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1. Introduction 

1.1 Introduction 

A large number of people with a movement problem forms a relevant social and medical problem in all 

countries. The rapidly growing number of elderly people. who inevitably experience increasing 

limitations in their functioning as they grow older. is a cause of major international concern. Only in the 

European Community. 10% of the population is suffering from more or less severe motor problems [1]. 

Awareness of disability costs and demographic developments have directed the poHcy of goverrunents to 

quality of life problems. More than in the past, research devoted to diseases of the neuro·musculo­

skeletal system is supported. This regards diagnosis. surgical and non-surgical treatment, rehabilitation 

and prevention. In all of these areas biomechanics is essential for the assessment of the mechanical 

functioning of healthy subjects and patients. Movement analysis is one of the most important parts of 

biomechanlcal research. 

Since the end of the 19th century there have been attempts to assess movement in an objective and 

quantitative manner (Muybridge, 1887; Marey, 1894; Braune & Fischer, 1895). During the past 20 

yearsJ regular technological developments like microelectronics and fast computational tools have made 

this goal easier to achieve. Nowadays, in the field of Biomechanical Engineering more and more 

sophisticated systems for movement analysis(MA) have been developed. 

Significant results have been obtained, in several fields such as Rehabilitation, Ergonomics, Sport, 

Biomechanics and orthopedics. However, in rehabilitation, MA has received limited clinical 

acceptance, at least in Europe [2]. 

In 1989, the European Conununity approved a project on Computer Aided Movement Analysis in a 

Rehabilitation Context (CAMARC). In general tenus, the purpose of the project was to render 

procedures and instruments for MA useful for patients and clinical doctors through suitable refmements 

of both instrumentation and software [3]. 

In other terms, the overall objective of the CAMARC project was the transfer of the ever-improving 

bioengineering methodology and techniques for MA to the clinical environment[3]. 

An important cause of the gap between the labora tory and the clinic could be the fact that stance and 

movement analysis procedures are generally aimed at the understanding of mechanisms at a rather basic 

levelJ whereas many clinical questions require an overall assessment of motor behavior in terms of skills 

instead of functions [4]. 

In the rehabilitation WHO uses the following classification: 

• the level of impairment; 

• the level of disability; 
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• the level of handicap. 

In terms ofthe WHO (1980), it can be stated that in the field of rehabilitation medicine the development 

of reliable procedures for the assessment of disabilities is more important than the development of 

methods directed at the detailed analysis of impairment [4][5]. 

At this moment, the majority of movement analytical applications is focused at the level of impairment, 

which is especially relevant for orthopedic and surgical procedureS. 

Rehabilitation medicine, however, is primarily focused at the level of disability. It is remarkable that 

adequate instruments on the level of disability are relatively scarce. [6] 

In rehabilitation medicine there is a growing interest in the investigation of daily life motor activities, as 

a suitable way to study motor disabilities and as an aid to clinical decision~making. 

To facilitate such investigations, new and advanced procedures and instrumentation for monitoring and 

documenting of daily life motor activities have been developed. At present, a large diversity exists in the 

employed methods and technology. 

The system for Ambulatory Monitoring of Motor Activities (AMMA) is one of the developments that 

enables clinicians and research workers to obtain quantitative information about daily life motor 

activities. This information can be used for assessing the functional level of a patient. 

1.2 Methods of Monitoring 

In general, there are three possibilities to monitor and document daily life motor activities and other 

clinical parameters relevant for the clinician: 

• Questionnaire-based monitoring; 

• Laboratory~based monitoring; 

• Ambulatory~based monitoring. 

Questionnaire-based monitoring [7][8][9][IO][II][I2][13] gives a good indication of the activities of 

patients through their self-reports. The questionnaires can be distinguished in accordance to the 

following main areas: 

• Those which examine mainly daily life motor activities. Some examples are: 

Katz ADL scale; 

Barthel Index; 

Amputee activity. 

• Those which are multidimensional assessments 

These are designed to contain the physical, social, cognitive and emotional factors which determine 

an individual's level of functioning. Some examples are: 
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Multilevel Assessment Instrument; 

Sickness Impact Profile; 

Chapter! 

Comprehensive Assessment and Referral Evaluation. 

• Those which examine only daily life motor activities 

There is no such questionnaire until now 

The following paragraphs give a short description of two of the above mentioned questionnaires. 

Amputee Activity 

The Amputee Activity questionnaire is an instrument designed to derive a numerical Activity Score 

from the limb amputee's answers. In this questionnaire, the total time of some activities such as sitting, 

walking, standing, climbing stairs, and use of a wheelchair play an important role. 

Sickness Impact Profile 

The SIP is intended as a health status measure to be used in health surveys and in patient progress 

monitoring. The SIP questiolUlaire consists of 136 items grouped into 12 categories. Each category 

represents a different aspect of daily functioning. In the context of the present research it should be 

emphasized that the level of daily life motor activities has an important influence on the total SIP score. 

For a complete description of these two and other questiOllllaires we refer to the literature. In Appendix 

A, a part of these two questionnaires is shown. 

An important point to be stressed is that there are many serious questions which have to be investigated 

further. Questions such as: Does this Questionnaire-based monitoring effectively mirror changes in a 

patient's status? To what extent are the answers objective about parameters such as duration and 

frequency of daily life motor activities? Are they sufficiently sensitive to detect clinically important 

changes over time? Do they mirror clinically relevant changes in a short period? Do they mirror 

clinically relevant changes in a long period? Is the scoring procedure reliable? What is the correlation of 

the individual question score with the overall score? 

Laboratolj'-based monitoring is until now the most frequently used possibility to monitor and 

document the relevant parameters in MA. For a laboratory or clinical situation it is relevant to develop a 

set of elaborate methods and protocols and to exploit the potentialities of the most sophisticated existing 

instruments for measurement and analysis (3D video recording, moving through magnetism, etc.). In 

tillS approach, the patients are attached to a stationary recording instrument through cables. Recording 

is on-line and the number of simultaneously measured parameters can be high. Although laboratory­

based monitoring provides highly accurate and valuable clinical information about daily life motor 

activities, it has to be considered that in the laboratory environmental circumstances are artificial and 

are not similar to those in the natural environment. The discordance between laboratory and natural 

environment initiated the discussion about the validity and objectivity of laboratory based monitoring. 
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Ambulatory~based monitoring seems to be an appropriate approach for monitoring and documenting 

daily life motor activities in natural environmental circumstances. uVarious parameters from patients 

are measured in such a manner that subjects are not hooked-up by wire to stationary recording 

instruments and accordingly their movements are almost unrestricted during these measurements"[14J. 

The Ambulatory Monitoring of Motor Activities (AMMA) system is one of the Ambulatory-based 

monitoring systems that enables clinicians and research workers to obtain quantitative information 

about the motor activities of the human body. 

The development ofthe AMMA system was started in the framework of the CAMARC-lI project which 

is still in progress in the Biomedical Physics and Technology Department (BNT) of the Erasmus 

University in Rotterdam. The developing of the instrumentation was initially oriented to posture analysis 

in the context of occupational medicine.[IS] 

One of the main aims of the AMMA system is to provide means for the automation of the recognition of 

daily life motor activity classes such as walking, standing, sitting, lying on the back and automation of 

the computation of other relevant clinical parameters from long term recorded data with high efficiency 

at reasonable speed, in order to avoid time consuming human intervention. 

S 



1.2.1 Ambulatory Monitoring of 
Motor Activities (AMMA) system 

Figure 1 shows the basic configuration and 

highlights the issues involved in the AMMA 

system, which is composed of five functional 

blocks: 

• an instrumental block; 

• a downloading block; 

• a preprocessing block; 

• a classification block; 

• a visualization block; 

• a clinical block. 

The instrumental block is the core of the 

AMMA system. It contains the necessary 

hardware for the collection of data from 

moving subjects. Information about posture 

and movement of the human body and the 

environmental effects on it, is obtained by 

the use of sensors which are attached to the 

body. The sensor responses which represent 

a given physiological or enviromnental 

parameter are sampled and directly stored on 

a recording device (RAMCORDER) carried 

by the subject. 

Two accelerometers (movement sensors) are 

placed on the middle of both thighs and 

collect the acceleration of the thighs 

perpendicular to the femur. Two other 

sensors are placed on the sternum; one is to 

Chapter! 

;:Jc_=~=---1 i 
RAMCQRDER I , 

: -----------r ;I~~;Y-O~~h- --.: 
r--------- ---------, , , 
, DATA TRANSFER TO I 
, CO~~UTER I 

,- ----- --r'~~~:;A---: 
---------- ---------, 

I SfGNAL PROCEssnw I : 
'- --------r --------~ 

*: UNLABELED DATA 

r--------- ---------. 
: LAlllOliNG 

, " I A CLASSIFIER 

~ --------1 ~::'~;;;A~:' 
~--------- ---------, 
, ACTIVITY PROfiLE : 

L _____ ~~T~;~T~~~ _____ ~ 
Y ACTIVITY FROflLF,S 

r-------- ---------, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , l ________________ _ 

INSTRU).lENfAL 
BLOCK 

DOWNLOADING 
ALaCK 

PREPROCESSING 
BLOCK 

CLASSIFICAriON 
ALOCK 

VISUALIZATION 
BLOCK 

CLINICAL 
BLOCK 

Figure I: the structure of the AMMA system 

sense acceleration of the trunk in the sagittal direction, the other in the lateral direction. 

The environmental sensors (such as light and sound sensors) are placed somewhere on the subject's 

c1othing[l6][17J. Figure 2 shows a patient who is equipped with the ambulatory hardware. 
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The downloading block transfers the recorded data from the RAMCORDER to a computer, using the 

custom made software package RAMT ALK[18J. RAMT ALK also offers some types of file conversion 

(e.g., from binary to ASCII) to create a new data file format compatible with the next block. 

The data preprocessing block transforms raw data 

into preprocessed unlabeled data and contains the 

necessary software tools (such as the Codas 

package[l9]). This block can perform some 

operations on the signals like filtering, offset 

correction and smoothing operations. Figure 3 shows 

the output of the four movement sensors after signal 

processing (the output of the environmental sensors is 

not included here). 

The classification block transforms unlabeled data to 

labeled data and contains an artificial neural network 

or fuzzy system as a classifier. This block will be 

discussed in the following chapter. Figure 4 shows the 

unlabeled data of Figure 3, but now with labels which 

indicate daily life motor activities. 

accelerometer~ 

sound/llght 
module 

Figure 2: patient instrumentation 
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Figure 3: Representative signals for some activities measured with four accelerometers (unJabeled) 
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Figure 4: Representative signals for some activities measured with four accelerometers (labeled). 

The data visualization block transforms numerical data to graphical output for better interpretation in 

the subsequent block. The way in which the output is presented, is fundamental for its optimal 

evaluation by the clinicians. In section 1.2.2, some suggestions are presented for the numerical and 

graphical representation of the information extracted from the output file of the classification block, 

which is manipulated in the data visualization block. 

The cllnJcal block performs the interpretational, evaluational and analytical operations on the graphical 

and numerical results, and it may suggest some therapeutical strategies. It is the clinician's concern to 

improve this block in future. 

1.2,2 ActivIty Profiles 

Figure 5 shows an 'Activity Profile'. Here the occurrence of a certain activity over a certain recording 

time is drawn. In this example, the activities have been classified into six classes. A class can be 

divided into subclasses, when more details of an activity are of interest. During the recording session, 

the subject performed a sequence of activities as is clearly demonstrated in 

Figuro 5. The signal waveforms that could not be recognized by the classification block are indicated as 

a separate class "unlabeled". All transition activities, e.g., from standing to sitting, from sitting to lying, 

etc., are shown as the class "transition". 
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Class Transition Lying Walking Standing Sitting Unlabeled 

Figure 5: Graphical presentation of an activity profile: sequence and duration of daily life motor 

activity classes over a period of20 minutes 

An overview of the distribution in time of daily-life activity classes of two amputees during a long term 

recording is presented in the pie graph in Figure 6. This shows the duration of each activity as a 

percentage to the total recording tinle (± to hours). In this figure the classes 'transition' and 

'unclassified' are put together. 

transition and (4.76%) transition and un,:IO!;sififd 

standing 
standing (Y.W"'). 

sitting (83.55%) 

Figure 6: overview of an activity profile: distribution of activities as a percentage of long term 
recording time for two subjects. 

Figure 7 shows two histograms in which the horizontal axis displays the duration of the activity 

'walking' divided in category-intervals of 10 seconds, and the vertical axis displays the frequency of 

each category-interval as recorded during the total recording time. 
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Figure 7: histogram of an activity profile for two subjects: the activity walking is divided in 
category-intervals (walking blocks) of 10 seconds. In these cases the frequency distribution of the 

duration of the walking blocks shows a prevalence of short walking periods. 

Figure 8 shows a 3-D bar graph of the mean footstep time, as a function of walking block interval time 

and monitoring tinle. 

Mean footstep lime [s] 

u , .. .. 
o. 

" • 

. " 
" • 

'" 6-1 

j"~~tJ}i;;:;t~ , ... 
4-5 Walking block interval time {min] 

" 
1··1 

Figure 8: 3-D bar graph of an activity profile: the mean footstep time as a function of 
monitoring time and walking block interval time. 
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BLOCK Dm . min LENGTH min AVO s MODE s 5ms s LARGEST s 

1 12 1.70 1.17 1.18 0.10 1.43 
2 18 1.30 1.13 1.12 0.11 1.96 
3 22 4.33 1.10 1.06 0.07 1.53 
4 27 6.90 1.07 1.06 0.04 1.28 
5 34 1.85 1.04 1.06 0.05 1.18 
6 49 8.51 1.04 1.06 0.06 1.25 
7 58 12.38 1.04 1.06 0.08 2.03 
8 72 1.92 1.12 1.12 0.08 1.43 

Table I: some computed parameters for watking block interval time 

Table I shows additional computed parameters for each walking block. 

Where: 

BTIME represents the begin time of a walking block; 

LENGTH represents the duration of a walking block; 

A VG represents the average of all footstep time values in a walking block; 

MODE is the footstep time that appears most frequently in a walking block; 

STDS represents the standard deviation of all footstep time values in a walking block; 

LARGEST represents the largest footstep time value in a walking block; 

SMALLEST represents the smallest footstep time value in a walking block. 

SMALLEST s 

0.65 
1.00 
0.87 
0.96 
0.65 
0.65 
0.65 
0.65 

In Table 2 an example is given of a numerical representation of activities. The statistical data refer to 

the time necessary for a patient to transit from standing to sitting and from sitting to lying on the back. 

It is clear that in a sinillar way transition times for other 'transitions' can be calculated. 

Minimum(s) Maxinlum (s) Average (s) 

Transition time 

standing to sitting 1.63 3.75 2.77 

Transition time 

si~ing to lying on back 3.41 5.09 4.63 

Table 2: Some statistics about transition time. 
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1.3 Relevant motor activities and related clinical parameters 

It is up to the clinical user of the AMMA system to indicate what information is of relevance. Peruchon 

[20] postulated that according to the clinicians' point of view and need, the following activities and 

parameters can correctly reflect the functional profile of a patient. 

1.3.1 Relevant motor activities 
Figure 9 shows some proposed dynamic and static motor activities and their subclasses which have been 

suggested in a questionnaire by many clinicians [20][21]. At present, our system is able to detect all 

daily-life motor activities which are shown in gray in Figure 9. 

Figure 9: Main relevant motor activities 

st:u.d1ag 

Om t1tt rJPl , .. 

Some additional clinically representative activllies have been proposed such as: to squat, to run, to turn 

about, etc. 

1.3.2 Relevant related parameters 
The following parameters are suggested in a questionnaire by many clinicians[20][21]: 

total duration in lying position; 

total duration in sitting posture; 

total daily walking time; 
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total duration in standing position; 

number of times of each activity; 

mean duration of each activity; 

Introduction 

max, min and average time of transition activities; 

speed of walking. 

Completion of this list will require further investigations. Of course, it must be noticed that the nature 

and relevance of motor activities and related parameters depend on the type of the considered 

pathology[20][2Ij. 

1.4 Aim of study 

The aim of this study is to investigate and to analyze the abilities of Artificial Neural Networks 

(ANNs) and Fuzzy Rule Based Systems for the automated recognition of daily life motor activity 

classes and the computation of relevant clinical parameters. 

One of the main aims of the AMMA system is to provide a means for automating the recognition of 

activity classes in long term recorded data with high efficiency and at reasonable speed, in order to 

avoid time consuming human intervention. 

Some attempts were made to solve the automatic recognition problem by means of a simple signal 

processing approach, like peak detection, threshold setting. correlation, smoothing, etc. However, all 

these techniques operated with low efficiency. This is comprehensible, because each class of daily life 

motor activities shows extreme inter~and intra individual variation, as was discussed in [22]. It is 

demonstrated that such an approach is not suitable for the recognition of patterns in a noisy 

environment. 

We have chosen the artificial neural network and the fuzzy rule based classifier as an alternative 

because these have been successfully applied in other pattern recognition problems. 

1.5 Overview 
The contents of this work are as follows. 

Chapter 2 briefly reviews various pattern recognition techniques and addresses a new method' for 

generating new features, which are critical for solving the automated pattern recognition problem for the 

AMMA system. 

Chapter 3 begins with an introduction to neural networks. A short general introduction on the subject is 

given fIrst, followed by somewhat more detailed descriptions of a number of specifIc networks. Also, 

our experiment with neural networks as a pattern recognition system will be considered. 
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In chapter 4, the basic concepts of fuzzy set theory, fuzzy logic and fuzzy systems are shortly 

summarized. Also our experiment with a fuzzy rule based system as a pattern recognition system will be 

considered. 

Chapter 5 presents an overview of the different approaches towards constructing Neur<rfuzzy dooision 

systems and their application to the multichannel recorded data. 

In chapter 6, summary and future direction are presented. 
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Pattern Recognition 

2. Pattern Recognition 

In the following sections, we provide an introduction to many of the key concepts in pattern recognition 

and to various techniques for solving pattern recognition problems which are relevant to this thesis. 

2.1 Introduction 

The term pattern recognition encompasses a wide range of information processing techniques of great 

practical significance, from computer vision tasks, speech recognition, fmgerprint identification, and 

character recognition, to fault detection in machinery and medical diagnosis. Although such tasks can 

often be solved without much conscious effort by humans, their solution using computers has, in many 

cases, proved to be immensely difficult. 

Pattern recognition can be defined as a process of identifying structure in data, often by comparison to 

known structure; the structure may be developed through methods of clustering. Basically, clustering 

seeks the structure in data, whereas classification attempts to assign new data to one of the classes 

defmed in the classification process. The components of a pattern recognition system are illustrated in 

Figure 10. 

F, F. 
'''''''''''''''''''''''' Measured features 

Preprocessing I 
F, . ",., ................. , F • 

P reprocessed features 

... Feature analysis 

F, .. "." ....... F. 

0 ptimal features 

.- Classification ~ 
Classes 

Figure 10: Pattern recoguition system in design mode. 
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The purpose of this pattern recognition system is to assign an observation as represented by a ftxed 

number of measured features to one of C possible pattern classes. Presumably, different input 

observations should be assigned to the same class if they have similar features and to different classes jf 

they have dissimilar features. A set of features is called a pattern or feature vector and is described by a 

vector F ={ Fh F2, .... Fn}. The n individual features, Fh ... Fnl are assumed to be representative and 

sufficient to recognize the underlying pattern. 

The preprocessing part often has a significant effect on the performances of the total system. 

2.2 Feature analysis 
Feature analysis refers to methods for conditioning the raw data (measured features) so that the 

information that is most relevant for classification and recognition is enhanced and represented by a 

minimal number of features. Feature analysis consists of two component: 

• feature selection 

• feature extraction 

Feature selection refers to choosing the subset of m features with the highest discriminating ability from 

the n original features (m<n), as illustrated in the example in Figure 11. In general, the selection of the 

features is more important tban the choice of a specific classifier. When features with no discriminating 

ability are used, no classifier will give acceptable results. On the other hand, when features with a very 

high discriminating ability are used, all classifiers will give comparable results. In almost all problems, 

one does not know beforehand how many features must be used in the classifier. One of the simplest 

techniques for dimensionality reduction is to select a subset of the features, and discard the remainder. 

