x,, x,) belongs fo class ¢;

Ry IF %, is large AND x; is small THEN x = (x, X2) belongs to class ¢;
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Ry IF %y is small OR x, is small THEN x = (x,, x7) belongs to class ¢3

R IF x; is very small AND x, is very large THEN x = (x;, x;) belongs to class ¢,

where R; is the i.th classification rule, ¢, indicates an output class, x; and x; are the features of a pattern
(or object), very small, small, large and very large are linguistic terms characterized by appropriate
membership functions and AND and OR are fuzzy logical operations. Figure 22 shows a three-class
classification problem. Three membership functions are associated with each feature, so the feature
space is partitioned into 9 fuzzy regions (subspaces), each of which is governed by a fuzzy IF-THEN
rule, The antccedent part of a rule defines a fuzzy region, while the consequent part specifies the output
within this fuzzy region,

If one tries to classify all the given patterns by fuzzy rules based on a simpfe fuzzy grid, a fine fuzzy
partition and 9 rules (3x3=9) are required. However, it is easy to see that the patterns may be correctly

classified by the five fuzzy IF-THEN rules as follows:

R;: IF xy is NOT Low AND x, is Low THEN x = (x3, x;) belongs to class C;

Ry IF xy is Low AND x, is NOT Low THEN X = (x), x») belongs to class C;

Ry: 1F %1 is Low AND x, is Low THEN x = {x;, x,) belongs to class C;

Re IFx; is NOT Low AND x; is High THEN x = (x,, x2} belongs to class C;
Rs: IFx; is NOT Low AND x, is Medium THEN x = (x,, x,) belongs to class C,
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Figure 22: Fuzzy partition with 9 fuzzy regions.

2.8 Nevral-Fuzzy technigues
Neural-Fuzzy hybrid systems combine the advantages of fuzzy systems and neural networks.

While neural nietworks are good at recognizing patterns, they are not geod at explaining how they reach
their decisions. It is difficult to explain the knowledge learnt by a neural network, Neural networks have
a black box nature.

Fuzzy logic can encede expert knowledge directly using rules with linguistic terms, and are good at
explaining their decisions but they can’t automatically extract the rules which they use to make
decisions. Also, it usvally takes much time to design and tune the membership functions which
quantitatively define the finguistic terms,

These limitations have led to the creation of neural-fuzzy networks where neural networks and fuzzy
logic techiniques are combined in a manner that overcomes the limitations of the individual technigues.
Neural-Fuzzy networks try to remove the mentioned limitations by combining the learning capabilities
of neural networks together with the interpretability properties of fuzzy systems. Neural-Fuzzy
networks partition the feature space better than fuzzy rule-based systems, because the membership
functions in Neural-fuzzy networks are tunable. A full deseription of Neural-Fuzzy Networks will be

given in chapter 5,

2.9 AMMA signal processing with the previous described techniques

It has to be considered that ambulatory menitoring of daily life motor activities is conceptually now.
Therefore, it is difficult to find an automated system for the recognition of AMMA-signals in literature,

The only similar monitoring system which can be found in literature [24), uses several forms of signal-
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processing such as high pass and low pass filtering, rectifying procedures, and frequency analysis to

automate the recognition of daily life motor activities. This system has still the following shortcomings:

¢ the system is patient dependent;

+ the system splits activities only in two categories, dynamic and static, and is not able to classify
subclasses of dynamic activities,

The novelty of the AMMA-signals, the lack of references in literature, the inability of conventional

signal processing techniques and the success of neural network and fuzzy logic techniques in other

application of pattern recognition led us to apply these techniques to AMMA-signals.

In chapter 3, the applications of two types of neural networks to AMMA-signals in order to recognize

and cfassify daily life motor activities will be discussed. One of the applied neural networks is an

implementation of the Bayes decision strategy which is called Probabilistic Neural Network (PNN). The

other one is a BackPropagation Neural Network (BPN), In chapter 4, we will apply a fuzzy rule-based

technique to AMMA-signals to overcome the shortcomings of the neural network techniques. Before

that, in the foflowing sections, we address some other related subject.

2,10 Sensors
The silicon accelerometers register the orientation and movement of body segments. Each daily life

motor activity is reflected in specific crientations and movements of some body segments. Because the
output of an accelerometer is a mixture of two components, a gravitational component (DC-
component,) and a component of the change in velocity (dynamic- component), both static and dynamic
motor activities are reflected. The component which reflects static activity is more constant in time and
the component which reflects a dynamic activity changes rapidly with time. Figure 23 shows the effect

of a rotation of the sensor on its output due to the earth’s gravity field.
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Figure 23: The effect of a rotation of the
sensor on its cutput (mV) due fo the
earth’s gravity field.

2.i1 Definition of the patterns of activities
A first requirement for the classification of daily life motor activities is that all activities are defined. It

was investigated how to acquire recognizable and accurate information on a subject’s basic daily life
motor activities with a minimal number of sensors. Figure 24 shows the output signals of four

accelerometers which are attached to the subject’s body.
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Figure 24; Representative signals for some activities measured with four accelerometers
Two accelerometers (represented by chy and chy) are placed on the middle of both thighs and collect the
acceleration of the thighs perpendicular to the femur. Two other sensors represented by chy and chy are
placed on the sternum, to sense acceleration of the trunk in the lateral and in the sagittal direction,
respectively. I was investigated that these four sensors give sufficient information abouf basic
activities, From these sensor’s cutputs, a frained eye can recognize each specific posture and movement
of the subject as reflected in specific waveforms of the signal in each channel, Based on knowledge of

the sensor characteristics and visual interpretation of the recorded reference data which is obtained
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according to a protocal, each activity class can be defined. In the following paragraphs basic postures

and movements will be defined,

Walking

Walking is a dynamic and cyclic activity which has the highest variability of all basic classes that are
recognized, Walking can very from fast rumning to shufiling and its pattern (waveform) shows
extremely large inter- and intra- individual variation. Figure 25 shows the signals of the two

accelerometers on the right and left upper leg for a single subject during walking.

Right-leg acceleration

~J
]
N
~—

0 Time
Figure 25: Typical example of signals from the accelerometers on right and left upper
leg, while walking,
As shown in Figure 25, the fluctuations of the waveform of a step ate very large. Each step pattern
differs in amplitude and slope from other steps. The subject of this example was healthy and walked
normally. It is obvious that walking at various speeds will produce even more varying patterns. Figure

26 demonstrates the intra-subject variability of acceleration of the upper leg during 20 step-cycles.
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Figure 26: Intra-subject variability of
sensor output of the upper leg.
This and the inter-subject variability of the pattern of steps render automatic recognition by

conventional signal processing techniques extra difficult. Walking as a class is divided into two sub-
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classes, i.e., walking slowly and at normal speed and a second sub-class that covers fast walking. A
trained eye can recognize walking activity by looking at the first and second channels (left and right
upper leg accelerometer outputs). However, using only one of them is sufficient to detect walking
activity. Figure 27 shows a part of recorded data of the two accelerometers on the right and left upper
leg when subject walks normaily. In this figure, the cursor positioned on the peak of a step pattern in
channel 1, its ampfitude value is 1.2700 Volt.

BUWINDAO - BNT.COD
Fls Edil '\ Msw‘ : Sad}dn x:

ia . Qptions - Halp -

yﬁﬁ%iﬁwﬂﬁm@ﬂﬂ%ﬁﬁﬂ

'\,,_f; : ' x r\'ﬁ\‘" vlfﬁj‘.r h%‘w& i{ L}Lﬂ ?.1 Jl'? 4 Jl,ﬂ &rﬂ ,}l’t.m

DATA A76.%% SEC(TBF)  off SEC(TM)  aoff %E0F =
¢

Figure 27: A part of recorded data during normal walking activity,

Figure 28 shows a part of recorded data of the two accelerometers on the right and left upper leg when
subject walks slowly. In this figure, the cursor positioned on the peak of a step pattern in channet 1, its
amplitude value is 0.3400 Volt,
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Figure 28: A part of recorded data during slow walking activity.

Figure 28 shows again a part of recorded data of the two accelerometers on the right and left upper leg
when subject walks normally. But in this figure, the cursor positioned somewhere between two step

patterns in channel 1, its amplitude value is 0.4700 Volt.
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Figure 29: A part of recorded data during normal walking activity.
From Figure 27-29 one can see that conventional peak detection technique fails to find a magic
threshold for recognition of step pattern.

Sitting
Sitting is a static and non-cyclic activity and the trained eye can recognize it easily by using both the left

and right upper leg accelerometers and the sagittal Transition Sitting Transition

-

frunk accelerometer, The trunk lateral movements

are not used for the definition of the activity sitting,

left-leg
aceeleration

Figure 30 illustrates the onset and end of activity

right-leg
acceleration

class sitting. The use of the sagittal trunk

accelerometer (fourth channef) is necessary in order

L

to avoid misclassification. If one only uses the first
and second channels (right-leg, lefi-leg) to classify

the sitting activity, there is the chance that an
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incorrect label is placed, since the activity lying on
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the back can resuit in similar waveforms in the first
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Figure 30: Specific waveforms for activity

are also variable but compared to steps, this pattern
‘ class sitting.

is much more stable and thus, easier to recognize,

Standing upright

Standing is also a static activity and its recognition from the four sensor signals is based on the

combination of the following criteria:

o one of the legs is in, or close to, the vertical position; thus the variations in that signal are relatively
smail.
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¢ none of the activities; lying on the left or on the right side, are recognized simultaneously with the

first condition,
The second criterion is applied in order to avoid misclassification, Using only the first and second
channels to classify the standing activity may result in misclassification. The activities lying on the teft
and right side can result in a similar waveform in the first and second channels. The activity bending
down can be differentiated from standing upright, by considering the trunk accelerations (the third and
fourth channel),
Lying
Lying is a static activity and is divided into the following three sub-classes:
¢ lying on the back;
*  lying on the right side;
» lying on the left side;
Information on the subclass is obtained from the trunk accelerometers sensing the movements or
postures in the frontal plane. The class ‘lying on the back’ is recognized if & single or both leg sensor(s)
as well as the trunk are in the horizontal position at the same time.
The class ‘lying on the left or right side’ is determined by combining the information from ‘lying on the
back’ (it is assumed that the class ‘lying on the left or right side’ will occur afler the class of *lying on

the back’) and is determined by the output of the lateral sensor on the sternum.

2.12 Modified pattern recognition system and feature generation

In this section, we present a modified version of the pattern recognition system discussed in section 2.1
and shown in Figure 10, and describe an added component (feature generation) to this modified system,

Although a trained eye can recognize all activities by using the four channels (four continuous features),
and a patient dependent ANN based classifier is also able to classify the desired activities automatically
with the same number of sensor outputs, our research showed that using only the four features (the four
accelerometer outputs) cannot eliminate patient dependency of the system. To .overcome this
shoricoming, we have modified the pattern recognition system described in section 2,1 in such a way

that it generates new features. Figure 31 shows this modified pattern recognition system.
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Figure 31: A schematic representation of a modified pattern recognition system,

In chapter 4, we will show that the added feature generation block serves fo improve the automated
classification of daily life motor activities, In the next section, the feature generation block and its
implementation are discussed.

Feature generation and implementation outline

As mentioned before, using only the four continuous features (the outputs of the four accelerometers) is
not enough to design a patient independent classifier, for the recognition of activities (different waves in
signals), and the detection of onsets and endpoints of the waves. This initiated the search for a new
representation (features) generated from the preprocessed measured features. Feature definitions may be
constructed ‘by hand’, based on some understanding of the problem (i.e., the incorporation of prior
knowledge), or features may be derived from the preprocessed measured data by automated procedures.

Prior knowledge may be incorporated into alt parts of the pattern recognition system.
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For the generation of new features from the criginal data, a variety of methods is available. This study

focuses on two methods both employing a running window technique. Figure 32 illustrates how two
points of a new feature can de derived from the input data. This figure employs a window of width
sixteen. The bottom line represents the preprocessed measured data values. The top line forms thie new
input data values. The core of the operation consists of the following steps:

1. put the window at the beginning of the input data;

2. evaluate the function F: R —R'® on the vector selected by the window;

3. evaluate the function G: R' — R at function value in step 2;

4, move the window one point to the right;

5. gotostep 2.

This is repeated for the entire length of the input data. Two examples of G(F([x1,....X16])) are:

¢ Norm (Cumwmlative Sum{{x,....X;6])),

¢ Average( Outer_product ([x,....X16]))-

Prior knowledge which refers to relevant information (shape of waves, length of waves, sampling rate,

etc.) can be of help for choosing the two functions F and G and the window size.
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Figure 32: schematic explanation of the first feature generation
procedure

Another method, similar to the previous one, but consisting of only four steps is :

1. put the window at the beginning of the input data;

2. evaluate the function G: R'® — R on the vector selected by the window;

3. move the window one point to the right;

4. gotostep 2.

These steps are repeated for the entire length of the input data. Figure 33 illustrates how two points of

the new feature are constructed by this procedure,
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Figure 33: schematic explanation of the second feature generation
procedure

This figure employs also a window of width 16, It is important to select an optimal window size, Its size
depends on the sampling rate (the sampling rate of AMMA signal was 32 per second) , and it should be
noted that it is not necessary to have the same window size for different features.

Two examples of G([xy,....X1]) are:

e Norm {[Xy,....X16]};

o Inner_product{{x,,....xs]).

