# IDENTIFICATION OF PROTEIN CODING GENES IN GENOMES WITH STATISTICAL FUNCTIONS BASED ON THE CIRCULAR CODE 

Didier G. Arquès ${ }^{1}$, Jérôme Lacan ${ }^{2}$ and Christian J. Michel ${ }^{3 *}$

[^0]* Corresponding author


#### Abstract

A new statistical approach using functions based on the circular code classifies correctly more than $93 \%$ of bases in protein (coding) genes and non-coding genes of human sequences. Based on this statistical study, a research software called "Analysis of Coding Genes" (ACG) has been developed for identifying protein genes in the genomes and for determining their frame. Furthermore, the software ACG also allows an evaluation of the length of protein genes, their position in the genome, their relative position between themselves, and the prediction of internal frames in protein genes.


## 1. INTRODUCTION

The concept of code "without commas", introduced by Crick et al. (1957) for the protein (coding) genes, is a code readable in only one out of three frames. Such a theoretical code without commas, called circular code in the theory of codes (e.g., Béal, 1993; Berstel \& Perrin, 1985), is a particular set $X$ of trinucleotides such that a concatenation (a series) of trinucleotides of $X$ leads to sequences that cannot be decomposed in another frame with a concatenation of trinucleotides of $X$.

For example, suppose that $X$ is the following set of trinucleotides: $X=\{A A C$, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC\}. Some trinucleotides of $X$ are concatenated randomly, for example as follows:
...CAG,GCC,TTC,AAT,ACC,ACC,CAG,GAA,GAG,GTA,ATT,ACC,AAT,GTA,AAC,TAC,TTC,ACC,ATC...
The commas between the trinucleotides show the frame of construction (reading frame in biology). Suppose now that the commas are "lost", leading to the sequence:

## ...CAGGCCTTCAATACCACCCAGGAAGAGGTAATTACCAATGTAAACTACTTCACCATC...

The problem is to retrieve the original frame of construction. There are 3 obvious possibilities:
...C,AGG,CCT,TCA,ATA,CCA,CCC,AGG,AAG,AGG,TAA,TTA,CCA,ATG,TAA,ACT,ACT,TCA,CCA,TC...
...CA,GGC,CTT,CAA,TAC,CAC,CCA,GGA,AGA,GGT,AAT,TAC,CAA,TGT,AAA,CTA,CTT,CAC,CAT,C...
...CAG,GCC,TTC,AAT,ACC,ACC,CAG,GAA,GAG,GTA,ATT,ACC,AAT,GTA,AAC,TAC,TTC,ACC,ATC...
If the set $X$ of trinucleotides is a circular code, then there is an unique solution:
...CAG,GCC,TTC,AAT,ACC,ACC,CAG,GAA,GAG,GTA,ATT,ACC,AAT,GTA,AAC,TAC,TTC,ACC,ATC...
This unique solution is obtained by choosing a window (sufficiently large) in any position in the sequence and then verifying the belonging of the trinucleotides of the window to $X$ :

The first decomposition proposed is rejected immediately as the first trinucleotide AGG in the window does not belong to $X$. The second decomposition proposed is rejected with a window of 13 nucleotides. Indeed, the first nucleotide $A$ in the window may belong to several trinucleotides of $X$, e.g., GTA. The trinucleotides GGT, AAT, and TAC following A belong to $X$. The next trinucleotide CAA does not belong to $X$ as the $13^{\text {th }}$ nucleotide A (from the beginning of the window) differs from the unique possibility $G$ of CAG belonging to $X$. The third decomposition is the original one as all the trinucleotides in the window belong to $X$ and the original decomposition of the sequence is deduced automatically.

Such a code was proposed by Crick et al. (1957) in order to explain how the reading of a series of nucleotides in the protein genes could code for the amino acids constituting the proteins. The 2 problems stressed were: why are there more trinucleotides than amino acids and how to choose the correct reading frame? Crick et al. (1957) proposed that only 20 among 64 trinucleotides code for the 20 amino acids. However, the determination of a set of 20 trinucleotides forming a circular code $X$ depends on a great number of constraints:
(i) A trinucleotide with identical nucleotides (AAA, CCC, GGG or TTT) must be excluded from such a code. Indeed, the concatenation of AAA with itself does not allow the retrieval of the reading (original) frame as there are 3 possible decompositions: ...AAA,AAA,AAA,..., ...A,AAA,AAA,AA... and ...AA,AAA,AAA,A...
(ii) Two trinucleotides related to circular permutation, e.g., ATC and TCA, must be excluded from such a code. Indeed, the concatenation of ATC with itself does not allow the retrieval of the reading (original) frame as there are 2 possible decompositions: ...ATC,ATC,ATC $\ldots$... and ...A,TCA,TCA,TC...
Therefore, by excluding AAA, CCC, GGG and TTT and by gathering the 60 remaining trinucleotides in 20 classes of 3 trinucleotides so that, in each class, the 3 trinucleotides are deduced from each other by circular permutations, e.g., ATC, TCA, and CAT, a circular code, has only one trinucleotide per class and therefore contains at most 20 trinucleotides (maximal circular code). This trinucleotide number is identical to the amino acid number suggesting a circular code assigning one trinucleotide per amino acid.

No set of 20 trinucleotides leading to a circular code has been found at this time. Furthermore, the 2 discoveries that the trinucleotide TTT, an "excluded" trinucleotide in the concept of circular code, codes for phenylalanine (Nirenberg \& Matthaei, 1961) and that the protein genes are placed in the reading frame with a particular trinucleotide, namely the start trinucleotide ATG, have led to giving up the concept of circular code on the alphabet $\{A, C, G, T\}$. For several biological reasons, in particular the interaction between mRNA and tRNA, the concept of circular code has been resumed subsequently regarding the alphabet $\{R, Y\}$ ( $\mathrm{R}=$ purine $=\mathrm{A}$ or $\mathrm{G}, \mathrm{Y}=$ pyrimidine $=\mathrm{C}$ or T ) with 2 trinucleotide models for the primitive protein genes: RRY (Crick et al., 1976) and RNY (N=R or Y) (Eigen \& Schuster, 1978).

Unexpectedly, a maximal circular code has been identified recently in the protein genes of both eukaryotes and prokaryotes on the alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ (Arquès \& Michel, 1996). This circular code has been obtained by 2 methods:
(i) by computing the occurrence frequencies of the 64 trinucleotides AAA,..., TTT in the 3 frames of protein genes and then, by assigning each trinucleotide to the frame associated with its highest frequency (Arquès \& Michel, 1996);
(ii) by computing the $12288\left(3 \times 64^{2}\right)$ autocorrelation functions analysing the probability that a trinucleotide in any frame occurs any i bases N after a trinucleotide in a given frame of protein genes and then, by classifying these autocorrelation functions according to their modulo 3 periodicity for deducing a frame for each trinucleotide (Arquès \& Michel, 1997a).