This approach can be useful if there are features which carry little useful information for the solution of 

the problem, or if there are strong correlation between pairs of features so that the same information is 

repeated in several variables. There are many procedures for feature selection[IJ[2][3J. 

F, ~ Fl _ 

x 
F, • 

x F, 

x 

F, ~ x 

Feature selector 

Figure II: Dimensionality reduction by feature selection. 

Feature extraction (FE) refers to the process of transforming the original n-dimensional feature space 

into an m-dimensional space in some manner that preserves or enhances the information available in the 
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original n·dimensional space. as illustrated in the example in Figure 12. It is accomplished 

mathematically by means of either some linear or nonlinear combination of the original features. 

G, 

T(F" ..... F,) G, 

G, 
F, :1 

Feature extractor 

Figure 12: Dimensionality reduction by feature extraction. 

2.3 Partitioning of the feature space 
Partitioning the feature space into c regions that are associated with classes, is usually in the domain of 

classifier design. Usually, the feature space is Rn
, and classifiers partition RD into c disjoint regions. A 

region is called a decision region. and its boundary is a decision boundary. 

Sometimes the decision regions can be linearly separated (i.e., by straight lines in R2, by planes in Rl, 

by hyperplanes in higher dimensional spaces). If decision regions are intertwined in a way that makes 

it inlpossible to separate them with linear decision boundaries, the problem is called non-linearly 

separable. Figure 13 illustrates two examples of partitioning in a two- dimensional feature space. 
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Figure 13: Examples of partitioning in a two-dimensional feature space: 

left: partitioning by linear decision boundaries. 
right: a general partitioning of the feature space. 

A classifier generally consists of a set of discriminant functions gi(F), i= l, .... c where F is the input 

feature veotor, and c is the number of classes [4J. A discriminant function g,(F) is defined for each 

decision region i. The classifier assigns an observation with input feature vector F to region m 

associated with class m ifthe relationship 
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g.,.(F) > gi(F) for all j;. m 

holds. That is, the classifier computes c discriminant functions and selects the class corresponding to the 

largest discriminant. 

The decision boundaries can be easily found from this description; e.g., the boundary between the 

regions i and j is given by the equation: 

gi(F) - gj(FFO 

This representation ofa classifier is given as a block.diagram in Figure 14. 

g,(F) 

F, g,(F) 

F, 

F, g,(F) 
.Cm 

g.,(F) 

F. 

gJF) 

Figure 14: A pattern classifier. 

The discriminant functions may be linear or nonlinear combinations of the input feature values. An 

example of a linear discriminant function is given by: 

&(F)=WrF +wjO= Wn.FI+Wj2.F2+ ..• Win.Fn+WiO 

where vector Wi is a so-called weight vector associated with class i (the superscript T stands for 

transposition of a (column) vector) and vector F is the pattern vector (or feature vector). The weights 

(free parameters) of each linear discriminant function are calculated to minimize the rate of 

misclassification [4][5]. 

It should be pointed out that the choice of dicriminant functions is not unique; every g,(F) can be 

replaced by f(g,(F» without influencing the decision, iff is a monotonically increasing function. 

There are various techniques for solving pattern recognition problems. Some of them which are relevant 

to this thesis will be discussed in the following sections. 
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2.4 Statistical pattern recognition techniques 

Statistical pattern recognition system assigns a randomly observed pattern vector FeRn to a decision 

region Ri C Rn associated with class i using the distribution of the pattern vectors in Rn as established 

in a learning phase. This is usually accomplished by defining suitable discriminant functions that divide 

the n-dinlensional feature space into regions that correspond to the different classes. Suppose P(Ci) is the 

(known, estimated, or assumed) a priori probability of occurrence of patterns from class Cj, and P(F I Ci), 

the class-conditional density function of the random variable F given that the corresponding sample 

belongs to class Cj (this density flUlction is estimated during learning or training). From Bayes theorem 

we have: 

P(e, I F) ~ P(P I e,).P(e,) I P(F) 

where the posterior probability P(Cj I F) gives the probability of the pattern belonging to class Cj once we 

have observed the feature F, and P(F) is the density function for F irrespective of class, and is given by 

c 
PCF)~ LPCFlci)P(Ci) 

i~1 

The division by PCF) ensures that the posterior probabilities sum to unity : 

C 

LPCFlci) ~ I 
i~1 

Therefore, we can easily compute P(Ci IF) once we have the estimates for P(F I Cj) and P(Ci). These are 

then used to assign the sample corresponding to the measurement vector F to the class em if 

P(c.n I F) > Peed F) for aU i;. m 

We can then represent the discrinlinant functions as 

g,~ Peed F) 

The remaining problem is how to determine the class-conditional probability density functions (PDFs) 

P(F I Ci ). This problem can be solved using training sets. A training set contains observations, either 

with or without class labels. Using a training set for the estimation of the PDFs is referred to as learning 

or training. 

There are two broad types of statistical learning methods: parametric and non-parametric. 

Parametric methods assume a specifIc functional form of the class-conditional density functions P(F I Ci) 

for each pattern class Cj. Such functions contain a number of adjustable parameters which are optimized 

by fittmg the model to the training set. The simplest, and most widely used, parametric model is the 

normal or Gaussian distribution, which has a number of convenient analytical and statistical properties. 

The drawback of such an approach is that the assumed parametric form for the density function may not 

be a good representation of the true density. It should be emphasized that accurate modeling of PDFs 
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from finite data sets in spaces of high dimensionality is, in general. extremely difficult. However, 

parametric models allow the density function to be evaluated very rapidly for new values of the input 

vector. 

Non-parametric methods do not assume a particular functional fonn for the density functions, but allow 

the form of the density to be determined entirely by the training set. A number of non-parametric 

techniques are available [2][4][6J. 

A popular example of a non-parametric method is the nearest neighbors method in which a sample is 

assigned to the class of its nearest neighbor(s) (in terms of a suitable measure of distance) in the training 

set. Non-parametric methods suffer from the fact that the number of parameters in the model grows with 

the number of training data points. 

The field of statistical pattern recognition techniques is very large, and it is not possible to give a 

complete description of all the aspects and issues mentioned in this section. The implementation of these 

technique as a neural network will be discussed in chapter 3 

2.5 Symbolic Artificial Intelligence Techniques 

Symbolic processing, as the name suggests, deals with information in terms of symbols. The symbols, 

representmg pieces of information, are usually manipulated using IF-THEN rules. IF-THEN rules are 

expressions of the form IF input is A THEN output is B, where A and B are symbols characterized by 

appropriate characteristic functions (membership functions). 

An example that describes a simple fact is: 

If pressure is high, then volume is small. 

Where pressure and volume are variables, higb and small are symbols that are characterized by 

membership functions. Examples are shown in Figure 15, for high and small symbols. 

x r . l~high 

o 25~0~~5"0"'0c--x~' 

Xl!,-~----. small 

• o 10 20 x 
pressure volunle 

Figure 15: Membership functions for (left) high pressure and (right) small volume. 

Expert systems are well-known systems for manipulating symbolic representations [7][8][9J. Rather 

than discussing all different kinds of expert systems we will focus our attention mainly on an expert 

system which uses the rules formalism for representation of the knowledge. There are several 

formalisms available and used for representing the different types of knowledge: rules, frames, semantic 
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network, inheritance, predicate calculus. Basically, an expert system is composed of four blocks, as 

shown in Figure 16: 

Knowledge base 

I rule base I 
inference engine 

I database I 

I user interface I 
t 

input 

Figure 16: Structure of an expert system. 

• a rule base containing a number of IF-THEN rules; 

• a database which defines the membership functions of the symbols in the rules; 

• an inference engine which performs the inference operations on the rules; 

• a user interface which facilitates'data-entry and data-retrieval. Furthermore, it is used to give 

explanations to the user. 

Usually, the rule base and the database are jointly referred to as the knowledge base. The domain­

specific knowledge is stored in a knowledge base. Since the knowledge base is separated from the other 

blocks of system, it is possible to use the inference mechanism and the user interface of such developed 

expert systems as a tool to build other expert systems. One needs to replace only the knowledge base by 

another one. This reduces the development time of an expert system considerably. A significant 

characteristic of expert systems is that they operate in a transparent fashion} i.e. the path to their 

conclusion can be traced. New knowledge in the form of new rules may be added, hence allowing for 

incremental development} refmement and tuning of the knowledge base. This expert system is similar to 

a fuzzy rul<>-based system which will be in introduced section 2.7 and fully discussed in chapter 4. 
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2.6 Neural network techniques 

Artificial neural networks are processing structures that are inspired on the architecture and functioning 

of the human nervous system. They have become popular in many research fields because of their 

ability to solve complex problems for which no analytical solutions appear to be feasible. Therefore, 

there is an exponentially increasing growth of ANN research. As a result of this research. ANN's have 

been used in a broad range of applications which include pattern recognition [10], classification [11], 

approximation [12]. optimization [13]. prediction [14], control [15]. speech recognition [16], modeling 

[17]. systems identification [18]. etc. They are able to learn by example; given a set of examples and 

their class, a network can learn to emulate the required decisions. They are able to generalize: an ANN 

call not only learn to recognize patterns which are used to train it, but it can also recognize similar 

unseen patterns. 

Basically, an artificial neural network consists of many, highly interconnected simple processing 

elements, called "neurons", "units" or "nodes". The neurons are usually arranged in series of layers, 

bounded by input and output layers with generally a number of hidden layers in between. Each of these 

neurons receives input from other neurons in the previous layer and applies an activation function to its 

summed inputs in order to obtain an output which is propagated to other neurons in the next layer. 

Information from the input layer is propagated through the network to the output layer. The input and 

output neurons are the means of the network to communicate with the outside world. Input layer 

neurons are merely a mechanism for distributing the input signal to the subsequent hidden layers. Figure 

17 shows a simple fully connected feed-forward neural network with one hidden layer. 

INPUT 
LAYl!R 

,~ 

HIDDEN 
LAYl!R 

Figure 17: A feed forward neural 
network with one hidden layer. 

There is a number of different types of artlficial neural network architectures which are usually 

characterized by: 
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• the topology of the network; the topology of a neural network is the organization of neurons into 

layers and the connections between them; 

• the characteristics of the neurons; 

• the type of learning scheme. 

A detailed description of these items is presented in chapter 3. The following paragraphs focus on how 

artificial neural networks can be used in pattern recognition tasks. 

As explained in section 2.3, classifiers are designed to determine the decision regions in feature space. 

Artificial neural networks as classifiers can be categorized according to the manner in which they 

estimate the decision regions in feature space [19] as follows: 

• Kernel classifier; 

• Hyperplane classifier; 

• Probabilistic classifier; 

• Exemplar classifier. 

In Kernel classifiers each neuron has a kernel function 

centered around a location in the feature space. The idea 

is to cover the feature space with kernel functions. A 

neuron gives a maximum response to input vectors near 

the center of its kernel function. We say that each neuron 

has its own receptive field in the feature space. Decisions 

regarding the classification are made by using a weighted 

summation of the outputs of neurons. One of the spedal 

C~~~k' 
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basis functions that are commonly used is a Gaussian Figure 18: The estimated decision regions 

kernel function. Figure 18 shows schematically how a by Kernel classifiers. 

Kernel classifier estimates the decision regions in feature space. An example of an artificial neural 

network that belongs to this category is the radial basis function networks (RBFN) [20][21]. 

Hyperplane classifiers partition the feature space by hyperplanes which are generated by computation of 

a sum of weighted inputs for every neuron and applying a non~linear transfer function to this sU!ll. 

Figure 19 shows an example of a partitioning which is produced by a hyperplane classifier. An example 

of this type of classifier is the back propagation neural network (BPN). 
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\ 

Figure 19: A schematic illustration of a decision 
boundary produced by a hyperplane classifier. 

A probabilistic classifier is simply an example of the parametric. non8 parametric and mixture approach 

to density estimation implemented as a neural network. The activation function of each neuron is 

replaeed by a statistically derived one. Figure 20 shows a schematic illustration of a decision boundary 

which produced by a probabilistic neural network classifier. An example of this type of classifier is the 

Gaussian mixtwe classifier. 

Figure 20: A schematic illustration of a 
decision boundary produced by a probabilistic 

neural network classifier. 

Exemplar classifiers check the distance (Euclidean or using some other metric) separating an uukuown 

input pattern from each member of the training set. The uukuown pattern will then be assigned to the 

class to which the closest training set member belongs. Some examples of this type of classifier are 

Adaptive Resonance Theory (ART) [22J. Kohonen networks [23J. Learning Vector Quantization LVQ 
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Figure 21: A schematic illustration of the 
decision regions in feature space produced 
by an exemplar classifier. 

Despite this obvious diversity in the discussed categories of artificial neural network classifiers, all of 

them perform the same task: partitioning of the feature space into decision regions. They differ only in 

the way they perform this task. 

It is difficult to determine which type has the greatest probability of success. The choice of a classifier 

from the numerous available artificial neural network classifiers is most often based on its success in 

previous applications, practical experience with a wide variety of them used in various applications and 

the complexity of the problem. Engineering judgment and creativity are nearly always required. In this 

way it may be possible to provide acceptable solutions to problems that were not yet solved otherwise. 

2.7 Fuzzy Rule-Based techniques 
A fuzzy rule-based system is an extension of the crisp rule-based system discussed in section 2.3. This 

section will introduce the way in which fuzzy rule-based system can be used in pattern recognition. A 

detailed discussion of this subject will be presented in chapter 4. 

Unlike conventional (crisp) approaches of pattern classification, fuzzy classification assumes that the 

boundary between two neighboring classes is an overlapping area within which a pa«ern Can object) has 

partial membership in each of the two classes. This viewpoint not only reflects the reality of many 

applications in which categories have fuzzy boundaries, hut also provides a sintple representation of the 

potentially complex partitioning of the feature space. The classifier is described by fuzzy IF-THEN 

rules. Typical fuzzy classification rules for a 2-dintensional feature space are like: 

RI: IF XI is small AND x, is very large THEN X ~ CXI, x,) belongs to class CI 

R,: IF XI is large AND x, is small THEN x ~ CXI, x,) belongs to class c, 
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R3: IF XI is small OR X2 is small THEN x - (x], X2) belongs to class c) 

Rj : IF XI is very small AND X2 is very large THEN x = (Xl> Xl) belongs to class Ck 

where RJ is the Lth classification rule, Ck indicates an output class, XI and Xl are the features of a pattern 

(or object), very small, small, large and very large are linguistic tenns characterized by appropriate 

membership functions and AND and OR are fuzzy logical operations. Figure 22 shows a three-class 

classification problem. Three membership functions are associated with each feature, so the feature 

space is partitione<! into 9 fuzzy regions (subspaces), each of which is governe<! by a fuzzy IF-THEN 

rule. The antecedent part of a rule defines a fuzzy region, while the consequent part specifies the output 

within this fuzzy region. 

If one tries to classifY all the given patterns by fuzzy rules base<! on a simple fuzzy grid, a frne fuzzy 

partition and 9 rules (3x3=9) are required. However, it is easy to see that the patterns may be correctly 

classifie<! by the five fuzzy IF-THEN rules as follows: 

R,: IF x, is NOT Low AND x, is Low THEN x ~ (XI> x,) belongs to class C, 

R,: IF x, is Low AND x, is NOT Low THEN X ~ (XI> x,) belongs to class C, 

R3: IF XI is Low AND X2 is Low THEN x =: (XI, X2) belongs to class C2 

R,: IF x, is NOT Low AND x, is High THEN x ~ (XI> x,) belongs to class C, 

R,: IFx, is NOT Low AND x, is Me<!lum THEN x ~ (XI> x,) belongs to class C, 
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Figure 22: Fuzzy partition with 9 fuzzy regions. 

2.8 Neural-Fuzzy techniques 

Neural-Fuzzy hybrid systems combine the advantages of fuzzy systems and neural networks. 

While neural networks are good at r~ognizing patterns. they are not good at explaining how they reach 

their decisions. It is difficult to explain the knowledge learnt by a neural network. Neural networks have 

a black box nature. 

Fuzzy logic can encode expert knowledge directly using rules with linguistic terms, and are good at 

explaining their decisions but they can't automatically extract the rules which they use to make 

decisions. Also, it usually takes much time to design and tune the membership functions which 

quantitatively define the linguistic terms. 

These limitations have led to the creation of neural-fuzzy networks where neural networks and fuzzy 

logic techniques are combined in a manner that overcomes the limitations of the individual techniques. 

Neural~Fuzzy networks try to remove the mentioned limitations by combining the learning capabilities 

of neural networks together with the interpretability properties of fuzzy systems. Neural-Fuzzy 

networks partition the feature space better than fuzzy rule-based systems, because the membership 

functions in Neural-fuzzy networks are tunable. A full description of Neural-Fuzzy Networks will be 

given in chapter 5. 

2.9 AMMA signal processing with the previous described techniques 

It has to ~e considered that ambulatory monitoring of daily life motor activities is conceptually new. 

Therefore. it is difficult to fmd an automated system for the recognition of AMMA-signals in literature. 

The only similar monitoring system which can be found in literature [24], uses several forms of signat~ 
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processing such as high pass and low pass filtering, rectifying procedures, and frequency analysis to 

automate the recognition of daily life motor activities. Tills system has still the following shortcomings: 

• the system is patient dependent; 

• the system splits activities only in two categories, dynamic and static, and is not able to classify 

subclasses of dynamic activities. 

The novelty of the AMMA~signalsJ the lack of references in literature, the inability of conventional 

signal processing techniques and the success of neural network and fuzzy logic techniques in other 

application of pattern recognition led us to apply these techniques to AMMA~signals. 

In chapter 3, the applications of two types of neural networks to AMMA-signals in order to recognize 

and classify daily life motor activities will be discussed. One of the applied neural networks is an 

implementation of the Bayes decision strategy which is called Probabilistic Neural Network (PNN). The 

other one is a BackPropagation Neural Network (BPN). In chapter 4, we will apply a fuzzy rule-based 

technique to AMMA~signals to overcome the shortcomings of the neural network techniques. Before 

that. in the following sections, we address some other related subject. 

2.10 Sensors 

The silicon accelerometers register the orientation and movement of body segments. Each daily life 

motor activity is reflected in specific orientations and movements of some body segments. Because the 

output of an accelerometer is a mixture of two components. a gravitational component (DC­

component,) and a component of the change in velocity (dynamic- component), both static and dynamic 

motor activities are reflected. The component which reflects static activity is more constant in time and 

the component which reflects a dynamic activity changes rapidly with time. Figure 23 shows the effect 

of a rotation of the sensor on its output due to the earth's gravity field. 
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Figure 23: The effect of a rotation of the 
sensor on its output (mV) due to the 
earth's gravity field, 

2,11 Definition of the patterns ofactivities 
A first requirement for the classification of daily life motor actlvities is that all activities are defmed. It 

was investigated how to acquire re<:ognizable and accurate information on a subje<:t's basic daily life 

motor activities with a minimal number of sensors. Figure 24 shows the output signals of four 

accelerometers which are attached to the subject's body. 
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Figure 24: Representative signals for some activities measured with four accelerometers 

Two accelerometers (represented by ch, and ch,) are placed on the middle of both thighs and collect the 

acceleration of the thighs perpendicular to the femur. Two other sensors represented by ch3 and cf4 are 

placed on the sternum, to sense acceleration of the trunk in the lateral and in the sagittal dire<:tlon, 

respectively, It was investigated that these four sensors give sufficient information about basic 

activities. From these sensor's outputs, a trained eye can re<:ognize each speclfic posture and movement 

of the subject as reflected in specific waveforms of the signal in each channel. Based on knowledge of 

the sensor characteristics and visual interpretation of the recorded reference data which is obtained 
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according to a protocol, each activity class can be defined. In the following paragraphs basic postures 

and movements will be defined. 

Walking 

Walking is a dynamic and cyclic activity which has the highest variability of all basic classes that are 

recognized. Walking can vary from fast running to shuflling and its pattern (wavefonn) shows 

extremely large inter- and intra- individual variation. Figure 25 shows the signals of the two 

accelerometers on the right and left upper leg for a single subject during walking. 

Right-leg acceleration 

o Time 7 (8) 

Figure 25: Typical example of siguals from the accelerometers on right and left upper 
leg, while walking. 

As shown in Figure 25, the fluctuations of the waveform of a step are very large. Each step pattern 

differs in amplitude and slope from other steps. The subject of this example was healthy and walked 

normally. It is obvious that walking at various speeds will produce even more varying patterns. Figure 

26 demonstrates the intra-subject variability of acceleration ofthe upper leg during 20 step·cycles. 