The average, standard deviation, sing, cosine, Fourier transform, cumulative sum, norm, inner product,

outer produet, max, min, ete. are typical F and G functions which were vsed to generate new features.
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Neurat Networks

3. Neural Networks

3.1 Introduction

Artificial neural networks have become popular in many research fields because of their ability to solve
complex problems for which no analytical sclutions appear to exist. Therefore there is an exponentially
increasing growth of ANN rescarch. As a result of this research, ANN’s have been used in a broad
spectrum of applications which include pattern recognition [1][2], classification [3), approximation [4],
optimization {5], prediction [6], control {7}, speech recognition [8], modeling [9], systems identification
[10], etc. Artificial neural networks are processing structures inspired by the architecture and
funetioning of the human nervous system{11]{12], but they are only loosely related to them. ANN’s are
massively parallel systems that rely on dense arrangements of interconnections and surprisingly simple
processors. In a neural network, each processor is linked to many of its neighbors (typically hundreds or
thousands) so that there are many more interconnection than processors. The power of the neural
network lies in this tremendous number of interconnections, The strongest feature of neural networks is
their ability to accept examples and generalize from themn; i.e., an ANN can not only learn to recognize

patterns which are used fo train it, but it can also gencralize and recognize similar patterns.
3.1.1 History of Neural Nefwork

The history of neural networks started in 1943 with the publication of a paper by McCuiloch and Pitts
{13], which iniroduced a model of a neuron that was capable of performing useful logical and
arithmetic functions. In 1949, D. O. Hebb [14], proposed a learning law that became the starting point
for artificial ncural network training algorithms and inspired many researchers to study
neurocomputing. Around 1960 there was a wave of activity centered around the group of Rosenblatt,
concentrating on networks called perceptrons, These networks are limited to two layers of processing
units with a single layer of adaptive weights between thern. That was the beginning of a golden period in
neurocomputing research, which was fo last until 1969, when many artificial neural network were
developed, implemented and applied to a wide varigty of problems, Many pioneers expressed a great
deal of enthusiasm and hope that such machines could be a basis for artificial intelligence. This

enthusiasm soon proved to be an illusion. Perceptrons failed to solve problems superficially simifar to
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those that had been successfully solved, Minsky and Papert {15] in their book Perceptrons, showed that

Rosenblatt’s perceptron was theoretically incapable of solving many simple problems, including the
funetion perforned by a simple exclusive (XOR) operation. Rosenblatt had also studied structures with

more layers of adaptive weights and believed that such networks could overcome the limitations of the

simple perceptrons. However, there was no learning algorithm known which could adapt the weights.
With the negative assessment of perceptrons by Minsky and Papert, the absence of an analytical
approach to the neural network and the absence of the learning algorithm had enormous consequences
and effectively led to the dampening of continued interest in neural network research, Many of the
researchers deserted the field, only a handful of the early pioneers maintained their commitment fo
neural networks,

In the 1980s, major contributions to the theory and design of neural neiworks were made on several
fronts, which led to a rebirth of interest in neural networks.

Grossberg 1980 [16], established a new principle of seif-organization, using his earlier work on
competitive learning [17}{18](19].

In 1982, Hopfield used the idea of an energy function to formulate a new way of understanding the
computation performed by recurrent neural networks with symmetric synaptic connections, His work
motivated many researchers to (re)start research on neural networks. Another important development in
1982 was the publication of Kohionen’s paper on the self-organizing map [20], In 1983, Cohen and
Grossberg {21] established a general principle for designing a content-addressable memory. In 1985,
Ackley, Hinton, and Sejnowski [22} exploited the idea of simulated annealing (simulated annealing is
rooted in statistical thermodynamics) in the development of a stochastic learning algorithm that uses
some nice properties of the Boltzmann distribution-hence the name Boltzmann learning.

In 1986, the development of the back-propagation aigorithm was reported by Rumelhart, Hinton and
Williams [23], In that same year, the two-volume book, * Parallel Distributed Processing” (ofien
referred to as PDP ) was published, This latter book has had a major influence on the use of back-
propagation learning, which has since emerged as the most popular learning aigorithm for the training of
mulbtilayer perceptrons. In fact, back-propagation learning was discovered independently in two other
places about the same time (Parker, 1985[24], LeCun, 1985). After the discovery of the back-
propagation afgorithm by Parker, and LeCun, it turned out that the algorithm had been described earlier
by Werbos in his Ph.D. thesis in 1974 [25].

In 1988, Broomhead and Lowe {26] described a procedure for the design of layered feedforward
networks using radial basis functions (RBF), which provide an alternative to multilayer perceptrons.

Many of the important early papers incfuding many of those mentioned here have been collected in
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Anderson and Rosenfeld (1988)[27}. Neural networks have certainly come a long way from the early

days of McCulloch and Pitis and the development theory, design, and applications will continue,

This chapter contains a brief general introduction {o neural networks, followed by a more detailed
description of the networks used in this work. The application of the described ANNs, with emphasis
on pattern recognition in AMMA-signals, is discussed at the end of this chapter.

3.1.2 Processing elements

The individual computation elements that make up most artificial neural system models are often
referred to as neurons or Processing Elements(PEs). Figure 34 shows the general PE model,

Every PE has many inputs, and a single output which can fan out to other PEs in & following layer.

Figure 34: Functional model of an artificial neuron.

Each link between two PEs has a coupling coefficient that assigns a weight to incoming signals.
Each PE determines a net-input value based on ail its input connections. The net-input is calculated by
summing the input values, multiplied by their corresponding weights, In other words, the net-input to the

ith unit can be written as:
neti= Z WijXj i
J

where the index j runs over all connections to the PE.
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Once the net input of the PE is calculated, we can determine the output value by applying an output

function {transfer function );

0 =1{(net;) 2

This results in the following equation for the output of a processing element:

0i =f (2 xjwij) 3
i

where:
o = the output of the jth PE.
% " the input of the ith PE,
Wi = the weight connection associated with the j.th input,
£() = thethreshold function: f L onet; 26

() =thethresho ction: f{netj)= 0 net; <0

g = the threshold level.

The basic idea of a weighted summation of inputs to be compared to a treshold to determine the output,
is used in most neural networks. However, there are many variations on this basic model. Some
networks operate on continuous input signals or use a different output function to calculate the output
from the weighted sum,

Examples of such different output functions are the semilinear sigmoid function (i.e., bounded above
and below, but differentiable) used in & Back Propagation Network (BPN) and a nonlinear exponential
function as used in a Probabilistic Neural Network (PNN), Figure 35 shows a number of different

output functions.

+1|—-—- + 4 — +1

: [

+1/_ *1/— /

Figure 35: A number of different output functions
(activation functions),
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3.1.3 Neural Network Topologies
The topology of a neural network is the organization of units inte groups and the connections between

them, and can be divided in topologies with strictly feed-forward connections and with feedback
connections. In a purely feed-forward network, the input simply flows through the connections. As it
passes through intermediate PEs, it is transformed until it ultimately reaches its final form at the output
PEs. The only time-related factor is that sending PEs must compute their states before the receiving PEs
can use them to compute their own states. Once the flow of information reaches the output PEs,
processing ends until new input values are fed into the network. Thus, a simple functional relationship
exists between inputs and outputs, Two typical examples of a feed-forward network are the Back
Propagation network (BPN) and the Probabitistic Neural Network (PNN). These two feed-forward
networks topologies are illustrated in Figure 36,

DISTRIBUTION  PATTERH SUMMATION DECISION
LAYER LAYER 1AYER LAYER

8y

Figure 36: Feedforward topology; (Left} A three-layer BPN,
{Right) PNN.

In feedback topologies, the output values of higher level PEs are fed back to lower
levels. Figure 37 shows two feedback networks.

L
-

Figure 37: Feedback Network topology.

3.1.4 Learning methods
The learning methods may be categorized as:

-Supervised learning
-Unsupervised learning
-Non Jearning
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3.1.4.1 Supervised learning
In supervised learning, the network is (rained on a training sef consisting of labeled input vectors. The

vector is applied to the input of the network; the label is used as a "target” representing the desired
output.

Training is accomplished by adjusting the network weights so as to minimize the difference between the
desired and the actual network output, The supervised training process is illustrated schematically in

Figure 38.

INPUT A AGTUAL
VEGTOR BUTROT

TRAINING
SET

DESIRED
QUTPUT

SUPERVISOR «——

Figure 38: Supervised training process.

3.1.4.2 Unsupervised learning
Unsupervised learning, sometimes catled self-organization, requires no labels for the input vectors to

train the network. The learning goal is not defined in terms of specific correct examples, During the
{raining process, the nebwork weights are modified so that similar inputs produce similar outputs, The

unsupervised fraining process is illustrated schematically in Figure 39.

Figure 39; Unsupervised fraining process.

3.1.4.3 Non learning
Non learning nctworks simply store the training sets, and perform pattern matching caleulations. The

non learning training process is illustrated schematically in Figure 40.
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TRAINING VECTOR

Figure 40: Non learning training
Process.

3.1.5 The learning process and neural networks topology

Many of the learning methods are closely connected with a certain {class of} network topology. Below,
an overview of some of the different ANNGs is given.
-Supervised learning;
i) Feedback Networks:
a) Mean Field Annealing
b) Boltzinan Machine (BM)
c) Learning Vector Quantization (LVQ)
it) Feedforward Networks:
a) Perceptron
b) Adaline, Madline
c) BackPropagation Network (BPN)
~Unsupervised learning:
i) Feedback Networks:
a} Binary Adaptive Resonance Theory (ART1)
b) Anzlog Adaptive Resonance Theory (ART2)
c} Discrete Hopiield (DH)
d4) Continuous Hopfield (CH)
e} Discrete Bidirectional Associative Memory (BAM)

ii) Feedforward Networks:

a) Linear Associative Memory (LAM)

b) CounterPropagation Network (CPN)
~-Non learning:

a) Probabilistic Neural Network (PNN)

b) Spatiotemporal Pattern Recognition (SPR)
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In our case, in AMMA signal classifications, we know the patterns to be recognized, and we do not

want the network to define the classes, so we need a supervised learning network, or a non learning
network. In this thesis we apply the two following artificial neural networks:

» Probabilistic Neural Network(PNN)

¢ BackPropagation Network (BPN)

to recognize and classify patterns of the activities that were described earlier,

3.2 Probabilistic Neural Network (PNN)

3.2,1 Introduction
The network described here is actually a statistical algorithm proposed several decades ago. It is

described in Meisel, [28], and Duda, [29]. Although its theoretical and practical power was known at
that time, the state of computer technology precluded its widespread use. Even moderate size problems
required memory and CPU speed far beyond what was available at that time. Therefore it fell into
disregard until Specht revived it in the form of a neural network [30] which he called a “ probabilistic
nevral network” referring to its roots in probability theory, He showed that by organizing the flow of
operations into “layers”, and assigning primitive operations to individual “neurons” in each layer, the
algorithm can be made to resemble a four-layer feedforward network with exponential activation
functions. The following sections present the network in & form closer to its roots,

To understand the basis of the PNN paradigm, it is useful to begin with a discussion of the Bayes
decision strategy. it will then be shown that this statistical approach can be mapped into a feedforward
neural network structure typified by many neurons that can perform alt functions in paralfel,

3.2.2 The Bayes strategy for pattern classification

An accepted criterion for decision rules or strategies used to classify patterns is that they do so in such g
way that the expected risk is minimized. Such strategies are called "Bayes strategies", and can be
applied to problems containing multiple categories.

Consider the two-category situation in which the state of nature 8 is known to be either 9, or 8. If it is

wanted to decide whether 8=, or (=0, based on a set of measurements represented by the P-

dimensional vector X'=[X, - X; »» X}, the Bayes decision rule

becomes:
dX)=0, if halafAG)zhglafp) 4
dX)=6g if halafAXK)}<hplpfpX)

where f) (X) and f; (X) are the probability density functions of the vector X for categories A and B.
Variable 1, is the loss function associated with the decision &(X) = 8 when 6 = 9, and Iy is the loss

function associated with the decision d(X) = 64 when O = B3 (the losses associated with correct
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decisions are taken to be equal to zero); hy is the a priori probability of occurrence of patterns from

category 8, and hy=1- h, is the a priori probability that 0 = 05,

The key to using Eq.(4} is the ability to estimate PDFs (Probability Density Functions) based on
training patterns. Often a priori probabilities are known or can be estimated; the loss functions require
subjective evaluation.

3.2.3 Estimating the PDF using Parzen windows

Bayesian classification requires a PDF for each class, In practice, it is often difficult to determine the
PDF with high accuracy. There may be too few training vectors, and the data may be incomplete or it
may be partially inaccurate. Some means are required fo estimate the PDF from such sparse, real-world
data sets. Parzen [31] developed such a technique, commonly called the method of Parzen windows. The
following equation expresses the method for finding the needed value for the PDF:

feX)=——5— —~Zexp( KoYy ) (X~ Ye) ):(2X-Y“)] 5
on )2 o M. A 2o
where
LX) = the value of the PDF of class C at point X
n, = number of training vectors in class C
p = number of components in the training vector
X = the point in feature space at which the PDF is to be evaluated
Ya = ith training vector from class C
G = smoothing variable
t = vector transpose
i a training vector number

While this formula may appear complicated, the idea is simple; £X) is simply the sum of multivariate
Gaussian distributions centered at each of the training samples, However, the sum i3 nof limited to being
Gaussian. It can in fact approximate any smooth density function, Figure 41 illustrates the effect of
different values of the smoothing parameter & on £(X) for the case in which the training patterns are
one-dimensional patterns, and Figure 42 illustrates the two-dimensional case. The density is plotted
from Eq. (5) for three values of o with the same training sef in each case. A small value of o causes the
estimated density function to have distinct modes corresponding to the locations of the fraining
examples. A larger value of o, as indicated in Fig. 41b,c and 42b,¢ produces a larger degree of spread
of the contributions of individual cases. Here, values of X close to the training examples are estimated

to have about the same probability of occurrence as the given examples. A very large value of ¢ would
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cause the estimated density to be Gausian, regardless of the true underlying distribution. As it will be

seen, selection of proper values of o is needed for adequate generalization and classification. With

Eq.(5) the Bayes decision rule for the two-category situation in Fq.(4) becomes

dX) =64
if 6
B gl EYADXYAD | BT X VB K- Vi)
i=1 202 i=1 202
and
d(X)=84
if
Zexp[ (X- YMZ)EX YAI):|<S.§JGXP[_(X-YB;)G(S(-YBO:I
= P
where
~hels na
hala np
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(a)o=0.2

M

(b)o=0.5 (¢c)o=1.5

Figure 41: The smoothing effect of different values of o on alD PDF estimated from examples.

(a)o=0.2

(b)o=0.5 {c)o=1.5

Figure 42: The smoothing effect of different values of o on a 2D PDF estimated from

examples,

3.2.4 The architecture of a Probabilistic Neural Network (PNN)
The many advantages offered by ANNs have promipted an cffort to recast the Baysian classifier into the

probabilistic  neural network  (PNN)
framework. Figure 43 shows a neural
network organization for classification of
input patterns X into two categories.

Aninputvector X'=[X; ... X,}tobe
classified is applied to the PEs of the input
layer. This layer is merely a distribution
layer which supplies the same input value to
all of the patterns PEs. Each pattern PE

(shown in more detail in Figure 44) forms a

e

HMATIONR
s“h\\"ER

Figure 43: The Probabilistic Neural Network (PNN).
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dot product of each input pattern vector X with a weight vector W; and then performs a nonlinear

operation on Z; ( Z; = X . W, ) before outputting its activation level to the summation PE,

Z.=expl{z-1)/c’]

Fipure 44: The pattern PE functional modet,

Instead of the Sigmoid function (i.e., bounded above and below, but differentiable) commonly used for

BPN networks, the nonlinear operation used here is:

exp[(z;-l)} .