The maximal circular code identified is the set $X_{0}=\{A A C, A A T, A C C, A T C, A T T, C A G, C T C, C T G, G A A, G A C$, GAG,GAT,GCC,GGC,GGT,GTA,GTC,GTT,TAC,TTC\} of 20 trinucleotides in frame 0 of protein genes (reading frame). Furthermore, the 2 sets $X_{1}$ and $X_{2}$ of 20 trinucleotides identified in the frames 1 and 2, respectively, (frames 1 and 2 being the frame 0 shifted by 1 and 2 nucleotides respectively in the $5^{\prime}-3^{\prime}$ direction) by these 2 methods, are also maximal circular codes (Table 1a). These 3 circular codes have several important properties:
(i) circularity: $X_{0}$ generates $X_{1}$ by one circular permutation and $X_{2}$ by another circular permutation (1 and 2 circular permutations of each trinucleotide of $X_{0}$ lead to the trinucleotides of $X_{1}$ and $X_{2}$ respectively) (Table 1b).
(ii) complementarity: $X_{0}$ is self-complementary (10 trinucleotides of $X_{0}$ are complementary to the 10 other trinucleotides of $X_{0}$ ) and, $X_{1}$ and $X_{2}$ are complementary to each other (the 20 trinucleotides of $X_{1}$ are complementary to the 20 trinucleotides of $X_{2}$ ) (Table 1c). Note that this property is also verified with $T_{0}=X_{0} \bigcup\{\mathrm{AAA}, \mathrm{TTT}\}, T_{1}=X_{1} \bigcup\{\mathrm{CCC}\}$ and $T_{2}=X_{2} \bigcup\{\mathrm{GGG}\}$ (Table 1c).
(iii) rarity: the occurrence probability of $X_{0}$ is equal to $6 \times 10^{-8}$. As there are 20 classes of 3 trinucleotides (see above), the number of potential circular codes is $3^{20}=3486784401$. The computed number of complementary circular codes with 2 shifted circular codes (called $C^{3}$ codes), such as $X_{0}$, is 216 . Therefore, its probability is $216 / 3^{20}=6 \times 10^{-8}$.
(iv) flexibility:

- the lengths of the minimal windows to automatically retrieve the frames 0,1 , and 2 with the 3 circular codes $X_{0}, X_{1}$, and $X_{2}$ respectively, are all equal to 13 nucleotides and represent the largest window length among the $216 \mathrm{C}^{3}$ codes.
- the frequency of misplaced trinucleotides in the shifted frames is equal to $24.6 \%$. If the trinucleotides of $X$ are concatenated randomly, for example as follows:
...GAA,GAG,GTA,GTA,ACC,AAT,GTA,CTC,TAC,TTC,ACC,ATC...
then, the trinucleotides in frame 1:
...G,AAG,AGG,TAG,TAA,CCA,ATG,TAC,TCT,ACT,TCA,CCA,TC...
and the trinucleotides in frame 2 :
...GA,AGA,GGT,AGT,AAC,CAA,TGT,ACT,CTA,CTT,CAC,CAT,C...
belong mainly to $X_{1}$ and $X_{2}$, respectively. A few trinucleotides are misplaced in the shifted frames. With this example, in frame 1,9 trinucleotides belong to $X_{1}, 1$ trinucleotide (TAC) to $X_{0}$ and 1 trinucleotide (TAA) to $X_{2}$. In frame 2, 8 trinucleotides belong to $X_{2}, 2$ trinucleotides (GGT, AAC) to $X_{0}$ and 1 trinucleotide (ACT) to $X_{1}$. By computing exactly, the average frequencies of misplaced trinucleotides in frame 1 are $11.9 \%$ for $X_{0}$ and $12.7 \%$ for $X_{2}$. In frame 2, the average frequencies of misplaced trinucleotides are $11.9 \%$ for $X_{0}$ and $12.7 \%$ for $X_{1}$. The complementarity property explains on the one hand that the frequency equality of $X_{0}$ in frames 1 and 2 and on the other hand, the frequency equality of $X_{2}$ in frame 1 and $X_{1}$ in frame 2 . The sum of percentages of misplaced trinucleotides in frame $1\left(X_{0}\right.$ and $\left.X_{2}\right)$ is equal to the sum of percentages of misplaced trinucleotides in frame $2\left(X_{0}\right.$ and $X_{1}$ ) and is equal to $24.6 \%$. This value is close to the highest frequency ( $27.9 \%$ ) of misplaced trinucleotides among the $216 C^{3}$ codes.
- the 4 types of nucleotides occur in the 3 trinucleotide sites with the 3 circular codes $X_{0}, X_{1}$, and $X_{2}$ (Table 1a).
(v) evolutionary: an evolutionary analytical model at 3 parameters ( $p, q, t$ ) based on an independent mixing of the 20 trinucleotides of $X_{0}$ with equiprobability $(1 / 20)$ followed by $t \approx 4$ substitutions per trinucleotide according to the proportions $p \approx 0.1, q \approx 0.1$ and $r=1-p-q \approx 0.8$ in the 3 trinucleotide sites respectively, retrieves the frequencies of $X_{0}, X_{1}$, and $X_{2}$ observed in the 3 frames of protein genes.

The proof that $X_{0}, X_{1}$, and $X_{2}$ are circular codes, the detailed explanation of the properties (i-iv) and the different biological consequences, in particular on the 2-letter genetic alphabets, the genetic code and the amino acid frequencies in proteins, are given in Arquès \& Michel (1996, 1997a). The property (v) is described in Arquès et al. $(1998,1999)$.
Note: a non-complementary circular code has been identified recently in the mitochondrial protein genes (Arquès \& Michel, 1997b).

As the circular code is a strong structural property of protein genes, different statistical functions based on the circular code are investigated in this paper in order to discriminate between coding and noncoding genes. Indeed, the sets of 20 trinucleotides based on a circular code, i.e., the $216 C^{3}$ codes and in particular $X_{0}, X_{1}$, and $X_{2}$, have a lesser number of misplaced trinucleotides in the shifted frames compared to the vast majority of sets without particular property. This low number implies that the 3 circular codes $X_{0}, X_{1}$, and $X_{2}$ can clearly be associated with the 3 frames 0 , 1 , and 2 respectively (detailed in method).

After having validated this statistical approach with the human sequences from the EMBL database, research software has been developed for identifying protein genes in genomes and for determining their frame. Furthermore, this software also allows an evaluation of the length of protein genes, their position in the genome, their relative position between themselves, and the prediction of internal frames. These possibilities are presented with 5 examples taken from human chromosomes: a large protein gene, a complementary protein gene, a series of 5 exons, a protein gene with 4 internal frames, and a possible coding region in the human DNA sequence. An example with a prokaryotic genome is also given.