• • . , . 
"",d. 

Figure 26: Intra-subject variability of 
sensor output of the upper leg. 

This and the inter-subject variability of the pattern of steps render automatic recognition by 

conventional sigual processing techniques extra difficult. Walking as a class is divided into two sub-
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classes, i.e., walking slowly and at normal speed and a second sub-class that covers fast walking. A 

trained eye can recognize walking activity by looking at the flfst and second channels (left and right 

upper leg accelerometer outputs). However, using only one of them is sufficient to detect walking 

activity. Figure 27 shows a part of recorded data of the two accelerometers on the right and left upper 

leg when subject walks normally. In this figure, the cursor positioned 011 the peak of a step pattern in 

channell, its amplitude value is 1.2700 Volt. 

m W1NDAa - "NT COD I!!lIiIEI 
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Figure 27: A part of recorded data during normal walking activity. 

Figure 28 shows a part of recorded data of the two accelerometers on tbe right and left upper leg when 

subject walks slowly. In this figure, the cursor positioned on the peak of a step pattern in channell, its 

amplitude value is 0.3400 Volt. 
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Figure 28: A part of recorded data during slow walking activity. 

Figure 28 shows again a part of recorded data of the two accelerometers on the right and left upper leg 

when subject walks normally. But in this figure, the cursor positioned somewhere between two step 

patterns in channell, its amplitude value is 0.4700 Volt. 
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Figure 29: A part of recorded data during normal walking activity. 

From Figure 27-29 one can see that conventional peak detection technique fails to find a magic 

threshold for recognition of step pattern. 

Sitting 
Sitting is a static and non-cyclic activity and the trained eye can recognize it easily by using both the left 

and right upper leg accelerometers and the sagittal 

trunk accelerometer. The trwtk lateral movements 

are not used for the defmition of the activity sitting. 

Figure 30 illustrates the onset and end of activity 

class sitting. The use of the sagittal trunk 

accelerometer (fourth channel) is necessary in order 

to avoid misc1assitication. If one only uses the first 

and second channels (right-leg, left-leg) to classiJY 

the sitting activity, there is the chance that an 

incorrect label is placed, since the activity lying on 

the back can result in similar waveforms in the flrst 

and second channels. The patterns of sitting posture 

are also variable but compared to steps, this pattern 

is much more stable and thus} easier to recognize. 
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Figure 30: Specific waveforms for activity 
class sitting. 

Standing is also a static activity and its recognition from the four sensor signals is based on the 

combination of the following criteria: 

• one of the legs is in} or close to, the vertical position; thus the variations in that signal are relatively 

small. 
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• none of the activities: lying on the left or on the right side. are recognized simultaneously with the 

first condition. 

The second criterion is applied in order to avoid mis-classification. Using only the fust and second 

channels to classify the standing activity may result in misclassification. The activities lying on the left 

and right side can result in a similar waveform in the fust and second channels. The activity bending 

down can be differentiate<! from standing upright, by considering the trunk accelerations (the third and 

fourth channel). 

Lying 

Lying is a static activity and is divide<! into the following three sub·c1asses: 

• lying on the back; 

• lying on the right side; 

• lying on the left side; 

Information on the subclass is obtained from the trunk accelerometers sensing the movements or 

postures in the frontal plane. The class 'lying on the back' is recognized if a single or both leg sensor(s) 

as well as the trunk are in the horizontal position at the same time. 

The class 'lying on the left or right side' is determined by combining the information from 'lying on the 

back' (it is assume<! that the class 'lying on the left or right side' will occur after the class of 'lying on 

the back') and is determine<! by the output of the lateral sensor on the sternum. 

2.12 Modified pattern recognition system and feature generation 

In this section, we present a modified version of the pattern recognition system discussed in section 2.1 

and shown in Figure 10, and describe an added component (feature generation) to this modified system. 

Although a trained eye can recognize all activities by using the four channels (four continuous features), 

and a patient dependent ANN based classifier is also able to classify the desired activities automatically 

with the same number of sensor outputs, our research showed that using only the four features (the four 

accelerometer outputs) cannot eliminate patient dependency of the system. To overcome this 

shortcoming, we have modified the pattern recognition system described in section 2.1 in such a way 

that it generates new features. Figure 31 shows this modified pattern recognition system. 
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Figure 31: A schematic representation of a modified pattern recognition system. 

In chapter 4, we will show that the added feature generation block serves to improve the automated 

classification of daily life motor activities. In the next section, the feature generation block and its 

implementation are discussed. 

Feature generation Bod implementation outline 

As mentioned before, using only the four continuous features (the outputs of the four accelerometers) is 

not enough to design a patient independent classifier, for the recognition of activities (dUferent waves in 

signals), and the detection of onsets and endpoints of the waves. This initiated the search for a new 

representation (features) generated from the preprocessed measured features. Feature defmltions may be 

constructed 'by hand', based on some understanding of the problem (i .•. , the incorporation of prior 

knowledge), or features may be derived from the preprocessed measured data by automated procedures. 

Prior knowledge may be incorporated into all parts of the pattern recognition system. 
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For the generation of new features from the original data, a variety of methods is available. This study 

focuses on two methods both employing a running window technique. Figure 32 illustrates how two 

points of a new feature can de derived from the input data. This figure employs a window of width 

sixteen. The bottom line represents the preprocessed measured data values. The top line forms the new 

input data values. The core of the operation consists of the following steps: 

I. put the windo,v at the beginning ofthe input data; 

2. evaluate the function F: RI6 -)R16 on the vector selected by the window; 

3. evaluate the function G: R 16 -) R at function value in step 2; 

4. move the window one point to the right; 

5. go to step 2. 

This is repeated for the entire length of the input data. Two examples ofG(F([x" .... x,,])) are: 

• Norm (Cumulative_Suru([x" .... x,,])), 

• Average( Outer.Jlroduct ([x" .... XI6])). 

Prior knowledge which refers to relevant information (shape of waves, length of waves, sampling rate, 

etc.) can be of help for choosing the two functions F and G and the window size. 

G:R I6 XR 

Newinpuldala ITI ~\.' , , , , , ' .. ' , , , , 
F: Roo x Roo \ 0 0 0 0 0 0 0 0 0 0 0 0 0 DOD 
P: R" x ;~D 0 0 0 0 DO 0 0 0 DODO 0 

InpUldala 11111111111111 nllllil 

Figure 32: schematic explanation of the fust feature generation 
procedure 

Another method, similar to the previous one, but consisting of only four steps is : 

I. put the window at the beginning of the input data; 

2. evaluate the function G: R 16 ~ R on the vector selected by the window; 

3. move the window one point to the right; 

4. go to step 2. 

These steps are repeated for the entire length of the input data. Figure 33 illustrates how two points of 

the new feature are constructed by this procedure. 
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Newinputdata ~;t\ .......... . 
Inputdatannr".'I'I.fiHI.illlll ... , .......... ::: ...................................... .' ........ .'.'.'.'.':.',.,' 

Figure 33: schematic explanation of the second feature generation 
procedure 

This figure employs also a window of width 16. It is important to select an optimal window size. Its size 

depends on the sampling rate (the sampling rate of AMMA signal was 32 per second) , and it should be 

noted that it is not necessary to have the same window size for different features. 

Two examples ofG([x" .... xl6]) are: 

• Norm ((X" .... XI6]); 

• Inner-Product([x,,. ... xl6]). 

The average. standard deviation, sine. cosine. Fourier transform, cumulative sum. norm, inner product, 

outer product. max, min, etc. are typical F and G functions which were used to generate new features. 
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Neural Networks 

3. Neural Networks 

3.1 Introduction 

Artificial neural networks have become popular in many research fields because of their ability to solve 

complex problems for which no analytical solutions appear to exist. Therefore there is an exponentially 

increasing growth of ANN research. As a result of this research, ANN's have been used in a broad 

spectrum of applications which include pattern recognition [1][2]. classification [3]. approximation [4]. 

optimization [5]. prediction [6]. control [7]. speech recognition [8]. modeling [9]. systems identification 

[10], etc. Artificial neural networks are processing structures inspired by the architecture and 

functioning of the hwnan nervous system[1l][l2]. but they are only loosely related to them. ANN's are 

massively parallel systems that rely on dense arrangements of interconnections and surprisingly simple 

processors. In a neural network, each processor is linked to many of its neighbors (typically hundreds or 

thousands) so that there are many more interconnection than processors. The power of the neural 

network lies in this tremendous number of interconnections. The strongest feature of neural networks is 

their ability to accept examples and generalize from them; i.e., an ANN can not only learn to recognize 

patterns which are used to train it, but it can also generalize and recognize similar patterns. 

3.1.1 History of Neural Network 

The history of neural networks started ill 1943 with the publication of a paper by McCulloch and Pitts 

[13]. which introduced a model of a neuron that was capable of performing useful logical and 

arithmetic functions. 10 1949. D. O. Hebb [14]. proposed a learning law that became the starting point 

for artificial neural network training algorithms and inspired many researchers to study 

neurocomputing. Around 1960 there was a wave of activity centered around the group of Rosenblatt, 

concentrating on networks called perceptrons. These networks are limited to two layers of processing 

units with a single layer of adaptive weights between them. That was the beginhing of a golden period in 

neurocomputing research, which was to last until 1969, when many artificial neural network were 

developed. implemented and applied to a wide variety of problems. Many pioneers expressed a great 

deal of enthusiasm and hope that such machines could be a basis for artificial intelligence. This 

enthusiasm soon proved to be an illusion. Perceptrons failed to solve problems superficially similar to 
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those that had been successfully solved. Minsky and Papert [15] in their book Perceptrons, showed that 

Rosenblatt's perceptron was theoreticaUy incapable of solving many simple problems, including the 

function performed by a simple exclusive (XOR) operation. Rosenblatt had also studied structures with 

more layers of adaptive weights and believed that such networks could overcome the limitations of the 

simple perceptrons. However, there was no learning algorithm known which could adapt the weights. 

With the negative assessment of perceptrons by Minsky and Papert, the absence of an analytical 

approach to the neural network and the absence of the learning algorithm had enormous consequences 

and effectively led to the dampening of continued interest in neural network research. Many of the 

researchers deserted the field, only a handful of the early pioneers maintained their conmutment to 

neural networks. 

In the 19805, major contributions to the theory and design of neural networks were made on several 

fronts, which led to a rebirth of interest in neural networks. 

Grossberg 1980 [16], established a new principle of self~organization, using his earlier work on 

competitive learning [17][ 18][ 19]. 

In 1982, Hopfield used the idea of an energy function to formulate a new way of understanding the 

computation performed by recurrent neural networks with symmetric synaptic connections. His work 

motivated many researchers to (re)start research on neural networks. Another important development in 

1982 was the publication of Kohonen's paper on the self-organizing map [20]. In 1983, Cohen and 

Grossberg [21] established a general principle for designing a content-addressable memory. In 1985, 

Ackley, Hinton, and Sejnowski [22] exploited the idea of simulated annealing (simulated annealing is 

rooted in statistical thermodynamics) in the development of a stochastic learning algorithm that uses 

some nice properties of the Boltzmann distribution·hence the name Boltzmann learning. 

In 1986, the development of the baCk-propagation algorithm was reported by Rumelhart, Hinton and 

Williams [23]. In that same year, the two-volume book, " Parallel Distributed Processing" (often 

referred to as PDP) was published. This latter book has had a major influence on the use of back­

propagation learning, which has since emerged as the most popular learning algorithm for the tralning of 

multilayer perceptrons. In fact, back-propagation learning was discovered independently in two other 

places about the same time (Parker, 1985[24], LeCun, 1985). After the discovery of the back­

propagation algorithm by Parker, and LeCun, it turned out that the algorithm had been described earlier 

by Werbos in his Ph.D. thesis in 1974 [25]. 

In 1988, Broomhead and Lowe [26] described a procedure for the design of layered feedforward 

networks using radial basis functions (RBF), which provide an alternative to multilayer perceptrons. 

Many of the important early papers including many of those mentioned here have been collected in 
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Anderson and Rosenfeld (1988)[27J. Neural networks have certaiJ~y come a long way from the early 

days of McCulloch and Pitts and the development theory, design, and applications will continue. 

This chapter contains a brief general introduction to neural networks, followed by a more detailed 

description of the networks used in this work. The application of the described ANNs, with emphasis 

on pattern recognition in AMMA-signals, is discussed at the end of this chapter. 

3,1.2 Processing clemen Is 

The individual computation elements that make up most artificial neural system models are often 

referred to as neurons or Processing Elements(PEs). Figure 34 shows the general PE model. 

Every PE has many inputs, and a single output which can fan out to other PEs in a following layer. 

x, 

x, 
w" 

W" 
IIh PE 

X, W13 

x, w14 

x, W" ~~-"'-~~--+I nel,= ~ w,l, f(nel,) 
output 

w" 0, 

x, 
w" 

x, w" 

X. 
Figure 34: Functional model of an artificial neuron. 

Each link between two PEs has a coupling coefficient that assigns a weight to incoming signals. 

Each PE determines a net-input value based on aU its input connections. The net-input is calculated by 

summing the input values, multiplied by their corresponding weights. In other words, the net·input to the 

ith unit can be written as: 

neq= LWijxj 
j 

where the index j runs over all connections to the PE. 

43 



Chapter 3 
Once the net input of the PE is calculated, we can determine the output value by applying an output 

function (transfer function): 

This results in the following equation for the output of a processing element: 

where: 
0; 

Xj 

f() 

(J 

the output of the ith PE. 

the input of the ith PE. 

OJ =f(L;xjwij) 
j 

the weight connection associated with the j.th input. 

{
' neti;' 9 

= the threshold function: f(neti) = 0 
neti <9 

= the threshold level. 

2 

3 

The basic idea of a weighted summation of inputs to be compared to a treshold to determine the output, 

is used in most neural networks. However, there are many variations on this basic model. Some 

networks operate on continuous input signals or use a different output function to calculate the output 

from the weighted sum. 

Examples of such different output functions are the semilinear sigmoid function (i.e., bounded above 

and below, but differentiable) used in a Back Propagation Network (BPN) and a nonlinear exponential 

function as used in a Probabilistic Neural Network (PNN). Figure 35 shows a number of different 

output functions. 

Figure 35: A number of different output functions 
(activation functions). 
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3.1.3 Neural Network Topologies 

The topology of a neural network is the organization of units into groups and the connections between 

them. and can be divided in topologies with strictly feed-fonvard connections and with feedback 

connections. In a purely feed-forward network, the input simply flows through the connections. As it 

passes through intermediate PEs, it is transformed until it ultimately reaches its fInal form at the output 

PEs. The only time-related factor is that sending PEs must compute their states before the receiving PEs 

can use them to compute their own states. Once the flow of information reaches the output PEs, 

processing ends until new input values are fed into the network. Thus, a simple functional relationship 

exists between inputs and outputs. Two typical examples of a feed-fonvard network are the Back 

Propagation network (BPN) and the Probabilistic Neural Network (PNN). These two feed·forward 

networks topologies are illustrated in Figure 36. 

H'OO£N 
LAYER 

PATTERN SU~MATIOfl DECISIOfl 
LAYeR LAYER LAYER 

Figure 36: Feedforward topology: (Left) A three-layer BPN, 
(Right) PNN. 

In feedback topologies, the output values of higher level PEs are fed back to lower 
levels. Figure 37 shows two feedback networks. 

Fignre 37: Feedback Network topology. 

3.1.4 Learning methods 

The learning methods may be categorized as: 

-Supervised learning 

-Unsupervised learning 

-Non learning 
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3.1.4.1 Supervised learning 

In supervised learning, the network is trained on a training set consisting of labeled input vectors. The 

vector is applied to the input of the network; the label is used as a "target!! representing the desired 

outpul. 

Training is accomplished by adjusting the network weights so as to minimize the difference between the 

desired and the actual network output. The supervised training process is illustrated schematically in 

Figure 38. 

TRAINING 
SeT 

Figure 38: Supervised training process. 

3.1.4.2 Unsupervised learning 

Unsupervised learning, sometimes called self~organization, requires no labels for the input vectors to 

train the network. The learning goal is not defmed in temlS of specific correct examples. During the 

training process, the network weights are modified so that similar inputs produce similar outputs. The 

unsupervised training process is illustrated schemaHcaUy in Figure 39. 

3.1.4.3 Non learning 

TRAINING 
SET 

Figure 39: Unsupervised training process. 

Non learning networks simply store the training sets, and perform pattern matching calculations. The 

non learning training process is illustrated schematically in Figure 40. 
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~N'NGVECTOR 

: ' 

Figure 40: Non learning .raining 
Process. 

3.1.5 The learning process and neural networks topology 

Many of the learning methods are closely connected with a certain (class of) network topology. Below, 

an overview of some of the different ANNs is given. 

-Supervised learning: 

i) Feedback Networks: 

a) Mean Field Annealing 

b) Boltzman Machine (BM) 

c) Learning Yeotor Quantization (LYQ) 

ill Feedforward Networks: 

a) Perceptron 

b) Adaline, Madline 

c) BackPropagation Network (BPN) 

-Unsupervised learning: 

i) Feedback Networks: 

a) Binary Adaptive Resonance Theory (ARTl) 

b) Analog Adaptive Resonance Theory (ART2) 

c) Discrete Hopfield (DH) 

d) Continuous Hopfield (CH) 

e) Discrete Bidireotional Associative Memory (BAM) 

ill Feedforward Networks: 

a) Linear Associative Memory (LAM) 

b) CounterPropagation Network (CPN) 

-Non learning: 

a) 

b) 

Probabilistic Neural Network (PNN) 

Spatioteroporal Pattern Recognition (SPR) 
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In our case, in AMMA signal classifications, we know the patterns to be recognized, and we do not 

want the network to derme the classes, so we need a supervised learning network, or a non learning 

network. In this thesis we apply the two following artificial neural networks: 

• Probabilistic Neural Network(PNN) 

• BackPropagation Network (BPN) 

to recognize and classifY patterns of the activities that were described earlier. 

3.2 Probabilistic Neural Network (PNN) 

3.2.1 Introduction 

The network described here is actually a statistical algorithm proposed several decades ago. It is 

described in Meisel, [28], and Duda, [29]. Although its theoretical and practical power was known at 

that tUnc, the state of computer technology precluded its widespread use. Even moderate size problems 

required memory and CPU speed far beyond what was available at that time. Therefore it fell into 

disregard until Specht revived it in the form of a neural network [30] which he called a " probabilistic 

neural network" referring to its roots in probability theory. He showed that by organizing the flow of 

operations into "layers''. and assigning primitive operations to individual "neurons" in each layer, the 

algorithm can be made to resemble a four~layer feedforward network with exponential activation 

functions. The following sections present the network in a form closer to its roots. 

To understand the basis of the PNN paradigm, it is useful to begin with a discussion of the Bayes 

decision strategy. It will then be shown that this statistical approach can be mapped into a feedforward 

neural network structure typified by many neurons that can perform all functions in parallel. 

3.2.2 The Bayes strategy for pattern classification 

An accepted criterion for decision rules or strategies used to classifY patterns is that they do so in such a 

way that the expected risk is minimized. Such strategies are called "Bayes strategies", and can be 

applied to problems containing multiple categories. 

Consider the two-category situation in which the state of nature S is known to be either SA or en. If it is 

wanted to decide whether 8=8A or a=aa based on a set of measurements represented by the P­

dimensional vector XI=[X1 ... Xj ... Xp], the Bayes decision rule 

becomes: 

if 

if 

hAIAf A (X) " hBIBfB(X) 

hAIAfA (X) < hBIBfB(X) 

4 

where fA (X) and fa (X) are the probability density functions of the vector X for categories A and B. 

Variable IA is the loss function associated with the decision d(X) = aa when a = aA and I. is the loss 

function associated with the decision d(X) = aA when a = e. (the losses associated with correct 
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decisions are taken to be equal to zero); hA is the a priori probability of occurrence of patterns from 

category e", and hB~I· hA is the a priori probability that e ~ eB. 

The key to using Eq.(4) is the ability to estimate PDFs (probability Density Functions) based on 

training patterns. Often a priori probabilities are known or can be estimated; the loss functions require 

subjective evaluation. 