0_2

Assuming that both X and W; are normalized to unit length, we have X'X= W'W=1 and the expression
CCWICW) = OOX-2X" Wit WY W) becomes -2(X'Wi-1) =-2(Z-1) and Eq.(7) is equivalent to:

X-W) (X-Wy)

expl-————5———— 8
p[ 20‘2

The set of weights entering a pattern layer PE represent a specific training vector; each weight has the

value of a component of that {raining vector (i.c, Wi=Yay, or Wifjl = Ya[jl, for class A and W=Yg; or

Wifj] = Yrilj] for class B). Thus, the resulting cutput is :

Zoi= exp[@} . exp[_ (X-W)'(X - Wi)] _ exp[_ (X - Yo )' (X = Y )] .

o’ 2¢? 20’

Each PE in the summation layer receives all pattern layer outputs associated with a given class, Thus,
the output of each summation layer PE is
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Se=Y Za= Zexp[(z;;l)]=zexp[_ X-Ya) (X-YQ-)) 0

4] i=} 20’2

This is exactly the form needed to implement Eq.(5). The output, or decision PE is a two-input PE as
shown in Figure 43. This PE produces binary cutput. It has only a single variable weight K:

K = S=_h;3§a A

hala ns

BINARY OUTPUT

Figure 45: The output or decision PE.
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3.3 Advantages and disadvantages of the PNN
The PNN approach offers many advantages, It trains virtually instantaneously (i.e., the training time is

zerol), the days or weeks of iterative training of other ANNS are replaced by little more than reading the
training set. The PNN paradigm allows data to be added or deleted from the training set without lengthy
retraining. This characteristic of the PNN makes it more compatible with many real-world problems,
since network learning (as human learning) is ofien a confinuing process. Some disadvantages stem
from the fact that the entire training set must be stored, as well as processed, each time an unknown
case is (o be classified. This means that memory requirements are large, and execution speed is low.
This approach is hardly suitable for real-time applications, unless a hardware impiementation is

available.

3.4 Error Back-Propagation Network (BPN)

3.4.1 Introduction
In this section we study an important class of neural networks, namely, error hack-propagation

networks. BPNs have been applied successfully to solve some difficult and diverse problems by training
them in a supervised manner with an algorithm known as the error back-propagation algorithm. This
algorithm is based on the error-correction learning rule and is also referred to in the literature as the
back-propagation algorithm. The learning process performed with the algorithm is calfed back-
propagation learning. The conceptual basis of BPNs was first presented in 1974 by Werbos [25], then
independently reinvented by Parker in 1983{24), and presented to a wide readership in 1986 by
Rumelhart [23]. Back-propagation has been much studied in the past few years, and many extensions
and modifications have been considered. Only the basic form of BPN is discussed here.

3.4.2 Network architecture

Typically, back-propagation employs three or more layers of processing elements (units, neurons).
Figure 46 shows the architecture of a typical four-layer back-propagation network. The two internal
layers are hidden layers (with hidden neurons). The network shown here is fully connected, which means
that & neuron in any layer of the network in connected to all the neurons in the previous layer. Signal
flow through the network progresses in a forward direction, from left to right and on a layer- by-layer

basis,
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Figure 46: A four-layered back-propagation
network.

A back-propagation neural network is trained by supervised learning. The output, o;, of any neuron j
can be expressed as the non-linear transfer function, f, of the input, net, Where net; is the dot product of

the output of the previous layer (containing N nodes}, oi, and a weight vector, as shown below:

N
o; = f(net;) where: net; = ;wﬁok 1t

Thus the output of each neuron in the final layer is a non-linear function of the inputs and ali the weight
matrices, Generally the output functions of the processing elements in a back-propagation network are

sigmoid fransfer functions:

1
f(net) = 'H—em 12

This function acts as a soft threshold with the center of the slope at 8. Figure 47 shows the sigmoid

function,
f(net)

j/

Figure 47: The sigmoid function.
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This function has three important properties. Firstly, the sigmoid is non-linear, allowing the network to

perform complex mappings of input to output vector spaces. Secondly it is continuous and differentiable
which allows the gradient of the error to be used in updating the weights, and thirdly the function
satisfies the following differential equality;

f'(net) = f(net)[1 - f(net)] 13

3.4.3 The Back-Propagation Training Algorithm
The error back propagation learning rule is probably the most widely used method to train feed-forward

networks. The basic idea of this Iearning rule is to define a measure of the overall performance of the

system and then to find a way to optimize that performance, We can define the performance of the

system as:
X K 2 K m
B=Y B =43 o =43 T - oy Y
k=t k=t k=l i=1
where
ot = the i.th component of the actual output vector produced by presenting the k.th training input
pattern x*
= = the i.th component of the k.th desired output vector
E* = the square error of the output for training input pattern x¥,
B = the sum of the square error of ali training patterns,
m = the number of oufput neurons,
k = the number of patterns in the training set.

The goal is to minimize this sum. If the system error is zero, all training patterns are mapped on the
correct target output pattern, If not, we can assign a particular neuron blame in proportion to the degree
to which changes in that neuron’s activity lead to changes in the error. That is, we change the weights of
the system in proportion to the derivatives of the error with respect to the weights. The rule for changing
weights is given by the gradient descent method, i.e. we minimize the error function E by using the

following iteration process:

oB

15
owr

wi (new) = wi"(old)—

where
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wi® = the weight of the connection between the n neuron in layer L — 1 and the m™ neuron in layer L

1] =a positive consant that controls the rate of change of the weights (learning rate)
Substituting eq.14 for E in eq.15 gives:

X
a{kz:‘ Ek} X OE*
m —wR(old)— e ) 16
wi (new)=wi"(old)—n = E{ “aw;"}

After some mathematical manipulation, the expression for the updates of the weights of the connections

to the neurons of the output layer L is obtained:

K K
Wi (new) = wi(old) + ) ooy, = wi (old) + ) ith — o) f (net?)ol", 17
k=1 k=1

where:

offl = the output of the m™ neuron in layer L~ 1 for an input pattern k

km '
O, =(tn -0, ) (net/™),
alocal error measure for the m, th neuron in layer L, due to training input pattern x*

f'(net;™) = the derivative of the activation function f(net:™)

The expression for the updates of weights in a hidden layer is;

K
Wi (new) = W (old) + . néimol, 18
=

where the local error measures (8’s) for a processing element m in a hidden fayer k can be determined

recursively by:

3 = ;6:_+.w‘ﬁlf‘(net‘f“) 19

A complete description and derivation of the gradient descent method is given in Paralle] Distributed

Processing [32).
For a given training set, back-propagation learning may proceed in one of two basic ways:
1. Batch Mode. In batch mode of back-propagation learning, weight updating is performed after the

presentation of all the training examples that constitute an epoch (one complete presentation of the
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entire training set during the learning process is called an epoch). The above described weight

updaling is a baich mode of back-propagation learning.
2, Pattern Mode. In pattern mode (or onfine-mode) of back-propagation learning, weight updating is

performed after presentation of each training example, The weight update for a pattern k becomes:

Wi (new) = Wi (old) + )"0, 20
The use of pattern mode requires less local storage, and makes the search in weight space stochastic in
nature, which, in turn, makes it less likely for the back-propagation atgorithm to be trapped in a local
minirmum. The use of batch mode of training provides a more accurate estimate of the gradient vector.
Experiments show that in the general case when the weight updates are small (n) sufficiently small), the
two training modes yield comparable solutions, and their refative effectiveness depends on the problemn

at hand,

3.4.4 Advantages and disadvantages of BPNs

The back-propagation neural network offers many disadvantages. It is very sensitive to initial weights,
and the back-propagation algorithm ofien converges very slowly to the solution and can get stuck in
local minima of the cost function. For complex problems it may require days or weeks to train the
network, The choice of the number of layers and neurons per layer is still an unsolved problem. No
general rule exists to determine the required network size for a certain application. In most applications
the network size is chosen in a heuristic or empirical way. The back-propagation neural network has no
reject option,

A great advantage of the back-propagation neural network is its generalization capability. Another
advantage of the BPN is its general applicability, It can be used for both continucus and binary
mapping for many different types of problems,

3.5 Application of the selected neural networks to daily life motor activities

3.5.1 Construction of a training set
To {rain a neural network, one must have labeled examples of input data, These data may come from

databases, simulations, expert opinions or reference data (i.c., data-sets obtained from recording under
predefined conditions). In our case, the latter type of data was used. To provide the reference data for '
building the training sets, the instrumented subject follows during 15-30 minutes a protocol consisting
of a number of daily life motor activitics. A particular (raining set must be representative for its class
and must be unambiguous.

The way in which a training set for a daily life motor aetivity class is defined depends on the definition
of each activity class. Each daily life mofor activity class is reflected in specific postures and

movements. Each specific posture and movement is reflected in typical waveforms of the signal in each
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channel, Some of the daily life activity cfasses can be defined by using one single channel, others need

two, three or sometimes all four channels. The use of more channels to define some of the activity
classes reduces the classification errors, Figure 48 shows representative signals for some of the activity
classes. The class definitions are based on the occurrence of specific waveforms and combinations of
the accelerometer signals.

The use of only one single channel (first channel or second channel) is sufficient to define a step (class
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Figure 48: Representative signals for some activity classes recorded during calibration.
R). For the definition of ‘sitting’ (class S) and ‘lying on the back’ (class T), we used two channels (first
and fourth channel). For lying on the left side (class U) we used the third and the fourth channel, In
mathematical notation:
ClassR : {trainsetRchl, @, @, @}
Class$S : {trainsetSchl, @, @, trainsetSch4}
ClassT : {trainsetTchl, O, @, trainsetTch4}
ClassU : {@, 9, trainsetUch3, {rainsefUchd}
where @ specifies a non-used channel.
Thus we have to choose one training set for class R and two training sets for each of the classes 8, T
and U {one for each channel), Each fraining set which is fed to the ANNs contains a number of class-
specific waveforims.
TrainsetRch]l={example)-classR-ch1, examplerclassR-chl,..........example-classR-chl}

TrainsetSchi={example;-classS-chl, example,-classS-chl,.......... example; -classS-chl}
TrainsctSch4={example;-classS-cM, example,-classS-chd,..........exampley-classS-chd }
TrainsetTchl={example,-classT-chl, example,-classT-chl,..........example-classT-chl }
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TrainseiTehd={example,-classT-chd, example,-classT-chd,.......... example,-classT-chd}

TrainsetUch3={example;-classU-ch3, example,-classt-ch3,.......... example,-classU-ch3}
TrainsetUchd={example,-classU-chd, example,-classU-chd,.......... example-classU-chd}

Generaily speaking, the more examples one can collect for a {raining set, the better. Unfortunately, no
general rules exist for the caiculation of the appropriate number because this depends on the complexity
of the application. It should be noted that all examples in each training set must have the same length
(dimension}, however, two different training sets may contain examples with different dimension. The
above training sets can be used either for PNN or BPN.

3,52 Activity detection with Probabilistic Neural Network (PNN)

Now we ar¢ in a position to design a PNN-classifier to recognize and classify the daily life motor
activity. It has afready been shown in the previous section how fo construct a training set. In the
following subsection, we will use the training set in the storing phase, the entire collected data during

15-30 minutes in the adjusting phase and the total data of 10-12 hours in the running phase.

3.5,2,1 Storing phase
Figure 49 shows the PNN-classifier in the storing phase for the above example. In the storing phase,

each DataProcessor-Ch* module reads a Trainset*ch* (the training set) and feeds it to a related Class*-
ch*-PNN (a PNN for a two-class problem). A peculiar feature in our PNN-classifier is the parallel use
of a column of PNNs for a two-class problem instead of using a single PNN for a multi-class problem
for each channel. This is so devised, because a PNN for a multi-class problem would require that the
dimensionality of the examples in all training set be the same. The fixed size of the input of a neural
network has led us not only to use a column of PNNs, but it makes the PNN-classifier a patient-
dependent system (i.e. for every patient, we have to build a new training set, thus finding a new

smoothing parameter and changing the input dimension of PNN-classifier).
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Figure 49: A schematic diagram of PNN-classifier in the storing phase.

Figure 50 illustrates 10 examples of fraining sef TrainsetRchl which have been fed to a ClassR-chl-

PNN neural network int order to recognize a step pattern. The intra-subject variability of step’s pattern

can be clearly seen.
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L5 Example 1 Example 2

L5 Example 10

0.5

Figure 50: Several examples of step's pattern.
The value of the training pattern “Example 1* in ASCII format looks as follows:

1.0000E-02, 8.0000E-02,-1,2000E-01,-2.4000E-01,-2,1000E-01,-8.0000E-02, 2.0000E-02,-1.0000E-
02,-5.0000E-02,-5.0000E-02,-8.0000E-02, 2.0000E-02, 1.4000E-01, 1.2000E-0l, 1.6000E-0l,
3.8000E-01, 6.7000E-01, 6.2000E-01, 2.3000E-01, 7.0000E-02, 1,8000E-01, 3.1000E-01, 2.2000E-
01,-3.3000E-01, 8.000D0E-02,-4.0000E-02,-8.0000E-02, 2.0000E-02, 2.0000E-02, 1.0000E-02,-
4,0000E-02,-4.0000E-02,-1,0000E-02,-2,0000E-02,-2.0000E-02, 0,0000E+00, 5.0000E-02, 7.0600E-
02, 2.0000E-02.
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Figure 51 shows a tiled graphical displays of the above 10 examples of the training set TrainsetRehl.

Each row represents the value of an example array, and each tile in this row represents the value of a

single array element. The size of the tile increases with the value of the element.
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Figure 51: Tiled graphical displays of "training”
examples,
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3.5.2.2 Adjusting phase
In order to properly evaluate the nctwork, it has to be fed with data which were not used in training and

check the results, This can be done by step-wise serolling a window with the size of the pattern to be
recognized one bit cach step, over the test fife that contains the pattern. If the contents of the window
approaches one of the examples from the training set with a probability density that exceeds a given set
value, the PNN network outputs a °1°, This means that a more or less matching pattern is found. It
gives ‘-1’ if the probability density is lower than the set comparison value in cases that the contents of
the window does not properly match the examples from the training set. If the results are correct, the
PNN is ready to use. If not, more or better training sets must be obtained, or the smoothing parameter
must be adjusted. Figure 52 shows the PNN-classifier in the adjusting phase for the above example,
where the Inputfile module reads the unlabeled data set which has to be classified and labeled, ihe
Match module is used to combine and compare the outputs of all PNN modules (this combining and
comparing is based on the definition of the activity classes) which results in the assignment {or not) of a

label to a part of the inputdata, the OutputFile module writes the results in a file,
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Figure 52: A schematic diagram of PNN-classifier in an adjusting and run phase.
By altering the smoothing parameter, the generalization ability of the PNN can be adjusted. Our

InputFite DalaProcessor-Cha

experiences for selecting a good smoothing parameter can be summarized in the following simpie rules:

o The more examples are available in the fraining set, the smaller the smoothing parameter value
should be.

