225,682 research outputs found

    Generalized pairwise z-complementary codes

    Get PDF
    An approach to generate generalized pairwise Z-complementary (GPZ) codes, which works in pairs in order to offer a zero correlation zone (ZCZ) in the vicinity of zero phase shift and fit extremely well in power efficient quadrature carrier modems, is introduced in this letter. Each GPZ code has MK sequences, each of length 4NK, whereMis the number of Z-complementary mates, K is a factor to perform Walsh–Hadamard expansions, and N is the sequence length of the Z-complementary code. The proposed GPZ codes include the generalized pairwise complementary (GPC)codes as special cases

    A Systematic Framework for the Construction of Optimal Complete Complementary Codes

    Full text link
    The complete complementary code (CCC) is a sequence family with ideal correlation sums which was proposed by Suehiro and Hatori. Numerous literatures show its applications to direct-spread code-division multiple access (DS-CDMA) systems for inter-channel interference (ICI)-free communication with improved spectral efficiency. In this paper, we propose a systematic framework for the construction of CCCs based on NN-shift cross-orthogonal sequence families (NN-CO-SFs). We show theoretical bounds on the size of NN-CO-SFs and CCCs, and give a set of four algorithms for their generation and extension. The algorithms are optimal in the sense that the size of resulted sequence families achieves theoretical bounds and, with the algorithms, we can construct an optimal CCC consisting of sequences whose lengths are not only almost arbitrary but even variable between sequence families. We also discuss the family size, alphabet size, and lengths of constructible CCCs based on the proposed algorithms

    Identification of protein coding genes in genomes with statistical functions based on the circular code

    Get PDF
    A new statistical approach using functions based on the circular code classifies correctly more than 93 % of bases in protein (coding) genes and non-coding genes of human sequences. Based on this statistical study, a research software called "Analysis of Coding Genes" (ACG) has been developed for identifying protein genes in the genomes and for determining their frame. Furthermore, the software ACG also allows an evaluation of the length of protein genes, their position in the genome, their relative position between themselves, and the prediction of internal frames in protein genes
    corecore