## 2. METHOD

### 2.1. Introduction

The method developed is based on a strong structural property of protein genes, i.e., the circular code, and in particular its properties of circularity and complementarity. This method differs from the classical methods, such as the codon usage methods and the HMM methods, at least for the following reasons:
(i) The circular code is observed in protein genes of eukaryotes as well as of prokaryotes and is not found in the non-coding genes (Arquès et al., 1998). Therefore, a method based on this circular code can be applied independently of the type of eukaryotic/prokaryotic organism under investigation. In contrast, the codon usage methods use codon frequencies that depend on the species and the functional classes of protein genes (see e.g., Karlin et al., 1998).
(ii) The circular code $X_{0}$ (resp. $X_{1}$ and $X_{2}$ ) contains the 20 codons having a preferential occurrence in the frame 0 (resp. 1 and 2). It is important to stress that the set $X_{0}$, for example, does not necessarily represent the common codons in frame 0, i.e., the 20 codons having the highest frequencies in frame 0 (see a few examples in Table 2).
(iii) The $216 C^{3}$ codes have a low number of misplaced trinucleotides in the shifted frames, $27.9 \%$ in the worst case and $24.6 \%$ for $X_{0}$. This number is close to $2 / 3 \approx 66.6 \%$ with the vast majority of trinucleotide sets without particular property. Indeed, by excluding AAA, CCC, GGG, and TTT, there is one chance out of 3 to observe, for example, a codon of $X_{1}$ in frame 1, i.e., 2 chances out of 3 to observe a codon of $X_{0}$ or $X_{2}$ in frame 1. In summary, the method developed according to the circular code allows to associate clearly the 3 sets of trinucleotides $X_{0}, X_{1}$, and $X_{2}$ with the 3 frames 0,1 and 2 respectively of protein genes.
(iv) The complementarity property of these 3 sets $X_{0}, X_{1}$, and $X_{2}$ is used for identifying protein genes on the direct strand but also on the complementary strand (see the definition of the 4 functions below).
(v) The method developed is based on the global probabilities of $X_{0}, X_{1}$, and $X_{2}$ and not on the individual codon probabilities that are used in the codon usage methods.

### 2.2. Definition of statistical functions

Let $t$ be a trinucleotide in the set $\{\mathrm{AAA}, \ldots, \mathrm{TTT}\}$ (64 trinucleotides). Let $F$ be a population with $m(F)$ sequences $S$. Each sequence $S$ has a base length $I(S)$. Let $w_{i}$ be a window of $n$ trinucleotides starting at the base position $i, i=1, \ldots, l(S)-3 n+1$, in a sequence $S$ of $F$, i.e., $w_{i}=t_{1} \ldots t_{n}$ where $t_{j}$ is the $j$ th trinucleotide in the window $w_{i}$. Let $T_{g}, g \in\{0,1,2\}$, be the 3 subsets of trinucleotides constituting the 3 circular codes in the protein coding genes of eukaryotes and prokaryotes, $T_{0}$ in the open reading frame (frame 0 ) and, $T_{1}$ and $T_{2}$, in the shifted frames 1 and 2 respectively (Table 1a). In a given window $w_{i}$, the function $\delta_{g}\left(t_{j}\right)=\left\{\begin{array}{ll}1 & \text { if } t_{j} \in T_{g} \\ 0 & \text { if } t_{j} \notin T_{g}\end{array}\right.$ determines whether or not if the trinucleotide $t_{j}$ at the position $j$ in $w_{i}$ belongs to $T_{g}$ with $g \in\{0,1,2\}$. Next, the occurrence frequency $P\left(T_{g}, w_{i}\right)$ of a subset $T_{g}$ in $\mathrm{w}_{\mathrm{i}}$, is $P\left(T_{g}, w_{i}\right)=\sum_{j=1}^{n} \delta_{g}\left(t_{j}\right) / n$ where $n$ is the total number of trinucleotides in the window $w_{i}$.

Several statistical functions based on the properties of the circular code, are defined:

$$
\begin{gather*}
F_{1}(i)=P\left(T_{0}, w_{i}\right)  \tag{1}\\
F_{2}(i)=P\left(T_{0}, w_{i}\right)-P\left(T_{2}, w_{i}\right)  \tag{2}\\
F_{3}(i)=\frac{21}{22} 2 P\left(T_{0}, w_{i}\right) /\left(P\left(T_{1}, w_{i}\right)+P\left(T_{2}, w_{i}\right)\right)  \tag{3}\\
F_{4}(i)=\sum_{j=0}^{2} P\left(T_{j}, W_{i+j}\right) \tag{4}
\end{gather*}
$$

These 4 statistical functions use different properties of the circular code, in particular the properties of circularity and complementarity.

The function $F_{1}$ is the simplest, and is based on the circular code $X_{0}$ (extended to $T_{0}$ ) in each window $w_{i}$. In a protein gene, $F_{1}(i)$ associated with the reading frame of the sequence (i.e., $w_{i}$ in reading frame and therefore $w_{i+1}$ and $w_{i+2}$ in the shifted frames 1 and 2, respectively) is in general greater than $F_{1}(i+1)$ and $F_{1}(i+2)$ as the occurrence probability of $T_{0}$ is by definition maximum in the reading frame (see point (ii) of Section 2.1 explaining the misplaced trinucleotides).

The function $F_{2}$ considers the 2 circular codes $X_{0}$ and $X_{2}$ (extended to $T_{0}$ and $T_{2}$ ). The probability difference $P\left(T_{0}, W_{i}\right)-P\left(T_{2}, w_{i}\right)$ is maximum among the 18 possible probability differences in the 3 frames. Indeed, the average probabilities of $T_{0}, T_{1}$, and $T_{2}$ in the frame 0 (resp. 1, 2) of protein genes are $49 \%$ (resp. 26.5 \%, 32 \%), 28.5 \% (resp. 43 \%, 23 \%), and 22.5 \% (resp. $30.5 \%, 45$ \%) (Arquès et al., 1998). By consequence, the maximum probability difference in frame 0 (resp. 1, 2 ) is $26.5 \%$ with $\operatorname{Prob}\left(T_{0}\right)-\operatorname{Prob}\left(T_{2}\right)$ (resp. $16.5 \%$ with $\operatorname{Prob}\left(T_{1}\right)-\operatorname{Prob}\left(T_{0}\right), 22 \%$ with $\left.\operatorname{Prob}\left(T_{2}\right)-\operatorname{Prob}\left(T_{1}\right)\right)$.

The functions $F_{3}$ and $F_{4}$ are based on the 3 circular codes $X_{0}, X_{1}$, and $X_{2}\left(\right.$ extended to $T_{0}, T_{1}$, and $\left.T_{2}\right)$. The function $F_{3}$ tests a ratio that is maximum in the reading frame. The functions $F_{1}, F_{2}$, and $F_{3}$ favor the
circular code $X_{0}$ characterizing the reading frame, while the function $F_{4}$ considers the 3 circular codes in their 3 associated frames.
Finally, as $T_{0}$ is self-complementary, and as $T_{1}$ and $T_{2}$ are complementary to each other, the 4 functions have a similar behaviour on both strands.

These statistical functions are represented by curves as follows. As the value of $F_{k}(i)$ is a mean value computed from the bases of the window $w_{i}$, i.e., the bases $i, i+1, \ldots, i+3 n-1$, the point associated with $F_{k}(i)$ is represented graphically in the abscissa by the base position $i+\lfloor 3 n / 2\rfloor$ (greatest integer less or equal) and in the ordinate by $F_{k}(i)$. As the protein coding genes have 3 frames, a function $F_{k}$ is represented by 3 curves where the points are joined modulo 3 : by convention, the curve $C_{j}, j=0,1,2$, joins the points associated with $F_{k}(i)$ with $i=(j+1) \bmod 3$, i.e., the curve $C_{0}$ (resp. $C_{1}, C_{2}$ ) joins the points in base position 1 (resp. 2, 0) modulo 3 (Fig. 1a) and therefore is related to the base position in frame 0 (resp. 1, 2) determined from the beginning of the sequence.