¢ The more noisy the data is, the larger the smoothing parameter value should be.

s A small value of the smoothing parameter feads to overlearning (or overfitting or overtraining).

¢ A large value of the smoothing parameter leads to underfitting (or overgeneralization).

o The best procedure is to try a few values. In our application, the value of the smoothing parameter
ranges from (,1-0.3.

It has been found that in practical problems it is not difficuit fo find a proper value for the smoothing

parameter, and that the misclassification rate does not vary dramatically with small changes in the

smoothing parameter.
In the adjusting phase, we used a soflware package which can visualize the collected data and visually

compared the results of the PNN-classifier with the test data set.

3,5.2.3 Running phase
The running the PNN-classifier consists of presenting it with 10-12 hours input daia and gathering the -

results. Figure 53 shows the outputs of four sensors, the step’s pattern which has been detected by the
Class-ch1-PNN neural network is highfighted by a rectangle. Figure 54 shows the output of the Class-
chi-PNN neural network.
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Figure 54: The cutput of ClassR-chl-
PNN,

3.5.3 Activity detection with an error back-propagation neural network
The back-propagation neural network was the second neural network which has been applied to the

recognition of daily life motor activity, The strategy consists of three phases: configuration, training and

running phase. The training sets can easily be constructed as discussed in section 3.5.1,

3.5.3.1 Configuration phase
When a back-propagation neural network is to be applied to solve the recognition of daily life motor

activities problem, one is confronted with the following practical considerations:
¢ number of activity classes;

¢ number of training examples;
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+ number of layers;

e number of neurons on each layer;

+ initialization of weights;

¢  batch updating or sample updating;

» seiting learning rate n and momentum term o;
» choosing the sort of activation function;

e stopping criterion;

s output representation.

Unfortunately, the above mentioned considerations are not independent of each other. Almost all choices

have implications, although some are stronger and some are weaker. To find an optimal setting is almost

an optimization problem itself.

3.5.3.2 Training phase

The basics of the training of & BPN were discussed in section 3.4.3, Figure 55 shows the BPN-classifier

in a training phase for the classification of the four motor activities as discussed in section 3.5.1. In this
phase, each Class*-ch*-BPN (a back-propagation neural network) is trained independently by a

Trainset*ch* (the training set). As Figure 55 shows, a column of BPNs for a one-class problem is

employed instead of using a single BPN for a multi-class problem, This is so devised, because just like

the case of PNN, a BPN for a multi-class preblem would require patterns of the same dimensionality,
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Figure 55: A schematic diagram of BPN-¢lassifier in the training phase.

3.53.3.3 Running phase

Running the BPN-classifier consists of presenting it with 10-12 hours input data and gathering the
results. Unlike the PNIN which can generate a binary output (found/not found), the BPN is not able to
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reject a sample (unknown pattern) in a statistically significant way. The unknown pattern is usually

classified into a class with fow probability (high Mean Squared Error (MSE}). To solve the reject

category problem, the error statistics of each BPN oufput such as MSE can improve the classification

performance, Unknown samples can be rejected if the probability is below a certain threshold. Figure 56

shows a schematic diagram of BPN-classifier in the training phase.
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Figure 56: A schematic diagram of BPN-classifier in the Running phase,
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Figure 57 shows the probability of classes on the outputs of the above BPN neural networks, when a

step pattern {class R] was presented,
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Figure 57: The error statistics of seven BPN outputs.

In this case, the class R [Step] was recognized with high probability, ail other classes have low
probability.
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Figure 58 illustrates the probability of classes on the BPN outputs of the BPN-classifier, when a pattern

not belonging to any of the classes is presented. Each BPN assigns such a pattern to a class with a
certain probability, but the pattern can be rejected if all output values are below a certain probability
threshold. Experiments have shown that by increasing the number of examples in each training set, the

BPN outputs become smaller in cases, when such patterns are presented.
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Figure 58: The error statistics of seven BPN outputs,

3.6 Performance estimation
The performance of a system is an indication of what the system accomplishes. In developing an ADL-

classifier it is important to estimate its performance during the running phase (using phase), For ADL-

classification, the estimation of performance can be obtained by caleulating the percentage of correctly

classified cases. Alternatively, the number of incorrect classification can be used; this is often referred

to as the error rate, Ideally the estimation is based on an unlimited number of pattern exemplars, but, in

practical siteations limited amount of data is available.

To estimate the performance of the PNN-and BPN-classifiers, the following approach was used:

¢ divide the entire data collected during 15-30 minutes (collected according to a specific protocol) into
two parts: one part (20%) to be used during the devetopment of the classifier and the other part
(80%) to be used to test the classifier. If the performance of the ADL-classifier on this test set is
considered satisfactory, the ADL-classifier is accepted for use.

In addition to the above approach for obtaining the classification error rate we have also compared the

output of the ADL-classifiers with the manuaily labeled data of about 10 hours of each subject. Since
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for each subject & different ADL-classifier has been frained, an average classification error is

caleulated for all subject,

3.7 Post-processing
To refine the onset and end time of each activity as estimated by the two above mentioned ADL-

classifiers, one has to use some explicit knowledge to postprocess the output of the used ADL-classiffer.
Figure 59 shows how the highest peak of a step pattern can be estimated correctly by a postprocessing
algorithm. The E indicates the onset time of the detected step pattern and P shows the location of the
highest peak of the step pattern. This postprocessing algorithm shifls forward a window from the
estimated onset time of & step pattern. The local maximum in this window presents the highest peak of
the step pattern. The size of the window should be as large as the pattern size,

1.5

shift window

Figure 59:An example of a step pattern in
which the highest peak can easily be
estimated by  using  postprocessing
algorithm.

To fine-fune the estimated onset and end time of other activities by ADL-classifier, one has to devise a

good postprocessing algorithm,

3.8 Subjects
To test and verify our system, the daily life activities of & group of eight male amputees were measured.

The subjects were instrumented in the morning and the instruments were removed approximately 11
hours fater, As mentioned earlier, the recorded data are downloaded from the RAMCORDER to &
computer for further processing, In Table 3 some information about the subjects and the recording time

is given,
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Affected (above Years post- .
Subject | Age | knee amputation) | amputation Recording time
{ 60 L 53 10h:25m
2 60 L 37 10h:18m
3 34 R 15 10h:51m
4 62 L 44 {1h:18m
5 47 R 18 10h:41m
6 67 R 9 10h:55m
7 56 L 41 1Th21m
8 40 L 20 11h:2Im

Table 3: Some characteristics of subjects,

3.9 Results

3.9.1 Results of PNN-classifier
The PNN-classifiers were, on the average, able to recognize 95% of all presented cases of the daily life

activity classes of all subjects correctly. Because of a short duration of a number of specific activitics,
the PNN-classifiers were unable fo recognize those activities. Another reason for misclassification(i.e.,
not recognizing the activity) was the occurrence of a waveform pattern which was not included in the
training sets. In the following, we present some activity profiles which have been extracted from the
aumerical output of our PNN-classifier,

Figure 60 shows a typical example of an 'Activity Prefile'. Here the sequence and the duration of the

activities walking, sitting and standing are presented.
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Figure 60: Graphical presentation of an activity profile: sequence and duration of daily life motor
activity classes over a period of 20 minutes.

In Figure 60 only 20 minutes of the data-set is shown because displaying a longer recording period
would mask some of the recognized activities. The signal waveforms that could not be recognized by the
PNN-classifier are indicated as unlabeled. All transition activities, e.g., from standing to sitting, from
sitting to lying, etc. are shown as transition.

An overview of the distribution in time of daily-life activity classes of ali amputees during a long term
recording is presented in the pie graph in Figure 61. This figure shows the contribution of each activity
as a percentage of the total recording time. In this figure the “transition’ and ‘unclassified’ cases are put
together. The transition time is the time which lasts between two different activity classes ¢.g. the

transition from sifting to standing , etc.
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Figure 61: Overview of an activity profile: distribution of activities as a
percentage of long term recording time for eight amputees

Figure 62 shows eight histograms in which the horizontal axis displays the duration of the activity
‘walking’ divided in category-intervals of 10 seconds, and the vertical axis displays the frequency of

each category-interval as recorded during the total recording time,
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Figure 62: Histogram of an activily profile: the activity walking is divided in
category-intervals (watking blocks) of 10 seconds,

3.9.2 Results of BPN-classifier
Experiments using the BPN involve the setting of a large number of parameters that influence the

BPN’s operation and it is not feasible to investigate the behavior of all possible network configurations.
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Various experiments with varying paranteters have been made. For the BPN-classifier consisting of a

column BPN, only networks with one hidden layer were used. The number of neurons in this layer as
well as in the output Jayer were varied in order fo evalvate the performance of such a network in various

configurations, The results of these experiments are presented in Table 4 and Table 5.

Number of hidden neurons Number of output neurons Percentage of correct recognition
94%
93%
93%
94%
91%
94%

Table 4: Performance of a BPN-ciassifier on the recognition of the daily life motor activities for
various numbers of hidden neurons.
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As can be seen from the performance figures in Table 4, increasing the number of nodes in the hidden

layer only marginally affects the performance of the BPN-classifier.

Number of hidden neurons Nurnber of output neurons Percentage of correct recognition
5 1 94%
5 2 97%
5 3 97%
5 4 96%
5 5 95%
5 6 93%
5 7 94%

Table 5: Performance of a BPN-classifier on the recognition of the daily life motor activities for
various numbers of output neurons.

It can be seen from the results in Table 5 that the performance increases with an increasing
number of output neurons up to a size of 3 neurons; use of a lager number of output neurons

does not show a further positive effect on the BPN-classifier’s performance.

As a next step, studying the performance of the BPN-classifier in response fo increasing the number of
hidden layers was investigated. Results of such an experiment are presented in Table 6. From the results
presented in this table it can be seen that an increase of the number of hidden layers decrease the
performance of the BPN-classifiers. In all these experiment, the number of example patterns in the
training set had been held constant. The number of example patterns in the training set is given in Table
7.
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Number of hidden layers Number of output neurons Percentage of correct recognition
97%
96%
87%
89%
89%
84%

Table 6: Performance of a BPN-classifier on the recognition of the daily life motor activities for
various numbers of hidden layers. The number of hidden neurons in each layer is 5.

| S | N ] —
(SRR ALY RFE) FVE RUCE pIX)

Activity The number of example patterns in the training set
Sitting 30
Standing 30
Step 75
Lying on the back 25
Lying on the left side 25
Lying on the right side 25

Table 7: The number of example patterns in the training set for each activity.

3.10 Discussion and Conclusion
The use of artificial neural networks in the field of rehabilitation is limited [33][34]. The analysis and

interpretation of daily life motor activities and refated clinical parameters are of importance in clinical
applications such as analysis of motor activities in post- and pre-medication. In addition, the
performance of a specific operation can be assessed by comparing the motor activities before and after
the operation. Also, in ECG applications, the motor activities recorded simultancous with the ECG
signal may help to get a better picture of heart diseases. No satisfactory methods exist to monitor the
daily life motor activities from large amounis of data obtained during sessions of 10 hours or more of
continuous recordings of ambulatory patients who randomly perform daily life activities at home or at
work. This means that the manual analysis of activities of a subject (with huge amounts of data) takes
months to be performed. Therefore, an automated approach is necessary.

Although in this study the data of amputees of our previous projects were used, in general, the above
approach can be applied to any application, which need the analysis of the daily life motor activities.
Since the daily life motor activities are very complex and show extremely large inter- and intra-
individual variation, a simple threshold technique will provide a low ¢lassification accuracy. Also, using
other techniques including regular signal processing tools such as smoothing, Fourier analysis, etc.
requires magic numbers to obfain a reliable accuracy. However, there is no guarantee to find such

numbers in a noisy environment such as recorded motor activities.
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The accuracy of classification obtained by an ADL-classifier is very reliable, since this network can

generalize and recognize similar patierns, even in noisy environments, The networks are well-controlled

by many sefting parameters and by preprocessing (e.g., filtering and offset correction).

The comparison of the output of the automatic classifier with the classification via visual inspection of

the events resulted in 95% conformity. In 5% of the events, automatic classification was not possible

because of too short duration of a certain activity or the occurrence of activities not included in the

training set,

From this study it can be concluded that the PNN and BPN classifier are potentially useful tools for the

classification of daily life motor activities,

By means of several ways of graphical representation we were able to show typical characteristics of

the daily life pattern of amputees at work. However, the insirumentstion allows for ambulatory

recording of motor activities in all possible circumstances like outdoor recreation, transport in vehicles

and activities at home. Furthermore other quantities tike heart rate, EMG, temperature, light and sound

intensity, et¢., can be recorded. The sensors are light and small, and are hidden under the clothes and do

not hinder normal behavior.

From this study we derived the following conclusions;

¢ daily lifc motor activities are complex and show extremely large inter- and intra-individual
variation which excludes using regular signal processing tools for recognition;

« for the application under consideration, PNNs and BPNs are potentially useful options;

¢ a satisfactory conformity of 95% between automatic and visual classification of events can be
achieved;

¢ the automatic classification of 10 kours of activities takes less computation time with special
hardware;

¢ the graphical presentation of the output yields clinically meaningful information;

¢ the ADL-classifier is patient-dependent which means that for every patient a training set has to be
built and optimal parameters settings have to be chosen.

» Application of a postprocessing algorithm does improve the determination of the onset and end time
of each activity. .

* Because of the many sefting parameters and the time consuming training process of BPNs, using a
PNN-classifier is much easier than using a BPN-classifier.

+ Because of the reject class option on PNN output, the performance of PNN is more reliable than that

of a BPN.
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Fuzzy Rule-Based Classification
4. Fuzzy Rule-Based Classification

4.1 Introduction
Fuzzy logic was introduced in 1956 by Zadeh {1} as a new way to provide a mathematical framework to

capture the uncertainties associated with human cognitive systems such as thinking and reasoning. It is
a generalization of conventional {Boolean) two-valued logic, and it uses “soft” linguistic (e.g. large, tall,
small) values for system variables and a continuous range of values in the interval {0, 1], rather than
strict binary (True or False) decisions and assignments. It has been applied very successfully in many
areas where conventional based approaches are difficult to implement. Classification is one of those
areas. In this chapter, we describe a fuzzy ruled-based approach for the recognition of daily life motor

activitics.