3.2.3 Estimating the PDF using Panen windows 
Bayesian classification requires a PDF for each class. In practice, it is often difficult to determine the 

PDF with high accuracy. There may be too few training vectors, and the data may be incomplete or it 

may be partially inaccurate. Some means are required to estimate the PDF from such sparse, Teal-world 

data sets. Parzen [31] developed such a t«bnique, commonly called the method of Par zen windows. The 

following equation expresses the method for finding the needed value for the PDF: 

where 
f,(X) the value of the PDF of class C at point X 

Ilc number oftraining vectors in class C 

p number of components Ln the training vector 

X the point in feature space at which the PDF is to be evaluated 

Y ci ith training vector from class C 

(J smoothing variable 

vector transpose 

training vector number 

5 

While this formula may appear complicated. the idea is simple; fJX) is simply the sum of multivariate 

Gaussian distributions centered at each of the training samples. However, the sum is not limited to being 

Gaussian. It can in fact approximate any smooth density function. Figure 41 illustrates the effect of 

different values of the smoothing parameter cr on t;(X) for the case in which the training patterns .re 

one-dimensional patterns. and Figure 42 illustrates the two.-dimensional case. The density is plotted 

from Eq. (5) for three values of cr with the same training set in each case. A small value of cr causes the 

estimated densiiy function to have distinct modes corresponding to the locations of the training 

examples. A larger value of cr, as indicated in Fig. 41 b,c and 42b,c produces a larger degree of spread 

of the contributions of individual cases. Here, values of X close to the training examples are estimated 

to have about the same probability of occurrence as the given examples. A very large value of (J would 
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cause the estimated density to be Gausian. regardless of the true underlying distribution. As it will be 

seen, selection of proper values of u is needed for adequate generalization and classification. With 

Eq.(5) the Bayes decision rule for the two-category situation in Eq.(4) becomes 

and 

where 

d(X)=9A 

if 6 

nA [(X- YAi )tcx- YAi)] nB [(X- YBi )t(X- YBi)] L exp - 2 "S'L exp - 2 
i=1 2" i=1 2" 

d(X)=9B 

if 

~ [_(X-YAi)'(X-YAi)]<S~ [_(X-YBi)'(X-Yn;)] 
.L." exp 2 ' '.L." exp , 
i=1 (J i=1 20' 

S= hDlD. nA 
hA lA nB 
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(a)a~O.2 (b)a~O.5 (c)a~1.5 

Figure 41: The smoothing effect of different values of" on alD PDF estimated ITom examples. 

(a)a~O.2 (b)a~O.5 (c)a~1.5 

Figure 42: The smoothing effe<:t of different values of 0' on a 2D PDF estimated from 
examples. 

3.2.4 The al·chitecture ofa Probabilistic Neural Network (PNN) 
The many advantages offered by ANNs have prompted an effort to re<:ast the Baysian classifier into the 

probabilistic neural network (PNN) 

framework. Figure 43 shows a neural 

nenvork organization for classification of 

input patterns X into nvo categories. 

An input vector X'~ [Xl XpJ to be 

classified is applied to the PEs of the input 

layer. This layer is merely a distribution 

layer which supplies the same input value to 

all of the patterns PEs. Each pattern PE 

(shown in more detail in Figure 44) forms a 

x, 

Figure 43: The Probabilistic Neural Network (PNN). 
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dot product of each input pattern vector X with a weight vector Wi. and then perfonns a nonlinear 

operation on ZJ ( Zj = X . WI) before outputting its activation level to the summation PE . 

/ 

• w" 
/ 

Z,,=exp[(z,-1 )/0') 

Figure 44: The pattern PE functional model. 

Instead of the Sigmoid function (i.e., bounded above and below, but differentiable) commonly used for 

BPN networks, the nonlinear operation used here is: 

[
(Z,-l)J exp ---

a' 
7 

Assuming that both X and W, are normalized to unit length, we have X'X= W'W=I and the expression 

(X-W,)'(X-W,) = (X'X-2X'W,+W',W,) becomes -2(X'W,-I) ~2(Zi-l} and Eq.(7} is equivalent to: 

[ 
(X-W,)'(X-W,)] 

exp - 2a' 8 

The set of weights entering a pattern layer PE represent a specific training vector; each weight has the 

value ora component of that training vector (i.e, WFYAl. or WiU] = YAJU], for class A and WFYBi or 

W,Ul = YBiUl for class B). Thus, the resulting output is : 

[
(Z,-I)J [(X-W,)'(X-W.l] [(X-Yc;)'(X-Yc.l] ZCj=exp --,- =exp 2 =exp - 2 

a 2a 2a 
9 

Each PE in the summation layer receives all pattern layer outputs associated with a given class. Thus, 

the output of each summation layer PE is 
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" -" [(Z,-I)J" (X-YCi)'(X-YCi)) Sc = L,ZCi - L,exp --,- = L,exp - 2 ' 
1=1 i~l cr i=1 cr 

10 

This is exactly the form needed to implement Eq.(5). The output, or deoision PE is a two-input PE as 

shown in Figure 45. This PE produces binary outpul. 11 has only a single variable weight K: 

K=_S=_hnIB.llA 
hAh nB 

BINARY OUTPUT 

Figure 45: The output or deoision PE. 
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3.3 Advantages and disadvantages of the PNN 
The PNN approach offers many advantages. It trains virtually instantaneously (i.e., the training time is 

zero!), the days or weeks of iterative training of other ANNs are replaced by little more than reading the 

training set. The PNN paradigm allows data to be added or deleted from the training set without lengthy 

retraining. This characteristic of the PNN makes it more compatible with many real-world problems, 

since network learning (as hwnan learning) is often a continuing process. Some disadvantages stem 

from the fact that the entire training set must be stored, as well as processed, each time an unknown 

case is to be classified. This means that memory requirements are large, and execution speed is low. 

Tltis approach is hardly suitable for real-time applications, unless a hardware implementation is 

available. 

3.4 Error Back.Propagation Network (BPN) 

3.4.1 Introduction 

In this section we study an important class of neural networks, namely, error back-propagation 

networks. BPNs have been applied successfully to solve some difficult and diverse problems by training 

them in a supervised manner with an algorithm known as the error back-propagation algorithm. This 

algorithm is based on the error-correction learning rule and is also referred to in the literature as the 

back-propagation algorithm. The learning process performed with the algorithm is called back­

propagation learning. The conceptual basis of BPNs was first presented in 1974 by Werbos [25J, then 

independently reinvented by Parker in 1985[24J, and presented to a wide readership in 1986 by 

Rumelliart [23]. Back-propagation has been much studied in the past few years, and many extensions 

and modifications have been considered. Only the basic form ofBPN is discussed here. 

3.4.2 Network architecture 
Typically, back-propagation employs three or morc layers of processing elements (units, neurons). 

Figure 46 shows the archite<:tme of a typical four-layer back-propagation network. The two internal 

layers are hidden layers (with hidden neurons). The network shown here is fully connooted. which means 

that a nemon in any layer of the network in connected to all the nemons in the previous layer. Signal 

flow through the network progresses in a forward direction, from left to right and on a layer- by-layer 

basis. 
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Figure 46: A four-layered back-propagation 
network. 

A back.propagation neural network is trained by supervised learning. The output, OJ. of any newon j 

can be expressed as the non·linear transfer function, f, of the input, net]. Where netj is the dot product of 

the output of the previous layer (containing N nodes). Ok. and a weight vector, as shown below: 

N 

OJ = f(net j ) where: net j = L WkjOk 
1t=1 

11 

Thus the output of each neuron in the final layer is a non·linear function of the inputs and all the weight 

matrices. Generally the output functions of the processing elements in a back.propagation network are 

sigmoid transfer functions: 

f(net) l+e netW 
12 

This function acts as a soft threshold with the center of the slope at e. Figure 47 shows the sigmoid 

function. 

f (net) 

k o "ct 

Figure 47: The sigmoid function. 
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This function has three important properties. Firstly, the sigmoid is non-linear, allowing the network to 

perform complex mappings of input to output vector spaces. Secondly it is continuous and differentiable 

which allows the gradient of the error to be used in updating the weights, and thirdly the function 

satisfies the following differential equality: 

['(net) = f(net)[l- f(net)] 13 

3.4.3 The Back-Propagation Training Algorithm 
The error back propagation learning rule is probably the most widely used method to train feed-forward 

networks. The basic idea of this learning rule is to defIne a measure of the overall performance of the 

system and then to find a way to optimize that performance. We can defme the performance of the 

system as: 

14 

where 

Old = the i.th component of the actual output vector produced by presenting the k.th training input 

pattern x" 

t" = the i.th component of the k.th desired output vector 

Ric = the square error of the output for training input pattern Xk, 

E = the sum of the square error of all training patterns. 

m = the number of output neurons. 

k ::: the number of patterns in the training set. 

The goal is to minimize this sum. If the system error is zero, all training patterns are mapped on the 

correct target output pattern. If not, we can assign a particular neuron blame in proportion to the degree 

to which changes in that neuron's activity lead to changes in the error. That is, we change the weights of 

the system in proportion to the derivatives of the error with respect to the weights. The rule for changing 

weights is given by the gradient descent method, i.e. we minimize the error function E by using the 

following iteration process: 

where 

BE 
w~(new) = w~(old)-1]---;m 

awL 
15 

56 



Neural Networks 

w~ = the weight of the connection between the noh neuron inlayer L -I and the mob neuron inlayer L 

'1 = a positive consant that controls the rate of change of the weights (learning rate) 
Substituting eq.14 for E in eq.15 gives: 

JK } (LEk 
w~(new) = w~(old)- '1 ;;~ 

L 

16 

After some mathematical manipulation, the expression for the updates of the weights of the connections 

to the neurons of the output layer L is obtained: 

K K 

wZ'(new) = wZ'(o/d) + L 1l0totl = wZ'(o/d) + L IJ(I! - o!)/(nelt")otl 17 
k=I k=1 

where: 

O~l = the output of the m oh neuron in layer L-I for an input pattern k 

"Ion k k' km 
UL =(tm -oro)f(netL ), 

a local error measure for the m. th neuron in layer L, due to training input pattern x k 

f' (net:."') = the derivative of the activation function f( net:."') 

The expression for the updates of weights in a hidden layer is: 

K 

wZ'(new) = wZ'(o/d) + LIlO}"'otl 18 
k=1 

where the local error measures (o's) for a processing element m in a hidden layer k can be determined 

recursively by: 

o~ == ~O~+Iwt:/(net~) 19 
1 

A complete description and derivation of the gradient descent method is given in Parallel Distributed 

Processing [32]. 

For a given training set, back-propagation learning may proceed in one of two basic ways: 

l. Batch Mode. In batch mode of back-propagation learning, weight updating is perfonned after the 

presentation of all the training examples that constitute an epoch (one complete presentation of the 
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entire training set during the learning process is called an epoch). The above described weight 

updating is a batch mode of back-propagation learning. 

2. Pattern Mode. In pattern mode (or online-mode) of back-propagation learning, weight updating is 

perfonned after presentation of each training example. The weight update for a pattern k becomes: 

20 

The use of pattern mode requires Jess local storage, and makes the search in weight space stochastic in 

nature, which, in turn, makes it Jess likely for the back.propagation algorithm to be trapped in a local 

minimum. The use of batch mode of training provides a more accurate estimate of the gradient vector. 

Experiments show that in the general case when the weight updates are small (11 sufficiently small), the 

nyo training modes yield comparable solutions, and their relative effectiveness depends on the problem 

at hand. 

3.4.4 Advantages and disadvantages ofBPNs 
The back~propagation neural network offers many disadvantages. It is very sensitive to initial weights, 

and the back-propagation algorithm often converges very slowly to the solution and can get stuck in 

local minima of the cost fu~ction. For complex problems it may require days or weeks to train the 

network. The choice of the number of layers and neurons per layer is still an unsolved problem. No 

general rule exists to determine the required network size for a certain application. In most applications 

the network size is chosen in a heuristic or empirical way. The back-propagation neural network has no 

reject option. 

A great advantage of the back-propagation neural network is its generalization capability. Another 

advantage of the BPN is its general applicability. It can be used for both continuous and binary 

mapping for many different types of problems. 

3.5 Application of the selected neural networks to daily life motor activities 

3.5.1 Construction ofa training set 

To train a neural network, one must have labeled examples of input data. These data may come from 

databases, simulations, expert opinions or reference data (i.e., data-sets obtained from recording under 

predefined conditions). In our case, the latter type of data was used. To provide the reference data for 

building the training sets, the instrumented subject follows during 15-30 minutes a protocol consisting 

of a number of daily life motor activities. A particular training set must be representative for its class 

and must be unambiguous. 

The way in which a training set for a daily life motor activity class is defmed depends on the definition 

of each activity class. Each daily life motor activity class is reflected in specific postures and 

movements. Each specific posture and movement is reflected in typical waveforms of the signal in each 
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channel. Some of the daily life activity classes can be defined by using one single channel, others need 

two, tmee or sometimes all four chalmels. The use of more channels to derme some of the activity 

classes reduces the classification errors. Figure 48 shows representative signals for some of the activity 

classes. The class defmitions are based on the occurrence of specific waveforms and combinations of 

the accelerometer signals. 

The use of only one single channel (first channel or second channel) is sufficient to defme a step (class 

R s 

chl 

T u 
• 
• 
• R-/eg poca/Grot/on , , 

____ 1___ • , , o , , 
,r~, __ -t_~"",~:v.-___ -r,_"" ..... l __ L~.~/e~gJf)oca/eroflon 
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Figure 48: Representative signals for some activity classes recorded during calibration. 

R). For the defmition of'sitting' (class S) and 'lying on the back' (class T). we used two channels (fust 

and fourth channel). For lying on the left side (class U) we used the third and the fourth channel. In 

mathematical notation: 

C1assR: {trainsetRchl. 0. 0. 0) 

ClassS: {trainsetSchl. 0. 0. trainsetSch4} 

ClassT: {trainsetTchl. 0, 0. trainsetTch4} 

ClassU: {0. 0. trainsetUch3. trainsetUch4} 

where 0 specifies a non-used channel. 

Thus we have to choose one training set for class R and two training sets for each of the classes S, T 

and U (one for each channel). Each training set which is fed to the ANNs contains a number of class­

specific waveforms. 

TrainsetRchl ={ examplel·classR·chl. example,·cl.ssR·chl ........... exampk"·classR·chl} 

TrainsetSchl ={ examplel·classS·chl, example,·classS·ch I ........... example; ·classS·ch I } 

TrainsetSch4={ examplel·classS·ch4. example,·classS·ch4 •.......... exampl .. ·classS·ch4} 

TrainsetTchl ={ examplel·classT ·chI, example,·classT ·ch I ........... exampl"'·classT ·chl} 
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TrainsetT ch4-{ example!·cla"T ·ch4, exampl.,·classT ·ch4 , .......... example",·classT ·ch4 } 

T rainsetUch3~ { example!·c lassU·ch3, examp 1.,·c1assU·ch3, .......... exa mple,.·class U·ch3 } 

TrainsetUch4~{example!·classU·ch4, exampl.,·classU·ch4, .......... exampleo·classU·ch4} 

Generally speaking, the more examples one can collect for a training set, the better. Unfortunately, no 

general rules exist for the calculation of the appropriate number because this depends on the complexity 

of the application. It should be noted that aU examples in each training set must have the same length 

(dimension), however, two different training sets may contain examples with different dimension. The 

above training sets can be used either for PNN or BPN. 

3.5.2 Activity detection with Probabilistic Neural Network (PNN) 

Now we are in a position to design a PNN-classifier to recognize and classify the daily life motor 

activity. It has already been shown in the previous section how to construct a training set. In the 

following subsection. we will use the training set in the storing phase, the entire collected data during 

15·30 minutes in the adjusting phase and the total data of 10·12 hours in the running phase. 

3.5.2.1 Storing phase 
Figure 49 shows the PNN-classifier in the storing phase for the above example. In the storing phase. 

each DataProcessor-Ch* module reads a Trainset*ch* (the training set) and feeds it to a related Class*­

ch*-PNN (a PNN for a two-class problem). A peculiar feature in our PNN-classifier is the paraUel use 

of a colunm of PNNs for a two-class problem instead of using a single PNN for a multi-class problem 

for each channel. This is so devised, be<:ause a PNN for a multi-class problem would require that the 

dimensionality of the examples in all training set be the same. The fixed size of the input of a neural 

network has led us not only to use a column of PNNs, but it makes the PNN-classifier a patient­

dependent system (i.e. for every patient, we have to build a new training set, thus rmding a new 

smoothing parameter and changing the input dimension ofPNN-classifier), 
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T,a1nntReM I OaIIiP/ocelior-Chl 
CluIR-cM·PNN 

Traln,etSeM I CltU$-ehl·PNN 

CltuT-<:M·PNN 
TralnutTeh1 

InputFlle Oat,PrIXulo/-Ch3 

T"lnetueh3 I---:>: CltuU·ch3·PNN. 

TI~II\I8ISch4 DII1.?roceuol-CM 
ClenS-eIl4·PNl~ 

TralnlelTeM It---~ ClaIiT-eh~·PNN 

~ ~ ... U·C"·PN" TlaiJUelUeh4 V IActlve. tllt«ive 0 
Figure 49: A schematic diagram ofPNN-classifier in the storing phase. 

Figure 50 illustrates 10 examples of training set TrainsetRchl which have been fed to a ClassR-chl­

PNN neural network in order to recognize a step pattern. The intra-subject variability of step's pattern 

can be clearly seen. 
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1.5 Example 1 Example 2 Example 3 
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Figure 50: Several examples of step's pattern. 

The value of the training pattern "Bxample I" in ASCII format looks as follows: 

1.0000B-02, S.0000B-02,-1.2000B-Ol,-2.4000B-Ol,-2.1000E-Ol,-8.0000B-02, 2.0000B-02,-1.0000E-
02,-5.0000E-02,-5.0000E-02,-S.0000B-02, 2.0000E-02, 1.4000E-Ol, 1.2000B-01, 1.6000E-Ol, 
3.S000E-Ol, 6.7000E-Ol, 6,2000E-Ol, 2,3000E-Ol, 7,OOOOE-02, l.S000B-Ol, 3.1000E-Ol, 2,2000E-
01,-3.3000E-Ol, 8.0000E-02,-4.0000E-02,-8,OOOOE-02, 2.0000E-02, 2.0000E-02, 1.0000E-02,-
4,0000E-02,-4.0000B-02,-1,0000E-02,-2,OOOOE-02,-2,0000E-02, O,OOOOE+OO, 5.0000E-02, 7.0000E-
02, 2.0000B-02. 
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Figure 51 shows a tiled graphical displays of the above to examples of the training set TrainsetRchl. 

Each row represents the value of an example array) and each tile in this row represents the value of a 

single array element. The size of the tile increases with the value of the element. 

3,5,2,2 Adjusting phase 

'" 
iJJ. 

, , " , , I 

II! I " , II 

IIII III 

, , 
"' 

"' 
IIII "' 

Figure 51: Tiled grapWcal displays of "training" 
examples. 

I, 

In order to properly evaluate the network, it has to be fed with data which were not used in training and 

check the results. This can be done by step~wise scrolling a window with the size of the pattern to be 

recognized one bit each step. over the test file that contains the pattern. If the contents of the window 

approaches one of the examples from the training set with a probability density that exceeds a given set 

value, the PNN network outputs a '1', This means that a more or less matching pattern is found. It 

gives • ~ l' if the probability density is lower than the set comparison value in cases that the contents of 

the window does not properly match the examples from the training set. If the results are correct. the 

PNN is ready to use. If not, more or better training sets must be obtained, or the smoothing parameter 

must be adjusted. Figure 52 shows the PNN-classifier in the adjusting phase for the above example. 

where the Inputfile module reads the unlabeled data set wWch has to be classified and labeled, the 

Match module is used to combine and compare the outputs of all PNN modules (tWs combining and 

comparing is based on the deftnition of the activity classes) which results in the assignment (or not) of a 

label to a part of the inputdata, the OutputFile module writes the results in a file, 
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Figure 52: A schematic diagram ofPNN-classifler in an adjusting and run phase. 

By altering the smoothing parameter, the generalization ability of the PNN can be adjusted. Our 

experiences for selecting a good smoothing parameter can be summarized in the following simple rules: 

• The more examples are available in the training set, the smaller the smoothing parameter value 

should be. 