The 4 functions defined above are extended to the trinucleotide concept as follows: the maximum of a given previous function $F_{k}$ in a series of 3 successive bases and the difference between the maximum and the second highest of a given previous function $F_{k}$ in a series of 3 successive bases.

Let $\tilde{t}_{c}$ be the $c$ th trinucleotide in the genome sequence, i.e., constituted by the 3 bases in position $i$ such that $c=\lceil i / 3\rceil$ (smallest integer greater or equal). Then,

$$
\begin{gather*}
F_{k}^{M}(c)=\max _{j=0,1,2} F_{k}(3 c-j)  \tag{5}\\
F_{k}^{D}(c)=F_{k}\left(3 c-j_{0}\right)-F_{k}\left(3 c-j_{1}\right) \tag{6}
\end{gather*}
$$

so that $j_{0}, j_{1}, j_{2} \in\{0,1,2\}$ are defined by the inequality $F_{k}\left(3 c-j_{0}\right) \geq F_{k}\left(3 c-j_{1}\right) \geq F_{k}\left(3 c-j_{2}\right)$
Note: The 2 functions $F_{k}^{M}$ and $F_{k}^{D}$ always have values greater than or equal to 0 .

The statistical significance of the 2 functions $F_{k}^{M}$ and $F_{k}^{D}$ is evaluated according to the parameter $s$ based on the discrete sum (called "surface") of the values of a function in a given range $R$ of trinucleotides. The function $F_{k}^{M}\left(\right.$ resp. $\left.F_{k}^{D}\right)$ identifies the 3 bases of the trinucleotide $\tilde{t}_{c}$ as coding bases if $\sum_{r \in R} F_{k}^{M}(r)>s$ (resp. $\left.\sum_{r \in R} F_{k}^{D}(r)>s\right)$ where $R$ is the greatest range containing $c$ such that $\forall r \in R$, $\max _{j=0,1,2} F_{k}(3 r-j)=F_{k}\left(3 r-j_{0}\right)$ where $j_{0} \in\{0,1,2\}$ is constant. In order to visualise this concept, these 2 discrete sums $\sum_{r \in R} F_{k}^{M}(r)$ (resp. $\left.\sum_{r \in R} F_{k}^{D}(r)\right)$ are represented in the Fig. 1 b (resp. Fig. 1c).

In summary, 8 functions are analysed with the parameter $s$, with $F_{k}^{M}$ and $F_{k}^{D}$ by varying $k$ between 1 and 4. This statistical method is the main scientific part of the research software that is presented below.

### 2.3. Development of a research software called Analysis of Coding Genes (ACG)

The main functionalities of the research software called Analysis of Coding Genes (ACG) are the statistical analyses of different functions based on the circular code in sequence populations, the identification of protein genes in genomes, and the determination of their frame. Furthermore, several patterns of protein genes can be evaluated: their length, their position in the genome, their relative position between themselves, and the presence of internal frames. Several examples of these possibilities are given in the section titled Results.

The software is written with 3 units: a sequence analysis unit, a statistical function unit and an interface unit.

The sequence analysis unit reads the sequences and computes the occurrence frequency $P\left(T_{g}, w_{i}\right)$ in a window according to the algorithm described below. This unit calls the statistical function unit for computing a chosen function $F_{k}^{M}$ and $F_{k}^{D}$. Precisely, the 4 functions $F_{k}$ and their trinucleotide evaluation $F_{k}^{M}$ or $F_{k}^{D}$ are implemented in this statistical function unit, which allows statistical numerical results on a sequence population $F$ (eventually on one sequence). The interface unit allows the choice of different statistical parameters: the EMBL sequence file (population $F$ or sequence $S$ ), the statistical function $F_{k}^{M}$ or $F_{k}^{D}$, the window length $n$ in trinucleotides, and the statistical surface parameter s. It also has a graphical functionality for displaying the graphical curves: the start base position in the sequence, the curve display window length in bases, the left/right scroll of a curve allowing to display a curve again, and a colored curve associated with the frame for a direct interpretation. The curve display window can be printed on a broad range of printing devices. The statistical numerical results are stored in text files.

This structure in units easily allows modifications and extensions of the software ACG. ACG has been developed to be interactive and user-friendly. ACG is written in Pascal Delphi and implemented on IBM compatible microcomputers. It can be used without any computer knowledge.

The algorithm for computing the occurrence frequency $P\left(T_{g}, W_{i}\right)$ is constructed such that the different bases in each sequence are read only one time.
A window $w_{i}$ of $n$ trinucleotides runs from the first $(i=1)$ base to the base position $i=I(S)-3 n+1$ in the sequence. At each step of the algorithm, a base is read in the sequence and treated.

From the base position $k=1$ to $k=3 n+2$, the algorithm computes the values $P\left(T_{g}, w_{i}\right)$ for $g=0,1,2$ and $i=1,2,3$.

From the base position $k=3 n+3$ to $l(S)$, the algorithm computes for $i=k-3 n+1$, the values $P\left(T_{g}, w_{i}\right)$ for $g=0,1,2$, i.e., from $i=4$ to $I(S)-3 n+1$. The value $P\left(T_{g}, w_{i}\right)$ is deduced from $P\left(T_{g}, w_{i-3}\right)$. Indeed, the 2 windows $w_{i}$ and $w_{i-3}$ differ only from one trinucleotide (Fig. 2). Let the "destroyed trinucleotide" $t_{d}$ be the trinucleotide belonging to $w_{i-3}$ but not to $w_{i}$, i.e., the trinucleotide from the position $i-3$ to $i-1$. Similarly, let the "constructed trinucleotide" $t_{c}$ be the trinucleotide belonging to $w_{i}$ but not to $w_{i-3}$, i.e., the last trinucleotide in $w_{i}$ that starts in position $i+3(n-1)$ and ends in position $i+3 n-1$ (Fig. 2). Suppose that
$t_{d} \in T_{g}$ and $t_{c} \in T_{g^{\prime}}$. If $g \neq g^{\prime}$, then $P\left(T_{g}, w_{i}\right)=P\left(T_{g}, w_{i-3}\right)-1 / n$ and $P\left(T_{g^{\prime}}, w_{i}\right)=P\left(T_{g^{\prime}}, w_{i-3}\right)+1 / n$. If $g=g^{\prime}$, then $P\left(T_{g^{\prime \prime}}, w_{i}\right)=P\left(T_{g^{\prime \prime}}, W_{i-3}\right)$ for $g^{\prime \prime}=0,1,2$.