4.2 Fuzzy Sets and Membership
Let X be a space of objects and x be a generic element of X. A classical set (crisp) A is defined as a

collection of elements x e X, such that an clement x in the universe X is either a member of set A or it
is not. This binary property of membership can be represented mathematically with the characteristic

function,

1 x €A
XA(X)_ 0 XEA

where y%a(x) indivates membership of element x in set A. For illustration, suppose set A is the crisp set

of all people with 35< x < 55 year in the universe of age of people, shown in Figure 63.

Xa

35 40 S5 age

Figure 63: Age membership function for a crisp
set A,

A particular individual, x, has an age of 40 years. The membership of this individual in crisp set A is
equal to 1, or full membership, given symbolically as ya(x:) = 1. Another individual, say, xs, has an

age of 34.99 year. The membership of this individual in crisp set A is equal to 0, or no membership,
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hence xa(x1) = 0, also scen in Figure 63, In these cases the membership in a set is binary, either an

element is a member of a set or it is not,
Unlike the classical (crisp) set mentioned above, a fuzzy set expresses the “degree of membership” to
which an element belongs to a set. Hence the characteristic function of a fuzzy set is allowed to have
values between 0 and i, denoting the degree of membership of an element in a given set. If X is a
collection of objects denoted generically by x, then a fuzzy set A in X is defined as a set of ordered
pairs;

A= palx)fx; + palo)xe + pa(xalxs + palxa)/xs + palxsyxs +.....
pa(x) is called the membership of x in A, which maps X onto [0, 1].
As an example, consider the membership functions for the fuzzy variable height. In Figure 64, the
membership functions prai(X), Havenss(X) and gisnem(X) are defined graphically, where height is indicated
along the x axis of the graph, and degree of set membership of the corresponding height is given by the
y coordinate. Thus, the extent fo which a height of 1.79m is “tall” is 0.50, and the extent to which it is
“average” is 0.25. These can be presented by the ordered pairs (1.79, 0.50) and (1.79, 0.25)
respectively. This shows an important point, namely that an element (in this case a height) can be a

member of more than one set.

»

Short Average Tall

1.00
0.75 i /\
0,50 |-

3 <
| SN

0.0 >
?.68m 1.70m  1.72m [.74m  1.76m 1.78m 1.80m  1.82m  1.84m

Figure 64: Membership functions for the fuzzy variable "height".
Fuzzy sels can be defined discrete or continuous, or can be defined using examples of set members, in
any way desired. It is also possible {o define them mathematically (functional representation); for

example the set “tall” can be defined as:

0 h<177
h-177
nTalith) = 504 177 <h <181
1 h>181

where h is height.

The following example shows a universe of shapes:
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’ 0'8) ]

A simple example of a discrete universe and a discrete fuzzy subset of it, is:
X={-3,-2,-1,0,1,2,3,4}

A=0.6/-3 + 0.0/-2 + 0.3/-1 + 0.6/0.0 + 1.0/1 + 0.6/2 + 0.3/3 + 0.5/4

Figure 65 shows the fuzzy set A graphically.

4

h
1.00
0.60
0.30 | |
—

3 2 a0 00 | 2 3 4

Figure 65: A discrete fuzzy set,
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4.3 Operation on Fuzzy Sets
In order to manipulate fuzzy sets, it is necessary to have operations (hat enable us to combine them.

Corresponding to the ordinary logical operations, i.e., AND, OR and COMPLEMENT, fuzzy sets
have similar operations. As with the definition of membership functions, there is no single recognized
set of fuzzy operations. In the following subsection, the fuzzy versions of the operations AND, OR and
COMPLEMENT will be introduced.
4.3.1 Intersection
As said before, there is no unique way to extend classical logical operations. The intersection of two
fuzzy sets A and B is defined as {Zadeh 1965]:

AND(j, (%), 1 (X)) = P gy (%) = DR 5 (), 15 (X))
where A and B are fuzzy subsets of a universe X,
The membership function js obviously the crucial component of a fuzzy set. It is therefore not surprising
that operations with fozzy sets are defined via their membership functions.
Let A and B be fuzzy subsets of the universe X={-3,-2,-1,0, 1,2, 3, 4}
A=0.6/-3 + 0.0/-2 + 0.3/-1 +0.6/0.0 + 1.0/1 +0.6/2 + 0.3/3 + 0.5/4
B=0.2/-3 + 0.6/-2 + 0.4/-1 + 0.6/0.0 + 0.5/1 + 0.4/2 + 0.5/3 + 8.3/4
tarn=0.2/-3 + 0.0/-2 + 0.3/-1 + 0.6/0.0 +0.5/1 + 0.4/2 + 0.3/3 + 0,3/4

The intersection of A and B is shown in Figure 66

7Y s
100 1.00
0.60 060
'o.so I , 030
A Y ¥ I S e S e B R T T R S S
min (34x , o)
1.00
0.66

a L,

-3 -2 -1 00 1 2 k) 4

Figure 66: Intersection of fuzzy sels A and B,

Figure 67 shows an intersection of two continuous triangular fuzzy sets with bold lines.
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h
b
v

Figure 67: Intersection of two friangular fuzzy sets.

Some other nonparametric AND operators in fuzzy logic are given in Table 8 [2][31[4].

Ha(X) pp(x)

Ba(x) pp(x)
Ha(X)+ Hp(X) - B (3 pp(x)

”'A(x) : ”’B(X)
2-[pa () pp(X) = RA(X) - pp(x)]

max{0, p, (x} + pa(x) -1}

Table 8: Possible operators for AND in fuzzy logic.

4,32 Union
The union of two fuzzy sets A and B is defined as {Zadeh 1965);

OR(p 4 (%), 1p(¥)) = Raus (x) = max{y , (X), Hp(x)}
where A and B are fuzzy subsets of a universe X.
With the subsets A and B as defined in 4.3.1, the union of A and B is:
pavs=0.6/-3 ¥ 0.6/-2 + 0.4/-1 + 0.6/0.0 + 1.0/1 + 0.6/2 + 0.5/3 + 0.5/4
This is shown graphically in Figure 68.
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7% Ha
1L.00 (00
0.60 0.60
0.30 .30
3 2 I 00 1 2 3 4 -3 ] 1 60 1 2 3 4
max{Fs , Up}
1.0G

3 -2 Jd0 00 1 2 3 4

Figure 68: Union of fuzzy sets A and B.
Figure 69 shows the union of two continuous triangular fuzzy sets with bold lines.

A

»

Figure 69: Union of two triangular fuzzy sets.
Some other nonparametric OR operators in fuzzy logic are given in Table 9 {2}[3][4]. There are no

general guidetines as to which OR or AND operator to choose in a specific situation.

Ha () + pp(x) = () pp(x)

Pa(x)+pp(x)—2p, (%) pp(x)
1 pa (x)- ps(x)

P (x) + pg(x)
T+ P, (X)) pg(x)]

min{l, p, (x} +pg(x)}

Table 9: Possible operators for OR in fuzzy logic.

4,3,3 Complement of fuzzy seis
The Complement of a fuzzy set A is defined as: [Zadeh 1965)

P =1-p(x)
Let A be a fuzzy subset of universe X={-3, -2,-1, 0, 1, 2, 3, 4}
A=0.6/-3 +0,0/-2 +0.3/-1 + 0.6/0.0 + 1.0/1 + 0.6/2 + 0.3/3 + 0.5/4
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A=04/-3+1/-2+07/-1+04/00+00/1+04/2+07/3+05/4
The complement of A is shown graphically in Figure 70.

Ha
100

0.60

0.30 I |
2 a9 ob 1 I ]

Figure 70: Fuzzy set A [left] and its complement [right].

-3

This operation is shown in Figure 71 for a typical continuous fuzzy set.

A

It

4

Figure 71: Complement of fuzzy set.

4.4 Fuzzy IF-THEN rules
In the field of artificial intelligence there are various ways to represent knowledge. Perhaps the most

common way to represent human knowledge is in the form of natural language expressions of the type,

IF inputl is A AND input2 is B THEN output is C
| N— " 2’ \_ﬂ_J
antecedent part consequent paet

where inputl, input2 and output are linguistic variables [3], A, B and C are linguistic values that are
characterized by membership functions. It typically expresses an inference such that if we know a fact
(antecedent), then we can infer, or derive, another fact called a conclusion (consequent). Due to their
concise form, fuzzy IF-THEN rules are often employed to capture the imprecise modes of reasoning
that play an essential role in the human ability to make decisions in an environment of uncertainty and

imprecision,
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4.5 Fuzzy inference systems
Fuzzy inference systems perform fuzzy reasoning. Basically & fuzzy inference system is composed of

five functional blocks, as depicted in Figure 72.

knowledge base
_ data base rule base ;

Iput ¥ Y Ouput
———sbv fuzzifier defuzzifier lw_->
; v Y.

o m—;ﬁl inference uni (fozzy)

Figure 72: Fuzzy inference system.

o a data base contains information about the membership functions of the fuzzy sets used in fuzzy
rules, the domains of the variables and kinds of normalization,

o a rule base contains a number of fuzzy (F-THEN rules;

o a fuzzifier receives the current crisp values of the input variables and transforms them into degrees
of match with linguistic values;

o an inference unit performs the inference operation on the fuzzy rufes;

o a defuzzifier transforms the fuzzy results of the inference into a crisp output by using a suitable
transformation.

Usually, the rule base and data base are jointly referred to as the knowledge base.

Several types of fuzzy inference systems have been proposed in the past[5)[6][7]. They differ in the

types of fuzzy reasoning and fuzzy IF-THEN rules employed. In the following, we present two well-

known inference mechanisms in fuzzy rule-based systems,

Mamdani uses the following architecture:

Rule 1: IF inputl is Ay and input2 is Ay, THEN output is C,
also

Rule 2: IF input1 is A and inpui2 is Ax» THEN output is C,
fact: input! is xg and input2 is yo

consequence; output is C

The fuzzy implication is modeled by Mamdani as:
Aand B C=(AnB)nC
and the operator also is interpreted as Oring the output of the rules by the max operator,

The firing levels of the rules, denoted by cy, i=1,2, are computed by
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o =A()N A (Yo =min{A, (X,), Ap(y,)}

o, = Ay (X)) M Ay, (Ye)=min{A, (Xo), Ay (¥, )}
The individual rule cutputs arc computed by

Ci(2) = a; N Cy(2) = minfa,, C,(2)}

C;(2) =0, N C,(2)=minfe,, C,(2)}
Then the overail system output is computed by Oring the individual rule outputs
C(z) = C,(2) U C; (2) = max{C,(2),C; (2)}

Figure 73 illustrates the graphical analysis of two rules, where the A; and Ay, refer to the first and

second fuzzy antecedents of the first rule, respectively, and the C, refers to the fuzzy consequent of the
first rule; the Ay and Ay refer to the first and second fuzzy antecedents of the second rule, respectively,
and the C; refers to the fuzzy consequent of the second rule. The minimum membership value for the
antecedents propagates through to the consequent and truncates the membership function for the
consequent of each rule. This is done for each rule. Then the truncated membership functions for each
rule are aggregated. The aggregation operation max results in an aggregated membership function. If
one wishes to find a crisp value for the aggregated output, some suitable defuzzification technigue could
be applied to the aggregated membership finction, and a value such as z* shown in Figure 73 would

result,
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v

input! input2
»
C
P

Figure 73: Mamdani's inference mechanism.

‘Tsukamote uses the following architecture:

Rule 1: IF inputl is Ay, and input2 is Ay THEN output is C,
also

Rule 2: IF inputl is Ay, and inpus2 is Az THEN output is C,
fact: inputl is x, and input2 is y

consequence: output is C

All linguistic variables are supposed to have monotonic linguistic value (membership functions).
The firing levels of the rules, denoted by oy, i=1,2, are computed by

o, =AL(x)N AL (V) =min{A, (x,), A (¥}
oy = Ay (X )N Ay (ye)=min{A, (%), Ay(y,e )}

then the individual rule outputs z, and z, are computed from the equations
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o, =C{(z,), o, =C,(z,)

and the overall system output is computed by
O, *Z, + 0, *E,
Zy ==
o, +0.,
Graphically, this is illustrated in Figure 74. With the numeric data given in the figure, we can compute

the overall system output as follow;

v

Bl R R DRkt R R R,

inputl

Figure 74; Tsukamoto's inference mechanism,
According to the figure we see that
An(x9)=0.8 and Aplye)=10.3
therefore, the firing ievel of the first rule is
oy = min {Ay (%), A{Yo)} = min {0.8, 0.3}=0.3
and from
Ax(Xa)=0.7 and Ax(ye) =038
it follows that the firing level of the second rule is
o = min {AniXg), Axnfye)} = min {0.7, 0.8}=0.7
the individual rule outputs z; = 7 and z, = 2 are derived from the equations
Ci(z1}=0.3 and Ci(z2) = 0.7
and the overall éystem output is

_MW+MQ_M+M_

=307 1 P
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These two fuzzy inference mechanisms provide a good foundation for a discussion on fuzzy rule-based

classification and on hybrid systems.

4.6 Fuzzy classification
Fuzzy classification systems, based on fuzzy Iogic[8][9]{10] are capable to deal with cognitive

uncertainties such as the vagueness and ambiguity involved in classification problems. In a fuzzy

classification system, an object can be classified by applying a set of fuzzy rules based on the linguistic

values of its attributes. Unfike conventional approaches of pattern classification, fuzzy classification

assumes the boundary between two neighboring classes as an overlapping area within which a pattern

(an object) has partial membership in each class. This viewpoint not only refects the reality of many

applications in which categories have fuzzy boundaries, but also provides a simple representation of the

potentially complex partition of the feature space, The classifier is described by fuzzy TF-THEN rules.

An example of fuzzy classification rules for a 2-dimensional feature space is:

R 1F x, is small AND %, is very large THEN x = (x;, x;) belongs to class C,

Ry IFxis large AND x; is small THEN x = (xy, x,) belongs to class C,

Ry IFx is small AND x, Is large THEN x = (%), x;) belongs to class C»

Ry IFx is very small AND x, is very large THEN x = (X, X2) belongs to class Cy

where R; is the i.th classification rule, Cy indicates an output class, x; and x, are the features of a

pattern {or object), very small, small, large and very large are linguistic terms characterized by

appropriate membership functions and AND is a fuzzy logical operation,

To build a fuzzy classification system, the most difficult task is to find a set of fuzzy rules connected

with the specific classification problem. This task can be accomplished in two ways:

1. to acquire knowledge from experts and then translate their knowledge into fuzzy rulesf2][3]{11].