• The more noisy the data is. the larger the smoothing parameter value should be. 

• A small value orthe smoothing parameter leads to overlearning (or overfitting or overtraining). 

• A large value of the smoothing parameter leads to uudertitting (or overgeneralization). 

• The best procedure is to try a few values. In our application, the value of the smoothing parameter 

ranges from 0.1·0.3. 

It has been found that in practical problems it is not difficult to find a proper value for the smoothing 

parameter, and that the misclassification rate does not vary dramatically with small changes in the 

smoothing parameter. 

In the adjusting phase, we used a software package which can visualize the collocted data and visually 

compared the results of the PNN-classifler with the test data set. 

3.5.2.3 Running phase 

The running the PNN·classifier consists of presenting it with 10·/2 hours input data and gathering the 

results. Figure 53 shows the outputs of four sensors, the step's pattern which has been detected by the 

Class·chl·PNN neural network is highlighted by a rectangle. Figure 54 shows the output of the Class· 

chl·PNN neural network. 
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Figure 53: The output 
of four sensors. 
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Figure 54: The output ofClassR-chl­
PNN_ 

3.5.3 Activity detection with an error back-propagation neural network 

The back-propagation neural network was the second neural network which has been applied to the 

recognition of daily life motor activity. The strategy consists of three phases: configuration, training and 

running phase. The training sets can easily be constructed as discussed in section 3.5.1. 

3.5.3.1 Configuration phase 
When a back'propagation neural network is to be applied to solve the recognition of daily life motor 

activities problem, one is confronted with the following practical considerations: 

• number of activity classes; 

• number of training examples; 
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• number of layers; 

• number of neurons on each layer; 

• initialization of weights; 

• batch updating or sample updating; 

• setting learning rate 11 and momentum term a; 

• choosing the sort of activation function; 

• stopping criterion; 

• output representation. 

Unfortunately, the above mentioned considerations are not independent of each other. Almost all choices 

have implications, although some are stronger and some are weaker. To ftnd an optimal setting is almost 

an optimization problem itself. 

3.5.3.2 Training phase 

The basics of the training of a BPN were discussed in section 3.4.3. Figure 55 shows the BPN-classifier 

in a training phase for the classification of the four motor activities as discussed in section 3.5.1. In this 

phase, each Class*-ch*-BPN (a back-propagation neural network) is trained independently by a 

Trainset*ch* (the training set), As Figure 55 shows, a column of BPNs for a one-class problem is 

employed instead of using a single BPN for a multi·c1ass problem. This is so devised, beeausejust like 

the case ofPNN, a BPN for a multi-class problem would require patterns of the same dimensionality. 

Treln$~!RcM 11II1-----.------c7 ClauR-ehl-8PN 

TrslrnsetSchl C!u!S-cM-BPN 

ClsuT-ch1·BPN 

ClusU-e/13-BPN 

TraJr.setScM 

TralnselTeh.f 1----"'_----==-" ClauT·ehNJPN 

III, ____ ~---~~~~~ .. ~'u~.c~'~ •. ~'P~"~~ TralnsetUcM 1-

Figure 55: A schematic diagram ofBPN-classifier in the training phase. 

3.5.3.3 Running phase 

Running the BPN-c1assifier consists of presenting it with 10-12 hours input data and gathering the 

results. Unlike the PNN which can generate a binary output (foundlnot found), the BPN is not able to 
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reje<t a sample (unknown pattern) in a statistically significant way. The unknown pattern is usually 

classified into a class with low probability (high Mean Squared Error (MSE». To solve the reje<t 

category problem, the error statistics of each BPN output such as MSE can improve the classification 

performance. Unknown samples can be reje<ted if the probability is below a certain threshold. FigJlfe 56 

shows a schematic diagram ofBPN-classifler in the training phase. 

TralnsetRthl 
ClnsR-clIl-BPN 

TralnsetSehf 
CI;u$B·eM-BPN 

ClauT~h1-BPN 
TI~lnu\T~1 

InputF~a 

ClauU-eh3·BPN 
U,.,labeled 

data 

TfalnselSeh4 
ClanS-cM-BPN 

TralnsetTeh4 
Cl8UT-c/}f·BPN 

CiuIU·CM·BPN j.a.ctivallnactiveO TralnselUell4 

Figure 56: A schematic diagram ofBPN-classifier in the Ruoning phase. 

Figure 57 shows the probability of classes on the outputs of the above BPN neural networks, when a 

step pattern [class R] was presented. 
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Figure 57: The error statistics of seven BPN outputs. 

In this case, the class R [Step] was re<ognized with high probability, all other classes have low 

probability. 
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Figure 58 illustrates the probability of classes on the BPN outputs ofthe BPN.classifier, when a pattern 

not belonging to any of the classes is presented. Each BPN assigns such a pattern to a class with a 

certain probability, but the pattern can be rejected if all output values are below a certain probability 

threshold. Experiments have shown that by increasing the number of examples in each training set, the 

BPN outputs become smaller in cases, when such patterns are presented. 

Figure 58: The error statistics of seven BPN outputs. 

3.6 Performance estimation 
The performance ofa system is an indication of what the system accomplishes. In developing an ADL~ 

classifier it is important to estimate its performance during the running phase (using phase). For ADL· 

classification, the estimation of perfonnance can be obtained by calculating the percentage of correctly 

classified cases. Alternatively, the number of incorrect classification can be used; this is often referred 

to as the error rate. Ideally the estimation is based on an unlimited number of pattern exemplars, but, in 

practical situations limited amount of data is available. 

To estimate the performance ofthe PNN·and BPN·c1assifiers, the following approach was used: 

• divide the entire data collected during 15·30 minutes (collected according to a specific protocol) into 

two parts: one part (20%) to be used during the development of the classifier and the other part 

(80%) to be used to test the classifier. If the performance of the ADL·classifier on this test set is 

considered satisfactory, the ADL·classifier is accepted for use. 

In addition to the above approach for obtaining the classification error rate we have also compared the 

output of the ADL·classifiers with the manuaUy labeled data of about 10 hours of each subject. Since 

68 



Neural Networks 
for each subject a different ADL-classifier has been trained, an average classification error is 

calculated for all sUbj«t, 

3.7 Post-processing 

To refine the onset and end time of each activity as estimated by the two above mentioned ADL­

classifiers, one has to use some explicit knowledge to postprocess .the output of the used ADL-classifier. 

Figure 59 shows how the highest peak of a step pattern can be estimated correctly by a postprocessing 

algorithm. The E indicates the onset time of the detected step pattern and P shows the location of the 

highest peak of the step pattern. This postprocessing algorithm shifts forward a window from the 

estimated onset time of a step pattern. The local maximum in this window presents the highest peak of 

the step pattern. The size of the window should be as large as the pattern size. 

1.5 r------..., 
r-------· shift window ,--+=-"-, , 

-0.5 L-""*_'-'-__ --' 
time E P 

Figure 59:An example of a step pattern in 
which the highest peak can easily be 
estimated by using postprocessing 
algorithm. 

To fme-tune the estimated onset and end time of other activities by ADL-classifier, one has to devise a 

good postprocessing algorithm. 

3.8 Subjects 

To test and verifY our system, the daily life activities of a group of eight male amputees were measured. 

The subjects were instrumented in the morning and the instruments were removed approximately 11 

hours later. As mentioned earlier, the recorded data are downloaded from the RAMCORDER to a 

computer for further processing. In Table 3 some information about the subjects and the recording time 

is given. 
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Affected (above Years post-
Subject Age knee amputation) amputation Re<:ording time 

1 60 L 53 10h:25m 
2 60 L 37 10h:18m 
3 34 R 15 101I:51m 
4 62 L 44 I1h:18m 
5 47 R 18 IOh:41m 
6 67 R 9 IOh:55m 
7 56 L 41 I1h:21m 
8 40 L 20 1111:21m 

Table 3: Some characteristics of subjects. 

3.9 Results 

3.9.1 Results ofPNN·c1assifier 
The PNN-classifiers werej on the average, able to recognize 95% of aU presented cases of the daily life 

activity classes of all subjeCts correctly. Because of a short duration of a number of specific activities, 

the PNN-classifiers were unable to recognize those activities. Another reason for misciassification(Le., 

not recognizing the activity) was the occurrence of a waveform pattern which was not included in the 

training sets. In the following, we present some activity profiles which have been extracted from the 

numerical output of our PNN-classitier. 

Figure 60 shows a typical example of an 'Activity Prome', Here the sequence and the duration of the 

activities walking, sitting and standing are presented. 
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Class Transition Lying Walking Standing Sitting Unlabeled 

Figure 60: Graphical presentation of an activity profile: sequence and duration of daily life motor 
activity classes over a period of20 minutes. 

In Figure 60 only 20 minutes of the data-set is shown because displaying a longer recording period 

would mask some of the r<x:ognized activities. The signal waveforms that could not be r<x:ognized by the 

PNN-classifier are indicated as unlabeled. All transition activities, e.g., from standing to sitting, from 

sitting to lying, etc. are shown as transition. 

An overview of the distribution in time of daily-life activity classes of all amputees during a long term 

recording is presented in the pie graph in Figure 6 I. This figure shows the contribution of each activity 

as a percentage of the total r<x:ording time. In this figure the 'transition' and 'unclassified' cases are put 

together. The transition time is the time which lasts between two different activity classes e,g. the 

transition from sitting to standing, etc. 
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transition and nUf ludfi\ld(O. 22%) 
walllus(7.IO%) 
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Figure 61: Overview of an activity profile: distribution of activities as a 
percentage of long tenn recording time for eight amputees 

Figure 62 shows eight histograms in which the horizontal axis displays the duration of the activity 

'walking' divided in category-intervals of to seconds, and the vertical axis displays the frequency of 

each categorywinterval as recorded during the total recording time. 

72 



Neural Networks 

80 '" 
'''' " 100 

., 
'" 60 

'" 
o 10.f.! ~ ro -ro 70 80 I<l ,I<l 

: :1:-
0102030406060 70 eo 90 >90 

"" '" 
"" 100 2'" 

"" 100 

'" 
00 100 

ro 
'iii 

, 10 20 30 40 50 ro 70 eo 90 >90 
, 

10 20 Z<I 40 50 60 10 eo 90 >90 

200 

'" lro 

150 100 

ro 

III 
°1020Z<I-40506O 10 eo 90 >90 

000 '" 
"" '''' 

100 

300 ., 
:100 " 

'" 100 

II , 
1O:20304060ro 10 eo 90 >90 

20 till. 
010203040 60 60 10 eo 90 >90 

Figure 62: Histogram of an activity profile: the activity walking is divided in 
category-intervals (walking blocks) of 10 seconds. 

3.9.2 Results of BPN-classlCier 

Experiments using the BPN involve the setting of a large number of parameters that influence the 

BPN's operation and it is not feasible to investigate the behavior of aU possible network configurations. 
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Various experiments with varying parameters have been made. For the BPN~classifier consisting of a 

colwnn BPN. only networks with one hidden layer were used. The number of neurons in this layer as 

well as in the output layer were varied in order to evaluate the performance of such a network in various 

configurations. The results of these experiments are presented in Table 4 and Table 5. 

Number of hidden neurons Number of output neurons Percentage of correct recognition 
5 
6 
7 
8 
9 
10 

I 94% 
I 93% 
I 93% 
I 94% 
I 91% 
I 94% 

Table 4: Performance of a BPN-classifier on the recognition of the daily life motor activities for 
various numbers of hidden neurons. 

As can be seen from the performance figures in Table 4, increasing the number of nodes in the hidden 

layer only marginally affects the performance ofthe BPN·classifier. 

Number of hidden neurons Number of output neurons Percentage of correct recognition 
5 
5 
5 
5 
5 
5 
5 

I 94% 
2 97% 
3 97% 
4 96% 
5 95% 
6 93% 
7 94% 

Table 5: Performance of a BPN-classifier on the re<:ognition of the daily life motor activities for 
various numbers of output neurons. 

It can be seen from the results in Table 5 that the performance increases with an increasing 

number of output neurons up to a size of3 neurons; use of a lager number of output neurons 

does not show a further positive effect on the BPN·c1assifier's performance. 

As a next step, studying the performance of the BPN-classifier in response to increasing the number of 

hidden layers was investigated. Results of such an experiment are presented in Table 6. From the results 

presented in this table it can be seen that an increase of the number of hidden layers decrease the 

performance of the BPN-classifiers. In all these experiment, the number of example patterns in the 

training set had been held constant. The number of example patterns in the training set is given in Table 

7. 
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Number of hidden layers Number of output neurons Percentage of correct recognition 
I 
2 
3 
4 
5 
6 

3 97% 
3 96% 
3 87% 
3 89% 
3 89% 
3 84% 

Table 6: Performance of a BPN~classifler on the recognition offhe daily life motor activities for 
various numbers of hidden layers. The number of hidden neurons in each layer is 5. 

Activitv The number of examole oattecns in the trainim~ set 
Sittin" 30 
Standin. 30 
Sten 75 
Lving on the back 25 
Lyiflg on the left side 25 
Lvin. on the right side 25 

Table 7: The number of example patterns in the training set for each activity. 

3.10 Discussion and Conclusion 

The use of artificial neural networks in the field of rehabilitation is limited [33][34]. The analysis and 

interpretation of daily life motor activities and related clinical parameters are of importance in clinical 

applications such as analysis of motor activities in post~ and pre-medication. In addition, the 

performance of a specific operation can be assessed by comparing the motor activities before and after 

the operation. Also, in ECG applications, the motor activities recorded simultaneous with the ECG 

signal may help to get a better picture of heart diseases. No satisfactory methods exist to monitor the 

daily life motor activities from large amounts of data obtained during sessions of 10 hours or more of 

continuous recordings of ambulatory patients who randomly perform daily life activities at home or at 

work. This means that the manual analysis of activities of a subject (with huge amounts of data) takes 

months to be performed. Therefore, an automated approach is necessary. 

Although in this study the data of amputees of our previous projects were used, in general, the above 

approach can be applied to any application, which need the analysis ofthe daily life motor activities. 

Since the daily life motor activities are very complex and show extremely large inter· and intra~ 

individual variation, a simple threshold technique will provide a low classification accuracy. Also, using 

other techniques including regular signal processing tools such as smoothing, Fourier analysis, etc. 

requires magic numbers to obtain a reliable accuracy. However, there is no guarantee to find such 

numbers in a noisy environment such as recorded motor activities. 
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The accuracy of classification obtained by an ADL-classifier is very reliable, since this network can 

generalize and re<:ognize similar patterns, even in noisy environments. The networks are well~controlled 

by many setting parameters and by preprocessing (e,g., filtering and offset correction), 

The comparison of the output of the automatic classifier with the classification via visual inspoction of 

the events resulted in 95% conformity. In 5% of the events, automatic classification was not possible 

because of too short duration of a certain activity or the occurrence of activities not included in the 

training set. 

From this study it can be conclude<! that the PNN and BPN classifier are potentially useful tools for the 

classification of daily life motor activities. 

By means of several ways of graphical representation we were able to show typical characteristics of 

the daily life pattern of amputees at work. However, the instrumentation allows for ambulatory 

recording of motor activities in all possible circumstances like outdoor recreation., transport in vehicles 

and activities at home. Furthermore other quantities like heart rate, EMG, temperature, light and sound 

intensity. etc., can be recorded. The sensors are light and small, and are hidden under the clothes and do 

not hinder normal behavior. 

From this study we derived the following conclusions: 

• daily life motor activities are complex and show extremely large inter- and intra-individual 

variation which excludes using regular signal processing tools for recognition; 

• for the application under consideration, PNNs and BPNs are potentially useful options; 

• a satisfactory conformity of 95% between automatic and visual classification of events can be 

achieved; 

• the automatic classification of 10 hours of activities takes less computation time with special 

hardware; 

• the graphical presentation of the output yields clinically meaningful information; 

• the ADL-classifier is patient-dependent which means that for every patient a training set has to be 

built and optimal parameters settings have to be chosen. 

• Application of a postprocessing algoritlun does improve the determination of the onset and end time 

of each activity. 

• Because of the many setting parameters and the time consuming training process of BPNs, using a 

PNN-classifier is much easier than using a BPN-classifier. 

• Because of the reject class option on PNN output, the performance ofPNN is more reliable than that 

ofa BPN. 
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Fuzzy Rule-Base<! Classification 

4. FU2ZY Rule-Based Classification 

4.1 Introduction 

Fuzzy logic was introduce<! in 1956 by Zadeh [I] as a new way to provide a mathematical framework to 

capture the uncertainties associated with human cognitive systems such as thinking and reasoning. It is 

a generalization of conventional (Boolean) two-valued logic, and it uses \150ft" linguistic (e.g. large, tall) 

small) values for system variables and a continuous range of values in the interval [0, 1], rather than 

strict binary (True or False) decisions and assigmnents. It has been applied very successfully in many 

areas where conventional based approaches are dlfflcult to implement. Classification is one of those 

areas. In this chapter, we describe a fuzzy ruled-based approach for the recognition of daily life motor 

activities. 

4.2 Fuzzy Sets and Membership 
Let X be a space of objects and x be a generic element of X. A classical set (crisp) A is defined as a 

collection of elements x E X. such that an element x in the universe X is either a member of set A or it 

is not. This binary property of membership can be represented mathematically with the characteristic 

function, 

XEA 

x~A 

where XA(X) indicates membership of element x in set A. For iIlustratioll. suppose set A is the crisp set 

of all people with 35s x s 55 year in the universe of age of people, shown in Figure 63. 

0.50 

o 
35 40 55 age 

Figure 63: Age membership function for a crisp 
set A. 

A particular individual, Xl, has an age of 40 years. The membership of this individual in crisp set A is 

equal to 1, or full membership, given symbolically as XA(x,) ~ J. Another individual, say, X2, has an 

age of 34.99 year. The membership of this individual in crisp set A is equal to 0. or no membership, 
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hence XA(XI) = 0, also seen in Figure 63. In these cases the membership in a set is binary, either an 

element is a member of a set or it is not. 

Unlike the classical (crisp) set mentioned above, a fuzzy set expresses the "degree of membershipll to 

which an element belongs to a set. Hence the characteristic function of a fuzzy set is allowed to have 

values between 0 and 1, denoting the degree of membership of an element in a given set. If X is a 

collection of objects denoted generically by x, then a fuzzy set A in X is defined as a set of ordered 

pairs: 

A~ flA(XI)/XI + flA(X,)!X, + ~'A(X3)/X3 + flA("')!'" + flA(X,)/X, + ..... 

flA(X) is called the membership ofx in A, which maps X onto [0, IJ. 

As an example, consider the membership functions for the fuzzy variable height. In Figure 64, the 

membership functions flToIl(X), flAm",,(X) and fls"",(x) are defined graphically, where height is indicated 

along the x axis of the graph, and degree of set membership of the corresponding height is given by the 

y coordinate. Thus, the extent to which a height of 1.79m is "tall" is 0.50, and the extent to which it is 

"average" is 0.25. These can be presented by the ordered pairs (1.79, 0.50) and (1.79, 0.25) 

respectively. This shows an important point. namely that an element (in this case a height) can be a 

member of more than one set. 

Short 
1.00 f----==-=------. 
0.75 

0.50 . 

0.25 

0'09.68m I. 70m I. 12m 

Average Tall 

1.74m 1.76m 1.78m 1.80m 1.82m 

Fignre 64: Membership functions for the fuzzy variable "height". 

1.84m 

Fuzzy sets can be defined discrete or continuous, or can be defined using examples of set members. in 

any way desired. It is also possible to define them mathematically (functional representation); for 

example the set Utall" can be defined as: 

h -1.77 

1 

0 

flT.U(h) ~ O.r4 

where h is height. 

The following example shows a universe of shapes: 

h,; 1.77 

1.77 ,; h <1.81 

h"1.81 
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One can defme the crisp set "circles" as: 

C={ .' } 

The fuzzy set "circles can be defmed as: 

c= { (e' 0.1), (e' 0.3), 0.5), ( 

(.' 'S@,f 1.0), 1.0), ,1.0) } 

A simple example of a discrete universe and a discrete fuzzy subset of it, is: 

X={-3, -2, -I, 0,1,2,3, 4) 

A=0.6/-3+ 0.0/-2 + 0.3/-1 + 0.6/0.0 + 1.0/1 + 0.6/2 + 0.3/3 + 0.5/4 

Figure 65 shows the fuzzy set A graphically. 