This algorithm is implemented with 3 words indexed from 0 : 2 words $d$ and $c$ of length 3 associated with the destroyed and constructed trinucleotides respectively, and $w$ of length $3 n$, with the current window. At the step treating the $k$ th base in the sequence, the base in the position $k$ modulo $3 n$ in the word $w$ is moved in the position $k$ modulo 3 in the word $d$. Then, the $k$ th base in the sequence is read and placed at the position $k$ modulo 3 in the word $c$ and at the position $k$ modulo $3 n$ in the word $w$. In this way, the 3 words contain correctly the series of bases of the sequence which is read only one time.
Example of computation (Fig. 3):
The subsequence of $S$ that is analysed comprises the base positions between 9 and 19. The base length of the window $w$ is chosen as $3 n=6$. The proposed computation starts at the step $k=17$, treating the 17 th base in $S$. The window $w_{i}$ is in position $i=k-3 n+1=17-6+1=12$ and then contains the bases $w=$ CCCCCC . The "destroyed trinucleotide" $t_{d}$ is the trinucleotide starting at the position $i=12-3=9$ : the word $d$ contains $d=$ AAA. The "constructed trinucleotide" $t_{c}$ is the trinucleotide starting at the position $i+3(\mathrm{n}-1)=12+3=15$ : the word $c$ contains $c=\operatorname{CCC}$. Note that at this step $w=w_{12}, d=t_{d}$, and $c=t_{c}$. At the step $k=18$, treating the 18th base in the sequence, the base in the position $(k \bmod 3 n)=0$ in the word $w$ is moved in the position $(k \bmod 3)=0$ in the word $d$. Therefore, $d=$ CAA. Then, the 18th base in the sequence is read and placed at the position $(k \bmod 3)=0$ in the word $c$ and at the position $(k \bmod 3 n)=0$ in the word $w$. Therefore, $c=$ GCC and $w=$ GCCCCC. Note that at this step, $w \neq w_{13}, d \neq t_{d}$, and $c \neq t_{c}$. The words $w, d$, and $c$ can be obtained by circular permutations from $w_{i}, t_{d}$, and $t_{c}$, respectively. This method avoids base shifting in the words. This process is reiterated at the next steps (see the Fig. 3 for the step 19).

### 2.4. Data acquisition

The gene population $F$ used for the statistical analysis is made of all human sequences (84222 sequences, 303124560 bases) obtained from release 57 (December 1998) of the EMBL Nucleotide Sequence Data Library, in the same way as described in previous studies (see e.g., Arquès and Michel, 1987, 1990 for a description of data acquisitions). This large population leads to stable frequencies for the different functions analysed (law of large numbers). Therefore, these functions can be compared in order to identify the most interesting. The protein coding genes are extracted according to the keyword CDS without discarding particular sequences. In this population, $9.4 \%$ of bases are annotated as coding. After the validation of the statistical approach, the research software ACG has been developed for identifying protein genes and used with the human chromosomes (Sanger Centre, March 1999).

## 3. RESULTS

### 3.1. Statistical results

The different functions are evaluated with the software ACG according to the classical parameter Simple Matching Coefficient (SMC) (Burset \& Guigó, 1996), which considers the proportion of bases (according to the EMBL release) identified correctly by the function. Let $\sum_{s \in F} I(S)=n_{F}$ be the total number of bases in the gene population F. Let TP (True Positives) (resp. TN, True Negatives) be the total number of bases identified as coding (resp. non-coding) bases by a function (defined above) in the coding (resp. noncoding) genes in the gene population $F$. The coefficient $S M C$ is then defined as $S M C=(T P+T N) / n_{F}$ (Burset \& Guigó, 1996).

The 8 functions $F_{k}^{M}$ and $F_{k}^{D}$ defined above are analysed with the coefficient SMC. These functions are evaluated with the parameter surface s between 6 and 130 with a step of 2 . They are calculated with a window length $n$ varying between 33 and 169 trinucleotides with a step of 17 trinucleotides. For each function, a maximum value of the coefficient SMC is obtained for given values of $s$ and $n$. The 8 curves associated with the 8 maximum values of the 8 functions are represented in Fig. $4 a, b$ by varying $s$ for a given $n$. Fig. 4 a (resp. 4b) gives the 4 curves $F_{k}^{M}$ (resp. $F_{k}^{D}$ ).

The figures $4 \mathrm{a}, \mathrm{b}$ show that the coefficient SMC is maximum with the function $F_{2}^{D}$ with $n=50$ and $s=38$, which identifies 93.32 \% of bases correctly.

For the function giving the maximum value of the coefficient SMC ( $F_{2}^{D}$ with $n=50$ and $s=38$ ), 4 other classical measures are computed, $\mathrm{Sn}, \mathrm{Sp}, \mathrm{Sp}$ ', and CC, as follows (Burset \& Guigó, 1996). Let FP (False Positives) (resp. FN, False Negatives) be the total number of bases identified as coding (resp. non-coding) bases by a function (defined above) in the non-coding (resp. coding) genes in the gene population $F$. Note: $T P+T N+F P+F N=n_{F}$. The definitions and results of these 4 measures are:
(i) The Sensitivity Sn is the proportion of coding bases identified correctly by the function:

$$
S n=T P /(T P+F N)=39.75 \%
$$

(ii) The Specificity $S p$ is the proportion of non-coding bases identified correctly by the function:

$$
S p=T N /(T N+F P)=98.88 \%
$$

(iii) Another definition of the Specificity $S p$ ' is the proportion of coding bases among the bases identified as coding by the function:

$$
S p^{\prime}=T P /(T P+F P)=78.71 \%
$$

(iv) The Correlation Coefficient $C C$ is a measure of global accuracy where the value 1.00 corresponds to a perfect prediction and where the value 0.0 is expected for a random prediction:

$$
C C=\frac{(T P \times T N)-(F N \times F P)}{((T P+F N)(T N+F P)(T P+F P)(T N+F N))^{1 / 2}}=0.53
$$

### 3.2. Applications of the research software Analysis of Coding Genes (ACG) with the human chromosomes

### 3.2.1. Three examples leading to classical results

The research software ACG identifies protein genes and their frames as follows:

- The identification of a protein gene (called CDS according to the EMBL syntax) results from a curve that is significantly greater than the 2 others that lead to a large surface $s$ (notion introduced in Section Method). The existence of a top curve is justified by the fact that the associated function $F_{k}$ is based on the circular code, which is a strong property of the protein genes (see Introduction). The intersection of the 2 highest curves allows for predicting a beginning and end regions of protein genes.
- The identification of a frame of a protein gene is deduced from the frame of the top curve determined from the beginning of the sequence (see the section titled Method).

Three examples of identification of protein genes (CDS) listed in the EMBL human chromosomes with the software ACG, are given.
Fig. 5a identifies a large CDS (2295 bases in the human DNA sequence from clone 512 B 11 on chromosome 6p24-25). Indeed, the curve becomes greater than the 2 others. Note that in a random sequence, e.g., a sequence generated with the 4 bases with equiprobability, leads to 3 similar horizontal curves. These 3 curves are gathered together before the beginning of the CDS ( 5 ' regions) and after the end of the CDS ( 3 ' regions), close to random sequences. As the top curve is $C_{0}$, the predicted frame of the CDS from the beginning of the sequence, is 0 . This is in agreement with the EMBL frame (frame $(44614-1) \bmod 3=0)$.

Fig. 5b identifies a complementary protein coding gene (cCDS in the human DNA sequence from clone E146D10 on chromosome 22) of middle size ( 595 bases). The cCDS chosen as an example, starts at the complementary base 17772 and ends at the complementary base 17178. As the top curve is $C_{0}$, the predicted frame of the cCDS is 0 . The circular code $T_{0}$, being self-complementary, a function of $F_{k}$ based on $T_{0}$, leads to the same results on the DNA complementary strand. Therefore, the association of a frame with a curve, and in particular the top curve, is identical with the CDS and the cCDS. The predicted frame 0 agrees with the EMBL frame. The determination of the frame, from the beginning of the sequence, of a cCDS starting at the complementary base position $j$ and ending at the complementary base position $k$ is obtained with the value $j$ modulo 3 . The EMBL frame with this example is then 0 , as $17772 \bmod 3=0$.