2, to generate the fuzzy rules automatically from sample data (training set) without expert
help[12][13][14}[15][16].

In a fuzzy classification system, a classification rule takes the same format as a non-fuzzy classification

rule but the inferencing is based on fuzzy logic.

4.6.1 Inference of fuzzy rule based classifiers
For simplicity, let the rule base contain 9 fuzzy IF-THEN rules and have two inputs x and y as follows:

Rule I: IF inputl is A, and inpwt2 is B, THEN output is C;
Rule 2: IF inputl is A; and input2 is B, THEN output is C,
Rule 3; IF inputl is A, and input2 is By THEN output is C;
Rule 4: IF input] is A; and input2 is B; THEN output is C4
Rule 5: IF inputl is A; and input? is B, THEN oufput is C;

92




Fuzzy Rule-Based Classification

Rule 6: IF inputl is A; and inpn2 is B, THEN output is Cg
Rule 7; IF inputf is A, and input2 is B) THEN output is C,
Rule 8: IF input! is A; and inpuf2 is B; THEN output is Cg
Rule 9: IF inputl is A, and input2 is B; THEN output is Cy
fact: input] is xp and input2 is o

consequence: output is C

The firing levels of the rules, denoted by oy, i=1,9, are computed by

oy = min{Ai(xq), Bi(yo)}
0 = min{Ar{xo), Ba{yo)}
o = min{Ay(xg), Ba(yo}}
o = min{Ax{x5), By(ya)}
s = minf Ax(Xo), Bx(¥o)}
o5 = min{Ax{x4), Ba(y0)}
o7 = min{As(xo), Bi(yo)}
og = min{Ax(xe), Bayo)}
oy = minf{As(xg}, Bi(yo)}

If several fuzzy rules have the same consequence class, their firing strengths have to be combined.
Usually, the OR operation is used.
The individual rule outputs are computed by

Ci=ay OR o = max {min{A(xo), Bi(ye)}, min{Ay(xe), BaAyo)}}
Co= o = min{A,(x,), Bayo)}
Cs= 03 = min{Ax(xe), Bs(yo}}
Co= ot = min{Aa(x,), Bi(ye)}
Cs= o OR 0 = max {min{Ax(Xo}, B:(y0)}, min{As(xo), Bi(vo)}
Cr= oz = min{As(xo), Bi(yo)}
Cs= 0tg = min {A:(xo), Bx(ys)}

the overall classifier output is selected by
C= max{ C‘. C;g, C3, C,g’ C@ C7, Cg }
Figure 75 illustrates above the 2-input fuzzy rule base with 9 rules,
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* =
g' C (Class)
Inputs (features) 5 I
W
e,
(0]
=2
=

Figure 75: Grabhical representation of 2-input fuzzy rule base with 9 rules.
Since each input feature is associated with threc memberships, the input space (feature space) is
partitioned into 9 fuzzy subspace, each of which is governed by a fuzzy IF-THEN rule. The antecedent
part of a rule defines a fuzzy subspace, while the consequent part specifies the output within this fuzzy

subspace,
C, G,
C, ol
C, Cy
A, A,
01 =

Figure 76: Fuzzy partitioning by 9 rules.
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4,7 Application with fuzzy rule based classification
In this section, we explain how the fuzzy IF-THEN rule classifier has been applied to the AMMA-signal

for classification of the daily life motor activities, We used the modified pattern recognition system
which was discussed in section 2.1, and aiso shown in Figure 77 as our general model.
Chl Ch2 Ch3 Chd

l l l l Measured features
{ Preprocessing t

I~
I
' l l Preprocessed features
i v v
|
il Feature Generation
vy L
g ° Feature_|| S Feature_n
ﬁ : Generated features
& 1 vy VYV B i
2
g .
2 i Feature Selection
o - or
I Feature Extraction
|
{ Feature 1 o Feature_m
I Optimal features
I Y Y ¥ r Y ¥
-

-D’ Classification l

Classes

Figure 77: The modified pattern recognition.

Several steps were taken to implement the modified pattern recognition system which uses a fuzzy rule
based classifier. In the following subsection, these steps will be discussed.

4,7.1 Feature generation

As mentioned before, using only the four continuous features (the outputs of the four accelerometers) is
not enough to design a patient independent classifier, for the recognition of activities (different waves in
signals), and the detection of onsets and endpoints of the waves. In the feature generation part, the
preprocessed data are transformed into some new representations (new features) in order to maximize

the pattern recognition ability and minimize the misclassification rate. In our application, 160 features
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were generated by using the two algorithms discussed in chapter 2 for each channel, The following

figures illustrate some generated features. Figure 78 shows a part of preprocessed activities as recorded

by channe! 1.
1.6
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Figure 78: Part of activities recorded by channel 1.
Figure 79 illustrates a generated feature from channel 1 by using the function:
“ Power(Norm(chl{x;..x¢], 2),2)".
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Figure 79: New generated feature from channel 1,
Figure 80 iilustrates another generated feature from ehanne! 1 by using the function:
“Norm(Cum_sum{chl[x..x11).2).

f chiC
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Figure 80: New penerated feature from channel 1,

Figure 81 shows a part of preprocessed activities as recorded by channel 2.
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Figure 81: Part of activities recorded by channel 2,

Figure 82 iliustrates 2 generated feature from channef 2 by using the function:

“Power(Norm(ch2[xy..xs6], 2),2)".
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Figure 82; New generated feature from channel 2,

Figure 83 illustrates another generated feature from channel 2 by using the function:
“Norm({Cum_sum{ch2[x..x4]),2).
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Figure 83: New generated feature from channel 2.
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Figure 84 shows an other part of preprocessed activities as recorded by channel 1 for two periods of

lying on the back and same other postures.
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Figure 84: Part of activities recorded by channe! 1.
Figure 85 illustrates a generated feature from channel { by using the function:
“Power(Norm(chi [x;..x55], 2),2)".
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Figure 85: New generated feature from channel 1.
Figure 86 illustrates a generated feature from for channel 1 by using the function:
“Standard_deviation(Norm[x..xs})".
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Figure 86; New generated feature from other feature.
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Figure 87 illustrates another generated feature from channel ! by wsing the function:

“Norm(Cum_sum(chl {x..xz6}),2)".
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Figure 87: New generated feature from channel 1.
Figure 88 itlustrates a generated feature for channel 1 by using the function:

“Standard_deviation{Cum_sum[x;..xs])”,

1 [ i
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Figure 88: New generated feature from other feature.
Figure 89 shows a part of preprocessed activities as recorded by channet 4 for two periods of lying on

the back and same other posfures.
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Figure 89: Part of activities recorded by channel 4.
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Figure 90 illustrates a generated feature from channel 4 by using the function:

“Power(Norm(ch4{x,..xe], 2),2)".
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Figure 90: New generated feature from channel 4.

Figure 91 illustrates a gencrated feature from for channel 4 by using the function:
“Standard_deviation(Normfx;..xs])".
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Figure 91: New generated feature from other feature,

Figure 92 illustrates another generated feature from channel 4 by using the function:

“Norm(Cum_sum(ch4[x,..x;6]),2)".
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Figure 92: New generated feature from channef 4,
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Figure 93 illustrates a generated feature from for channel 4 by using the function:

“Standard_deviation (Cum_sum([x,..xs})".
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Figure 93: New generated feature from other feature,

4,72 Feature Selection
In this study, 160 continuous features were generated by using the two developed algorithms. From

these generated features the following eight features were selected (by using a trial and error approach):
1. Standard_deviation (Cumulative_sum([x;,....xs})),

2. Power(Norm ({x;,....X;5},2),2),

3. Norm (Cumulative_Sum{[x,,....x1s]}),

4, Standard_deviation(Norm ([x,....xs])),

5. Standard_deviation([x,,....xg]),

6, Average([X1,....X1s)).

7. Average({xy,....x15]). x Norm(Cumulative_Sum([xy,....X15]),2)

8. Slope of Power(Norm{[xy,....x16],2),2)

Still, many other subsets could be selected, In chapter 5, we introduce a neuro-fuzzy network that is

capable to select the best features automatically.

4.7.3 Fuzzy rule based classifier
We choose the fuzzy rule based classifier for classification in the modified pattern recognition system.

_In the following subsection, we discuss some steps in building a fuzzy rule based classifier,

4.7.3.1 Generation of fuzzy sets
The first step in building a fitzzy rule based classifier is the definition of fuzzy sets which will be used

in the rule, It is necessary to decornpose a feature (variable) into two or more fuzzy sets. Each fuzzy set

describes some range of the feature’s (variable’s) values and attaches a linguistic meaning to that range.
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The choice of the number of fuzzy sets and how those fuzzy sets are distributed over the universe of

discourse requires knowledge of how the classifier output should be related to the classifier inputs,

There is no standard design procedure that can be employed to choose the number and positions of the
fuzzy sets. Figure 94 illustrates how input feature Ch1Norm is decomposed into a set of fuzzy regions,

Feature
ChiNorn
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¢ \
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[ )
’ \
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' 1
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Fuzzy set representation

Figure 94: Five partitions for the input feature, ChiNorm

In Figure 95 through 96, the feature ChiNorm is decomposed (partitioned) into a collection of fuzzy
sets, The universe of discourse for the feature ChlNorm is the interval [-25, 25).

»

v

h 4

Figure 95: Membership functions for (left) fuzzy set Positive-Small and
(right) fuzzy set Positive-Large.
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(a)

(b} ©

Figure 96: Membership functions for (a) fuzzy set Zero (b) fuzzy
set Negative-Small and (¢) fuzzy set Negative-Large.

Figure 97 shows how the input space ChiNorm appears after partitioning.

25 5 3 002002 3 4 5 25

Figure 97: Partitioning for the input feature, ChiNorm.
Other features must also be partitioned into a set of fuzzy regions. Proper partitioning of a feature into a

complete set of fuzzy regions is an important aspect of building a robust and flexible classifier,

4.7.3.2 Writing the rules
The second step in building a fuzzy rule based classifier is the writing of the rules that describe how the

classifier operates. If each of the n features is partitioned into a different number of fuzzy partitions,
say, Xi (feature_1’s universe of discourse) is partitioned into ki partitions and X, (feature_2’s universe
of discourse} is partitioned info k; partitions and so forth, then the maximum number of rules is given by

The actual used number of rules, necessary for classification is much less than Ng. The foltowing eight
N; =kk,k, 'k,
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rules are typical rules which have been used to classify daily life motor activities:

RULR 1

IF ChlPowerNorm is Positive-Large AND ChINormCum_Sum is Positive-Large
AND Ch4NormCum_Sum is NOT Negative-Large THEN activity is sitting

RULR 2

IF ChlPowerNorm is Positive-Large AND ChiNormCum_Sum is Positive-Large
AND Ch4NormCum_Sum is Negative-Large AND Ch4PowerNorm is Negative-
Large THEN activity is lying on the back side

RULR 3

1F ChlPowerNorm is Zero AND ChiNormCum_Sum is Zero AND
Ch3NormCum_Sum is NOT Negative-Large AND Ch3NormCum-Sum is NOT
Positive-Large AND Ch2PowerNorm is Zero AND Ch2NormCum_Sum is Zero
THEN activity is standing

RULR 4

IF ChiPowerNorm is Zero AND ChiNormCum_Sum is Zero AND Ch2PowerNorm
is Zero AND Ch2NormCum_Sum is Zero AND Ch3NormCum_Sum is Negative-
Large AND ChdNormCum_Sum is Zero AND ChdPowerNorm is Zero THEN

activity is lying_on the left side

RULR_S

IF ChlPowerNorm is Zero AND ChiNormCum_Sum is Zero AND Ch2PowerNorm
is Zero AND Ch2PowerCum_Sum is Zero AND Ch3NormCum_Sum is Pesifive-
Large AND Chd4NormCum_Sum is Zero AND ChdPowerNorm is Zero THEN

activity is lying on the right side

RULR 6

IF ChlPowerNorm is Zero AND ChINormCum_Sum is Zero AND Ch2PowerNorm
is Zero AND Ch2NormCum_Sum is Zero AND Ch3NormCum_Sum is Zero AND
Ch3PowerNorm is Zero THEN activity is standing

RULR_7

RULR 8

IF Chl Average x ChiNormCum_Sum is Positive-Large AND hlSlopOFPowetNorm

is One THEN activity is walking
IF Ch2AveragexCh2NormCum_Sum is Positive-Large AND h28lopOFPowerNorm is

One THEN activity is walking
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As mentioned before, to refine the estimated onset and end time of each activity, to defect the highest

peak of & step pattern, and for computing the transition time, one has to devise a good post-processing
algorithm. For computing the transition fime, we have used the features Ch*Standard-deviation(**)
which has been shown in section 4.7.1.

4.7.4 Results

To illustrate the applicability of the fuzzy rule based <lassification technique for the classification of
daily life motor activities, we applied our fuzzy rule based classifier to the recorded data of eight
amputees and three other recorded data of healthy subjects. The fuzzy rule based classifiers were, on the
average, able to recognize 99% of the presented cases of daily life activity classes of all subjects
correctly. In an experiment where we applied the classifier to 12000 step patterns, the classifier was
able to recognize with more than 99.5% accuracy. Figure 98 illustrates a part of the recorded data
during walking activify.
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Figure 98: A part of recorded data during walking.