-3 -2 

1.00 

0.60 

1°·30 
-I 0.0 

I 
2 3 

Figure 65: A discrete fuzzy set. 

4 

,0.8) , 
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4,3 Operation on Fuzzy Sets 

In order to manipulate fuzzy sets, it is necessary to have operations that enable us to combine them. 

Corresponding to the ordinary logical operations, i.e., AND, OR and COMPLEMENT, fuzzy sets 

have similar operations. As with the definition of membership functions, there is no single recognized 

set of fuzzy operations. In the following subsection, the fuzzy versions of the operations AND, OR and 

COMPLEMENT will be introduced. 

4.3.1 Intersection 

As said before, there is no unique way to extend classicallogicaJ operations. The intersection of two 

fuzzy sets A and B is defined as [Zadeh 1965]: 

AND(flA (X),flB(X)) = flMB(X) = min{flA(x),flB(X)) 

where A and B are fuzzy subsets of a universe X. 

The membership function is obviously the crucial component of a fuzzy set. It is therefore not surprising 

that operations with fuzzy sets are defined via their membership functions. 

Let AandB be fuzzy subsets oftheuniverseX={-3, -2, -I, 0, 1,2,3, 4} 

A=0.6/-3 + 0.0/-2 + 0.31-1 + 0.6/0.0 + 1.011 + 0.6/2 + 0.3/3 + 0.5/4 

B=0.2/-3 + 0.6/-2 + 0.41-1 + 0.6/0.0 + 0.5/1 + 0.412 + 0.5/3 + 0.3/4 

~ArJ3 = 0.2/-3 + 0.0/-2 + 0.3/-1 + 0.6/0.0 + 0.5/1 + 0.412 + 0.3/3 + 0.3/4 

The intersection of A and B is shown in Figure 66 

IlA J.la 

4-.1 -"--\1----+..::) +----J1 I!--+I --+-.1. ........ 1 +---\1 I----+..: 1-+---1 !--!--+->1. 
-3 -2 ·1 0.0 I 2 3 4 ·3.2 _\ 0,0 I 4 

Figure 66: Intersection of fuzzy sels A and B. 

Figure 67 shows an intersection of two continuous triangular fuzzy sets with bold lines. 
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A A 

A,'\ Bt'\ 
I \ I \ 

I \ I \ 
I \ I \ 

I , I \ , , , , , , , , , , , , , L--L ______ 1-______ ~ ______ ~ _____ • 

Figure 67: Intersection of two triangular fuzzy sets. 

Some other nonparametric AND operators in fuzzy logic are given in Table 8 [2][3][4]. 

IIA (x)· liB (x) 

IIA(X)'IIB(X) 

IIA (x) + IIB(X) - IIA (x)· 1I.(x) 

IIA (x)· IIB(X) 

2 - [IIA (x) + IIB(X) - II A (x)· IIB(X)] 

max{O, IIA (x) + IIB(x) -I} 

Table 8: Possible operators for AND in fuzzy logic. 

4.3.2 Union 

The union of two fuzzy sets A and B is defined as [Zadeh 1965]: 

OR(IIA (x), liB (x)) = II Av.(X) = max {IIA (X),IIB(X)} 

where A and B are fuzzy subsets of a universe X. 

With the subsets A and B as defined in 4.3.1, the union of A and B is: 

fiAvB= 0.6/-3 + 0.6/-2 + 0.41-1 + 0.6/0.0 + 1.011 + 0.6/2 + 0.5/3 + 0.514 

This is shown graphically in Figure 68. 
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11. 

~.I, .~,!:----.:o:i ~II....--t-! ~\. ~·I ~.l 1':----.:0':1 ~I !~l. 
11 ;rr 1 

·3 -2 -1 0.0 I 2 
II. 
3 4 

Figure 68: Union of fuzzy sets A and B. 

Figure 69 shows the union of two continuous triangular fuzzy sets with bold lines. 

Figure 69: Union of two triangular fuzzy sets. 

Some other nonparametric OR operators in fuzzy logic are given in Table 9 [2][3][4]. There are no 

general guidelines as to which OR or AND operator to choose in a specific situation. 

flA (x) + flB(X) - flA (x)· flB(X) 

flA (x) + flB(X) - 211A (x)· flB(X) 

1-I1A(x)'I1B(x) 

flA (x) + flB(X) 

1+ flA (x)· flB(X)] 

min{l,flA (x) + flB(X)} 

Table 9: Possible operators for OR in fuzzy logic. 

4.3.3 Complemenl of fuzzy sets 

The Complement of a fuzzy set A is defined as: [Zadeh 1965] 

fix (x) ~ 1- flA (x) 

Let A be a fuzzy subset of universe X={ -3, -2, -I, 0, 1,2, 3, 4) 

A=O.6/-3 + 0.01-2 + 0.3/-1 + 0.6/0.0 + LOII + 0.6/2 + 0.3/3 + 0.5/4 
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A = 0.4/ -3 + I / -2+ 0.7/ -I +0.4/ 0.0+ 0.0/ I + 0.4/2+0.7 /3+ 0.5/ 4 

The complement of A is shown graphically in Figure 70. 

!lA 

~J '2.---+-1=--&-+il---!---l 1·-1- .l I 
2 

Figure 70: Fuzzy set A [left] and its complement [right]. 

This operation is shown in Figure 71 for a typical continuous fuzzy set. 

A A 

Figure 71: Complement of fuzzy set. 

4.4 Fuzzy IF-THEN rules 

It. 
3 , 

In the field of artificial intelligence there are various ways to represent knowledge. Perhaps the most 

common way to represent human knowledge is in the form of natural language expressions of the type, 

IF !nputl is A AND input2 is B THEN ?utput is C; 
antec<d'ent part C<Il..Sequenl part 

where input!, input2 and output are linguistic variables [3], A, Band C are linguistic values that are 

characterized by membership functions. It typically expresses an inference such that if we know a fact 

(antecedent), then we can infer, or derive, another fact called a conclusion (consequent). Due to their 

concise form, fuzzy IF -THEN rules are often employed to capture the imprecise modes of reasoning 

that play an essential role in the human ability to make decisions in an environment of uncertainty and 

imprecision. 
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4.5 Fuzzy inference systems 
Fuzzy inference systems perform fuzzy reasoning. Basically a fuzzy inference system is composed of 

five functional blocks, as depicted in Figure 72. 

knowledge base 
,........ '. , ................... . 

Input QUip", 

inference unit 

Figure 72: Fuzzy inference system. 

• a data base contains information about the membership functions of the fuzzy sets used in fuzzy 

rules, the domains of the variables and kinds of normalization. 

• a rule base contains a number of fuzzy IF·THEN rules; 

• a fuzzifier receives the current crisp values of the input variables and transforms them into degrees 

ofrnatch with linguistic values; 

• an inference unit performs the inference operation on the fuzzy rules; 

• a defuzzlfier transforms the fuzzy results of the inference into a crisp output by using a suitable 

transformation. 

Usually, the rule base and data base are jointly referred to as the knowledge base. 

Several types of fuzzy inference systems have been proposed in the past[5)[6)[7]. They differ in the 

types of fuzzy r .. soning and fuzzy IF·THEN rules employed. In the following, we present two well· 

known inference mechanisms in fuzzy rule-based systems. 

Mamdanl uses the following architecture: 

Rule I: IF input! is All and input2 is A" THEN output is C, 

also 

Rule 2: IF input! is A" and input2 is An THEN output is C, 

fact: input 1 is Xu and input2 is Yo 

consequence: output is C 

The fuzzy in'plicatioll is modeled by Mamdani as: 

A and B4 C=(A n B)nC 

and the operator also is interpreted as Qring the output of the rules by the max operator. 

The ftring levels of the rules, denoted by aIt i=1,2, are computed by 
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a, = All(xO)n All(yo) = min(All(xo), All(yo)} 

a, = A21 (x,) n A,,(y,) = min(A 21 (x,), A,,(y,)) 

The individual rule outputs are computed by 

C;(z) = a, n C, (z) = min(a" C,(z)} 

C;(z) = a, n C,(z) = min(a" C,(z)) 

Then the overall system output is computed by Dring the individual rule outputs 

C(z) = C;(z)u C;(z) = max(C; (z),C; (z)} 

Figure 73 illustrates the graphical analysis of two rules, where the All and AI2 refer to the fust and 

second fuzzy antecedents of the first rule. respectively. and the C, refers to the fuzzy consequent of the 

first rule; the A21 and An refer to the first and second fuzzy antecedents of the second rule, respectively. 

and the C2 refers to the fuzzy consequent of the second rule. The minimum membership value for the 

antecedents propagates through to the consequent and truncates the membership function for the 

consequent of each rule. This is done for each rule. Then the truncated membership functions for each 

rule are aggregated. The aggregation operation mat: results in an aggregated membership function. If 

one wishes to find a crisp value for the aggregated output. some suitable defuzzification technique could 

be applied to the aggregated membership function, and a value such as z· shown in Figure 73 would 

result. 
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A" 

_____________ ll1tn __ 

Yo 
input2 

y 

y 

Figure 73: Mamdani's inference mechanism. 

Tsukamoto uses the following architecture: 

Rule I: IF input! is All and input2 is An THEN output is C1 

also 

Rule 2: IF input! is A2I and input2 is AZl THEN output is C, 

fact: input! is "" and input2 is y. 

consequence: output is C 

c 

z* 

All linguistic variables are supposed to have monotonic linguistic value (membership functions). 

The firing levels of the rules, denoted by <x" i~I,2, are computed by 

<x, ~ AIl(x.)n A12 (y.) ~ min{AIl (x.), A12 (y.)) 

<x, = A2I(xo)n A,,(y.) = min{A2I (x.), A,,(yo)} 

then the individual rule outputs Zl and Z2 are computed from the equations 

z 

z 

z 
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", - C,(z,) 

and the overall system output is computed by 

Zo 
ct1*ZI +U 2"'Z2 

U 1 + 0. 2 

Graphically, this is illustrated in Figure 74. With the numeric data given in the figure, we can compute 

the overall system output as follow: 

A" 

: 0.8 , , 

: 0.7 

X, 
input I 

x 

A" 

x 

A" 

A" 

0.3 min 

y 

10:8" -- - -- - - ---
-~------------------, , , 

y, 
input2 

min 

y ,,-2 

Figure 74: Tsukamoto's inference mechanism. 

According to the figure we see that 

AII(Xo) = O.S 

therefore, the ftring level of the fIrst rule is 

and 

'" = min (AII(Xo), A,,(yo)) = min (O.S, 0.3}=0.3 

and from 

and A,,(yo) = O.S 

it follows that the firing level of the second rule is 

'" = min (A2I(Xo), A22(yo)} = min (0.7, 0.S}=0.7 

the individual rule outputs Zj = 7 and Z2 = 2 are derived from the equations 

C,(z,) = 0.3 and C,(z,) = 0.7 

and the overall system output is 

Zo 
03*7+0.7*2 

03+0.7 
2.1 + 1.4 

=35 
I 

C, 

z 

z 

91 



Chapter 4 
These two fuzzy inference mechanisms provide a good foundation for a discussion on fuzzy rule-based 

classification and on hybrid systems. 

4.6 Fuzzy classification 

Fuzzy classification systems, based on fuzzy logic[8][9][IOJ are capable to deal with cognitive 

uncertainties such as the vagueness and ambiguity involved in classification problems. In a fuzzy 

classification system, 8n object can be classified by applying a set of fuzzy rules based on the linguistic 

values of its attributes. Unlike conventional approaches of pattern classification, fuzzy classification 

assumes the boundary between two neighboring classes as an overlapping area within which a pattern 

(an object) has partial membership in each class. This viewpoint not only reflects the reality of many 

applications in which categories have fuzzy boundaries, but also provides a simple representation of the 

potentially complex partition of the feature space. The classifier is described by fuzzy IF-THEN rules. 

An exampJe of fuzzy classification rules for a 2~dimensional feature space is: 

R,: IF x, is small AND x, is very large THENx ~ (x," x,) belongs to class C, 

R,: IFx, is large AND x, issmall THENx ~ (x," x,) belongs to class C, 

R,: IF x, is small AND x, is large THEN x ~ (x," x,) belongs to class C, 

R.,: IFx, is very small AND x, is very large THEN x ~ (x," x,) belongs to class C, 

where Ri is the Llh classification rule, Cl; indicates an output class. Xl and X2 are the features of a 

pattern (or object), very small, small, large and very large are linguistic terms characterized by 

appropriate membership functions and AND is a fuzzy logical operation. 

To build a fuzzy classification system, the most difficult task is to find a set of fuzzy rules connected 

with the specific classification problem. This task can be accomplished in two ways: 

I. to acquire knowledge from experts and then translate their knowledge into fuzzy rules[2][3][IIJ. 

2. to generate the fuzzy rules automatically from sample data (training set) without expert 

help[12][13][ 14 ][15][16J. 

In a fuzzy classification system, a classification rule takes the same format as a non·fuzzy classificaHon 

rule but the inferencing is based on fuzzy logic. 

4.6.1 Inference of fuzzy rule based classIfiers 

For simplicity, let the rule base contain 9 fuzzy IF-THEN rules and have two inputs x and y as follows: 

Rule I: IF input! is A, and input2 is B, THEN output is C, 

Rule 2: IF input! is A, and input2 is B, THEN output is C, 

Rule 3: IF input! is A, and input2 is B, THEN output is C, 

Rule 4: 

RuleS: 

IF input! is A, aDd input2 is B, THEN output is C, 

IF input! is A, and input2 is B, THEN output is C, 
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Rule 6: IF input! is A, and input2 is B, THEN output is C, 

Rule 7: IF input! is A, and input2 is B, THEN output is C, 

Rule 8: IF input! is A, and input2 is B, THEN output is C, 

Rule 9: IF input! is A, and input2 is B, THEN output is C, 

fact: input! is x. and input2 is Yo 

consequence: output is C 

The firing levels of the rules, denoted by ai, i=I,9, are computed by 

a, ~ min{A,(x.), B,(yo») 
a, ~ min{A,(x.), B,(yo») 
a, ~ min{A,(x.), B,(yo») 
a., ~ min{A,(x.), B,(yo») 
a, ~ min{A,(x.), B,(yo» 
a. ~ minI A,(x.), B,(yO») 
a, ~ min{A,(x.), B,(yo» 
as ~ minI A3(x.), B,(yo») 
ex. ~ min{A,(x.), B3(yo») 

If several fuzzy rules have the same consequence class, their firing strengths have to be combined. 

Usually, the OR operation is used. 

The individual rule outputs are computed by 

C,~ a, OR a, ~ max {min{A,(x.), B,(yo»), min{A,(x.), B,(yo»)) 
C,~ a, ~ min{A,(x.), B,(yo») 
C,~ a, ~ min{A,(x.), B,(yo» 
C.~ a., ~ min{A,(x.), B,(yo») 
C6~ a. OR ex. ~ max {min{A,(x.), B,(yO», min{A,(x.), B,(yo» 
CF <1, ~ min{A,(x.), B,(yo») 
C.= a8~ min{A3(x.), B,(yo») 

the overall classifier output is selected by 

C ~ maxI C,. C, C'. C" C~ C" C,) 

Figure 75 illustrates above the 2-input fuzzy rule base with 9 rules. 
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C 

C 

C, 
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~ 
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Figure 75: Graphical representation of2·input fuzzy rule base with 9 rules. 

Since each input feature is associated with three memberships, the input space (feature space) is 

partitioned into 9 fuzzy subspace, each of which is governed by a fuzzy IF·THEN rule. The antecedent 

part of a rule defmes a fuzzy subspace, while the consequent part specifies the oulput withio this fuzzy 

subspace. 

c, c, c, 
--

c, c, c, 

c, c, c, 

Figure 76: Fuzzy partitioning by 9 rules. 
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4.7 Application with fuzzy rule based classification 
In this section, we explain how the fuzzy IF-THEN rule classifier has been applied to the AMMA-signal 

for classification of the daily life motor activities. We used the modified pattern recognition system 

which was discussed in section 2.11. and also shown in Figure 77 as our general model. 

I 
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.lll 
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Measured features 

Preprocessing 

Preprocessed features 

Feature Generation 

.......... , ........... " Fe ature_D 
Generated features 

Feature Selection 
or 

Feature Extraction 

............ ,' Feature m 
- Optimal features 

Classification 

Classes 

Fignre 77: The modified pattern recognition. 

Several steps were taken to implement the modified pattern recognition system which uses a fuzzy rule 

based classifier. In the following subsection, these steps will be discussed. 

4.7.1 Feature generation 
As mentioned before, using only the four continuous features (the outputs of the four accelerometers) is 

not enough to design a patient independent classifier, for the recognition of activities (different waves in 

signals), and the detection of onsets and endpoints of the waves. In the feature generation part, the 

preprocessed data are transformed into some new representatio~ (new features) in order to maximize 

the pattern recognition ability and minimize the misclassification rate. In our application, 160 features 
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were generated by using the two algorithms discussed in chapter 2 for each channel. The following 

figures illustrate some generated features. Figure 78 shows a part of preprocessed activities as recorded 

by channel I. 

1.6 -,-----------------, 
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-0.0 } __ .;I~,j·..v("T J .... ,,'\J;i-f~ .... 
-0.8 -

-1.6 -f-, --,-----,--.... ----,,----,---1 
0.0 100.0 200.0 300.0 400.0 500.0 600.0 

Figure 78: Part of activities recorded by channel I. 

Figure 79 illustrates a generated feature from channell by using the function: 

II Power(Norm(chl[x, .. x,d, 2),2t. 

I'm ch1 nQ,mPln\ I!III £I 

1::::
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\ 

2.0 -!-; __ D,!-, ....... I"' .... i ~J'7' __ --;_--., .... .J ... 
M 
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Figure 79: New generated feature from channell. 

Figure 80 illustrates another generated feature from channell by using the function: 

"Norm(Cum_sum(chl [x, .. xl6]),2). 

30.0 -I-------;.:::;;:::;;~---I 

::LvJ 'w:A 
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Figure 80: New generated feature from channell. 

Figure 81 shows a part of preprocessed activities as recorded by channel 2. 
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Figure 81: Part of activities recorde<! by channel 2. 

Figure 82 illustrates a generate<! feature from channel 2 by using the function: 

"Power(Norm(ch2[x\ .. x,,],2),2)". 

~ ch'.olmPlo\ I!lIiIEI 

10.0 -I 0.0 - -

6.0- ) \ 
4.0- ~ 
2.0 - f\ f' ~r:.; "".::. _ 
00 t--.L1..-d~;,J:" ~_. = ~~._ '-I-·-~ I t I 

0.0 100.0 200.0 300.0 400.0 500.0 600.0 

Figure 82: New generated feature from channel 2. 

Figure 83 illustrates another generated feature from channel 2 by using the function: 

"Norm(Cum _ sum( ch2[ x, .. x,,]),2) . 

• " ch2Cum~sumPlol 1111£1 
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Figure 83: New generate<! feature from channel 2. 
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Figure 84 shows an other part of preprocessed activities as recorded by channel I for two periods of , 
lying on the back and same other postures. 
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Figure 84: Part of activities recorded by channel I. 

Figure 85 illustrates a generated feature from channell by using the function: 

"Power(Norm(chl[xl"x161,2),2)". 
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Figure 85: New generated feature from channell. 

Figure 86 illustrates a generated feature from for channel I by using the function: 

"Standard _ deviation(Norm[ x I "x,n". 
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Figure 86: New generated feature from other feature. 
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Figure 87 illustrates another generated feature from channell by using the function: 

"Norm(Cum_sum(chl[xl"xI6J),2)". 
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Figure 87: New generated feature from channell. 

Figure 88 illustrates a generated feature for channell by using the function: 

"Standard_deviation(Cum_sum[xl .. x,J)". 
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Figure 88: New generated feature from other feature. 

1600.( 

Figure 89 shows a part of preprocessed activities as recorded by channel 4 for two periods of lying on 

the back and same other postures. 
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Figure 89: Part of activities recorded by channel 4. 
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Figure 90 illustrates a generated feature from channel 4 by using the function: 

"Power(Norm(ch4[xt .. XI6],2),2)". 
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Figure 90: New generated feature from chanoel4. 

Figure 91 illustrates a generated feature from for chanoel4 by using the function: 

"Standard_deviation(Norm[xl .. ""J)". 
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Figure 91: New generated feature from other feature. 