Fig. 5c identifies a series of 5 CDS (exons in the human DNA sequence from cosmid B2046 on chromosome 6), 3 among them have a small size (about 200 bases). Their frames determined by the software ACG are 1, 2, 2, 1, and 1 respectively. All the predicted frames agree with the frames deduced from the EMBL data:

- the frame of the 1 st CDS is equal to 1 as $(29039-1) \bmod 3=1$;
- the frame of the 2 nd CDS is equal to 2 as $((29397-1)+1-(29245-1)-1) \bmod 3=2$ (this expression is obtained from the beginning of the CDS, i.e., 29397, the frame of the previous CDS, i.e., 1 , and the end of the previous CDS, i.e., 29245);
- the frame of the 3rd CDS is equal to 2 as $((30373-1)+2-(30228-1)-1) \bmod 3=2$;
- the frame of the 4 th CDS is equal to $1((30740-1)+2-(30584-1)-1) \bmod 3=1$;
- the frame of the 5 th CDS is equal to $1((31110-1)+1-(30953-1)-1) \bmod 3=1$.

Fig. 5 c gives an analysis of the relative positions of the different exons between themselves.

### 3.2.2. Two examples leading to unexpected results

Two unexpected results obtained in the EMBL human chromosomes with the software ACG, are given: the prediction of internal frames in the protein genes and the prediction of a coding region in the genomes.
Fig. 6a predicts internal frames in a CDS (1334 bases in the human DNA sequence from clone 1189B24 on chromosome Xq25-26.3). Indeed, there are 3 intersections of the 2 first highest curves which are associated with 4 assumed internal frames $0,1,0$ and 2 . The frameshift of 1 (resp. 2) base can be associated with 1 (resp. 2) base insertion (modulo 3) or 2 (resp. 1) base deletions (modulo 3). The internal frames can also be explained with the concatenation of coding regions whose lengths are not all multiple of 3 . This CDS is mentioned as pseudogene in the EMBL file.
Figure 6 b predicts a coding region in the human DNA sequence from clone 1048E9 on chromosome 22q11.2-12.2 and its frame 2. This region is associated with the primary transcript starting at 18411 and ending at 18946. Surprisingly, the predicted frame by the software ACG is equal to the EMBL frame $(18411-1) \bmod 3=2$.

## 4. DISCUSSION

A new statistical approach using functions based on the circular code identifies 93.32 \% (coefficient $S M C$ ) of bases in the human sequences correctly, i.e., classifies the bases in coding and non-coding genes correctly. This approach has been evaluated with the coefficient SMC, which represents a good compromise between the Sensitivity $S n$ of coding bases identified correctly (39.75 \%) and the Specificity Sp of noncoding bases identified correctly ( $98.88 \%$ ) (in the population studied, $90.6 \%$ bases are non-coding). These frequencies are retrieved by varying the size of the sequence population, e.g., by eliminating the short sequences (data not shown). Indeed, a large quantity of data used for the computation leads to stable values. The parameter $s$ (surface) used for evaluating the statistical significance is a concept extending the natural and simplest parameter $v$ based on the value of a function for a given base position. The statistical results obtained with this parameter $v$ lead to a coefficient SMC that is significantly low than 93.32 \% (data not shown). The choice of the coefficient SMC for evaluating this new statistical approach in order to identify protein genes in genomes is confirmed by the Correlation Coefficient CC whose maximum ( 0.53 ) is also reached with the function $F_{2}^{D}$ with $n=50$ and $s=38$. Note that if all bases are predicted as non-coding then $C C$ is equal to 0 .

The main purpose of this paper is to propose a completely new approach for identifying protein coding genes in genomes by using a gene model based on the circular code. Therefore, the method developed allows the global location of regions that are coding for proteins or not. The start and end of the coding
region can be predicted by the intersection of the 2 highest curves. Obviously, the exact location of the boundaries can be improved in the future by analysing in detail the start regions and the end regions of coding genes by considering, for example, the start codon ATG, the stop codons TAA, TAG, and TGA, the splicing sites, the TATA box, etc. It can also be associated with other methods for identifying protein genes in genomes, such as the codon usage methods, the methods based on the Hidden Markov Model (HMM), etc. (e.g., Shulman et al., 1981, Shepherd, 1981; Staden and McLachlan, 1982; Fickett, 1982; Smith et al., 1983; Blaisdell, 1983; Staden, 1984; Borodovsky and Ininch, 1993; Krogh et al., 1994; Burge and Karlin, 1997; Lukashin and Borodovsky, 1998; Salzberg et al., 1998; Pavy et al., 1999; Shmatkov et al., 1999, etc.). However, it should be stressed that the method in its actual state gives interesting results. Indeed, the Correlation Coefficient CC is equal to 0.53 with a data set containing 303124560 bases without discarding particular sequences. Obviously, these values become significantly better if there is a data selection before the statistical analysis, e.g., by discarding particular sequences: the sequences for which the exact location of the protein genes is determined ambiguously, the sequences encoding pseudogenes, etc. For example, the removal of pseudogenes (784 274 bases representing about $2.92 \%$ of the gene population studied) increases the coefficient SMC from 93.32 \% to 93,53 \%.

In summary, the research software Analysis of Coding Genes using functions based on the circular code, constitutes a new approach for identifying protein genes in genomes and for determining their frame. As it is based on the circular code of protein genes of both eukaryotes and prokaryotes, it can be applied independently of the type of eukaryotic/prokaryotic organism under investigation. An example of the use of the software ACG on a prokaryotic organism (Escherichia coli) is presented in Fig. 7. Furthermore, it also allows an evaluation of the length of protein genes, their position in the genome, their relative position between themselves, and the prediction of internal frames. It can be used without prerequisite knowledge: interactivity, graphical tools, possibilities of varying the parameters (the function, the length of the window, the surface level), etc. As the user-friendly software ACG is based on a new concept (circular code), the genomes can easily be investigated for obtaining new results in this research field.

## ACKNOWLEDGEMENTS

We thank the Referee for his advice.