Figure 99 shows the output of our classifier in response to the data presented in Figure 98.
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Figure 99: The output of ciassifier in response to above data.
In Figure 100, we present an activity profile which has been extracted from the numerical ovtput of our
classifier. It shows a 3-D bar graph of the mean footstep time, as a function of walking block interval

time and monitoring time.
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Figure 100: 3-D bar graph of an activity profile: the mean footstep time as a function of
monitoring fime and walking block interval time. subject 11

To be certain about patient-independency of the classifier and its performance, we did another
experiment. In this extra verification experiment we applied the classifier to a set of 1.5h data {with
sampling rate of 25 per second, our classifier was designed for data with sampling rate of 32 per
second) which included 3830 step patterns. From this data set the classifier was able to recognize 3812
steps {99.53% ). This result shows the same high performance of recognition as the finding in the first

experiment,

4.8 Conclusion
In this chapter we have described a fuzzy rule based classifier and its application to 1he recognition of

daily life motor activities. We have described with examples some of the important basic concepts in
fuzzy fogic. Several new features and their membership functions have been described. The comparison
of the output of the fuzzy rule based classifier with the classification via visual inspection of the events
resulted in 99% conformity. In contrast with the ANN based classifier, the fuzzy rule based classifier is
a patient independent classifier, and the results indicate that its performance is superior fo that of the

PNN and BPN classifiers.
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5. Neuro-fuzzy Systems

5.1 Introduction
This hybrid system combines the advantages of both fuzzy systems and neural networks. The advantage

of fuzzy systems is that they deal with explicit knowledge which can be explained and understood,
Neural networks deal with implicit knowledge which can be acquired by learning. Unlike in most ANN
in which knowledge is not transparent (the black-box characteristic of ANN), the knowledge in a neuro-
fuzzy system is transparent like in fuzzy systems[1][2]. The architecture of a neuro-fuzzy system is
such that the trained nefwork can be translated into a number of fuzzy IF-THEN rules. The strength of
a classification rule such as “IF X is small AND Y is large THEN class A" is determined by the
interconnection weight which can be learned by a learning process. In addition, a number of neuro-fuzzy
systems can analyze the features (inputs to the network) so that superfluous features can be removed.
FuNe-I [3] is one such Neuro-fuzzy system which has been implemented as a mutilayer perceptron

architecture, and has the following advantages:

1. Knowledge incorporation: explicit knowledge acquired from experts can be easily incorporated as
new rules to the FulNe system;

2. Rules extraction: the modified and new rules can be extracted from a properly trained FuNe, to
explain how the results are derived;

3. Feature selection: after the extraction of rules, superfluous input features which do not appear in
rules or appear in weaker rules can be removed;

4. Generalization capability,

The main purpose of this chapter is to introduce the neuro-fuzzy system briefly and to describe its

applicability in our proposed methodology for future improvement of daily life motor activity

classification.
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5.2 Proposed methodology

Figure 101 shows a diagram of our proposed methodology Raw dat
aw aata

for classification of AMMA-signals.
Chl Ch2 Ch3 Ch4

For the features gengration part, an interacfive software l l l

package will have to be developed to generate a number of
features from preprocessed data, as discussed in chapter 2, Preprocessing
In addition, the software package must generate the l

training and test sets interactively. . .
Feature Generation by an interactive

In the feature selection part, the features with high software package

discrimination ability are selected automatically by the

FuNe network. Also, FuNe will generate a set of l lr l ll ll l l l l

classification fuzzy rules which can be implemented in a [ Feature Selection and Generation of
a set of classification fuzzy rules

fuzzy classifier, by FuNe

Since our proposed methodology is general in nature, it

can be applied in other fields of pattern recognition of one- £ g Z
o B+ )
dimensional medical signals such as ECG, EEG, EMG. = ':, s ‘:'lg r

We believe that this systematic approach is a solution to Implementation of
Fuzzy classifier

other related problems in industry as well,

Figure 101: schematic description of the
sed methodology for ciassification.
5.3 Neuro-Fuzzy system propo By lot ¢las

The basic idea in neuro-fuzzy systems (inference or classifier system) is to incorporate learning
capability into fuzzy systems, By training such a system on training data using the back-propagation {or
any other) learning algorithm, one can extract a suitable number of fuzzy rules and find a proper
partitioning of input and output space (siructure estimation) or one can adjust the system parameters,
such as membership functions and other possible parameters (parameter estimation), Several methods
for the fusion of fuzzy systems and neural networks are reported in literature [4][5][6][71(81[9][10].
Different learning strategies are used in these systems, ¢.g., unsupervised learning, supervised learning
and differential competitive learning. In order to familiarize with neuro-fuzzy systems, in the following
paragraphs, we consider the Tsukamoto fuzzy inference system which is implemented as a neuro-fuzzy
system,

For simplicity, we assume that the fuzzy inference system under consideration has two inputs x and y
and only one output z. For a Tsukamoto fuzzy model {11], a typical rule set with two fuzzy IF-THEN

rules is:
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Rule i: IF x is Ajand y is By THEN z is C,

Rule 2: IF xis Ayand y is B, THEN z is C;

Figure 102 is an illustration of how a two-rule inference system of the Tsukamoto type derives the

overall output when subjected to two crisp inputs x and y.
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Figure 102: The Tsukamoto fuzzy modsl,
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The equivalent Neural network based architecture(Neuro-fuzzy architecture) of this model is shown
Figure 103,

Figure 103: An equivalent neural network based fuzzy inference system for Tsukamoto
fuzzy model.

Looking at Figure 103, the operation of a neuro-fuzzy system can be described as follows:
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Layer 1. Fuzzification layer
Each node (neuron) in this layer represents an input membership function of the antecedent of a fuzzy
rale, The crisp inputs x and y are fuzzified by using these membership functions. There is no restriction
to the form of the membership functions (except that they must be differentiable with respect to their
parameters), Usually, trapezoid, triangular, or bell-shaped membership functions are used. For example,
the bell-shaped function (Gaussian function) is defined as follows:
(xi-p j)2
2
mfj(xp)=c  J
The parameters of the neurons of this layer can be trained to fine tune the final shape and location of
the membership functions. In the case of the Gaussian membership function, the parameters 1 and o;
may be interpreted as the weights of a link between the i.th neuron in layer 1 and the j.th neuron in layer
2. In most neuro-fuzzy architectures, the number of neurons in this layer is fixed, but it is possible to
add or remove these neurons during training, according to the outputs produced on the training samples.
Layer 2. Fuzzy rule layer
Each rule neuron performs the fuzzy logical AND operation between antecedents {(IF-part), This layer
contains one neuron for each fuzzy IF-THEN rule. Each neuron corresponding to the antecedent of a
fuzzy rale computes the firing level oy of this antecedent. In our example case the firing levels o; of the
fuzzy rules are computed by
o) = min(mf | (x), mep; ()
g = min(mfA o (x), mfpy ()
Layer 3. Normalization layer
The firing levels of the fuzzy rules are normalized, The i.th neuron compute the ratio of the i.th rule’s

firing level and the sum of all rule’s firing levels:

* o
g =———
oy +og

o
oh =—%2
o) +u

Layer 4. Consequence layer
The fiunction of this layer is rule evaluation. Each neuron in this layer represents a consequent

proposition “THEN z is C,”; it contains the membership function representing the output variable. Each
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neuron derives the rule output z from the equation Ci(z) = oy and multiplies its value with the

corresponding normalized firing level. In our example case;
*
Ci(z)= oy the output of rule 1 is o] - 21

Cy(z2)= 02 the output of rule 1 is 0‘.3 %)

Layer 5. Summation Jayer

This layer calculates the overall output as the summation of all incoming signals:

e v g < A2

Training of Tsukamoto fuzzy inference system

First the parameters of the membership functions aze initialized. Afler that, the fuzzy rules are updated

by using a training algorithm such as back-propagation as follows:

Given are k training samples arranged in the training set;

{6, ¥'] 2, (0, ¥, 20 (55 ¥, 29 }

i. Present an input data sample, and compute the corresponding output

2. Calculate the error between the desired output and the actual output(The error is defined by a cost
function)

3. The membership functions are updated

4, If Error > Tolerance then goto step 1 else stop.

The shape and position of the membership functions in the fuzziftcation and consequence fayers can be

fine tuned by adjusting the parameters of the neurons in these layers, during the training process.

Table 10 Shows some learning schemes used in several currently proposed neuro-fuzzy inference

systems.
Neuro-fuzzy system Premise learning Consequent learning
Kosko [12] AVQ AVQ
Berenji [8] gradient descent gradient descent
Lin{13] SOM gradient descent
Horikawa [7] gradient descent gradient descent
Nie [4] modified SOM gradient descent

Table 10: Learning of neuro-fuzzy inference systems
Their training algorithms differ very much from each other and no comparison of those has been

presented in literature.
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5.3.1 FuNe-I neuro-fuzzy architecture
A special multilayer perceptron architecture is successfully used for generating the fuzzy-neural system

FuNe-l. This special architecture, trained with supervised learning can be used to generate a fuzzy
classifier system from a given representative input/output data set (training set) without expert help, The
system (FuNe-I) extracts an untuned knowledge base in the first phase. The extracted fuzzy system is
tuned in the second phase. Figure 104 shows the structure of FulNe-I in the first phase. Only the
connections in the fuzzification and defuzzification blocks in Figure 104 represent variable weights,
other’ connections have fixed unity weights. The dark outlined circles represent neurons with sigmoid

transfer fonctions. In FuNe-I both IF and IF NOT rules are considered.

Rule
Generation

Fuzzification

X, X, %

Figure 104: The structure of FuNe-1 in firsi phase,
The FuNe-I modei differs from the conventional fuzzy model in that it fransfers the weighted sum of the

fired rules into the crisp output as follows:
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r
outj =Sig( Q] wij+ @j)
j=1
where r is the number of rufes, wy represents the weight of the connection from the j.th rule neuron to
the i.th output. Sig (sigmoid function) is the transfer function of the cutput neuron.
FuNe-I employs a different approach for finding the initial rule base. In the first phase, it identifies rule
relevant neurons for conjunctive and disjunctive rules for each output. The network is trained with
“frozen” membership functions; the membership functions are not adjusted during training,
Let us consider an example with 3 inputs, where each of them is partitioned into 3 fuzzy regions with
the fuzzy sets of Low (L), Medium (M} and High (H). To find whether the i.th input has any influence
on a conjunctive rule, the next steps are to be taken:
1. Connect the fuzzification layer to the neuron C; (layer C in Figure
104), that selects the maximum from the strongest membership

values from all the inputs but the input i :
Ci= Maxgii][Maxj(Lj,Mj,Hj)}
2. Connect the neuron C; to corresponding neurons
. RLi ’RMi and RHi (layer R in Figure 104)
3. connect the neurons Ry,; ,R\; and Ry, to the corresponding
neurons out; and initialize the weights wLi s WM and WHi

4. After the training process, connecling weights are analyzed to

extract the Min-rule relevant neurons
Extraction of the Max-rule relevant neurons is performed in analogy to Figure 105: The i.th

the above steps, but C; is computed as follows: conjunctive rule.
.Y
C; =Mnﬁ;&i][!\r[ax_i(Lj,Mj,Hj)]
All extracted Min and Max rule relevant nodes can be considered as the initial rule base for FuNe-|-F§.
The modified fuzzy system gencrated from FulNe-I training with a gradient descent learning algorithm

{e.g. backpropagation algorithm) is called a FuNe-I fuzzy system (FuNe-I-FS), Figuré 106 shows a
typical Fuzzy system which has been extracted from a trained FuNe-I model.
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T ﬁﬁﬁlzzi.ﬁc-ation

Rule
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Fuzzification

Figure 106: FuNe I Fuzzy System.

After generating the FuNe-1-FS, i.e., after the creation 0f" an initial knowledge base is accomplished, the
optimization can be started by using the same training data set. The initial antecedent membership
functions can be tuned. An already extracted rule base by FuNe-I can be reduced effectively by training
the FuNe-I-FS with the training data set. This is done by the analysis of the connecting weights. Also,

superfluous inputs (features) which do not appear in rufes can be removed,

5.4 Application Example
Figure 107 shows an example of a multichannel recorded data set. Every channel contains many

different patterns (waveforms), and each event class is defined by combining the patterns from different

channels. Here, we have four event classes, A, B, C and D,
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Figure 107: An example of a multichannel recorded data,
In order to apply FuNe-I to this example, firstly, we built a training set of 60 examples, [5 examples

for each event class as follows:

CLASS LABEL

CH1 CH2 CH3 CH4 CHS5
02190 0.0043 02303 0.2724 26145 .0 00 0.0 00 ForclassA
0.9347 09033  0.6515 04770 20397 1.0 00 00 0.0 ForclassA
45285 18775 2.5869 -1.8300 24308 0.0 10 0.0 0.0 ForclassB
45881  .1.8117 2.8119 -19268 2198 00 10 0.0 0.0 ForclassB
22478 44416 53823 -3.6263 24037 0.0 00 10 00 ForclassC
23893 47719 54295 -37381 22648 00 00 10 0.0 ForclassC
5.1504 22321 34156 -1.2061 27853 0.0 0.0 00 1.0 ForclassD
53438 24306 35146 -1.6682 21015 0.0 0.0 00 10 ForclassD
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The training of FuNe-I classifier was started with the following setting :

¢ Number of inputs; 5

¢ Number of outputs: 4

+  Number of rules to extract: 12

o Number of adjectives (tinguistic terms) per input: 3

¢  Momentum: 0.600

¢ Learning rate: 0.400

After the first phase (training of FuNe-I), the FuNe-I generated a fuzzy system (FuNe-I-FS) with 12
rufes which is shown in Figure 108 (the screen output of FuNe-I program).

Figure 108: The extracted rules from the trained FuNe L.

As can be seen, input 5 (channel-5) did not appear in rules and can be removed. For the second phase,
we used the same training data set to train the FuNe-I-FS (generated fuzzy cfassifier system by FuNe-I),
in order to optimize the generated rules and fine tune the initial membership functions, Figure 109

shows the membership functions of input-1{CH1) before and after fine funing,
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Figure 109: Initial and fine tuned membership functions of input-1,
Figure 110 shows the membership functions of input-2(CH2) before and after fine tuning.

Figure 110: Initial and fine tuned membership functions of input-2.
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Figure 111 shows the membership functions of input-3(CH3) before and after fine tuning.

SRR

PR

Figure 111: Initial and fine tuned membership functions of input-3.

Figure 112 shows the membership functions of input-4(CH4) before and after fine tuning.

Figure 112: Initial and fine tuned membership functions of input-4.
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Error! Reference source not found, shows the updated and optimized find rule set by FuNe-I-FS.
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Figure 113: The updated and optimized rules by FuNe-I-FS.,

To evaluate the updated and optimized rules by FuNe-I-FS, we built a test fite with 300 examples
pattern, and applied optimized FuNe-I-FS to it, The resuft shows 100% correct classification.

The current version of FuNe-I has several limitations which make it unrealistic for a real application.
These can be listed as follows:

o  The maximal number of inputs is 7.

s The maximal number of linguistic terms is 3.