Figure 92 illustrates another generated feature from channel 4 by using the function: 

"Norm(Cum_,um(ch4[xl .. xl6]),2)". 
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Figure 92: New generated feature from channel 4. 
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Figure 93 illustrates a generated feature from for channel 4 by using the function: 

"Standard_deviation (Cum_sum[xt .. XglY'. 
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Figure 93: New generated feature from other feature. 

4.7.2 Feature Selection 

In this study, 160 continuous features were generated by using the two developed algorithms. From 

these generated features the following eight features were selected (by using a trial and error approach): 

2. Power(Norm ([x" .... x,,],2),2), 

3. Norm (Cumulative_Sum([x" .... x,6J)), 

4. Standard_deviation(Norm ([x" .... XgJ)), 

5. St.ndard_deviation([x" .... Xg]), 

6. Average([x" .... x,,]). 

7. Average([x" .... x,,]). x Norm(Cumulative_Sum([x" .... x,,]),2) 

8. Slope ofPower(Norrn([x" .... x,,],2),2) 

Still, many other subsets could be selected. In chapter 5, we introduce a neuro-fuzzy network that is 

capable to select the best features automatically. 

4.7.3 Fuzzy rule based classifier 

We choose the fuzzy rule based classifier for classification in the modified pattern recognition system. 

In the following subsection, we discuss some steps in building. fuzzy rule based classifier. 

4.7.3.1 Generation of fuzzy sets 
The first step in building a fuzzy rule based classifier is the definition of fuzzy sets which will be used 

in the rule. It is necessary to decompose a feature (variable) into two or more fuzzy sets. Each fuzzy set 

describes some range of the feature's (variable's) values and attaches a linguistic meaning to that range. 
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The choice of the number of fuzzy sets and how those fuzzy sets are distributed over the universe of 

discourse requires knowledge of how the classifier output should be related to the classifier inputs. 

There is no standard design procedure that can be employed to choose the number and positions of the 

fuzzy sets. Figure 94 illustrates how input feature ChlNorm is decompose<! into a set of fuzzy regions. 

, , , , 

, , , , , , , , , , , , , , , 

Feature 
ChlNonn 

1\ 

, , , , , , , , , , , , 
, 

Fuzzy set representation 

, , , 

Figure 94: Five partitions for the input feature, Chi Norm 

In Figure 95 through 96, the feature Chi Norm is decompose<! (partitione<!) into a collection of fuzzy 

sets. The universe of discourse for the feature ChlNorm is the interval [.25, 25]. 

3 4 S 

Figure 95: Membership functions for (left) fuzzy set Positive-Small and 
(right) fuzzy set Positive-Large. 
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11\ 
.".V, V.V' 

(0) 

-s ... -3 0 

(b) (0) 

Figure 96: Membership functions for (a) fuzzy set Zero (b) fuzzy 
set Negative-Small and (c) fuzzy set Negative-Large. 

Figure 97 shows how the input space ChlNorm appears after partitioning. 

-25 -5 -4 -3 -0.02 0.02 3 4 5 

Figure 97: Partitioning for the input feature, ChlNorm. 

25 

Other features must also be partitioned into a set of fuzzy regions. Proper partitioning of a feature into a 

complete set of fuzzy regions is an important aspect of building a robust and flexible classifier. 

4.7.3.2 Writing the rules 
The second step in building a fuzzy rule based classifier is the writing of the rules that describe how the 

classifier operates. If each of the n features is partitioned into a different number of fuzzy partitions, 

say, Xl (feature) 's universe of discourse) is partitioned into kl partitions and Xl (feature_2's universe 

of discourse) is partitioned into k, partitions and so forth, then the maximum number of rules is given by 

The actual used number of rules, necessary for classification is much less than NR• The following eight 

!O3 



Chapter 4 
rules are typical rules which have been used to classify daily life motor activities: 

RULRj 

RULRj 

RULRJ 

IFChlPowerNorm is Positive-Large AND ChlNormCum_Sum is Positive-Large 

AND Ch4NormCum _Sum is NOT Negative-Large THEN activity is sitting 

IFChlPowerNorm is Positive-Large AND ChlNormCum_Sum is Positive-Large 

AND Ch4NormCum_Sum is Negative-Large AND Ch4PowerNorm is Negative­

Large THEN activity is lying on the back side 

IFChlPowerNorm is Zero AND ChlNormCum_Sum is Zero AND 

Ch3NormCum_Sum is NOT Negative-Large AND Ch3NormCum-Sum is NOT 

Positive-Large AND Ch2PowerNorm is Zero AND Ch2NormCum_Sum is Zero 

THEN activity is standing 

IF ChlPowerNorm is Zero AND ChlNormCum_ Sum is Zero AND Ch2PowerNonn 

is Zero AND Ch2NormCum_Sum is Zero AND Ch3NormCum_Sum is Negative­

Large AND Ch4NormCum_ Sum is Zero AND Ch4PowerNorm is Zero THEN 

activity is lying on the left side 

IF ChlPowerNorm is Zero AND ChlNormCum_ Sum is Zero AND Ch2PowerNorm 

is Zero AND Ch2PowerCum _Sum is Zero AND Ch3NonnCuOl_ Sum is Positive­

Large AND Ch4NormCum_Sum is Zero AND Ch4PowerNorm is Zero THEN 

activity is lying on the right side 

IF ChlPowerNorm is Zero AND ChlNormCum_ Sum is Zero AND Ch2PowerNorm 

is Zero AND Ch2NormCum_Sum is Zero AND Ch3NormCum_Sum is ZeroAND 

Ch3PowerNorm is Zero THEN activity is standing 

IFChlAverage x ChlNonnCum_Sum is Positive-Large AND hlSlopOFPowerNorm 

is One THEN activity is walking 

IFCh2AveragexCh2NonnCuffi_Sum is Positive-Large AND h2SlopOFPowerNorm is 

Ooe THEN activity is walking 
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As mentioned before, to refine the estimated onset and end time of each activity, to detect the highest 

peak of a step pattern, and for computing the transition time, one has to devise a good post~processing 

algorithm. For computing the transition time, we have used the features Ch*Standard-deviation(**) 

which has been shown in section 4.7.1. 

4.7.4 Results 

To illustrate the applicability of the fuzzy rule based classification teclmique for the classification of 

daily life motor activities, we applied our fuzzy rule based classifier to the recorded data of eight 

amputees and three other recorded data of healthy subjects. The fuzzy rule based classifiers were, on the 

average, able to recognize 99% of the presented cases of daily life activity classes of all subjects 

correctly. In an experiment where we applied the classifier to 12000 step patterns, the classifier was 

able to recognize with more than 99.5% accuracy. Figure 98 illustrates a part of the recorded data 

during walking activity. 

fflJ chlPI.t . I!lIm 
1.6 

1.6-1,----------.----------,----------.---------.---------~ 
0.0 400.0 800.0 1200.0 1600.0 2000.1 

Figure 98: A part of recorded data during walking. 

Figure 99 shows the output of our classifier in response to the data presented in Figure 98. 

1~- --------------------------------------------------------

0.0 -\-, -----.-----.-----.-----;-----/ 
0.0 400.0 800.0 1200.0 1600.0 2000 

Figure 99: The output of classifier in response to above data. 

In Figure 100, we present an activity profile which has been extracted from the numerical output of our 

classifier. It shows a 3-D bar graph of the mean footstep time, as a function of watking block interval 

time and monitoring time. 
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Figure 100: 3-D bai graph of an activity profile: the mean footstep time as a function of 
monitoring time and walking block interval time. subject 11 

To be certain about patient-independency of the classifier and its performance, we did another 

experiment. In this extra verification experiment we applied the classifier to a set of 1.5h data (with 

sampling rate of25 per second, our classifier was designed for data with sampling rate of32 per 

second) which included 3830 step patterns. From this data set the classifier was able to recognize 3812 

steps (99.53%). This result shows the same high performance of recognition as the finding in the first 

experiment. 

4.8 Conclusion 

In this chapter we have described a fuzzy rule based classifier and its application to the recognition of 

daily life motor activities. We have described with examples some of the important basic concepts in 

fuzzy logic. Several new features and their membership functions have been described. The comparison 

of the output of the fuzzy rule based classifier with the classification via visual inspection of the events 

resulted in 99% conformity. In contrast with the ANN based classifier, the fuzzy rule based classifier is 

a patient independent classifier, and the results indicate that its performance is superior to that of the 

PNN and BPN classifiers. 
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Hybrid System 

5. Neuro-fuzzy Systems 

5.1 Introduction 

This hybrid system combines the advantages of both fuzzy systems and neural networks. The advantage 

of fuzzy systems is that they deal with explicit knowledge which can be explained and understood. 

Neural networks deal with implicit knowledge which can be acquired by learning. Unlike in most ANN 

in which knowledge is not transparent (the black·box characteristic of ANN), the knowledge in a neuro­

fuzzy system is transparent like in fuzzy systems[l ][2]. The architecture of a neuro-fuzzy system is 

such that the trained network can be translated into a number of fuzzy IF·THEN rules. The strength of 

a classification rule such as "IF X is small AND Y is large THEN class A" is determined by the 

interconnection weight which can be learned by a learning process. In addition, a number ofneuro-fuzzy 

systems can analyze the features (inputs to the network) so that superfluous featwes can be removed. 

FuN.,.I [3] is one such Neuro·fuzzy system which has been implemented as a mutilaye, perceptron 

architecture, and has the following advantages: 

1. Knowledge incorporation: explicit knowledge acquired from experts can be easily incorporated as 

new rules to the FuNe system; 

2. Rules extraction: the modified and new rules can be extracted from a properly trained FuNe, to 

explain how the results are derived; 

3. Feature selection: after the extraction of rules, superfluous input features which do not appear in 

rules or appear in weaker rules can be removed; 

4. Generalization capability. 

The main purpose of this chapter is to introduce the neuro-fuzzy system briefly and to describe its 

applicability in our proposed methodology for future improvement of daily life motor activity 

classification. 
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5.2 Proposed methodology 
Figure 10 I shows a diagram of our proposed methodology 

for classification of AMMA-signals. 

For the features generation part, an interactive software 

package will have to be developed to generate a number of 

features from preprocessed data, as discussed in chapter 2. 

In addition, the software package must generate the 

training and test sets interactively. 

In the feature selection part, the features with high 

discrimination ability are selected automatically by the 

FuNe network. Also, FuNe will generate a set of 

classification fuzzy rules which can be implemented in a 

fuzzy classifier. 

Since our proposed methodology is general in nature, it 

can be applied in other fields of pattern recognition of on<>­

dimensional medical signals such as ECG, EEG, EMG. 

We believe that this systematic approach is a solution to 

other related problems in industry as well. 

5.3 Neuro-Fuzzy system 

Raw data 

Chi Ch2 Ch3 Ch4 

1 ~ 1 1 
Preprocessing 

l 
Feature Generation by an interactive 

software package 

UUUiU l 
Feature Selection and Generation of 

a set of classification fuzzy rules 
by FuNe 

r r ~ 
Eo 

': ,~ ,~ 

to> y y ~ 

Implementation of 
Fuzzy classifier 

Figure 10 I: schematic description of the 
proposed methodology for classification. 

The basic idea in neuro-fuzzy systems (inference or classifier system) is to incorporate leaming 

capability into fuzzy systems. By training such a system on training data using the back-propagation (or 

any other) learning algorithm, one can extract a suitable number of fuzzy rules and find a proper 

partitioning of input and output space (structure estimation) or one can adjust the system parameters, 

such as membership functions and other possible parameters (parameter estimation). Several methods 

for the fusion of fuzzy systems and neural networks are reported in literature [4][5][6][7][8][9][10]. 

Different learning strategies are used in these systems, e.g., unsupervised learning, supervised learning 

and differential competitlve learning. In order to familiarize with neur<rfuzzy systems, in the following 

paragraphs, we consider the Tsukamoto fuzzy inference system which is implemented as a neuro-fuzzy 

system. 

For simplicity, we assume that the fuzzy inference system under consideration has two inputs x and y 

and only one output z. For a Tsukamoto fuzzy model [11], a typical rule set with two fuzzy IF-THEN 

rules is: 
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Rule I: 

Rule 2: 

Hybrid System 
IF x is AI and y is B, THEN z is C1 

IF x is Az and y is B2 THEN z is C2 

Figure 102 is an iUustration of how a two-rule inference system of the Tsukamoto type derives the 

overal1 output when subjected to two crisp inputs x and y. 

A, 

x 

B, 
-------

~,I. 

B, 
---, 

«, 

"-------;'---.. ~ 
y 

min 
.. -----

---

min 

Figure 102: The Tsukamoto fuzzy model. 
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The equivalent Neural network based architecture(Neuro-fuzzy architecture) of this model is shown 

Figure 103. 
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Figure 103: An equivalent neural network based fuzzy inference system for Tsukamoto 
fuzzy model. 

Looking at Figure 103, the operation of a neuco-fuzzy system can be described as follows: 
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Chapter 5 
Layer 1. Fuzzification layer 

Each node (neuron) in this layer represents an input membership function of the antecedent of a fuzzy 

rule. The crisp inputs x and y acc fuzzified by using these membership functions. There is no restriction 

to the form of the membership functions (except that they must be differentiable with respect to their 

parameters). Usually, trapezoid, triangular, or bell~shaped membership functions are used. For example, 

the bell-shaped function (Gaussian function) is defined as follows: 

(xi-J.li 

a? 
J 

The parameters of the neurons of this layer can be trained to fme tune the final shape and location of 

the membersWp functions. In the case of the Gaussian membership function, the parameters J..Ij and OJ 

may he interpreted as the weights ofa link between the Llh neuron in layer 1 and thej.th neuron in layer 

2. In most neuro-fuzzy architectures, the number of neurons in this layer is fixed, but it is possible to 

add or remove these neurons during training. according to the outputs produced on the training samples. 

Layer 2. Fuzzy rule layer 

Each rule neuron performs the fuzzy logical AND operation between antecedents (IF-part). This layer 

contains one neuron for each fuzzy IF-THEN rule. Each Jleuron corresponding to the antecedent of a 

fuzzy rule computes the firing level <Xi of this antecedent. In our example case the fuing levels at of the 

fuzzy rules are computed by 

Layer 3. Nomlalization layer 

eq = min(rnfAI (X),rnfBI (Y)) 

"'2 = min(rnfA2 (x),rnfB2 (y)) 

The fuing levels of the fuzzy rules are normalized. The i.th neuron compute the ratio of the i.th rule's 

firing level and the sum of all rule's fuing levels: 

Layer 4. Consequence layer 

The function of this layer is rule evaluation. Each neuron in this layer represents a consequent 

proposition "THEN z is C!"; it contains the membership function representmg the output variable. Each 
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neuron derives the rule output zt from the equation Ci(Zi) = CXj and multiplies its value with the 

corresponding normalized firing level. In our example case: 

I . • the output ofm e lIS al . zl 

• • the output of rule I IS a2 . z2 

Layer 5. Summation layer 

This layer calculates the overall output as the summation of all incoming signals: 

• • zl·al+z2· a 2 
z=al ,zl +a2, z2 = 

al +a2 

Training of Tsukamoto fuzzy inference system 

First the parameters of the membership functions are initialized. After that, the fuzzy rules are updated 

by using a training algorithm such as back-propagation as rcHows: 

Given are k training samples arranged in the training set: 

{ ([xl, yl]. Zl). ([x'. y']. z') ....... ([Xk. I]. z')) 

1. Present an input data sample. and compute the corresponding output 

2. Calculate the error between the desired output and the actual output(The error is defmed by a cost 

function) 

3. The membership functions are updated 

4. If Error > Tolerance then goto step I else stop. 

The shape and position of the membership functions in the fuzzification and consequence layers can be 

fme tuned by adjusting the parameters of the neurons in these layers, during the training process. 

Table 10 Shows some learning schemes used in several currently proposed neuro-fuzzy inference 

systems. 

Neuro-fuzzy system Premise learning Consequent learning 

Kosko [12] AVQ AVQ 

Berenji [8] gradient descent gradient descent 

Lin [13] SOM gradient descent 

Horikawa [7] gradient descent gradient descent 

Nie [4] modified SOM gradient descent 

Table 10: Learning ofneuro-fuzzy inference systems 

Their training algorithms differ very much from each other and no comparison of those has been 

presented in literature. 
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Chapter 5 
5.3.1 FuNe-I neuro-fuzzy architecture 
A special multilayer perceptron architecture is successfully used for generating the fuzzy-neural system 

FuNe-I. This special architecture, trained with supervised learning can be used to generate a fuzzy 

classifier system from a given representative input/output data set (training set) without expert help. The 

system (FuN ... !) extracts an untuned knowledge base in the first phase. The extracted fuzzy system is 

tuned in the second phase. Figure 104 shows the structure of FuN ... ! in the first phase. Only the 

connections in the fuzzification and defuzzification blocks in Figure 104 represent variable weights. 

other' connections have fixed unity weights. The dark outlined circles represent neurons with sigmoid 

transfer functions. In FuN ... ! both IF and !F NOT rules are considered. 

R 

Figure 104: The structure of FuN",! in first phase. 

Deduzzification 

Rule 
Generation 

Fuzzification 

The FuN",! model differs from the conventional fuzzy model in that it transfers the weighted sum of the 

fired rules into the crisp output as follows: 
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r 

oulj =Sig(Lwij'IXj) 
j=! 

where r is the number of rules, wij represents the weight of the connection from the j.th rule neuron to 

the i.th output. Sig (sigmoid function) is the transfer function of the output neuron. 

FuNe-I employs a different approach for finding the initial rule base. In the first phase, it identifies rule 

relevant neurons for conjunctive and disjunctive rules for each output. The network is trained with 

"frozen" membership functions; the membership functions are not adjusted during training. 

Let us consider an example with 3 inputs, where each of them is partitioned into 3 fuzzy regions with 

the fuzzy sets of Low (L), Medium (M) and High (H). To find whether the i.th input has any influence 

on a conjunctive rule. the next steps are to be taken: 

I. Connect the fuzzification layer to the neuron C, (layer C in Figure 

104), that selects the maximum from the strongest membership 

values from all the inputs but the input i : 

V' 
Ci =Max[j~i][Maxj(Lj,Mj,Hj)l 

2. Connect the neuron Cj to corresponding neurons 

. R Li ,R M i and R Hi (layer R in Figure 104) 

3. connect the neurons RLi ,R Mi and RHi to the corresponding 

neurons out, and initialize the weights WL' ,WM' and WH' 
I I I 

4. After the training process. connecting weights are analyzed to 

extract the Min·rule relevant neurons 

Extraction of the Max~rule relevant neurons is perfonned in analogy to 

the above steps, but Cj is computed as follows: 

V' 
Ci = Min[j~i][Max j(Lj,M j,Hj)] 

Figure 105: The i.th 
conjunctive rule. 

All extracted Min and Max rule relevant nodes can be considered as the initial rule base for FuNe-j·FS. 

The modified fuzzy system generated from FuNe-I training with a gradient descent learning algorithm 

(e.g. backpropagation algorithm) is called a FuNe-I fuzzy system (FuNe-I-FS). Figure 106 shows a 

typical Fuzzy system which has been extracted from a trained FuNe-I model. 
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R 

Figure 106: FuNe I Fuzzy System. 

Defuzzification 

Rule 
Inferene 

Fuzzification 

After generating the FuNe-I·FS, i.e., after the creation of an initial knowledge base is accomplished, the 

optimization can be started by using the same training data set. The initial antecedent membership 

functions can be tuned. An already extracted rule base by FuN ... I can be reduced effectively by training 

the FuN ... I·FS with the training data set. This is done by the analysis of the connecting weights. Also, 

superlluous inputs (features) which do not appear in rules can be removed. 

5.4 Application Example 
Figure 107 shows an example of a multichannel recorded data set. Every channel contains many 

different patterns (waveforms), and each event class is defined by combining the patterns from different 

channels. Here, we have four event classes, A, B, C and D. 
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Figure 107: An example of a multichannel recorded data. 