## REFERENCES

Arquès, D.G., Fallot, J.-P., Marsan, L. \& Michel, C.J. (1999). An evolutionary analytical model of a complementary circular code. BioSystems 49, 83-103.
Arquès, D.G., Fallot, J.-P. \& Michel, C.J. (1998). An evolutionary analytical model of a complementary circular code simulating the protein coding genes, the 5 ' and 3 ' regions. Bull. Math. Biol. 60, 163-194.
Arquès, D.G. \& Michel, C.J. (1996). A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58.
Arquès, D.G. \& Michel, C.J. (1997a). A code in the protein coding genes. BioSystems 44, 107-134.
Arquès, D.G. \& Michel, C.J. (1997b). A circular code in the protein coding genes of mitochondria. J. Theor. Biol. 189, 273-290.
Béal, M.-P. (1993). Codage symbolique. Masson.
Berstel, J. \& Perrin, D. (1985). Theory of codes. Academic Press.
Blaisdell, B.E. (1983). A prevalent persistent nonrandomness that distinguishes coding and non-coding eukaryotic nuclear DNA sequences. J. Mol. Evol. 19, 122-133.
Borodovsky, M. \& Mc Ininch, J.D. (1993). GeneMark: parallel gene recognition for both DNA strands. Comput. Chem. 17, 123-133.
Burge, C. \& Karlin, S. (1997). Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78-94.
Burset, M. \& Guigó, R. (1996). Evaluation of gene structure prediction programs. Genomics 34, 353-367.
Crick, F.H.C., Brenner, S., Klug, A. \& Pieczenik, G. (1976). A speculation on the origin of protein synthesis. Origins of Life 7, 389-397.
Crick, F.H.C., Griffith, J.S. \& Orgel, L.E. (1957). Codes without commas. Proc. Natl. Acad. Sci. 43, 416-421.
Eigen, M. \& Schuster, P. (1978). The hypercycle. A principle of natural self-organization. Part C: The realistic hypercycle. Naturwissenschaften 65, 341-369.
Fickett, J.W. (1982). Recognition of protein coding regions in DNA sequences. Nuc. Acids Res. 10, 53035318.

Karlin, S., Mrazek, J. \& Campbell, A.M. (1998). Codon usages in different gene classes of the Escherichia coli genome. Mol. Microbiol. 29, 1341-1355.
Krogh, A., Mian, I.S. \& Haussler, D. (1994). A hidden Markov model that finds genes in E. coli DNA. Nuc. Acids Res. 22, 4768-4778.
Lukashin, A.V. \& Borodovsky, M. (1998). GeneMark.hmm: new solutions for gene finding. Nuc. Acids Res. 26, 1107-1115.
Nirenberg, M.W. \& Matthaei, J.H. (1961). The dependance of cell-free protein synthesis in E. Coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. 47, 1588-1602.
Pavy, N., Rombauts, S., Déhais, P., Mathé, C., Ramana, D.V.V., Leroy, P. \& Rouzé, P. (1999). Evaluation of gene prediction software using a genomic data set: application to Arabidopsis thaliana sequences. Bioinformatics 15, 887-899.
Salzberg, S.L., Delcher, A.L., Kasif, S. \& White, O. (1998). Microbial gene identification using interpolated Markov models. Nuc. Acids Res. 26, 544-548.
Shepherd, J.C.W. (1981). Method to determine the reading frame of a protein from the purine/pyrimidine genome sequence and its possible evolutionary justification. Proc. Natl. Acad. Sci. USA 78, 15961600.

Shulman, M.J., Steinberg, C.M. \& Westmoreland, N. (1981). The coding function of nucleotide sequences can be discerned by statistical analysis. J. Theor. Biol. 88, 409-420.
Shmatkov, A.M., Melikyan, A.A., Chernousko, F.L. \& Borodovsky, M. (1999). Finding prokaryotic genes by the 'frame-by-frame' algorithm: targeting gene starts and overlapping genes. Bioinformatics 15, 874886.

Smith, T.F., Waterman, M.S. \& Sadler, J.R. (1983). Statistical characterization of nucleic acid sequence functional domains. Nuc. Acids Res. 11, 2205-2220.
Staden, R. (1984). Measurements of the effect that coding for a protein has on DNA sequence and their use for finding genes. Nuc. Acids Res. 12, 551-567.
Staden, R. \& McLachlan, A.D. (1982). Codon preference and its use in identifying protein coding regions in long DNA sequences. Nuc. Acids Res. 10, 141-156.

| $T_{0}:$ | AAA | AAC | AAT | ACC | ATC | ATT | CAG | CTC | CTG | GAA | GAC | GAG | GAT | GCC | GGC | GGT | GTA | GTC | GTT | TAC | TTC | TTT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}_{1}:$ | AAG | ACA | ACG | ACT | AGC | AGG | ATA | ATG | CCA | CCC | CCG | GCG | GTG | TAG | TCA | TCC | TCG | TCT | TGC | TTA | TTG |  |
| $\mathrm{T}_{2}:$ | AGA | AGT | CAA | CAC | CAT | CCT | CGA | CGC | CGG | CGT | CTA | CTT | GCA | GCT | GGA | GGG | TAA | TAT | TGA | TGG | TGT |  |

Table 1a: List per frame and in lexicographical order of the trinucleotides of the complementary circular code identified in protein coding genes of eukaryotes and prokaryotes (Arquès \& Michel, 1996). Three subsets of trinucleotides can be identified: $T_{0}=X_{0} \bigcup\{\mathrm{AAA}, \mathrm{TTT}\}$ in frame $0, T_{1}=X_{1} \bigcup\{\mathrm{CCC}\}$ in frame 1 and $T_{2}=X_{2} \bigcup\{G G G\}$ in frame 2. The 3 sets $X_{0}, X_{1}$, and $X_{2}$ of 20 trinucleotides are maximal circular codes.

| $X_{0}:$ | AAC | AAT | ACC | ATC | ATT | CAG | CTC | CTG | GAA | GAC | GAG | GAT | GCC | GGC | GGT | GTA | GTC | GTT | TAC | TTC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $X_{1}:$ | ACA | ATA | CCA | TCA | TTA | AGC | TCC | TGC | AAG | ACG | AGG | ATG | CCG | GCG | GTG | TAG | TCG | TTG | ACT | TCT |
| $X_{2}:$ | CAA | TAA | CAC | CAT | TAT | GCA | CCT | GCT | AGA | CGA | GGA | TGA | CGC | CGG | TGG | AGT | CGT | TGT | CTA | CTT |

Table 1b: Circularity property with the 3 circular codes $X_{0}, X_{1}$, and $X_{2}$ of 20 trinucleotides identified in protein coding genes of eukaryotes and prokaryotes (Table 1a).

| $\mathrm{T}_{0}:$ | AAA | AAC | AAT | ACC | ATC | CAG | CTC | GAA | GAC | GCC | GTA |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}_{0}:$ | TTT | GTT | ATT | GGT | GAT | CTG | GAG | TTC | GTC | GGC | TAC |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{1}:$ | AAG | ACA | ACG | ACT | AGC | AGG | ATA | ATG | CCA | CCC | CCG | GCG | GTG | TAG | TCA | TCC | TCG | TCT | TGC | TTA | TTG |
| $\mathrm{T}_{2}:$ | CTT | TGT | CGT | AGT | GCT | CCT | TAT | CAT | TGG | GGG | CGG | CGC | CAC | CTA | TGA | GGA | CGA | AGA | GCA | TAA | CAA |

Table 1c: Complementarity property with the 3 circular codes $X_{0}, X_{1}$, and $X_{2}$ of 20 trinucleotides identified in protein coding genes of eukaryotes and prokaryotes (Table 1a). This property is also verified with $T_{0}$ (AAA and TTT) and $T_{1}$ and $T_{2}$ (CCC and GGG).

| Codon in frame 0 | Frequency (\%) | Codon in frame 1 | Frequency (\%) | Codon in frame 2 | Frequency (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ATG | 2.31 | ATG | 3.08 | ATG | 0.57 |
| CAA | 1.65 | CAA | 1.55 | CAA | 3.71 |
| CCA | 1.66 | CCA | 2.91 | CCA | 2.04 |
| GGA | 1.76 | GGA | 1.27 | GGA | 3.49 |
| GTC | 1.60 | GTC | 0.81 | GTC | 1.05 |
| GTT | 1.55 | GTT | 0.75 | GTT | 1.35 |
| TCC | 1.63 | TCC | 1.85 | TCC | 1.40 |

Table 2: A few examples taken from the Table 1b of Arquès \& Michel (1996) showing that the codons GTC and GTT belonging to $X_{0}$ occur in frame 0 with lower frequencies compared to the codons ATG belonging to $X_{1}$ and CAA belonging to $X_{2}$, etc.