5.5 Conclusions
In this chapter, we briefly presented an infroduction to neuro-fuzzy systems which play a big role in our

proposed methodology for the recognition of patterns in multichannel recorded data. Several methods
for fusion of fuzzy systems and neurai networks are reported in literature. Some of them can only fine
tune the membership functions, some others can generate fizzzy rules from a teaining data set without
expert help. We described the FuNe-I model which can generate a fuzzy classifier and remove
superfluous input features. Applying FuNe-I to an artificial multichannel data example, has shown that

Neuro-fuzzy classifiers like FuNe-I can be potentially useful in classification. The author believes that
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Neuro-Fuzzy systems will eventually replace conventional fuzzy decision systems and neural networks

in variety of applications.
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Chapter 6
6. Summary and futare directions

6.1 Summary
This thesis deals with a study on the potential usefulness of artificial neural networks, fuzzy rule based

systems and neural fuzzy systems for recognizing daily life motor activities from the multichannel

recorded data in ambulatory monitoring. This thesis can be summarized as follows:

Chapter 1

In chapter 1, & general introduction about the background of the study is given. The different methods of
monitoring of daily life motor activities are discussed. The structure of the system for ambulatory
monitoring of motor activities is described. Some suggested numerical and graphical representations of
results data are presented, The detected relevant motor activities and related clinical parameters by our

classifiers are highlighted.

Chapter 2

Chapter 2 briefly reviews various pattern recognition techniques that can be used fo perform pattern
recognition tasks in AMMA-signals, The manner that the feature space can be partitioned by these
various techniques are described, Afier that, various types of daily life motor activities were defined on
the basis of the output of four accelerometers. Further, this chapter addresses a new developed method
for generating features, This method is critical for solving patient independent automated pattern

recognition systems for the AMMA-system,

Chapfer 3

Chapter 3 begins with & short introduction to the field of neural networks, followed by a history of
neural networks. Examples of learning types and neural network topologies are discussed. Special
attention is paid to the two types of neural networks, Probabilistic Neural Networks (PNN} and
BackPropagation Networks (BPN) that were applied to AMMA-signal, The topology and learning rule
of these two neural networks are addressed. Construction of a training set is discussed, Further, the way .
of implementing PNN and BPN based classificrs for recognition of daily life motor activities and their
performance estimations are discussed. Finally, this chapter presents the results of application of two
artificial meural network based classifiers to ¢ight recorded data bases which were oblained from
monitoring of eight amputees during their daily life. From this Chapter we derived the following

conglusions:
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¢ daily life motor activities are complex and show extremely large inter- and intra-individual

variation which excludes using reguiar signal processing tools for recognition;

» for the application under consideration, PNNs and BPNs are potentially useful options;

+ a satisfactory conformity of 95% between automatic and visual classification of events can be
achieved;

o the automatic classification of 10 hours of activities takes less computation time with special
hardware;

s the graphical presentation of the output yields clinically meaningful information;

s the ADL-classifier is patient-dependent which means that for every patient a training set has to be
built and optimal parameters settings have to be chosen.

o Application of a postprocessing algorithm does improve the determination of the onset and end fime
of each activity.

» Because of the many setting parameters and the time consuming training process of BPNs, using a
PNN-classifier is much easier than using a BPN-classifier.

¢ Because of the reject class option on PNN output, the performance of PNN is more reliable than that
of a BPN.

Chapter 4

Chapter 4 introduces the basic concept of fuzzy seis and membership functions. Various fuzzy
operators are illustrated. This chapter introduces the fuzzy IF-THEN rules format and discusses the
fuzzy inference systems, and presents two well-known inference mechanisms in fuzzy rule-based
systems: Mamdani and Tsvkamoto’s inference mechanism, This chapter also addresses the fuzzy rule-
based classification. Finally, the application of a fuzzy rule based system to daily fife motor activities is
introduced. To illustrate the applicability of the fuzzy rule based classification technique for the
classification of daily fife motor activities, we applied our fuzzy rule based classifier to the recorded
data of eight amputees and three other recorded data of healthy subjects. The fuzzy rule based
classifiers were, on the average, able to recognize 99% of the presented cases of daily life activity
classes of all subjects correctly. In an experiment where we applied the classifier to 12000 step patterns,
the classifier was able to recognize with more than 99,5% accuracy, which is verified by visual
inspection. To be certain about patient-independency of the classifier and its performance, we did
another experiment, In this extra verification experiment we applied the ¢lassifier to a set of 1.5h data
(with sampling rate of 25 per second, our classifier was designed for data with sampling rate of 32 per
second) which included 3830 step patterns, From this data set the classifier was able to recognize 3812
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steps (99.53% ). This result shows the same high performance of recognition as the finding in the first

experiment.

Chapter §

Chapter 5 presents an introduction in the field of Neural-fuzzy systems. This chapter also presents our
proposed methodology for recognition of patterns in multichannel recorded data. Further, chapter
addresses the FulNe which is one of Neural-Fuzzy system in fiterature, Finally, the capability of FulNe
to remove superfluous features and extract fuzzy rule is illustrated by an artificial multichannel

recorded data example,

6.2 Future Directions

A further improvement of the fuzzy rule based classifier for the recognition of daily life motor activities

is practically impossible. A very high level of accuracy Is already achieved and errors occur only in very

special cases. But, for the recognition of some classes of activities, we expect that il is not possible fo

find a high discriminating feature. The combination of a fuzzy rule based classifier and the PNN based

classifier which operates on the raw data seems to be the only solution, Developing a software package

that provides such combination is a future work,

The author believes that his suggested methodology for the recognition of patterns in multichannel

recorded data is a systematic approach. In order to implement that, the following should be done:

¢ developing an Interactive software package that generates a number of features from preprocessed
data, and has capability for building the training and test sets.

¢ removing the limitation regarding the number of inputs and membership functions for each input
feature in the FuNe-I system. _

+ using methods for the clustering of input space for initialization of the membership functions in

FuNe-I system,
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6.3 Samenvatting
Dit proefschrift behandelt een onderzoek naar de potentidle bruikbaarheid van artificitle neurate

netwerken, fuzzy rule based systemen en newrale fizzy systemen voor het herkennen van dagelijkse
motorische activiteiten van de multi-kanale geregistreerde gegevens. Dit proefschrift kan als volgt

worden samengeval;

Hoofdstuk 1

In hoofdstuk | wordt een algemene introductie gegeven over de achtergrond van de studie. De
verschillende methodes van het registreren van dagelijkse motorische activiteiten worden beschreven.
De structuur van het systeem van ambulante regisratic wordt beschreven. Een aantal aumericke en
grafische representaties van de resultaten worden gepresenteerd, De herkende relevante motorische

activiteiten en gerelateerde klinische parameters door onze herkenningsystemen worden benadrukt.

Hoofdstuk 2

In hoofdstuk 2 worden de verschillende patroonherkenning technieken behandeld die kunnen worden
gebruikt  om AMMA-signalen te klassificeren, Dgamaast word er de verschiflende technieken
beschreven waarmee de kenmerkruimte verdeeld word. Op basis van de uitgangen van vier
versnetlingsopnemers worden diverse typen van dagelijkse motorische activiteiten gedefinieerd.
Vervolgens, gaat dit hoofdstuk in op een nieuw ontwikkelde methode om nieuwe kenmerken te
genereren. Deze methode is cruciaal voor het oplossen van patiént onathankelijke geautomatiseerde

patroon herkenningsystemen voor het AMMA-systeem.

Hoofdstuk 3

Hoofdstuk 3 begint met een korte introductie over neurale netwerken, gevolgd door een geschiedenis
ervan, Diverse voorbeelden van leermethoden en neurale netwerk topologitn worden besproken.
Speciale aandacht wordt besteed aan twee typen van neurale netwerken, Probabilistic Neural Network
(PNN) en BackPropagation Network (BPN) dic toegepast werden op het AMMA-signaal. De
structuur en leer regel van deze twee neurale netwerken worden geadresseerd en constructie van een
trainings set wordt bediscussieerd. Vervolgens, worden de manieren van implementatie van op PNN
en BPN gebaseerde herkenningsystemen voor het herkennen van dagelijkse motorische activiteiten en
hun “performance estimations” gediscussieerd. Tenslotte, presenteert dit hoofdstuk de resultaten van
toepassingen van twee op kunstiatige neurale netwerken gebaseerde herkenningsystemen aan acht
geregistreerde data-bases die waren verkregen door het regisireren var acht personen met been

amputaties tijdens hun dagelijks leven. Uit dit hoofdstuk trekken we de volgende conclusies:
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¢ dagelijkse motorische activiteiten ziin complex en laten extreem grote inter- en intra-individuele

varialies zien. Daardoor het gebruik van reguliere signaal bewerkings technieken voor het
herkenen van activiteiten zijn uitgesloten.

¢ voor de bedoelde toepassingen, zijn PNNs en BPNs nuttige opties.

o cen bevredigende overeenkomst van 95% tussen automatische en visuele classificatic van
gebeurtenissen kunnen worden bereikt.

¢ de automatische classificatie van activiteiten gedurende 10 uur neemt minder tijd in beslag met
speciale hardware.

« een grafische presentatie van de uitkomsten levert relevante klinische informatie op.

» het neurale netwerk gebaseerde herkenningsysteem is patiént afhankelijk. Dit betekent dat voor
iedere patiént een trainings set moet worden opgebouwd en opnieuw de optimale parameter
instellingen moeten worden gekozen,

» het uitvoeren van “postprocessing” algeritme geeft een verbetering van het bepalen van de begin-
en eind-tijd van iedere activiteit.

* vanwege het aantal parameters en het tijd consumerende “training process” van BPNs, is het
gebruik van een PNN-herkennings systeem veel makkelijker dan het gebruik van een BPN-
herkennings systeem, 7

» vanwege de “reject class” optie bif PNN uitgang, is de PNN prestatic meer betrouwbaar dan die
van de BPN.

Hoofdstuk 4

In hoofdstuk 4 wordt een algemene introductie gegeven over de basis concepten van vage verzameling
en fidmaatschap functies. Dit hoofdstuk beschrijfi de fuzzy “IF-THEN” regels. Er wordt ¢en
beschrijving gegeven van de “fuzzy inference” systeem. Daamnaast word er twee algemeen bekende
inference mechanismes in “fuzzy rule-based” systemen gepresenteerd namelijk het Mamdani en het
Tsukamoto inference mechanisme, Dit hoofdstuk adresseert ook de op “fuzzy rule” gebaseerde
classificatie. Tenslotte, wordt de toepassing van “fuzzy rule” systeem op dagelijkse motorische
activiteiten geintroduceerd. Om de toepasbaarheid van dergelijke classificatie techniek voor de te
illustreren, werd zo’n kiassificatie toegepast op de geregistreerde data van acht patiénten met been
amputaties en drie gezonde personen. Het fuzzy rule herkenningsystemen kon gemiddeld 99% van de
gepresenteerde gevallen van dagelijkse motorische activiteit klassen correct herkennen. In een
experiment waar het herkenningsysteem op 12000 stappen patroon werd toegepast, kon het systeem
die patronen meer dan 99.5% gevallen nauwkeurigheid herkennen. Om zeker te zijn van patignt
onafhankelijkheid van het systeem en zijn prestaties, werd er een ander experiment uitgevoerd, In dit

extra verificatie experiment, werd het systeem toegepast op een geregisireerd data van 1.5 uur (met
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sampling rate van 25 per seconde, waarbij het systeern was ontworpen voor data met sampling rate

van 32 per seconde). Uit 3830 stappen patroon kon het systcem 3812 gevallen herkennen (99.53%),
hetgeen werd geverificerd langs de weg van visuele inspectie. Dit hoge herkennings prestatie komt
overeen met de bevindingen uit het eerste experiment.

Hoofdstuk 5

Hoofdstuk § beschrijft het veld van “Neural-fuzzy” systemen. Dit hoofdsiuk presenteert ook onze
gesuggereerde methodologie voor het herkennen van patronen in mulli-kanaal geregistreerde data.
Vervolgens, adresseert dit hoofdstuk de FuNe, één van de “Neural-fuzzy” systemen in de literatuur,
‘Tenslotte, wordt het vermogen van FulNe om overbodige kenmerken te verwijderen en “fuzzy rule” te
onttrekken, geillustreerd door ket toepassen van dit systeem op een voorbeeld van kunstmatige multi-

kanaal geregistreerde data,

6.4 Toekomstige tendensen
Een verdere verbetering van het op “fuzzy rule” gebaseerde herkenningsysteem voor het herkennen

van dagelijkse motorische activiteiten is praktisch onmogelijk. Een zcer hoog niveau van

nauwkeurigheid is reeds bereikt en fouten komen slechts voor uitzonderlijke gevallen. Voor het

herkennen van nieuwe activiteiten kan het erg moeilijk zijn om een hoge discriminerende kenmerken
te vinden, De combinatie van het op “fuzzy rule” gebaseerde herkenningsysteem met het PNN
systeem lijkt de enige oplossing.

Het ontwikkelen van een software tool dat deze combinatie realiseert is een tockomstig werk.

The auteur gelooft dat zijn gesuggereerde methodologie voor het herkennen van patronen in multi-

kanaal geregistreerde dafa is cen systematische benadering. Om dit te implementeren, moet het

volgende worden gedaan;

o het ontwikkelen van een interactief software pakket dat een aantal nicuwe kenmerken uit
voorbewerkte data genereert, en dat capabel is om de training en ftest verzamelingen te
construeren,

» het verwijderen van de beperkingen beireffende het aantal ingangen en lidmaatschap functies voor
ieder ingangs kenmerk in het FuNe-I systeen,

»  het gebruik maken van methoden voor het clusteren van ingangs ruimte voor het initialiseren van

de lidmaatschap functies in het FuNe-I systeem,
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Glossary
WHO
ICIDH
CAMARC
EMG
ECG

Handicap

Impairment

Disability

World Health Organization,

International Classification of Impairment, Diseases and Handicaps,

Computer aided Movement Analysis in a Rehabilitation Context.

ElectroMyoGraphy is the detection and recording of muscle activity potential using
either surface electrodes on the skin or by inserting a needle electrode into the muscle.
ElectroCardicGraphy is used to measure the heart rate kinetics as a cheaper and more
practical alternative to direct oxygen consumption measurement.

A Handicap is a disadvantage for a given individual, resuiting from an impairment or
disability, that fimits or prevents the fulfillment of a role that is normal (depending on
age, sex, and social and cultural factors) for that individual.

An Tmpairment is any loss or abnormality of psychological, or anatomical structure or
function.

A disability is characterized by excesses or deficiencies of customarily expected activity
performance and behavior, and these may be temporary or permanent, reversible or
irreversible, and progressive or regressive. Disabilities may arise as a direct
consequence of impairment or as a response by the individual, particularly
psychologically, to a phys-icai. sensory, or other impairment. Disability represents
objectification of an impairment, and as such it reflects disturbances at the level of the

person,
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