In order to apply FuNe-I to this example, firstly, we built a training set of 60 examples, 15 examples 

for each event class as follows: 

CHI CH2 CH3 CH4 CH5 CLASS LABEL 

0.2190 0.0043 0.2303 0.2724 2.6145 1.0 0.0 0.0 0.0 For class A 

0.9347 0.9033 0.6515 0.4770 2.0397 1.0 0.0 0.0 0.0 For class A 

4.5285 -1.8775 2.5869 -1.8300 2.4308 0.0 1.0 0.0 0.0 For class B 

4.5881 -1.8117 2.8119 -1.9268 2.1986 0.0 1.0 0.0 0.0 For class B 

2.2478 4.4416 5.3823 -3.6263 2.4037 0.0 0.0 1.0 0.0 For class C 

2.3893 4.7719 5.4295 -3.7381 2.2648 0.0 0.0 1.0 0.0 For class C 

5.1504 2.2321 3.4156 -1.2061 2.7853 0.0 0.0 0.0 1.0 For class D 

5.3438 2.4306 3.5146 -1.6682 2.1015 0.0 0.0 0.0 1.0 For class D 
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The training ofFuN .. I classifier was started with the following se«ing : 

• Number of inputs: 5 

• Number of outputs: 4 

• Number of rules to extract: 12 

• Number of adjectives (linguistic terms) per input: 3 

• Momentum: 0.600 

• Learning rate: 0.400 

After the fLrst phase (training ofFuN .. I), the FuNe-I generated a fuzzy system (FuN .. I.FS) with 12 

rules which is shown in Figure 108 (the screen output ofFuN .. I program). 

: ~ FUNEI IIII~EJ 
------- ---- - --- - -- --- -

OarmstadtUniltrsitj 'oft«hnoio91 . 
Inrtitllte tf Mi((o~lectronl( S,ftemJ. 

fuNeGen 1.0 . 

tomati~aB, miartt,~ ~I~s: 

1.027 If 1<01 AHD .1003 'JIIEN .",ut.1 . 
1.2$9., If lOIlIlf!N .utp~, 
0873 If medium I AND highl THEN olrtJlllt3 
1.497 If lOll OR m04i,m4 IIfEN outputl 

·1.949 If high3m!N NOT .utput2 
.1.54-9 If 1012 THEH war 0." 
-1.323 Ifhigl!2 OR liiI3l1fEHHOToulp,tf 
-1.241 ,If medillm3JfiEH, HOT~ilt4 '_ 
1.0119 hidi'ml OR MiII3 IlI!K HOloutput2 

·1.033 If 1012 Ok moli,m4THEN KOlOutput2 .. 
0,950 IF medi,um2 AtUJ}llediulTI3 -"»iE~, HOT blltp,ut4 -, 
0.808 IHight AHOroedillml TH~H,outpllt,r',' 

Figure 108: The extracted rules from the trained FuNe I. 

As can be seen, input 5 (channel·5) did not appear in rules and can be removed. For the second phase, 

we used the same training data set to train the FuNe-I·FS (generated fuzzy classifier system by FuN .. I), 

in order to optimize the generated rules and fme tune the initial membership functions. Figure 109 

shows the membership functions of input· I (CHI) before and after fme tuning. 
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Figure 109: Initial and fine tuned membership functions of input-I. 

Figure 110 shows the membership functions of input-2(CH2) before and after fine tuning. 

Figure 110: Initial and fine tuned membership functions ofinput-2. 
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Figure III shows the membership functions ofinput-3(CH3) before and after fme tuning. 

Figure 111: Initial and fine tuned membership functions ofinput-3. 

Figure 112 shows the membership functions ofinput-4(CH4) before and after fme tuning. 

Figure 112: Initial and fme tuned membership functions ofinput-4. 
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Errorl Reference source not found. shows the updated and optimized find rule set by FuN.,.[·FS. 

,~FUNEI ~~(3 
- --- - ----- -- ---- -~- - ------

Aulo iJ 

i,. 

2~t9 IF r"l AIIO I003Tl1fN .utputl 
0.991 IF 1002 lHfH .Utput2 
3.001- If inediuml NID_hl9b3 nlEN ()lItJiutl 
3.~gl·- If m~dium2,AHO medillm31HfH O\i1Put4 ' 

·2.()91 IFII,h2 OR 1,,3l11tH HOT outp"2 
-1.796 Ifm,tdlllm3,THfH~oto,U!p1lt4 
1.189 If high r AHD ,mdhim31l1EH Glltput4 
0.6(lj IF 1002 OR mw.d TlIIN ootp,,+ 
.0.415 IFm.4i'ml OR bi,h3Tl1fNHO"otput2 
-0.385 If 10I2_0R midi,urn" THEN HOT ol/ttllt2 
·(1359 IF l002lHlH NOTOotput+ 
0.151 IFbi,hllHl!lOotput2 

paqe I 

Figure 113: The updated and optimized rules by FuN.,.!·FS. 

To evaluate the updated and optimized rules by FuN.,.!.FS, we built a test file with 300 examples 

patlern, and applied optimized FuN.,.!·FS to it. The result shows 100% com,,,t classification. 

The current version of FuNe-I has several limitations which make it unrealistic for a real application. 

These can be listed as follows: 

• The maximal number of inputs is 7. 

• The maximal number of linguistic terms is 3. 

5.5 Conclusions 

In this chapter, we briefly presented an introduction to neuro-fuzzy systems which playa big role in our 

proposed methodology for the recognition of patterns in multichannel recorded data. Several methods 

for fusion of fuzzy systems and neural networks are reported in literature. Some of them can only fine 

tune the membership functions, some others can generate fuzzy rules from a training data set without 

expert help. We described the FuN.,.! model which can generate a fuzzy classifier and remove 

superfluous input features. Applying FuN.,.! to an artificial multichannel data example, has shown that 

Neuro·fuzzy classifiers like FuN.,.! can be potentially useful in classification. The author believes that 
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Neuro-Fuzzy systems will eventually replace conventional fuzzy decision systems and neural networks 

in variety of applications. 
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6. Summary and future directions 

6.1 Summary 

This thesis deals with a study on the potential usefulness of artificial neural networks, fuzzy rule based 

systems and neural fuzzy systems for recognizing daily life motor activities from the multichannel 

recorded data in ambulatory monitoring. This thesis can be summarized as follows: 

Chapter 1 

In chapter I, a general introduction about the background of the study is given. The different methods of 

monitoring of daily life motor activities are discussed. The structure of the system for ambulatory 

monitoring of motor activities is described. Some suggested numerical and graphical representations of 

results data are presented. The detected relevant motor activities and related clinical parameters by our 

classifiers are highlighted. 

Chapter 2 

Chapter 2 briefly reviews v~rious pattern recognition techniques that can be used to perform pattern 

recognition tasks in AMMA-signals. The manner that the feature space can be partitioned by these 

various techniques are described. After that, various types of daily life motor activities were defmed on 

the basis of the output of four accelerometers. Further, this chapter addresses a new developed method 

for generating features. This method is critical for solving patient independent automated pattern 

r~ognition systems for the AMMA-system. 

Chapter 3 

Chapter 3 begins with a short introduction to the field of neural networks, followed by a history of 

neural networks. Examples of learning types and neural network topologies are discussed. Special 

attention is paid to the two types of neural networks, Probabilistic Neural Networks (PNN) and 

BackPropagation Networks (BPN) that were applied to AMMA-signal. The topology and learning rule 

of these two neural networks are addressed. Construction of a training set is discussed. Further, the way 

of implementing PNN and BPN based classifiers for recognition of daily life motor activities and their 

perfonnance estimations are discussed. Finally, this chapter presents the results of application of two 

artificial neural network based classifiers to eight recorded data bases which were obtained from 

monitoring of eight amputees during their daily life. From this Chapter we derived the following 

conclusions: 
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• daily life motor activities are complex and show extremely large inter- and intra-individual 

variation which excludes using regular signal processing tools for rcx:ognition; 

• for the application under consideration, PNNs and BPNs are potentially useful options; 

• a satisfactory conformity of 95% between automatic and visual classification of events can be 

achieved; 

• the automatic classification of 10 hours of activities takes less computation time with spcx:ial 

hardware; 

• the graphical presentation of the output yields clinically meaningful information; 

• the ADL-classifier is patient-dependent which means that for every patient a training set has to be 

built and optimal parameters settings have to be chosen. 

• Application ofa postprocessing algorithm does improve the determination of the onset and end time 

of each activity. 

• Because of the many setting parameters and the time consuming training process of BPNs, using a 

PNN-classifier is much easier than using a BPN-classifier. 

• Because of the reject class option on PNN output, the performance ofPNN is more reliable than that 

ofa BPN. 

Chapter 4 

Chapter 4 introduces the basic concept of fuzzy sets and membership functions. Various fuzzy 

operators are illustrated. This chapter introduces the fuzzy IF-THEN rules format and discusses the 

fuzzy inference systems, and presents two well-known inference moohanisms in fuzzy rule-based 

systems: Mamdani and Tsukamoto's inference mechanism. This chapter also addresses the fuzzy rule­

based classification. Finally, the application of a fuzzy rule based system to daily life motor activities is 

introduced. To illustrate the applicability of the fuzzy rule based classification technique for the 

classification of daily life motor activities, we appUed our fuzzy rule based classifier to the recorded 

data of eight amputees and three other recorded data of healthy subjects. The fuzzy rule based 

classifiers were, on the average, able to recognize 99% of the presented cases of daily life actrvity 

classes of all subjects correctly. In an experiment where we applied the classifier to 12000 step patterns, 

the classifier was able to recognize with more than 99.5% accuracy, which is verified by visual 

inspection. To be certain about patient-independency of the classifier and its performance, we did 

another experiment. In this extra verification experiment we applied the classifier to a set of 1.5h data 

(with sampling rate of25 per second, our classifier was designed for data with sampling rate of 32 per 

second) which included 3830 step patterns. From this data set the classifier was able to recognize 3812 
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steps (99.53% ). This result shows the same high performance of recognition as the fmding in the ftrst 

experiment. 

ChapterS 

Chapter 5 presents an introduction in the field of Neural·fuzzy systems. This chapter also presents our 

proposed methodology for recognition of patlerns in multichannel recorded data. Further, chapter 

addresses the FuNe which is one of Neural.Fuzzy system in literature. Finally, the capability of FuNe 

to remove superfluous features and extract fuzzy rule is illustrated by an artificial multichannel 

recorded data example. 

6.2 Future Directions 

A further improvement of the fuzzy rule based classifier for the recognition of daily life motor activities 

is practically impossible. A very high level of accuracy is already achieved and errors occur only in very 

special cases. But, for the recognition of some classes of activities, we expect that it is not possible to 

find a high discriminating feature. The combination of a fuzzy rule based classifier and the PNN based 

classifier which operates on the raw data seems to be the only solution. Developing a software package 

that provides such combination is a future work. 

The author believes that his suggested methodology for the recognition of patlerns in multichannel 

recorded data is a systematic approach. In order to implement that, the following should be done: 

• developing an interactive software package that generates a number of features from preprocessed 

data, and has capability for building the training and test sets. 

• removing the limitation regarding the number of inputs and membership functions for each input 

feature in the FuNe-I system. 

• using methods for the clustering of input space for initialization of the membership functions in 

fuN .. ! system. 
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6.3 Samenvatting 
Dit proefschrift behandclt een onderzoek naar de potentii:!le bruikbaarheid van artificii:!le neurale 

netwerken, fuzzy rule based systemen en neurale fuzzy systemen voor het herkennen van dagelijkse 

motorische activiteiten van de multi-kanale geregistreerde gegevens. Dit proefschrift kan als voIgt 

worden samengevat: 

Hoofdstuk I 

In hoofdstuk I wordt een algemene introductie gegeven over de achtergrond van de studie. De 

verschillende methodes van het registreren van dagelijkse motorische activiteiten worden beschreven. 

De structuur van het systeem van ambulante registratie wordt beschreven. Een aantal numerieke en 

grafische representaties van de resultaten worden gepresenteerd. De herkende relevante motorische 

activiteiten en gerelateerde klinische parameters door onze herkenningsystemen worden benadrukt. 

Hoofdstuk2 

In hoofdstuk 2 worden de verschillende patroonherkenning technieken behandeld die kunnen worden 

gebruikt om AMMA-signalen te klassiflceren. Daarnaast word er de verschillende technieken 

beschreven waannee de kenmerkruimte verdeeld word. Op basis van de uitgangen van vier 

versnellingsopnemers worden diverse typen van dagelijkse motorische activiteiten gedefinieerd. 

Vervoigens, gaat dit hoofdstuk in op een nieuw ontwikkelde methode om nieuwe kenmerken te 

genereren. Deze methode is cruciaal voor het oplossen van patH:!nt onafhankelijke geautomatiseerde 

patroon herkenningsystemcn voor het AMMA-systeem. 

Hoofdstuk3 

Hoofdstuk 3 begint met cen korte introductie over neurale netwerken, gevolgd door een geschiedenis 

ervan. Diverse voorbeelden van leennethoden en neurale netwerk topologii'!n worden besproken. 

Speciale aandacht wordt besteed aan twee typen van neurale netwerken, Probabilistic Neural Network 

(PNN) en BackPropagation Network (BPN) die toegepast werden op het AMMA-signaal. De 

structuur en leer rege! van deze twee neurale netwerken worden geadresseerd en constructie van een 

trainings set wordt bediscussieerd. Vervolgens. worden de manieren van implementatie van op PNN 

en BPN gebaseerde herkenningsystemen voor het herkennen van dagelijkse motorische activiteiten en 

hun "perfonnance estimations" gediscussieerd. Tenslotte, presenteert dit hoofdstuk de resultaten van 

toepassingen van twee op kUllstmatige neurale netwerken gebaseerde herkenningsystemen aan acht 

geregistreerde data-bases die waren verkregen door het registreren van acht personen met been 

amputaties tijdens hun dagelijks leven. Uit dit hoofdstuk trekken we de volgende conclusies: 
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• dagelijkse motorische activiteiten zijn complex en latcn extreem grote inter- en intra-individuele 

variaties zien. Daardoor het gebruik van reguliere signaal bewerkings tcchnieken voor het 

herkenen van activiteiten zijn uitgesloten. 

• voor de bedoelde toepassingen, zijn PNNs en BPNs nuttige optics. 

• cen bevredigende overeenkomst van 95% tusseo automatische en visuele classificatie van 

gebeurtenissen kunnen worden bereikt. 

• de automatische c1assificatie van activiteiten gedurende 10 uur neemt minder tijd in beslag met 

speciale hardware. 

• cen grafische presentatie van de uitkomsten levert relcvantc klinische infomlatie op. 

• het ncomlc netwerk gebaseerde herkenningsysteem is patiCnt afhankelijk. Dit bctekent dat voor 

iedere patient een trainings set moet worden opgebouwd en opnieuw de optimale parameter 

instellingen moeten worden gekozen. 

• het uitvoeren van "postprocessing" algoritme geeft een verbetering van het bepalen van de begin~ 

en eind~tijd van iedere activiteit. 

• vanwege het aantal parameters en het tijd consumerende "training process" van BPNs, is het 

gebmik van een PNN.herkennings systeem veel makkelijker dan het gebruik van een BPN­

herkennings systeem. 

• vanwege de "reject class" optic bij PNN uitgang, is de PNN prestatie meer betrouwbaar dan die 

van de BPN. 

Hoofd,luk 4 

In hoofdstuk 4 wordt een algemene introductie gegeven over de basis concepten van vage verzameling 

en lidmaatschap functies. Oit hoofdstuk beschrijft de fuzzy "IF-THEN" regels. Er wordl een 

beschrijving gegeven van de "fuzzy inference" systeem. Daamaast word er twee algemeen bekende 

inference mechanismes in "fuzzy rule-based" systemen gepresenteerd Ilamelijk het Mamdani en het 

Tsukamoto inference meehanisme. Oit hoofdstuk adresseert ook de op "fuZZ)' rule" gebaseerde 

c1assificatie. Tenslatte, wordt de toepassing van "fuZZ)' rule" systeem op dagelijkse motorische 

aetiviteiten geIntroduceerd. Om de taepasbaarheid van dergelijke c1assifieatie techniek voar de te 

illustreren, werd zo'n klassificatie toegepast op de geregistreerde data van aeht palienten met been 

amputaties en drie gezonde personen. Het fuzzy rule herkenningsystemen kon gemiddeld 99% van de 

gepresenteerde gevallen van dagelijkse motorische aetiviteit klassen correct herkennen. In een 

experiment waar het herkenningsysteem op 12000 stappen patroon werd toegepast, kon het systeem 

die patronen meer dan 99.5% gevallen nauwkeurigheid herkennen. Om zeker te zijn van patient 

onafhankelijkheid van het systeem en zijn prestaties, werd er een ander experiment uitgevoerd. In dit 

extra verificatie experiment, werd het systccm toegepast op een geregistreerd data van 1.5 uur (met 
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sampling rate van 25 per seconde, waarbij het systeem was ontworpen voor data met sampling rate 

van 32 per seconde). Uit 3830 stappen patroon kon het systeem 3812 gevallen herkennen (99.53%), 

hetgeen werd geverifieerd langs de weg van vistiele inspectie. Dit hoge herkennings prestatie komt 

overeen met de bevindingen uit het eerste experiment. 

Hoofd.lukS 

Hoofdstuk 5 beschrijft het veld van ''Neural-fuzzy'' systemen. Dit hoofdstuk presenteert ook ooze 

gesuggereerde methodologie voor het herkennen van patronen in multi-kanaal geregistreerde data. 

Vervolgens, adresseert dit hoofdstuk de FuNe, een van de ''Neural-fuzzy'' systemen in de Iiteratuur. 

Tenslotte, wordt het vennogen van FuNe om overbodige kenmerken te verwijderen en "fuzzy rule" te 

onttrekken, gerllustreerd door het toepassen van dit systeem op een voorbeeld van kunstmatige multi­

kanaal geregistreerde data. 

6.4 Toekomstige tendensen 
Een verdere verbetering van het op "fuzzy rule" gebaseerde herkenningsysteem voor het herkennen 

van dagelijkse motorische activiteiten is praktisch oilmogelijk. Een zeer hoog niveau van 

nauwkeurigheid is reeds bereikt en fouten komen slechts voor uitzonderlijke gevallen. Voor het 

herkennen van nieuwe activiteiten kan het erg moeilijk zijn om een hoge discriminerende kenmerken 

te vinden. De combinatie van het op "fuzzy rule" gebaseerde herkenningsysteem met het PNN 

systeem lijkt de enige oplossing. 

Het ontwikkeJen van een software tool dat deze combinatie realiseert is een toekomstig werk. 

The auteur gelooft dat zijn gesuggereerde methodologie voor het herkennen van patronen in multi­

kanaal geregistreerde data is een systematische benadering. Om dit te implementeren, moet het 

volgende worden gedaan: 

• het ontwikkelen van een interactief software pakket dat een aantal nieuwe kenmerken uit 

voorbewerkte data genereert, en dat capabel is om de training en test verzamelingen te 

construeren. 

• het verwijderen van de beperkingen betreffende het aantal ingangen en Iidmaatschap functies voor 

ieder ingangs kenmerk in het FuNe-1 systeem. 

• het gcbruik maken van methoden voor het clusteren van ingangs ruimte voor het initialiseren van 

de lidmaatschap functies in het FuNe-I systeem. 
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Glossary 

WHO 

ICIDH 

CAMARC 

EMG 

Glossary 

World Health Organization. 

International Classification ofImpairment, Diseases and Handicaps. 

Computer aided Movement Analysis in a Rehabilitation Context. 

ElectroMyoGraphy is the detection and recording of muscle activity potential using 

either surface electrodes on the skin or by inserting a needle electrode into the muscle. 

ECG ElectroCardioGraphy is used to measure the heart rate kinetics as a cheaper and more 

Handicap 

Impairment 

Disability 

practical alternative to direct oxygen consumption measurement. 

A Handicap is a disadvantage for a given individual, resulting from an impairment or 

disability, that limits or prevents the fulfillment of a role that is normal (depending on 

age, sex, and social and cultural factors) for that individual. 

An Impairment is any loss or abnormality of psychological, or anatomical structure or 

function. , 

A disability is characterized by excesses or deficiencies of customarily expected activity 

performance and behavior. and these may be temporary or permanent, reversible or 

irreversible. and progressive or regressive. Disabilities may arise as a direct 

consequence of impairment or as a response by the individual, particularly 

psychologically, to a physical, sensory, or other impairment. Disability represents 

objectification of an impairment, and as such it reflects disturbances at the level of the 

person. 
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