Figure 1a: Representation of a function $F_{k}$ by 3 curves modulo 3 . By convention, the curve $C_{0}$ (resp. $C_{1}$, $C_{2}$ ) joins the points in base position 1 (resp. 2, 0 ) modulo 3 and therefore is related to the base position in frame 0 (resp. 1, 2) determined from the beginning of the sequence.


Figure 1b: Representation of the discrete sums $\sum_{c \in R} F_{k}^{M}(c)$ in different ranges $R$ by surfaces. For a given range, the surface is associated with the highest curve.


Figure 1c: Representation of the discrete sums $\sum_{c \in R} F_{k}^{D}(c)$ in different ranges $R$ by surfaces. For a given range, the surface is associated with the difference between the 2 highest curves.


Figure 2: Computation of the 3 occurrence frequencies $P\left(T_{g}, w_{i}\right)$ in the window $w_{i}$ from the window $w_{i-3}$. The 2 windows $w_{i}$ and $w_{i-3}$ differ only from one trinucleotide. The "destroyed trinucleotide" $t_{d}$ is the trinucleotide belonging to $w_{i-3}$ but not to $w_{i}$, i.e., the trinucleotide from the position $i-3$ to $i-1$. Similarly, the "constructed trinucleotide" $t_{c}$ is the trinucleotide belonging to $w_{i}$ but not to $w_{i-3}$, i.e., the last trinucleotide in $w_{i}$ that starts in position $i+3(n-1)$ and ends in position $i+3 n-1$.


Figure 3: Example of a progress of the algorithm. This example is applied with a subsequence of $S$ between the base positions 9 and 19 and with a base length of the window $w$ equal to $3 n=6$. At the step $k=17$ treating the 17 th base in $S$, the window $w_{i}$ is in position $i=k-3 n+1=17-6+1=12$ and contains then the bases $w=\operatorname{CCCCCC}$. The "destroyed trinucleotide" $t_{d}$ is the trinucleotide starting at the position $i=12-3=9$ : the word $d$ contains $d=$ AAA. The "constructed trinucleotide" $t_{c}$ is the trinucleotide starting at the position $i+3(\mathrm{n}-1)=12+3=15$ : the word $c$ contains $c=$ CCC. At this step $w=w_{12}, d=t_{d}$ and $c=t_{c}$. At the step $k=18$ treating the 18 th base in the sequence, the base in the position $(k \bmod 3 n)=0$ in the word $w$ is moved in the position $(k \bmod 3)=0$ in the word $d$. Therefore, $d=$ CAA. Then, the 18th base in the sequence is read and placed at the position $(k \bmod 3)=0$ in the word $c$ and at the position $(k \bmod 3 n)=0$ in the word $w$. Therefore, $c=$ GCC and $w=$ GCCCCC. At this step, $w \neq w_{13}, d \neq t_{d}$ and $c \neq t_{c}$. The words $w, d$ and $c$ can be obtained by circular permutations from $w_{i}, t_{d}$ and $t_{c}$ respectively. This process is reiterated at the step 19.


Figure 4a: Statistical results giving the proportion SMC of bases identified correctly by the 4 functions $F_{k}^{M}$. The functions $F_{k}^{M}$ are evaluated by varying the parameter surface $s$ between 6 and 130 with a step of 2 and the window length $n$ between 33 and 169 trinucleotides with a step of 17 trinucleotides. The maximum value of the proportion SMC is given with a function $F_{k}^{M}$ by varying $s$ for a given $n$. The 4 maxima of the 4 functions $F_{k}^{M}$ are all less than the 4 maxima of the 4 functions $F_{k}^{D}$ (see Fig. 4b).


Figure 4b: Statistical results giving the proportion SMC of bases identified correctly by the 4 functions $F_{k}^{D}$ evaluated by the parameter $s$. The functions $F_{k}^{D}$ are evaluated by varying the parameter surface $s$ between 6 and 130 with a step of 2 and the window length $n$ between 33 and 169 trinucleotides with a step of 17 trinucleotides. The maximum value of the proportion SMC is given with a function $F_{k}^{D}$ by varying $s$ for a given $n$. The parameter SMC is maximum with the function $F_{2}^{D}$ with $n=50$ and $s=38$ and equal to $93.32 \%$ of bases identified correctly.


Figure 5a: Identification of a protein coding gene (CDS) and its frame by the software ACG. The CDS chosen as an example, starts at the base 44614 and ends at the base 46908 in the human DNA sequence from clone 512B11 on chromosome 6p24-25.


Figure 5b: Identification of a complementary protein coding gene (cCDS) and its frame by the software ACG. The cCDS chosen as an example, starts at the complementary base 17772 and ends at the complementary base 17178 in the human DNA sequence from clone E146D10 on chromosome 22.


Figure 5c: Identification of several protein coding genes (CDS) and their frames by the software ACG. This example is observed in the human DNA sequence from cosmid B2046 on chromosome 6.


Figure 6a: Prediction of internal frames in a protein coding gene (CDS) and their internal frames by the software ACG. This example is observed in the human DNA sequence from clone 1189B24 on chromosome Xq25-26.3.


Figure 6b: Prediction of a coding region in the human DNA sequence from clone 1048E9 on chromosome 22q11.2-12.2.


Figure 7: Identification of several protein coding genes (CDS) and their frames by the software ACG. This example is observed in the Escherichia coli K-12 MG1655 complete genome.


[^0]:    ${ }^{1}$ Equipe de Biologie Théorique Institut Gaspard Monge Université de Marne la Vallée 2 rue de la Butte Verte 93160 NOISY LE GRAND, FRANCE
    Tel: +33 (0)1 49329010
    Fax: +33 (0)1 49329138
    Email: arques@univ-mlv.fr
    ${ }^{2}$ Département de Mathématiques Appliquées et d'Informatique ENSICA

    1 Place Emile Blouin
    31056 TOULOUSE Cedex 5, FRANCE
    Tel : +33 (0)5 61618720
    Fax: +33 (0)5 61618688
    Email: jerome.lacan@ensica.fr
    ${ }^{3}$ Equipe de Bioinformatique Théorique
    LSIIT (UMR CNRS-ULP 7005)
    Université Louis Pasteur de Strasbourg
    Pôle API
    Boulevard Sébastien Brant
    67400 ILLKIRCH, FRANCE
    Tel.: +33 (0)3 90244462
    Fax: +33 (0)3 90244455
    Email: michel@dpt-info.u-strasbg.fr

