100 research outputs found

    New sizes of complete arcs in PG(2,q)

    Full text link
    New upper bounds on the smallest size t_{2}(2,q) of a complete arc in the projective plane PG(2,q) are obtained for 853<= q<= 2879 and q=3511,4096, 4523,5003,5347,5641,5843,6011. For q<= 2377 and q=2401,2417,2437, the relation t_{2}(2,q)<4.5\sqrt{q} holds. The bounds are obtained by finding of new small complete arcs with the help of computer search using randomized greedy algorithms. Also new sizes of complete arcs are presented.Comment: 10 page

    On sizes of complete arcs in PG(2,q)

    Get PDF
    New upper bounds on the smallest size t_{2}(2,q) of a complete arc in the projective plane PG(2,q) are obtained for 853 <= q <= 4561 and q\in T1\cup T2 where T1={173,181,193,229,243,257,271,277,293,343,373,409,443,449,457, 461,463,467,479,487,491,499,529,563,569,571,577,587,593,599,601,607,613,617,619,631, 641,661,673,677,683,691, 709}, T2={4597,4703,4723,4733,4789,4799,4813,4831,5003,5347,5641,5843,6011,8192}. From these new bounds it follows that for q <= 2593 and q=2693,2753, the relation t_{2}(2,q) < 4.5\sqrt{q} holds. Also, for q <= 4561 we have t_{2}(2,q) < 4.75\sqrt{q}. It is showed that for 23 <= q <= 4561 and q\in T2\cup {2^{14},2^{15},2^{18}}, the inequality t_{2}(2,q) < \sqrt{q}ln^{0.75}q is true. Moreover, the results obtained allow us to conjecture that this estimate holds for all q >= 23. The new upper bounds are obtained by finding new small complete arcs with the help of a computer search using randomized greedy algorithms. Also new constructions of complete arcs are proposed. These constructions form families of k-arcs in PG(2,q) containing arcs of all sizes k in a region k_{min} <= k <= k_{max} where k_{min} is of order q/3 or q/4 while k_{max} has order q/2. The completeness of the arcs obtained by the new constructions is proved for q <= 1367 and 2003 <= q <= 2063. There is reason to suppose that the arcs are complete for all q > 1367. New sizes of complete arcs in PG(2,q) are presented for 169 <= q <= 349 and q=1013,2003.Comment: 27 pages, 4 figures, 5 table

    Cyclic arcs in PG(2, q

    Get PDF
    Abstract. B.C. Kestenband [9], J.C. Fisher, J.W.P. Hirschfeld, and J.A. Thas [3], E. Boros, and T. Szonyi [1] constructed complete (q2 -q + l)-arcs in PG(2, q2), q &gt; 3. One of the interesting properties of these arcs is the fact that they are fixed by a cyclic protective group of order q2 -q + 1. We investigate the following problem: What are the complete k-arcs in PG(2, q) which are fixed by a cyclic projective group of order k? This article shows that there are essentially three types of those arcs, one of which is the conic in PG(2, q), q odd. For the other two types, concrete examples are given which shows that these types also occur

    2-semiarcs in PG(2, q), q <= 13

    Get PDF
    A 2-semiarc is a pointset S-2 with the property that the number of tangent lines to S-2 at each of its points is two. Using some theoretical results and computer aided search, the complete classification of 2-semiarcs in PG(2, q) is given for q <= 7, the spectrum of their sizes is determined for q <= 9, and some results about the existence are proven for q = 11 and q = 13. For several sizes of 2-semiarcs in PG(2, q), q <= 7, classification results have been obtained by theoretical proofs
    • …
    corecore